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We analyze continuous-time quantum walks on necklace graphs – cyclical graphs consisting of
many copies of a smaller graph (pearl). Using a Bloch-type ansatz for the eigenfunctions, we block-
diagonalize the Hamiltonian, reducing the effective size of the problem to the size of a single pearl.
We then present a general approach for showing that the mixing time scales (with growing size of
the necklace) similarly to that of a simple walk on a cycle. Finally, we present results for mixing on
several necklace graphs.

I. INTRODUCTION

Classical random walks on form the basis for many successful physics-inspired algorithms. The evolution of prob-
ability distributions according to simple update rules for probability spreading allows us to sample from thermal
distributions (via the Metropolis algorithm [1, 2]) or to look for ground-states of physical systems(with simulated
annealing [3, 4]). The effectiveness of random-walk based algorithms can be characterized by its mixing time (how
fast it approaches the stationary distribution), or by a hitting time (how fast it reaches a particular vertex). For
example, the fast mixing of a random walk algorithm for sampling from the thermal distribution of the Ising model
[5] forms the basis of a fully polynomial randomized approximation scheme for the permanent of a matrix [6].
Thinking about how to utilize the probabilistic nature of quantum mechanics, instead of analyzing the diffusion

of probabilities, we can ask what happens if we let the amplitudes in a system whose interactions respect some
graph structure evolve according to the Schrödinger equation. The result of this way of thought are quantum walks

[7, 8], a useful tool in quantum computation. They bring new dynamics (different wavepacket spreading [9]) and
algorithmic applications (e.g. in searching for graph properties [10], graph traversal [11], game evaluation [12]) as
well as theoretical results (universality for computation [13]). We can define quantum walks in discrete time with an
additional coin register, or in continuous time, with Hamiltonians which are adjacency matrices of graphs. In this
paper, we choose the latter approach.
The mixing of quantum walks has been previously investigated for several types of graphs – e.g. on a chain [7], a

2D lattice [14], hypercubes [15] and circulant graphs [16, 17]. In this paper we focus on continuous quantum walks
on necklaces – cyclic graphs composed from many (K) copies of a subgraph of size M (pearls), as depicted in Fig.1.
Our goal is to provide a simplified approach for finding their eigenvectors and eigenvalues, as well as for analyzing
the mixing times for such walks.
The motivation for analyzing this type of graph comes from Hamiltonian complexity [18]. Quantum computation in

the usual circuit model [19] can be translated into a quantum walk in two ways. First, following Childs [13], evolving
a wavepacket on a graph with many wires (representing basis states), connected according to the desired quantum
circuit. Second, we can use Feynman’s idea [20] to view a computation as a “pointer” particle doing a quantum walk
(hopping) in a “clock” register, while the computation gets done in a “data” register [21–24] or particles holding the
working data hopping along a graph [25, 26]. In both cases, we need to look at transmission/reflection properties of
the graphs, and their long-term dynamics. Specifically, we would like to know (and ensure) that a computation is
done when we want it to be, not having the wavepacket localized (or spread) in undesired parts of the graph. This is
why we focus on the mixing properties of quantum walks that are underlying quantum computational models based
on quantum walks, looking at their spectra in detail. Note that proofs of computational complexity for QMA-hard
problems (e.g. [21, 22]) also involves investigating the (low-lying) spectrum of a quantum walk. The simplest graph
involved in the Feynman-like models is a line or a cycle, and the dynamics for this quantum walk are well understood
[7, 23]. We look at continuous-time quantum walks on necklace graphs, which appear in the analysis of quantum
computational models [24, 27, 28] that generalize the Feynman approach. Necklace graphs could also be viewed as
implementing dynamics for quantum walks on imperfect cycles.
Utilizing the cyclic structure of the necklaces, we propose a Bloch-type ansatz for the eigenfunctions, allowing us

to obtain several results. First, in Section II we reduce the problem of finding the eigenvectors and eigenvalues of
the quantum walk on a necklace of K pearls of size M to diagonalizing a M ×M matrix K times (compared to full
KM ×KM diagonalization. Second, in Section III, we analyze average-time mixing for quantum walks on necklaces
and find a general method for showing convergence to the limiting distribution. Finally, in Section IV, we work
out examples of quantum walks on particular necklaces, giving analytic (and numerical) results for the eigenvectors,
eigenvalues and the scaling of the mixing time, concluding with open questions in Section V.

http://arxiv.org/abs/1111.4433v2
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FIG. 1: Examples of necklace graphs, with the pearls denoted by shaded regions.

FIG. 2: Using the plane wave-like ansatz (4) in which neighboring pearls get a constant phase factor difference, the necklace
Hamiltonian can be block-diagonalized on the pearls, acting independently on each pearl with the addition of a single link
(carrying a phase factor) between its roots x1 and xM .

II. FINDING EIGENVECTORS AND EIGENVALUES

Consider a quantum system with a Hamiltonian H given by the adjacency matrix of a necklace-like structure. The
simplest necklace is a cycle with K vertices. A general necklace is a collection of K pearls (small identical graphs
with M nodes), connected into a cycle as in Fig. 1.

We label points in the j-th pearl x
(j)
m , with 1 ≤ m ≤M . The endpoints of the j-th pearl (connected to the previous

and following pearls) are x
(j)
1 and x

(j)
M Let P be the adjacency matrix of a pearl. The Hamiltonian for the whole

necklace is a sum of intra-pearl terms and the connections between them:

H =
K
∑

j=1

P (k) +
K−1
∑

j=1

(

|x(j)M 〉〈x(j+1)
1 |+ |x(j+1)

1 〉〈x(j)M |
)

(1)

+
(

|x(K)
M 〉〈x(1)1 |+ |x(1)1 〉〈x(K)

M |
)

.

Our goal is to find the eigenvalues and eigenvectors of H . Because of the underlying cyclic structure of a general
necklace graph with K pearls, we can assume that its eigenvectors will have a structure related to a plane wave on
a cycle with K nodes. Let us then look at the K-node cycle first. There the Hamiltonian (1) has no P (k)’s in it,
allowing us to find the (plane-wave) eigenvectors of H◦:

|w◦
k〉 =

K
∑

j=1

eipkj |xj〉 , (2)

corresponding to eigenvalues λk parametrized by momenta pk:

λ◦k = 2 cos p◦k, p◦k =
2πk

K
, (3)

for k = 0, . . . ,K − 1.
Consider now a general necklace with K pearls. We expect the eigenvectors of the necklace Hamiltonian (1) to have

a form resembling (2), also depending on the momenta pk (3). Let us thus look for the eigenvectors of H in the form

|ψk〉 =
1√
K

K
∑

j=1

eipkj |y(j)k 〉, (4)
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where each

|y(j)k 〉 =
M
∑

m=1

ykm|x(j)m 〉 (5)

is a normalized vector with support only on the j-th pearl (the vertices x
(j)
1 , . . . , x

(j)
M ). Using (1) and (4), we obtain

H |ψk〉 =
1√
K

K
∑

j=1

eipkj
(

P (j)|y(j)k 〉+ e−ipkykM |x(j)1 〉+ eipkyk1 |x
(j)
M 〉
)

(6)

where the last two terms correspond to the amplitudes on the endpoints of the j-th pearl coming from the endpoints
of the neighboring pearls. Notice that because of our parametrization (4), the Hamiltonian is now block-diagonalized,
acting in the same way on each pearl (see Figure 2). When |ψk〉 is an eigenvector of H , we also have

H |ψk〉 = λk |ψk〉 = λk
1√
K

K
∑

j=1

eipkj |y(j)k 〉. (7)

Using (6) and (7), finding the eigenvalues of H thus reduces to diagonalizing the M ×M matrix

Yk = P +Qk, (8)

where P is the adjacency matrix of a pearl, and

Qk =













e−ipk

0

. .
.

0
eipk













(9)

has only two non-zero elements in the corners if a pearl has two distinct roots x1 and xM . There is a special case
when a pearl is connected to the rest of the necklace through a single root vertex x1. There, the matrix Qk has a
single nonzero element and reads

Qk =







eipk + e−ipk

0
. . .






. (10)

Diagonalizing (8) gives us M -dimensional vectors |yk〉. For each k = 0, . . . ,K − 1, there will be M of these, and we
will label them |yk,n〉 with n = 1, . . .M . The corresponding eigenvalues λk,n of Yk are also the eigenvalues of the full
Hamiltonian H . Therefore, to find all the KM eigenvalues λk,n of the necklace Hamiltonian with K pearls, we need
to diagonalize the M ×M matrix Yk (8) for each k = 0, . . . ,K− 1. To get the eigenvectors of H from the eigenvectors

of Yk, we plug the coefficients y
(k,n)
m of the vectors we just found into (4) and (5).

In conclusion, the ansatz (4) simplifies the general problem of diagonalizing theKM×KM matrixH to diagonalizing
an M ×M matrix K times. This is useful especially when M is small and K is large. Our focus in what follows will
be on mixing of continuous quantum walks on many-pearled (large-K) necklaces.

III. QUANTUM WALKS AND MIXING

A. Mixing in a time-averaged sense

Time evolution according to the Schrödinger equation with a Hamiltonian that is an adjacency matrix of a graph
produces a continuous time quantum walk. Let the eigenvectors of the system be |ψk〉 and the corresponding eigen-
values λk. When starting from an initial state |ϕ0〉, the probability of finding the “walker” at vertex |x〉 at time t
(measuring position x) is

p|ϕ0〉
x (t) = |〈x|ϕ(t)〉|2 =

∣

∣

∣

∣

∣

∑

k

e−iλkt〈x|ψk〉〈ψk|ϕ0〉
∣

∣

∣

∣

∣

2

. (11)
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The evolution is unitary, so it does not mix towards a time-independent stationary distribution like a classical Markov
process. On the other hand, we can think about mixing for a quantum walk in a time-averaged sense, investigating a
time-averaged probability distribution. It holds information about the probability of finding the system at a particular
vertex at time t, chosen uniformly at random between 0 and T (a chosen limiting time):

p̄|ϕ0〉
x (T ) =

1

T

∫ T

τ=0

p|ϕ0〉
x (τ). (12)

This time-averaged probability has a well-defined T → ∞ limit, which gives us the limiting probability distribution,
expressible using the eigenvectors of H as:

πϕ0

x = lim
T→∞

p̄|ϕ0〉
x (T ) (13)

= lim
T→∞

1

T

∫ T

τ=0

(

∑

k

e−iλkτ 〈x|ψk〉〈ψk|ϕ0〉
)(

∑

l

eiλlτ 〈ψl|x〉〈ϕ0|ψl〉
)

dτ (14)

=
∑

k

∑

l

〈x|ψk〉〈ψk|ϕ0〉〈ψl|x〉〈ϕ0|ψl〉
(

lim
T→∞

1

T

∫ T

τ=0

e−i(λk−λl)τ dτ

)

(15)

=
∑

λk=λl

〈ψl|x〉〈x|ψk〉〈ψk|ϕ0〉〈ϕ0|ψl〉, (16)

where the final sum goes over pairs of equal eigenvalues. Note that for some quantum walks this limiting distribution
can be dependent on the initial state (e.g. when we start in some eigenstate), so we will keep the superscript ϕ0

around.
To determine how fast the time-averaged probability converges towards the limiting distribution, we need to bound

the total distribution distance ‖p̄ϕ0(T )− πϕ0‖. Using (16), integrating an exponential and realizing that the terms
summed over pairs of equal eigenvalues subtract out, we arrive at

‖p̄ϕ0(T )− πϕ0‖ =
∑

x

|p̄ϕ0

x − πϕ0

x | =
∑

x

∣

∣

∣

∣

∣

∣

∑

λk 6=λl

〈ψl|x〉〈x|ψk〉〈ψk|ϕ0〉〈ϕ0|ψl〉
(

e−i(λk−λl)T − 1

−i(λk − λl)T

)

∣

∣

∣

∣

∣

∣

. (17)

where the sum now goes over pairs of eigenvalues that are not equal. We can put an upper bound on this expression
by a technique similar to [? ]. First, we use |e−i(λk−λl)T − 1| ≤ 2 and move the absolute value inside the sums, to
obtain

‖p̄ϕ0(T )− πϕ0‖ ≤
∑

x

∑

λk 6=λl

|〈ψl|x〉| |〈x|ψk〉|
2 |〈ψk|ϕ0〉| |〈ϕ0|ψl〉|

T |λk − λl|
. (18)

The Cauchy-Schwartz inequality |〈ψl|x〉| |〈x|ψk〉| ≤ 1
2

(

|〈ψl|x〉|2 + |〈x|ψk〉|2
)

allows us to perform the sum over x,

resulting in

‖p̄ϕ0(T )− πϕ0‖ ≤
∑

λk 6=λl

2 |〈ψk|ϕ0〉| |〈ϕ0|ψl〉|
T |λk − λl|

. (19)

After another use of the Cauchy-Schwartz inequality on the terms involving |ϕ0〉, realizing the expression is symmetric
under exchange of k and l, we finally obtain

‖p̄ϕ0(T )− πϕ0‖ ≤
∑

λk 6=λl

2 |〈ψk|ϕ0〉|2
T |λk − λl|

, (20)

which corresponds to Lemma 4.3 of [? ]. It involves a sum of the inverse of eigenvalue differences. These terms can be
large, but as T grows, the 1/T factor can bring the total variation difference to zero. It is our task now to investigate
how fast this happens. We seek Tmix (the mixing time), for which

‖p̄ϕ0(T )− πϕ0‖ ≤ ǫ (21)

would hold for all T ≥ Tmix (ǫ), given any precision parameter ǫ.
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B. Quantum Walk on a Cycle: The Limiting Distribution

For our first example, we now follow [29] and compute the limiting distribution for the case of a walk on a cycle.
Later, we will show that the time-averaged probability converges to it for times T = O(K logK), using a more general
mixing result proved in Section III C.
The eigenvalues and eigenvectors for the continuous-time quantum walk on a cycle are given by (2) and (3). We

obtain the limiting distribution from (16) by summing over the few nonzero terms. The sum over the equal eigenvalues
splits into a sum over k = l and k + l = K (degenerate eigenvalue pairs). When the initial state |ϕ0〉 is concentrated
at a vertex z, in the case of even K, the limiting distribution for the quantum walk on a cycle is

π(x|z) =
1 + fx,z
K

− 2

K2
, (22)

where fx,z = 0 for all pairs (x, z), with an exception for the two points x∗ = z and |x∗ − z| = K
2 , where its value is

fx∗,z = 1. For a cycle with an odd length K, we get

π(x|z) =
1 + fx,z
K

− 1

K2
, (23)

with fx,z defined in the same way as for even K, equal to zero for all pairs (x, z) except for x∗ = z, where fz,z = 1.
The slight differences from a uniform distribution arise because not all of the eigenvalues are doubly degenerate.
Proving that the time-averaged distribution converges towards the limiting distribution for T ≥ O(K logK) takes

more work. We want to show that the total distribution distance ‖p̄ϕ0(T )− πϕ0‖ goes to zero as T ≥ O(K logK).
When computing p̄ϕ0(T ), the terms with λk = λl produce the limiting distribution πϕ0 and are thus subtracted out.
However, the terms left over (which were killed by the T → ∞ limit when computing π) need to be carefully accounted
for and govern the convergence. In (20), we have a bound on the total distribution distance by a sum over pairs of
inequal eigenvalues. We will upper bound this sum in Section III C, using a general approach of lower bounding the
terms |λk − λl|−1 in (20). This result is then applicable to several other walks on necklaces.

C. A general approach to proofs of mixing

The rate of convergence of the time-averaged distribution towards the limiting distribution is governed by a sum
of |λk,n − λj,m|−1 over non-equal eigenvalues as in (20). We will now show a method for upper bounding it that will
work in several cases.
First, let us choose two particular sectors of eigenvalues, fixing n and m. It is often possible to bound the eigenvalue

differences for this sector as

|λk,n − λj,m| ≥ cn,m |cos pj − cos pk| = 2cn,m

∣

∣

∣

∣

sin

(

π(k − j)

K

)∣

∣

∣

∣

∣

∣

∣

∣

sin

(

π(k + j)

K

)∣

∣

∣

∣

, (24)

for some constant cn,m, where where pk = 2πk
K are the momenta, and the indices j, k run from 0 to K − 1, observing

|k − j| 6= {0, K2 }. We will rewrite (24) using the substitution a = j + k and b = k − j.

∑

λj,m 6=λk,n

1

|λj,m − λk,n|
≤ 1

2cn,m

∑

b

∑

a

1
∣

∣sin πb
K

∣

∣

∣

∣sin πa
K

∣

∣

(25)

where |b| ≤ K − 1 while b 6= 0, and |b| ≤ a ≤ 2(K − 1)− |b| while a 6∈ {0,K}. First, because of symmetry, we observe
that it is enough to sum only over 0 < b ≤ K

2 and multiply the resulting sum by 4. Second, it can only increase our
upper bound if we count all a > 0, instead of having to take care with counting starting at |b|. The symmetry of the
term involving a then again allows us to sum only up to a = K

2 and multiply the result by 4. Therefore, we obtain

∑

λj,m 6=λk,n

1

|λj,m − λk,n|
≤ 1

16cn,m





K/2
∑

b=1

1
∣

∣sin πb
K

∣

∣









K/2
∑

a=1

1
∣

∣sin πa
K

∣

∣



 . (26)

Recalling now that sin b ≥ 2b
π , we can deal with each sum as

K/2
∑

b=1

1
∣

∣sin πb
K

∣

∣

≤ K

2

K/2
∑

b=1

1

b
≤ K

2
ln
K

2
, (27)
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FIG. 3: A (K, d)-comb graph is a ring of length Kd, with an extra vertex connected at every d-th node.

thus finally expressing the sum in (20) (note that we worked only in a single n,m sector) as

∑

λk,n 6=λj,m

2 |〈ψk|ϕ0〉|2
T |λk,n − λj,m| ≤

2

TK

K2 ln2 K
2

16cn,m
=

1

8cn,m

K

T
ln2 K

2
, (28)

where the extra factor K−1 comes from the term |〈ψk|ϕ0〉|2, when we expect the initial state to have roughly equal
overlap with all momentum states. According to (20) and working this out for all sectors n,m, this suffices to show
an upper bound on the mixing time (in the time-averaged sense) for this type of quantum walk, which grows with
the system size a Tmix(ǫ) ≤ O(ǫ−1K ln2K).
We will now show that for particular examples of walks on necklaces, the eigenvalues obey (24), and so that we can

use the above approach for proving their convergence. The first example that we can deal with using this method
is the cycle itself, where (24) is an equality. Therefore, we have just shown that the time-averaged distribution
(when starting from a single point) converges to the limiting distribution for a cycle of length K with mixing time
Tmix(ǫ) ≤ O∗ (ǫ−1K

)

(up to logarithmic factors).

IV. EXAMPLES: QUANTUM WALKS ON COMB-LIKE NECKLACES

We now look at a specific type of necklaces, which appear in the quantum-walk based model of computation [27].
These “combs” are constructed from a ring of length Kd by attaching an extra node (tooth) to the ring at every d-th
vertex as in Fig. 3. The “pearl” in this comb-like graph has size d+1, and there are K of them, so the total number
of vertices in this graph is N = K(d+1). We will now analyze the spectra and mixing properties on the (K, d)-comb
necklaces, showing their similarity to (and differences from) a simple cycle.

A. The (K, 1)-comb necklace

This is the simplest of the graphs, with a pearl that has only two nodes (the base and the tooth):

P (K,1) =

[

0 1
1 0

]

. (29)

Because P has a single root, the matrix Qk needed to construct Yk (8) reads

Q
(K,1)
k =

[

eipk + e−ipk 0
0 0

]

. (30)

Therefore, the matrix Yk (8) is

Y
(K,1)
k =

[

eipk + e−ipk 1
1 0

]

. (31)

Its eigenvalues are

λ
(K,1)
k,± = cos pk ±

√

1 + cos2 pk, (32)

and the corresponding eigenvectors are

|y (k,±)〉 = 1
√

1 + λ2k,±

[

λk,±
1

]

(33)
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where the upper vector component corresponds to the base (and the lower component to the tooth) of the comb.
According to (4), this gives us the eigenvectors of H as

|ψ(k,±)〉 = 1√
K

K
∑

j=1

eipkj

√

1 + λ2k,±

[

λk,±
1

]

(j)

(34)

with pk = 2πk
K for k = 0, . . . ,K− 1. The eigenvalues λk (32) of the Hamiltonian are symmetrically distributed around

zero, and each of them is also doubled if K is even. Note that two of the eigenvectors |ψ〉 are zero on every other base
and tooth, and correspond to eigenvalues ±1.
The limiting distribution is analyzed in Appendix A. We find that for large K, the limiting distribution (when

starting from a base vertex) is 4−
√
2

4K on base vertices and
√
2

4K on teeth, with corrections for the initial vertex and
the vertex across from it. We now prove convergence to the time-averaged limiting distribution, showing that the
(time-averaged) mixing on this densest comb is no different than the one we saw for a cycle. We will upper bound the
sum in (20) by the method in Section III C, dividing the eigenvalues into 4 regions, ++,+−,−+,−−, corresponding
to choices of n and m. In the +− and −+ regions, we have |λj,0 − λk,1| ≥ const., so the inverse of such terms does
not govern the scaling in (20). The important region combinations must then be ++ and −−, where a few lines of
algebra give us

|λj,± − λk,±| =
|cos pj − cos pk| . |λj,± + λk,±|
√

1 + cos2 pj +
√

1 + cos2 pk
≥

√
2− 1√
2

|cos pj − cos pk| , (35)

as the eigenvalues are well bounded away from zero. Armed with this inequality, and the fact that the overlap of a
single-starting-vertex initial state with the eigenvectors scales as 1√

K
, we can now use the result of Section III C. This

gives us an upper bound on the mixing time for the (K, 1)-comb necklace, scaling with K as T
(K,1)
mix (ǫ) ≤ O∗ (ǫ−1K

)

,
i.e. the same as for a cycle with no teeth, up to logarithmic factors.

B. The (K, 2)-comb

The next example is the (K, 2) comb. It has a tooth (extra vertex) at every second node of the basic loop, so its
pearl P has three vertices. We label the base of the tooth as vertex 1, and the top of the tooth as vertex 2, giving:

P =





0 1 1
1 0 0
1 0 0



 . (36)

Following the procedure of Section II, we need to find the eigenvalues and eigenvectors of the matrices Y
(K,2)
k con-

structed as in (8):

Y
(K,2)
k =





0 1 1
1 0 0
1 0 0



+





0 0 e−ipk

0 0 0
eipk 0 0



 =







0 1 e−
ipk
2 2 cos pk

2
1 0 0

e
ipk
2 2 cos pk

2 0 0






. (37)

After some algebra, we find that its three eigenvalues are

λ
(K,2)
k,0 = 0, λ

(K,2)
k,± = ±

√

3 + 2 cospk, (38)

with the corresponding eigenvectors

|y (k,0)〉 = 1
√

(3 + 2 cospk)





0

2e−
ipk
2 cos pk

2
−1



 , |y (k,±)〉 = 1
√

2(3 + 2 cospk)





±√
3 + 2 cospk

1

2e−
ipk
2 cos pk

2



 . (39)

To construct the eigenvectors of the Hamiltonian H , we use (39) in equation (4).
Let us now look for a lower bound on the gap between eigenvalues. When we choose two eigenvalues from different

sectors (0, + or −), the differences between them are always larger than 1. The only interesting cases are thus the
++ and −− choices of eigenvalue pairs. There we find

|λj,± − λk,±| =
∣

∣

∣

√

3 + 2 cos pk −
√

3 + 2 cospj

∣

∣

∣
=

2 (cos pk − cos pj)√
3 + 2 cos pk +

√

3 + 2 cospj
≥ 1

2
(cos pk − cos pj) . (40)
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FIG. 4: A log-log plot of the smallest nonzero eigenvalue differences for (K, d)-comb graphs (see Figure 3) and a cycle. A
straight-line fit through the datapoins indicates a K−2 scaling with the growing number of pearls.

This lower bound on the nonzero eigenvalue gaps allows us to use the results of Section III C and prove the upper

bound T
(K,2)
mix (ǫ) ≤ O∗ (ǫ−1K

)

on the mixing time for the (K, 2)-comb. This is once again the same upper bound we
found for the cycle and the (K, 1)-comb in Section IVA.

C. The (K, d)-combs

In the last example we want to show that comb-like necklaces with d vertices between teeth (see Figure 3) mix
similarly to cycles. We dealt with the most non-cycle-like examples in the previous Sections, and now we will
numerically look at combs with general spacing d. The results for the smallest nonzero eigenvalue differences for
d ≤ 15 combs are shown in Figure 4. In a log-log plot of the smallest eigenvalue difference vs. the number of pearls
K (for various values of d), we see the characteristic K−2 scaling. Thus, the numerics imply that the scaling of the

mixing time gets no worse than T
(K,d)
mix (ǫ) = O

(

ǫ−1K2 log2K
)

. However, it is likely that the eigenvalue differences
also obey the cos-like scaling (24) as we have seen for d = 1, 2. If we could show this, we would again prove that the

mixing time scales with K as T
(K,d)
mix (ǫ) = O∗ (ǫ−1K

)

.

V. CONCLUSIONS

The goal of this paper was to utilize the cyclical repetitive structure of necklace-like graphs, providing a general
method for analyzing the eigenvectors and eigenvalues of continuous-time quantum walks on such graphs. Using a
Bloch-theorem-like ansatz, we block-diagonalized the Hamiltonian, decreasing the effective size of the problem from
KM to M , where M is the size of a pearl and K is the number of pearls in the necklace. Next, we wanted to
investigate the mixing times (for approaching a limiting distribution in a time-averaged sense) for these quantum
walks. In Section III C we have shown that proving a cos-like lower bound (24) on (non-equal) eigenvalue differences
results in a mixing time Tmix(ǫ) ≤ O∗ (ǫ−1K

)

for a graph with K pearls, which is the same as for a cycle with K
nodes. Note though, that the prefactor in the mixing time can depend on the size of the pearl M . Finally, in Section
IV we exhibited the bound (24) (and thus the cycle-like mixing time) for two necklace-like graphs. These graphs
appear in the models of quantum computation [24, 27] that extend the Feynman-computer with the so-called railroad
switches, and finding the polynomial-time (in K) scaling of the mixing-time is required for showing their effectiveness.
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Appendix A: The limiting distribution for a (K, 1)-comb necklace

We now analyze the limiting distribution for the continuous-time quantum walk on a (K, 1)-comb in Fig. 5, starting
from a single (base) vertex z. First, we do our work analytically, and end with a few high-K numerical approximations.
The conclusion is that the distribution is flat except for a few points very close to the two special positions x∗ = z
and |x∗ − z| = K

2 .

http://arxiv.org/abs/quant-ph/0702144
http://arxiv.org/abs/1106.5875
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First, we look at the time-averaged limiting distribution for going from base xb to base zb (which thanks to the
identity (A3) turns out to be the same as for going from tooth xt to tooth zt), obtaining

π (xb|zb) = π (xt|zt) =
∑

k,n ψ
(k,n)
xb

ψ
(k,n)∗
yb

ψ
(k,n)∗
xb

ψ
(k,n)
yb

+
∑

k,n ψ
(k,n)
xb

ψ
(k,n)∗
yb

ψ
(K−k,n)∗
xb

ψ
(K−k,n)
yb

−∑n ψ
(0,n)
xb

ψ
(0,n)∗
yb

ψ
(0,n)∗
xb

ψ
(0,n)
yb

−∑n ψ
(K/2,n)
xb

ψ
(K/2,n)∗
yb

ψ
(K/2,n)∗
xb

ψ
(K/2,n)
yb

,
(A1)

where the last term involving K/2 occurs only for even K. Using the identities

λk,+λk,− = −1 (A2)

∑

n∈{+,−}

1
(

1 + λ2k,n

)2 = 1− 1

2 (1 + cos2 pk)
=

∑

n∈{+,−}

λ4k,n
(

1 + λ2k,n

)2 (A3)

and denoting

A =
1

K

K−1
∑

k=0

1

2 (1 + cos2 pk)
, (A4)

B(x|z) =
1

K

K−1
∑

k=0

1

2 (1 + cos2 pk)
e

i2π
K

2(x−z)k, (A5)

C =

{

3
4K for odd K ,

3
2K for even K,

(A6)

with fx,z defined in (22), we rewrite (A1) to finally obtain

π (xb|zb) = π (xt|zt) =
1

K

(

1−A−B(x|z) + C + fx,z
)

. (A7)

Next, we compute the time-averaged limiting distribution for the “start from a base – go to a tooth” transition,
using the identity

L
(2)
k =

∑

n∈{+,−}

λ2k,n
(

1 + λ2k,n

)2 =
1

2 (1 + cos2 pk)
. (A8)

and (A3). We obtain

π (xb|yt) = π (xt|yb) =
{

1
K

(

A+B(x|z) +
1
4K

)

for odd K,

1
K

(

A+B(x|z) +
1
2K

)

for even K.
(A9)

Finally, let us look at the high K approximation (see also Fig.5). In A we replaced the sum by an integral and

obtained A ≈
√
2
4 . At points z for which (x− z) ∈ {0, L2 }, the expression B(x|z) equals A exactly, while it rapidly falls

off to zero with growing distance of z from x (or K
2 + x). The limiting distribution when starting from a base point

for even number of pearls is thus well approximated by a flat distribution with 4−
√
2

4K − 6
4K2 on bases and

√
2

4K − 1
2K2

on teeth, with the exception of the starting pearl and the pearl exactly opposite to it receiving 4−
√
2

2K − 6
4K2 and√

2K
2K − 1

K2 , respectively. It is very similar for odd K, except that we do not have the special case of the opposite
pearl. For an example of the limiting distribution with odd and even K, see Fig. 5.
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FIG. 5: The limiting distribution (13) on bases and teeth of a (K, 1)-comb when starting from the base of the 50−th pearl for
odd K = 201 (left) and even K = 200 (right).
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