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ABSTRACT
Railway points are among the key components of railway infras-

tructure. As a part of signal equipment, points control the routes

of trains at railway junctions, having a significant impact on the

reliability, capacity, and punctuality of rail transport. Meanwhile,

they are also one of the most fragile parts in railway systems. Points

failures cause a large portion of railway incidents. Traditionally,

maintenance of points is based on a fixed time interval or raised

after the equipment failures. Instead, it would be of great value if

we could forecast points’ failures and take action beforehand, min-

imising any negative effect. To date, most of the existing prediction

methods are either lab-based or relying on specially installed sen-

sors which makes them infeasible for large-scale implementation.

Besides, they often use data from only one source. We, therefore,

explore a new way that integrates multi-source data which are

ready to hand to fulfil this task. We conducted our case study based

on Sydney Trains rail network which is an extensive network of

passenger and freight railways. Unfortunately, the real-world data

are usually incomplete due to various reasons, e.g., faults in the

database, operational errors or transmission faults. Besides, railway

points differ in their locations, types and some other properties,

whichmeans it is hard to use a unifiedmodel to predict their failures.

Aiming at this challenging task, we firstly constructed a dataset

from multiple sources and selected key features with the help of

domain experts. In this paper, we formulate our prediction task

as a multiple kernel learning problem with missing kernels. We

present a robust multiple kernel learning algorithm for predicting

points failures. Our model takes into account the missing pattern

of data as well as the inherent variance on different sets of railway

points. Extensive experiments demonstrate the superiority of our

algorithm compared with other state-of-the-art methods.
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1 INTRODUCTION
Railway points are a kind of mechanical installations allowing

railway trains to be guided from one track to another. They are

among the key components of railway infrastructure.

A railway junction is controlled jointly by one or more ends

of points. They work together to control the routes of trains. In

this paper, we use the term "a set of railway points" to indicate the

entire mechanism in a railway junction.

Apart from delay and cancellation of trains, failure of points

can also cause severe economic loss and casualties. Railway points

count for almost half of all train derailments in the UK [12]. On the

morning of 12 December, 1988, Clapham Junction rail crash
1
killed

35 people, and injured 484 people. More than 20% of incidents in

Sydney Trains rail network were caused by points failures. Main-

taining railway points safe, and forecasting the incoming failure

are vital tasks for reliable rail transportation.

Routine maintenance is usually performed on railway points

to ensure the correctness and reliability of them. Such work is

done by field engineers to inspect and test the equipment at a

fixed time interval. However, this strategy cannot catch the rapid

change of equipment status. For example, when extreme weather

occurs, points often degrade faster than usual. As a result, they

are more likely to fail soon. Instead of relying on passive routine

maintenance, we could benefit more from predictive maintenance

- which flexibly arranges the maintenance work according to the

running condition of equipment.

1
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Forecasting the failures is a critical step in predictive mainte-

nance. Some research has been conducted on this topic [4, 7, 23, 32,

38]. Delicate sensors usually serve as data collectors for voltages,

currents and forces in related work. Installation of sensors incurs

costly labour and material expenses, as well as the possibility of sen-

sor malfunction. Adding sensors for in-service equipment would

also induce disruption to traffic. This is especially unacceptable

for a large and busy rail network. These make the prediction with

sensors’ data expensive, or even infeasible. On the contrary, one

can easily collect heterogeneous data from other sources such as

weather, movement logs, and equipment details without an addi-

tional hardware upgrade.

Gathering available data from multiple sources enriches our

knowledge on the working status of points. However, this also

brings extra problems. Firstly, data collected from different sources

are often in incompatible formats, and they play different roles in

revealing the condition of equipment. Secondly, we are not guaran-

teed that data are always intact - even for a single source. Actually,

in most case, we can only feed incomplete data into our model.

Besides, our data were collected upon 350 sets of railway points.

They are possibly located in a rural area, city centre, or from a

different point of view, bridges, tunnels. They can also be of various

types and made by different manufacturers. These add up to the

difficulties in designing models. To summarise, we are faced with

three main challenges here:

• How to combine information from multiple sources effi-

ciently and effectively?

• How to deal with missing data?

• How to consider the distinct and shared properties between

different sets of railway points simultaneously?

To address these challenges, we proposed a novel multiple kernel

learning algorithms. Our method was developed based on the mul-

tiple kernel learning framework [9]. Multiple kernel learning has

attracted much attention over the last decade. It has been regarded

as a promising technique for combining multiple data channels or

feature subsets [35], which exactly meets our requirements. We ap-

plied different kernel mapping functions on our data from different

sources. Besides, we also concatenated all the data to form a kernel

so that the inter-source correlations could be found. An adaptive

kernel weight determined by both properties of an individual set

of railway points and the missing pattern of data makes our model

robust, effective and unique. The contributions of this paper can be

shown in the following aspects:

• We provide a universal framework to predict points’ failure

with multi-source data. Our data are easy to obtain for most

of the rail networks over the world without a hardware

upgrade, and thus could be used in many other rail networks.

• Our work firstly introduces missing pattern adaptive kernel

weight into existing multiple kernel learning framework.

• With a sample adaptive kernel weight, our model can capture

the distinct and share properties of different railway points.

• We developed an optimisation algorithm to optimise the

proposed model. Through random feature approximation

together with mini-batch gradient descent, the proposed

method can be applied on large datasets.

• We conducted experiments on a real-world dataset collected

from a wide range of railway points over three years. The

results clearly show the effectiveness of our model.

The rest of this paper is organised as follows. Section 2 presents

the related work. In Section 3, we describe our data and applica-

tion. The proposed adaptive multiple kernel learning is detailed in

Section 4. The experiment results are shown in Section 5. Last we

conclude our work in Section 6.

2 RELATEDWORK
We give a brief introduction to failure prediction of railway points

and the multiple kernel learning (MKL) algorithm.

2.1 Failure Prediction of Railway Points
Knowing that railway points directly affect the capacity and re-

liability of rail transport, some research has been conducted on

failure prediction of railway points [4, 7, 23, 32, 38]. Sensor data

such as voltages, currents and forces were widely used in these

works. They were collected in laboratories or from site sensors.

These data would require a high sampling rate and lead to difficul-

ties in both transmission and storage. Despite the success shown

in these methods, they are impractical in real application.

Few works explored the prediction task with data from another

source. Weather plays a significant role in the probability of failure

[11], and has been used to predict the total number of failed turnout

systems in a railway network [33]. Note that this work could not

locate the exact fault railway points, it only estimates the total

number of failures in a large system. Apart from weather data,

equipment logs are also valuable information for foreseeing the

failures of related equipment [30]. Logs can be generated by sensors,

software applications and even maintenance records [19], reflecting

the working condition of a piece of equipment in a different view.

In [19], maintenance logs are used to forecast the failure between

two scheduled maintenance.

Many of above-mention methods used support vector machines

(SVM) [5] for their models. They mainly focused on data from one

source. A natural extension is to use multiple kernel learning to

formulate our multi-source problem, and level up the performance.

2.2 Multiple Kernel Learning
Similar to deep neural networks, functions defined in reproduc-

ing kernel Hilbert space (RKHS) can model highly nonlinear re-

lationship. MKL further takes the advantages of such functions

by combining them wisely. Compared to deep neural networks,

MKL enjoys better interpretability while requires less training data,

which is more in line with our fundamental requirements.

MKL searches for an optimal combination of kernel functions to

maximise a generalised performance measure. It has been widely

used in various regression and classification tasks [2, 3, 20, 36, 37].

For sample xi = [x(1)
⊤

i , x(2)
⊤

i , · · · , x(s)
⊤

i ]⊤ consists of s feature
subsets, by applying s mapping functions to each subset, it takes

the form of:

ϕ(xi ) = [ϕ⊤
1
(x(1)i ),ϕ⊤

2
(x(2)i ), · · · ,ϕ⊤s (x

(s)
i )]⊤, (1)

where {ϕm (·)}sm=1 denote feature mappings associated with m
pre-defined base kernels {κm (·, ·)}sm=1. Given samples {(xi ,yi )}ni=1



Figure 1: Workflow of our method.

with yi ∈ {−1,+1} the label for xi , commonly used MKL can be

formulated as the following convex optimisation problem [25]:

min

{ωm }sm=1,b,ξ ,η∈∆

1

2

s∑
m=1

∥ωm ∥2
2
+C

n∑
i=1

ξi ,

s .t . yi

( s∑
m=1

√
ηmω⊤

mϕm (x(m)

i ) + b

)
≥ 1 − ξi ,

ξi ≥ 0, i = 1, 2, ...,n,

(2)

where ∥·∥
2
is the Euclidean norm for vectors. ωm is the weight

vectors for mapped features ϕm (x(m)

i ). η contains the weights for

combination of base kernels. For L1-norm of kernel weights, ∆ =
{η ∈ Rs+ :

∑s
m=1 ηm = 1,ηm ≥ 0}. b is the bias term and C is a

regularisation parameter for ξ which consists of slack variables.

The decision score of the classifier on a sample x is given by:

f (x) =
s∑

m=1

√
ηmω⊤

mϕm (x(m)) + b . (3)

Many variants of the MKL have been proposed to improve the

accuracy of MKL algorithms. A natural extension is to change the

L1-norm constraint for kernel weights to Lp -norm as in [13]. Al-

gorithms in [14] further simplified the optimisation procedure by

adopting a closed-form solution for kernel weights. In [22], a bi-

nary vector was introduced for every sample to switched on/off

base kernels. The optimisation problem was an integer linear pro-

gramming problem. The work in [8] put forward a localised MKL

algorithm. They utilised a gating model for selecting the appropri-

ate kernel function locally. A convex variant was presented in [16]

and corresponding generalisation error bounds were provided.

Another branch of studies focuses on improving the efficiency

and scalability of MKL. In [31], they worked on a special scenario

that when feature maps were sparse and can be explicitly computed.

Combined with chunking optimisation, they were able to deal with

large volumes of data. The work in [26] improved the scalability

of MKL through Nystrom methods to approximate the kernel ma-

trices and used proximal gradient algorithm in optimisation. Some

research was also developed for the situation when the number of

kernels to be combined was very large [1]. Besides, many online

methods for MKL were proposed recently [17, 27–29]. Random

feature approximation [24] is popular among these methods.

Except for the work in [21], most of the research on multiple

kernel classification is based on the prerequisite that all kernels

are complete, whereas in our problem, this is not true. The method

in [21] cannot be scaled up to fit our dataset, and they actually

treated different missing patterns equally in the test. We thus argue

that this is insufficient. These inspire us to design a new algorithm

that can handle a large dataset, and explore the benefits by not

only dealing with different missing patterns accordingly but also

treating each group of sample adaptively.

3 PROBLEM DESCRIPTION
In this section, we describe our data and application. Figure 1 shows

the workflow of our method.

3.1 Data Description
We collected railway points’ equipment details, maintenance logs,

movement logs and failure history from Sydney Trains database

in a time range from 01/01/2014 to 30/06/2017. These data are col-

lected from 350 sets of railway points spread in a large area. We

also downloaded the weather data from Australia Bureau of Mete-

orology
2
of the same time span. Below we are going to introduce

their formats and features.

2
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(a) A piece of equipment details. (b) A piece of maintenance log.

(c) A piece of movement log. (d) A piece of weather data.

Figure 2: A sample of our data.

3.1.1 Infrastructure Failure Management System Database. Infras-
tructure Failure Management System (IFMS) Database stores fail-

ures of assets in Sydney Trains with timestamps. We extracted

points’ failures as part of our ground truth.

3.1.2 Equipment Details. Equipment details data record the de-

tailed parameters of every set of railway points, including Points

ID, Manufacturer, Type and so on. A piece of data is presented in

Figure 2a. We use "-" to denote missing values. With the help of do-

main experts, we selected a subset of features from these columns,

and they were all categorical variables. We would simply perform

one-hot encoding with them.

3.1.3 Maintenance Logs. Maintenance logs contain formatted his-

torical maintenance logs of railway points. A subset of categorical

features was extracted from them following advice by the domain

experts. A piece of data is presented in Figure 2b.

3.1.4 Movement Logs. Movement logs were automatically gener-

ated by Sydney Trains control system in a real-time manner. This

system recorded states’ changes of the railway points with times-

tamps in seconds. A piece of data is shown in Figure 2c. We only list

some of the event types here. Failures are reported in logs as well.

Some of the failures occurred in movement logs didn’t appear in the

IFMS database, for the reason that they recovered soon and didn’t

result in any significant incident. They were still real failures, and

we included these failures in our ground truth. Sometimes workers

were testing the points for preventative maintenance and this also

generated failure logs. In this case, we ignore these failures to keep

the ground truth clean.

3.1.5 Weather. Weather data were retrieved from the Australia

Bureau of Meteorology. Our data were gathered from railway points

spread in a large area, so weather conditions for them may vary.

Our strategy was to download data from the nearest weather station

according to the longitudes and latitudes provided by equipment

details. Sometimes weather station would be closed for a while,

and we were not able to find another station to substitute them in

some situations. Some points are lack of geo-coordinates in Sydney

Trains system. These cause the absence of weather data. Figure 2d

shows a piece of weather data.

3.2 Problem Formulation
With data mentioned above in hand, we are going to make use

of them to fulfil the prediction task. Essentially, this is a classifi-

cation task. Since our data were generated from multiple sources,

they came with different formats and sample frequencies. The two

most important things are how we should aggregate our data from

multiple sources and label them according to failure records.

Grouping and labelling data in a daily manner is an intuitive way.

However, our data are highly imbalanced in label distribution. The

number of days that failures occurred is about 4200, while our data

include 454237 days summing over all railway points. This would

produce a dataset contains only 0.9% positive samples if we give a

label "1" to failures. Such imbalanced dataset would deteriorate the

performance of the classifier.

Sydney Trains’ train timetable shows cyclic patterns following

calendar weeks [10], which will pose a periodic effect on our data

as well. Therefore, we grouped our data according to calendar

weeks. We gave label "1" to a week if any failure was recorded

in IFMS or movement log of this week. As a result, our task is to

predict whether there will be failures occur in any time of next

week, depending on weather conditions, movement logs in this

week and maintenance logs in a period of 35 days before next

week. For maintenance logs, we extend the time range to 35 days

since they were often performed based on a monthly interval. We

would also incorporate equipment details, and in general, they are

independent of time. Figure 3 illustrates our data aggregation and

labelling strategy. After some data cleaning, we finally generated

58833 samples including 3900 positive samples.

Notice that in some cases we would lose the movement logs, for

example, the influence of maintenance work. In these cases, we

would only refer to logs in the IFMS database as failure indicators

upon agreement with the domain experts.



Figure 3: To forecast failures in week i+1, we use data from
week i and maintenance logs in a 35-day interval before
week i+1.

4 METHODOLOGY
4.1 Feature Extraction and Partition
Althoughwe have grouped our data according to the above-mentioned

criterion, we need to flatten them further to form feature vectors.

For equipment details and maintenance logs data, we selected some

columns following the advice of domain experts. Then we per-

formed one-hot encoding on these data. We summed up features

if there are more than one maintenance records. For movement

logs data, we extracted some statistical features for every day like

mean of movements, variance of movements, count of movements

and so on. Because there are 7 days per week, we would have 7

subsets of features for movement logs. Similarly, for weather data,

we have 7 subsets for one week. This strategy could be seen in Fig-

ure 1. Such partition lets us easily handle the missing pattern in a

daily format as we will introduce in detail in the next section. Table

1 summarises missing percentages of our data after such feature

partition.

There are 16 feature subsets in total. By applying different ker-

nel functions to different subsets, we can formulate our task as a

multiple kernel learning problem for binary classification. In order

to learn the interaction among feature subsets, we also concate-

nated all feature subsets to form a long vector and applied a kernel

function on it. Finally, we would get 17 kernels as our inputs. We

term these feature subsets channels.
The missing rates for each channel are not very high, but another

fact is that 44% of our data are either missing one channel or more.

Therefore, it is imperative for us to build a model that is suitable

for such data.

4.2 Select Kernel Functions
After applying one-hot encoding, features generated from equip-

ment details and maintenance logs data were often very sparse.

We thus directly used linear kernel for these two data channels as

recommended in literature [6, 18]. For the remaining data channels

consist of weather and movement logs of 7 days, we applied the

commonly used radial basis function (RBF) kernels. In the rare case,

some channels of a sample were only partially missing. If so, we

filled the missing part with means.

4.3 Missing Pattern Adaptive Multiple Kernel
Learning

To work with missing channels, a straightforward way is to learn

separate kernel weights for each missing pattern. However, there

can be

∑s
m=1C

m
s missing patterns if we have s channels, so it is

Table 1: Missing rates and dimensions of our data channels.
44% of samples are missing at least one channel.

Data Missing Rate Feature Dimension

Equipment Details 0% 450

Maintenance Logs 13% 365

Movement Logs

Monday 5% 30

Tuesday 6% 30

Wednesday 5% 30

Thursday 5% 30

Friday 7% 30

Saturday 8% 30

Sunday 10% 30

Weather

Monday 26% 4

Tuesday 26% 4

Wednesday 26% 4

Thursday 25% 4

Friday 25% 4

Saturday 25% 4

Sunday 25% 4

possible that the data cannot cover every pattern. Besides, the data

for one pattern can be less and contain only one type of label. Such

a strategy also ignores the relationship between missing patterns.

A likely choice would be to adjust the kernel weights according to

missing patterns.

In order to allow adaptive kernel combination, we firstly modify

the decision function for a sample x with s channels into following

form:

f (x) =
s∑

m=1
ηm (x)

〈
ωm ,ϕm (x(m))

〉
+ b, (4)

with ⟨·, ·⟩ denotes the inner product of vectors and

ηm (x) = pmv⊤m
2s∑
j=1

pjvj , (5)

where p = [p1,p2, · · · ,p2s ]
⊤
is a binary vector generated by one-

hot encoding on the missing pattern for sample x. We introduce

V = [v1, v2, ..., v2s ] ∈ Rk×2s with latent dimension k to represent

embedding matrix for missing patterns. By Eq. (5), we express the

kernel weights as a second order polynomial mapping frommissing

patterns p with the coefficients given by related inner product of

vectors in V. We give a simple example here to explain how we

generate p. Assume we have 3 data channels but for a sample the

second one is missing, then:

p = [1, 0, 1, 0, 1, 0]⊤. (6)

The first and third "1" mean we have first and third feature subsets

for this sample. The fifth "1" serves as a complementary feature for

missing channel 2. By doing so, the absence of a channel would

make its kernel weight zero and influence the kernel weights of

other presented channels.

The motivation behind this is that we want to collect information

from the missing pattern of each sample. Eq. (5) also indicates that

the kernel weight for a channel is decided by "seeing" the existence

of other channels’ data.



With similar notation to Eq. (2), the optimisation problem after

introducing adaptive kernel weight can be expressed as:

min

{ωm }sm=1,b,ξ ,V

1

2

s∑
m=1

∥ωm ∥2
2
+C1

n∑
i=1

ξi +C2 ∥V ∥2F

s .t . yi

( s∑
m=1

ηm (xi )ω⊤
mϕm (x(m)

i ) + b

)
≥ 1 − ξi ,

ξi ≥ 0, i = 1, 2, ...,n,

(7)

where C1 and C2 are two regularisation parameters. ∥·∥2F denotes

the Frobenius norm. We add a regularisation term for V to prevent

it from being arbitrary scaled up due to the norm constraint on

ωm .

Theorem 4.1. Adopting an adaptive kernel weight in Eq.(5) would
guarantee a positive semi-definite kernel for MKL.

Proof. For fixed V , one can obtain the dual form of Eq. (7):

max

α ∈Q
1⊤α −

1

2

(α ◦ y)⊤Kη (α ◦ y), (8)

where ◦ denotes element-wise product of vectors. 1 is a vector of
all ones and Q =

{
α ∈ Rn : α⊤y = 0, 0 ≤ α ≤ C1

}
. Kη is given by:

Kη =
s∑

m=1

( ( (
V⊤VP

)
⊙ P

)⊤
Im I

⊤
m

( (
V⊤VP

)
⊙ P

) )
⊙ Km , (9)

where ⊙ stands for the Hadamard product. P = [p1, p2, · · · , pn ]
with each column vector pi ∈ {0, 1}2s denotes the missing pat-

tern for sample i . Im is a length-2s indication vector with only

m-th element 1. {Km }sm=1 is the kernel matrix related to mapping

{ϕm (·)}sm=1. Following Schur product theorem [39], Kη is surely

positive semi-definite. �

Theorem 4.1 shows the correctness of our adaptive kernel weight

in theory, but this problem is hard to solve in dual form because of

the complicated form of Kη in Eq. (9).

4.4 Sample Adaptive Multiple Kernel Learning
If we train a unified model for all sets of railway points, we will

possibly ignore some peculiarities of them even though we have

included equipment details as features. Training separate models

for each set of railway points performed even worse as we observed

in initial experiments. These motivated us to modify our model so

that it could be adjusted to fit each set of railway points. We revised

the kernel weight in Eq.(5) into the following format for a sample

x:

ηm (x) = pmv⊤m
2s∑
j=1

pjvjaj , (10)

where we add a new vector a = [a1,a2, · · · ,a2s ]
⊤
to represent

unique features of the set of railway points that generated sample

x.
Related Eq. (10) with Eq. (4), we observe that the term pm could

be omitted from Eq. (10) if we set the mapping ϕm (·) to a zero

vector for missing channels. Thus we omit pm for simplicity of

notation. If we haveT sets of railway points, then we will introduce

A = [a1, a2, · · · , aT ] ∈ R2s×T with T the total number of sets of

railway points. Each column vector in A stands for features of a

set of railway points. Let q(xi ) be the mapping which maps xi to
index of railway points that generated xi . Eq. (10) can be written

into matrix form for sample xi :

ηm (xi ) = I⊤mV
⊤V

(
pi ◦ aq(xi )

)
, (11)

With ηm (xi ) given in Eq. (11), corresponding optimisation prob-

lem becomes:

min

{ωm }sm=1,b,ξ ,V ,A

1

2

s∑
m=1

∥ωm ∥2
2
+C1

n∑
i=1

ξi +C2 ∥V ∥2F

+C3 ∥A − 12s×T ∥2F ,

s .t . yi

( s∑
m=1

ηm (xi )ω⊤
mϕm (x(m)

i ) + b

)
≥ 1 − ξi ,

ξi ≥ 0, i = 1, 2, ...,n,
(12)

where C3 is a regularisation parameter and 12s×T is a matrix of

shape 2s ×T containing all ones. Notice that when A is a matrix of

all ones, Eq. (10) reduce to Eq.(5). In other words, when C3 is large

enough, the two models would be equivalent. This regularisation

term ensures an appropriate variance of models among different

sets of railway points. One can also proof that such adaptive weights

also retain a positive semi-definite kernel.

4.5 Optimisation
As mentioned before, Eq.(7) and Eq.(12) are hard to optimise in dual

form. What’s more, we cannot fit such large data into memory if

we pre-compute those 17 kernel matrices. Thanks to the random

feature (RF) approximation [24], we can take an explicit form of

mapped features hence avoiding calculation of the kernel matrices.

This also facilitates the optimisation in the primal, which is much

simpler. Given x ∈ Rd and a predefined parameter D, the mapped

features associated with a RBF kernel could be approximated by:

ϕ(x)=

√
1

D

[
sin

(
g⊤
1
x
)
, cos

(
g⊤
1
x
)
, · · · , sin

(
g⊤Dx

)
, cos

(
g⊤Dx

) ]⊤
,

(13)

where the entries ofG = [g1, · · · , gD ] ∈ Rd×D are drown i.i.d. from

a Gaussian distribution N(0,σ−2) with σ bandwidth of the RBF

kernel. Many variants of RF approximation have been proposed in

the literature. Here we implement the Fastfood [15] for its simplicity

and efficiency in memory usage.

Our optimisation problem can be rewritten into following form

with hinge loss L(x ,y) =max(0, 1 − xy):

minL =
1

2

s∑
m=1

∥ωm ∥2
2

+C1

n∑
i=1

L

(
yi ,

s∑
m=1

ηm (xi )
〈
ωm ,ϕm (x(m)

i )

〉
+ b

)
+C2 ∥V ∥2F +C3 ∥A − 12s×T ∥2F ,

w.r.t. {ωm }sm=1,b,V ,A,

(14)

with ηm (xi ) defined in Eq.(11), we can calculate the sub-gradients

regarding these variables and get:

∂L

∂ωm
= ωm −C1

∑
i ∈I

yi I
⊤
mV

⊤V
(
pi ◦ aq(xi )

)
ϕm (x(m)

i ), (15)



Algorithm 1 Training Procedure by Mini-batch Gradient Descent

1: Input:DatasetX collected fromT sets of railway points. Latent

dimension k for V . Number of random features {dm }sm=1 for

each kernel. Hyper-parameters C1, C2, C3. Learning rate β .
Batch size h. The number of batches H = ⌊ nh ⌋.

2: Initialise: {ωm }sm=1 = 0. b = 0. A = 12s×T . V with values

sampled from a uniform distributionU(0, 1).

3: for Epoch = 0 toM do
4: Shuffle the samples in X randomly.

5: Split X into batches X1,X2, · · · ,XH .

6: for i = 1, 2, · · · ,H do
7: Get the index set I for support vectors in Xi
8: Update V with step-size β and sub-gradient in Eq. (16)

9: Update A with step-size β and sub-gradient in Eq. (17)

10: Update b with step-size β and sub-gradient in Eq. (18)

11: Update {ωm }sm=1 with step-size β and sub-gradient in Eq.

(15).

∂L

∂V
=−C1V

∑
i ∈I

s∑
m=1

yiω
⊤
mϕm (x(m)

i )

(
Im

(
pi ◦aq(xi )

)⊤
+

(
pi ◦aq(xi )

)
I⊤m

)
+ 2C2V ,

(16)

∂L

∂at
= −C1

∑
i ∈I∩Tt

s∑
m=1

(
yiω

⊤
mϕm (x(m)

i )V⊤V Im
)
◦ pi

+ 2C3(at − 12s ),

(17)

∂L

∂b
= −C1

∑
i ∈I

yi , (18)

where I = {i |1 − yi f (xi ) > 0} is the index set for support vectors.

Tt = {i |q(xi ) = t} is the index set of samples generated by railway

points t .
With gradients calculated as Eq. (15) - Eq. (18), we adopted Mini-

batch gradient descent in optimisation. We trained the models for

50 epochs with a constant learning rate β = 0.0001 and batch-size

256. Using dm to denote the dimension of random features form-th

kernel mapping, the computational complexity for calculating the

gradients is O(
∑s
m=1 dmh + s2k), which depends linearly on batch-

size h and can be computed efficiently. We summarise the training

process in Algorithm 1.

5 EXPERIMENTS
Our data were collected from 350 sets of railway points from

01/01/2014 to 30/06/2017, together with corresponding weather

data downloaded from Australia Bureau of Meteorology. There

are 58833 samples including 3900 failures. We named this dataset

Points-All. We also built a subset consists of data from 5 most

Table 2: Dataset summary.

Dataset #instances #failures #railway points #incomplete instances

Points_All 58833 3900 350 25942

Points_Subset 905 183 5 98

"vulnerable" sets of railway points, i.e. those with most failure sam-

ples, and named it Points-Subset. These datasets are imbalanced

in label distribution. We have tried to weight the classes in training

but saw no performance gains, so we did not adopt such strategy.

Table 2 summarises the statistics of our datasets.

5.1 Baselines, Evaluation Metrics and
Parameter Setting

To show the effectiveness of our approach, we conducted experi-

ments on the following methods.

• MKL-ZF is the lp -normMKLmethod solved by the algorithm

in [14] with absent channels filled by zeros. We conducted

experiments for p ranges in [100, 101, 102, 103, 104].

• MKL-MF is similar to MKL-ZF but with absent channels

filled by the averages.

• MVL-MKL firstly imputes the missing values by the method

in [34], and then applied lp -norm MKL with the imputed

data. [34] is a competitive method for filling incomplete data

similar to our case, so we included it in our baselines.

• Absent Multiple Kernel Learning (AMKL) [21] is a state-

of-the-art method for MKL with missing kernels. We only

compared with AMKL on Points-Subset because it cannot

be scaled up to fit our Points-All dataset.

• Single Source Classifiers (SSC) are the classifiers applied to

single source data. For weather and movement logs data,

there are still 7 data channels for each source. We use our

method MAMKL as the classifier. For maintenance logs,

equipment details and the data channel formed by concate-

nating all features, we filled themissing channels withmeans,

and then used kernel SVM [5] for classification because these

data sources only consist of one channel.

• Missing Pattern Adaptive MKL (MAMKL) is the method

proposed in this paper with kernel weights given by Eq. (5).

• Sample Adaptive MKL (SAMKL) is the method proposed in

this paper with kernel weights determined by Eq. (10).

For fair of comparison, for all methods, we used RF approxima-

tion for RBF kernels, and we fixed the random seed to make them

determined. As such, lp -norm MKL could also be applied to our

Points-All dataset without pre-computed kernels.

We used Area Under Receiver Operating Characteristic Curve

(AUROC) and Area Under Precision Recall Curve (AUPRC) as our

performance metrics for all the methods. For all non-convex meth-

ods, we repeated them 10 times to report the results with means

and standard deviations. For the Points-All dataset, we split it into

60% training data, 20% validation data and 20% test data. The linear

kernel was used for the data channels from equipment details and

maintenance logs. We set same bandwidth for RBF kernels on 7

data channels from weather data. The bandwidth is chosen from

[σ−2,σ−1,σ 0,σ 1,σ 2] according to the AUROC on validation data

using SVM with sum of these 7 kernels as input. σ is the standard

deviation of weather data. The same criterion was adopted to select

the parameter of RBF kernels for 7 data channels from movement

logs and 1 data channel from concatenated features. The dimen-

sions of RFs for approximating RBF kernels were set to 1024, 2048

and 2048 for movement logs, weather and concatenated features



Table 3: Experiment results onPoints-Subset dataset. Best re-
sults are bold and the second best are underlined. We report
the results with means and standard deviations (mean±std)
for non-convex methods.

Methods AUROC AUPRC

MKL-ZF

p = 10
0

0.737 0.436

p = 10
1

0.921 0.791

p = 10
2

0.902 0.784

p = 10
3

0.920 0.789

p = 10
4

0.921 0.790

MKL-MF

p = 10
0

0.646 0.289

p = 10
1

0.923 0.800

p = 10
2

0.887 0.770

p = 10
3

0.887 0.767

p = 10
4

0.906 0.780

MVL-MKL

p = 10
0

0.655±0.002 0.292±0.002

p = 10
1

0.852±0.008 0.783±0.005

p = 10
2

0.898±0.010 0.788±0.015

p = 10
3

0.873±0.006 0.788±0.005

p = 10
4

0.873±0.006 0.788±0.004

SSC

Movement Logs 0.663±0.001 0.380±0.001

Weather 0.864±0.035 0.781±0.036

Maintenance Logs 0.667 0.301

Equipment Details 0.516 0.217

All Concatenated 0.669 0.376

AMKL 0.736 0.463

MAMKL 0.942±0.005 0.831±0.016

SAMKL 0.947±0.007 0.840±0.011

respectively. All other parameters were chosen from some appro-

priately large ranges based on the AUROC of related methods on

validation data. For Points-Subset, we randomly selected 80% data

as training set and the remaining 20% as the test set. Parameters for

them were decided by 5-fold cross-validation on the training set.

5.2 Results on Points-Subset Dataset
Table 3 shows the experiment results on Points-Subset dataset. lp -
norm MKL got inferior results when p = 1, for the reason that they

tended to find a sparse combination of kernels. This means our data

channels carry the complementary information, so only use some

of them could not produce a good result. Experiment results on

SSC verify our argument that only use data from one source is not

enough. The prefilling method did not perform best, because filling

the missing data in advance and used them in training will possibly

introduce another source of error. Although AMKL appropriately

takes into account the missing pattern in trainings, it keeps a fixed

kernel weight in testing. Besides, it is designed for l1-norm MKL,

so it did not perform well in our experiments. It is clear that our

method outperforms other baselines in terms of both AUROC and

AUPRC. We attribute the improvement to the combination of multi-

source data and the sample adaptive kernel weights.

Table 4: Experiment results on Points-All dataset. Best re-
sults are bold and the second best are underlined. We report
the results with means and standard deviations (mean±std)
for non-convex methods.

Methods AUROC AUPRC

MKL-ZF

p = 10
0

0.699 0.218

p = 10
1

0.691 0.199

p = 10
2

0.696 0.205

p = 10
3

0.690 0.196

p = 10
4

0.692 0.197

MKL-MF

p = 10
0

0.698 0.223

p = 10
1

0.684 0.204

p = 10
2

0.687 0.204

p = 10
3

0.682 0.198

p = 10
4

0.668 0.176

MVL-MKL

p = 10
0

0.678±0.001 0.168±0.002

p = 10
1

0.671±0.001 0.159±0.001

p = 10
2

0.670±0.001 0.159±0.001

p = 10
3

0.672±0.002 0.158±0.001

p = 10
4

0.674±0.002 0.159±0.003

SSC

Movement Logs 0.546±0.010 0.093±0.001

Weather 0.677±0.003 0.197±0.008

Maintenance Logs 0.567 0.098

Equipment Details 0.517 0.085

All Concatenated 0.622 0.133

MAMKL 0.721±0.002 0.261±0.009

SAMKL 0.734±0.002 0.270±0.002

5.3 Results on Points-All Dataset
Table 4 shows the experiment results on Points-All dataset. By

training on all data, we also included some sets of railway points

with only a few failure cases. The proportion of incomplete samples

is also higher than that in Points-Subset. These added up to our

difficulties in predicting the failures. As in Table 4, results with

p = 1 is often better. This means traditional MKL cannot fully

exploit the merits of multiple kernels. Our method still can beat

other baselines on both AUROC and AUPRC, and see improvement

compared to SSC. Notice that SAMKL is much better than MAMKL

in this dataset, which verifies the effectiveness of sample adaptive

kernel weight. This could guarantee a reliable warning for failures

predicted by our model.

For each set of railway points, the number of samples is usually

less than 180. Only several failures are observed for some points.

We also trained many classifiers each for one set of railway points,

but the results were unsatisfactory, so we did not list them here.

6 CONCLUSION
Wehave designed a novel approach for combining incomplete multi-

source data to predict the failure of railway points. It was developed

based on the multiple kernel learning framework but went a step

further by exploiting the missing patterns and sample-specific fea-

tures. With the involvement of domain experts, we grouped our

data weekly and split each week into a daily format to form 17 data

channels and built 17 kernels. In this format, we can express the



missing patterns of samples clearly. After that, we put forward a

missing pattern adaptive MKL to leverage the information carried

by missing patterns. We also considered the distinct properties of

each set of railway points, and further improved the prediction

results by our SAMKL algorithm. Experiments show that our model

can output reliable warnings for railway points, and can predict

the failures precisely for those frequently failed points.

In the future, we are going to apply more kernel functions on

a single data channel, and reduce the resulting extra optimisation

time by parallel computing through GPU.
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