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Abstract—This paper introduces a new method to model the 

permanent magnet synchronous machines (PMSMs) with 
saliencies due to the salient structure and magnetic saturation. 
Two parameters are defined to indicate these saliencies, i.e. the 
structural saliency ratio (Kstr) and the saturation saliency ratio 
(Ksat). To verify the nonlinear model, a real PMSM is tested and 
numerically simulated. The nonlinear inductance matrix is 
deduced and expressed by a nonlinear function regressed from the 
experimental data. The simulation and experimental results agree 
well with each other. 
 

Index Terms—Permanent magnet synchronous machines, 
mathematic modeling, structural saliency, saturation saliency.  
 

NOMENCLATURE 

Symbols and Abbreviations 

 Φt , Φf    Total and rotor flux vectors 
 i*

t, i*
f    Total and rotor equivalent currents 

 vα, vβ    Stator α- and β-axis voltages 
iα, iβ     Stator α- and β-axis currents 
λ*

α, λ*
β    Projected flux linkages on α- and β-axis 

vd, vq    Rotor d- and q-axis voltages 
id, iq     Rotor d- and q-axis currents 
λ*

d, λ*
q    Projected flux linkages on d- and q-axis. 

R      Stator resistance 
Kstr     Structural saliency ratio 
Ksat     Saturation saliency ratio 

 LRRSS   Least Relative Residual Sum of Square 

I. INTRODUCTION 
HE permanent magnet (PM) electrical machines, e.g. the 
permanent magnet synchronous machine (PMSM), have 

found wide applications due to their high-power density 
(compactness), high efficiency, ease of control, high 
torque-to-inertia ratio, and high reliability.  

The traditional PMSM model is based on the linear magnetic 
property assumption that the inductance of the stator winding is 
a constant value for different stator currents. The linear model 

 
 

functions reasonably well in describing the energy conversion 
and the torque generation inside a PMSM. The widely used field 
oriented control (FOC) and direct-torque control (DTC) 
methods were developed based on this linear model and 
achieved good control performance. A lot of efforts then have 
been made to improve the PMSM drive performance from the 
aspects of power electronics, control theory or computing 
techniques [1]-[3]. However, the application of PMSMs is 
limited because of the unavoidable rotor-position sensor, which 
not only increases the system cost, but also perhaps more 
importantly reduces the system reliability. 

In recent years, numerous papers have been published that 
address the sensorless control methods to eliminate the 
mechanical position and/or speed sensors. In general, they can 
be classified as rotating voltage vector injection method [4] [5] 
and pulsating voltage vector injection method [6] [7]. However, 
there is not an analytical solution for initial rotor position 
detection and sensorless drive method developed because of the 
lack of accurate nonlinear machine model incorporating the 
magnetic saliencies. The experimental trial and error method is 
commonly employed to develop and verify the sensorless drive 
schemes. On the other hand, the machine state observers 
developed based on simplified mathematic model would lead to 
errors on the control side.  

Therefore, an analytical nonlinear model for PMSM is 
required, in which the saturation effect is incorporated.  The 
magnetic saturation effect in electrical machines has been 
proved and studied in [8-10]. Brown incorporated this 
saturation effect in the generalized equation of induction 
machines [11] and then the inductances were recognized as 
function of the magnetization currents for synchronous 
machines [12]. However, the inductance function was not 
expressed. Then the drive strategies for SRM [13] and induction 
machines [14] [15] were investigated considering the saturation 
effect in order to develop high performance controller.  

The reported magnetic analytical models [16] [17] are not 
applicable, because the desirable model should be developed in 
terms of machine electrical equations and could be further 
applied to derive the drive solutions. In [18], an integrated finite 
element method (FEM) based machine model was developed 
with the machine drive system. This model could achieve faster 
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simulation speed than traditional FEM models. However, the 
saturation effect was not incorporated. 

Considerations were also taken to calculate the machine 
inductance variation associated with the saturation effect. In 
[19], a new method was reported to identify the PMSM 
parameters. The saturation effect was considered as well. Later 
in [20], the inductances Ld and Lq variations were numerically 
modeled and regressed by using recursive least square (RLS) 
method to reduce the torque ripples. However, the saturation 
effect or the inductance variation was not analytically expressed 
and those methods did not consider the nonlinear 
cross-saturation effect between orthogonal axes. 

The cross-saturation effect was discovered in 1980’s and it is 
proved that the cross-saturation exists if the magnetic motive 
force distributions are assumed to be sinusoidal [21]. Later, 
Melkebeek [22] proved that the mutual-inductances in the 
dynamic analysis of saturated machines must be reciprocal not 
only for a uniform air-gap machine but also for a 
salient-pole-type machine. In [23], the mutual-inductance 
between the orthogonal d- and q-axes was tested from a switch 
reluctance machine (SRM). Later this mutual-inductance was 
calculated for PMSM by Meessen based on FEM [24]. In [25], a 
high frequency signal was injected to the stator windings to 
measure the cross-coupling inductance between d- and q-axes. 
The measured results were verified by using FEM as well. It is 
proved that the estimated cross-coupling inductance could be 
applied to reduce the reported rotor position detection errors for 
sensorless drive schemes, but it was not expressed by using the 
machine parameters and could not be utilized to develop new 
sensorless algorithms. 

For the analytical machine model, Melkebeek proposed a 
nonlinear inductance model [26], in which the nonlinear 
inductances were defined from coenergy and flux point of view. 
An analytical expression of the inductance matrix of 
synchronous machine was carried out. A parameter was defined 
to indicate the operation point of the machine according to the 
magnetization curve. This model was successful and later 
applied to develop rotor-position estimator for synchronous 
machine [27]. However, this model does not decouple the 
structural and saturation saliencies and requires very accurate 
magnetization-curve data to model the saturation effect. It has 
not been applied to analytically access the drive schemes. 

On the other hand, FEM calculations were applied to 
sensorless drives of PMSM in order to investigate the drive 
performance in terms of magnetic field [28] [29]. In [30], an 
initial rotor position detection method was proposed based on 
transient FEM. Both the rotor position and the rotor polarity 
could be identified based on DC pulse injection method. 
However, the computing cost of FEM based scheme is too large 
to be applied for the rotating performance simulation. A 
compromise is desirable to enable accurate and fast PMSM 
performance simulation. Yan and Zhu [31] proposed a 
numerical inductance model which incorporates the nonlinear 
saturation effect, by using which, the machine nonlinear 
behavior is involved in the simulation. However, the model was 

built based on a specific permanent magnet machine prototype 
and cannot be extended to other machines. 

In this paper, the nonlinear saturation effect, as well as the 
structural saliency, is incorporated and expressed in the new 
analytical machine model. Two factors, the structural saliency 
ratio (Kstr) and the saturation saliency ratio (Ksat), are defined to 
indicate the extent of magnetic saliencies. The mathematic 
model of PMSM is derived in both the stator and rotor reference 
frames. The nonlinear inductance matrix is expressed as a 
function of the stator current and the rotor position. A surface 
mounted PMSM (SPMSM) is chosen as the prototype to verify 
the machine model. The inductance curves of the SPMSM are 
measured and modeled by the nonlinear inductance matrix in 
the form of functions of rotor position and stator current. Then 
the proposed mathematic model is applied to estimate the 
machine inductance and compared with the measured curves. 
Both the self- and mutual-inductances of the stator α-β reference 
frame are estimated and plotted. Finally, experiments are 
carried out to verify the proposed model. The simulated 
machine performances are compared with the experiment 
results. The comparison shows that the proposed model is an 
accurate method to model and analyze the PMSM nonlinear 
behaviors. Furthermore, it could be used to develop the 
sensorless drive schemes analytically. 

II. MAGNETIC SALIENCIES AND INDICATORS 
The magnetic saliencies in a PMSM could be classified as the 

structural saliency that mainly comes from the salient structure, 
and the saturation saliency induced by the magnetic saturation 
inside the core [31]. For a given PMSM, these saliencies could 
be decoupled since the saturation is due to the nonlinear 
magnetic property of the core while the structural saliency is not 
related to the magnetic nonlinearity [32].   

In a PMSM, the total flux linking the stator windings can be 
attributed to two sources – the rotor permanent magnets and the 
stator AC currents. Because of the nonlinear saturation effect, 
the total flux cannot be separated into flux spatial vectors due to 
the permanent magnet and stator current, respectively.  

In order to express the extent of magnetic saliencies, two 
parameters, Kstr and Ksat, are defined for the structural and 
saturation saliencies, respectively. 

A. Structural Saliency Ratio 
The structural saliency is always prefixed for a PMSM when 

it has been designed. It is formed by the structure of the machine 
including rotor magnet and usually easy to obtain from the 
unbalanced d- and q-axis inductances in the machine model.  

To express and analyze the structural saliency, the average 
linear inductance and Kstr are respectively defined as 
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where Ld and Lq are respectively the d- and q-axis inductances 
without excitation in the stator. For the excited condition, Ldd 
and Lqq are defined later as the d- and q-axis inductances. 

In the traditional SPMSM model, Kstr is usually assumed to 
be zero because the structural saliency is very small. In this 
paper, it is considered and expressed. 

B. Saturation Saliency Ratio 
The saturation saliency is caused by the saturation effect of 

the stator core and exists in both interior PMSMs (IPMSMs) 
and SPMSMs. It is usually discussed for SPMSM because it is 
the main saliency inside an SPMSM, where the structural 
saliency is always ignorable. 

As discussed above, the saturation of the stator core mainly 
takes place in the direction of the total flux vector. As a result, 
the inductance in this direction can be treated as a function of 
the equivalent total current. It is not a constant value as defined 
in the traditional PMSM model. Based on the saturation curve, 
Ksat is then defined as the difference ratio between the 
chord-slope inductance and the tangent-slope inductance. 
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As shown in (3), Ksat is also a function of the current. The 

linear part will be discussed later after modeling. 

III. MATHEMATIC MODEL OF PMSM 

A. PMSM Model in Stationary Reference Frame 
In order to compare easily with the rotor d-q reference frame, 

the two-phase orthogonal α-β stationary reference frame is used 
to express the machine electrical model instead of a-b-c frame. 

Equivalent current vectors, i*
t and i*

f are defined, which 
produce the total flux linkage and the rotor flux linkage. i*

f  is 
assumed to be independent of the stator current and only 
produce the equivalent permanent magnet flux linkage. The 
saturation effect is modeled only from i*

t. As shown in Fig. 1, i*
t 

is not equal to it, which is a combination of the stator and rotor 
currents, because of the structural and saturation saliencies. The 
angles between the vectors in Fig. 1 are defined as 
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where is is the input stator current vector. 

The flux in the air-gap can be treated as a sinusoidal 
distribution for most PMSMs. Therefore the flux linkages on 
different vector directions are defined as the projection from the 
total flux linkage or called the equivalent flux linkage. In Fig.1, 
Φ*

t is defined as the projection of the flux vector on the total 

stator current direction. For the stationary reference frame, the 
voltage equations of PMSM machine can be described as 
 









+=

+=

*

*

βββ

ααα

λ

λ

dt
dRiv
dt
dRiv

         (5) 

 
where vα, vβ, iα, and iβ are the stator voltages and currents in the 
α-β stationary reference frame, R is the stator resistance, and λ*

α, 
λ*

β are the projected flux linkages on the α- and β-axes, and can 
be expressed as 
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where λt is the total flux linkage in the air-gap induced by the 
total current vector i*

t. 
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Fig. 1.  Phasor diagram in α-β stationary reference frame 

 
After decoupling all the current vectors onto orthogonal α-β 

axes, the equivalent total current is composed of the rotor and 
stator currents with the structural saliency factors and can be 
expressed as 
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where Kα, and Kβ are the structural saliency factors of the α- and 
β-axis with the assumption that the linear inductance follows a 
spatially sinusoidal distribution. The contributions to the total 
flux linkage are projected to the axes as linear vectors and these 
factors depend on the structural saliency. They could be 
expressed as 
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It can be found out that the flux linkages on α- and β-axis are 
compound functions of the rotor current, stator current and rotor 
position, so one has 
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For a PMSM machine, because the magnitude of the rotor 

flux linkage is constant, the corresponding equivalent rotor 
current is also constant and we have  
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The last term in (9) is defined as the back-emf of the phase 

winding, eα. Substituting (6), (7), (8) and (10) into (9), one 
obtains 
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As mentioned above, **

tt didλ  and **
tt iλ are not equal in the 

nonlinear machine model due to the saturation effect. The linear 
inductance **

tt iλ  is then defined as )( *
tt iL  and expressed as 

 











−=

=

)()](1[

)(

**
*

*

*
*

*

tttsat
t

t

tt
t

t

iLiK
di
d

iL
i
λ

λ

      (12) 

 
Therefore, the machine voltage equation (5) can be rewritten 

as 
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where the nonlinear inductance matrix can be expressed as 
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B. PMSM Model in Rotor Reference Frame 
Rotating orthogonal d-q axis is a widely used rotor field 

oriented reference frame, where the stator side variables could 
be converted into rotor side rotating with the rotor field. The 
projected current and voltage vectors are relatively motionless 
to the rotor flux. The Park-Clarke transform can also be applied 
to the nonlinear machine model because the flux vectors are all 
obtained from the total flux linkage projection. Then the voltage 
equation 
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is valid for nonlinear modeling, where λ*

d and λ*
q are the 

equivalent flux linkages on the d- and q-axes which are 
projected from the total flux linkage. 

The phasor diagram in the d-q reference frame is shown in 
Fig. 2 and the angles between the vectors are defined same as 
those in (4). 
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Fig. 2.  Phasor diagram in d-q rotor reference frame 

 
The flux linkages in (15) can be expressed by the total flux 

linkage and the angle as below 
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The structural saliency factors of the d- and q-axes are 

defined as 
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 Based on the same definition of the linear inductance as in 
(12), the PMSM voltage equation in the rotor reference frame 
can be rewritten as 
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  (18) 

where the nonlinear inductance matrix can be expressed as 
 

 

(19) 
 
 From (18) and (19), the traditional PMSM linear model can 
be obtained as an ideal condition, where the saturation saliency 
is ignored, Ksa t= 0, as shown below 
 

  (20) 

C. Linear Inductance Component 
The linear inductance component defined in (12) is still a 

function of the stator current and the rotor position. Based on 
the magnetization curve, the linear inductance  variation 
is always smaller than that of the differential inductance 

 and could be neglected. Then the linear inductance 
component is assumed to be fixed and expressed by using the 
given Ld and Lq values, which are always known for the 
machine. The machine inductance matrixes in (14) and (19) 
could be rewritten as 
 

 

            (21) 

 
where Lav = (Ld+Lq)/2 is the average linear inductance in the d- 
and q-axes expressed as 
 

 (22) 

IV. EXPERIMENT OF INDUCTANCE TEST 
In the proposed PMSM model, several parameters in the 

machine model are required to express the inductance matrix. In 
order to test and verify the nonlinear machine model, an 
inductance test was carried out on an SPMSM and the numerical 
inductance model is regressed based on the test data [33]. 

 

Fig. 3.  Experiment platform for incremental inductance test 
 
Fig. 3 shows the block diagram of the experiment set up. 

During the test, the stator currents are fixed at several different 
levels from 0 to 6A at which the magnetic circuit is fully 
saturated. For each current offset, by applying a small AC 
current component the incremental inductance of a particular 
rotor position is measured. The magnitude of the injected 
voltage is limited as 0.2 V. Therefore, the collected incremental 
inductance values are supposed to be accurate enough to plot 
the inductance curve. By changing the rotor position with a 
dividing head, a series of inductance is recorded with a 
resolution of 6 electrical degrees. 

A function of both the current and rotor position is defined to 
express the inductance [33] as 

 
         (23) 

 
where  ; 

   ; 

and    is the identifiable 

parameter matrix. 
Fig. 4 shows the inductance curves collected at different 

current offset levels. It can be found that the inductances are 
periodical fluctuant functions. To obtain better regression 
results, the Least Relative Residual Sum of Square (LRRSS) 
method is employed. For the objective function , the 
relative residual sum of square is defined as 
 

  (24) 

 
where Ltest(i, θ) is the test inductance value. 
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Fig. 4.  Measured incremental self-inductance curves at different current offset 

levels 
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Fig. 5.  Measured and estimated incremental self-inductance at different 

current offsets 
 

Fig. 5 shows the comparison between the tested and regressed 
self-inductance of phase A at current offsets from 0A to 6A, 
where ±0.5% error bands are added. It can be found that the 
relative errors of the inductances are very small and the 
regressed objective function can be used to describe the variable 
self-inductance. The same regression method is applied to the 
mutual-inductance coefficients identification. Fig. 6 shows the 
comparison between the tested and regressed 
mutual-inductance between phases A and B at different current 
offsets. 
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Fig. 6.  Measured and estimated incremental mutual-inductance at different 

current offsets 

Therefore, a nonlinear inductance model is built up for this 
three-phase machine. An accurate inductance matrix can be 
calculated for given stator currents and rotor position. This 
model incorporates both the machine structural and the 
saturation saliencies for the test machine. 

V. MODEL VERIFICATION 

A.  Tested Kstr and Ksat 
The tested SPMSM has a small structural saliency, but a 

reasonably large saturation saliency. The stator current vector is 
set in the same direction of the rotor current, and the equivalent 
total current is also in this direction and the angles ζ=0, ρ=0. 
Then the inductance matrix in d-q reference frame could be 
simplified as 
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(a) Ldd varying against stator current 
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(b) Lqq varying against stator current 

Fig. 7.  d- and q-inductance varying against stator current level 
 

In order to identify Kstr and Ksat, the three-phase inductance 
matrix collected from the test machine is transferred into the d-q 
reference frame at different stator current levels. The d- and 
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q-axis inductance is supposed to be constant and the measured 
inductance profiles are shown in Fig. 7. It can be found the 
inductance curves show good agreement with (25), where the 
q-axis inductance is almost constant and the d-axis inductance 
varies against the stator current due to the saturation effect. 

When the input stator current offset is set to zero, the 
equivalent total current can be assumed that only formed from 
the rotor equivalent current and the Ksat here is zero. Then the 
linear inductances are read out and the Kstr is calculated for the 
test machine as shown below 
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For a given machine, Kstr is fixed and would not change with 

other variables, such as the rotor position or stator current. In 
the following analysis, Kstr of the tested machine is fixed and the 
values in (26) are also used as the linear inductances. 

On the other hand, Ksat always depends on the nonlinear 
magnetization curve of the material and cannot be analytically 
expressed. As shown in (25), the d-axis inductance is a function 
of Ksat for different current levels. Several tests have been 
carried out to check the Ksat as shown in Fig. 7(a). The 
relationship between the current magnitude and the Ksat is 
shown in Table I. 

 
TABLE I 

RELATIONSHIP BETWEEN CURRENT AND KSAT 
(λf=0.1495 Wb, ζ=0, Ρ=0, Kstr=-5.65%) 

Current Offset 
is (A) 

Average d-inductance 
Ldd (mH) Ksat (%) 

0 14.23 0 
1 14.14 0.60 
2 14.08 1.02 
3 13.91 2.23 
4 13.74 3.39 
5 13.57 4.59 
6 13.33 6.33 

 
At the same time, the measured mutual inductances between 

the d- and q-axes are all smaller than 0.03 mH, which can be 
ignored and comparable with zero shown in (25).  

B. Inductance Calculation 
After obtaining Kstr and Ksat, the inductances in the stator 

reference frame are calculated and compared with the tested 
data. The linear inductance and Kstr are shown in (26). Then the 
inductance matrix in stationary frame can be rewritten as a 
function of Ksat, which can be determined by the current value 
based on the look up table shown in Table I.  

First of all, the stator current vector is set on the same 
direction of the rotor current, ζ=0, ρ=0. Taken as an example, 
the self-inductance on β-axis can be expressed as 

 

)sin1)(2cos0565.01(0151.0 2 θθββ satKL −+=    (27) 
 

In Fig. 8, the calculated inductance curves are estimated 
based on (27) and compared with the measured inductance 
curves, which come from the inductance test and the regressed 
nonlinear model.  

Several different stator current levels are applied to calculate 
the self-inductance curves. It can be found out that Lββ  varies 
against the stator current value. The calculated curves in Fig. 8 
are close to the tested inductance curves. 
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(a) Stator current=1A, Kstr=0.60% 
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(b) Stator current=3A, Kstr=2.23% 
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(c) Stator current=5A, Kstr=4.59% 

Fig. 8.  Self-inductance comparison between the measured and calculated 
values (ζ=0, ρ=0, Kstr=-5.65%) 
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(a) Stator current=1A, Kstr=0.60% 
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(b) Stator current=3A, Kstr=2.23% 
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(c) Stator current=5A, Kstr=4.59% 

Fig. 9.  Mutual-inductance comparison between the measured and 
calculated values (ζ=0, ρ=0, Kstr=-5.65%) 

 
On the other hand, the mutual-inductance between the 

orthogonal axes is non-zero as shown in (21). It is related to the 
Ksat and would be zero when there is no saturation or no current, 
so the measured mutual inductance at 0A is marked as error 
signal and in Fig. 9 the calculated inductance is plotted as 

 
errsat LKL _2sin)2cos0565.01(00755.0 αβαβ θθ ++−=  (28) 

 
where Lαβ_err is the measured signal when the current offset is 

zero. 
Then the mutual-inductance Lαβ is calculated at different 

current offsets and shown in Fig. 9. The calculated curves show 
good agreement with the measured inductance curves. 

The error between the calculated curves and the measured 
curves in Fig. 8 and Fig. 9 mainly exist around the maximum 
inductance area. It may come from the linear inductance 
component assumption that the magnetization curve is linear 
when the current is smaller than the equivalent rotor current and 
Ld and Lq are the linear part inductances. In the measured 
inductance model, the saturation curve is also nonlinear in this 
area. 

When the machine is operating at steady state, the spatial 
stator current vector is rotating at the synchronous speed with 
the rotor. The magnitude of the stator current is constant. Then 
the angle ζ between the current vectors is always nonzero and 
can be calculated by 

 

22 ][)]([

)(
cos

qqfdd

fdd

iKiiK

iiK

++

+
=ζ     (29) 

 
where Kd, Kq defined in (17) can be obtained based on the Kstr 
and the stator current vector direction angle, ρ. 
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(a) Stator current=1A, ρ=45°, Kstr=0.4339% 
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(b) Stator current=5A, ρ=45°, Kstr=3.2399% 

Fig. 10.  Self-inductance comparison between the measured and calculated 
values (Kstr=-5.65%, ρ=45°) 



 

 

9 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0.013

0.0135

0.014

0.0145

0.015

0.0155

0.016

0.0165

0.017

Time (s)

In
du

ct
an

ce
 (H

)

 

 
Measured inductance
Calculated inductance

 
(a) Stator current=1A, ρ=90°, Kstr=0.02% 
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(b) Stator current=5A, ρ=90°, Kstr=0.4884% 

Fig. 11.  Self-inductance comparison between the measured and calculated 
values (Kstr=-5.65%, ρ=90°) 

 
The self-inductance on β-axis is expressed as 

 
))(sin1)(2cos0565.01(0151.0 2 θζθββ +−+= satKL  (30) 

 
where Ksat given in Table I is indexed by using the calculated 
total current values. 
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(a) Stator current=1A, ρ=45°, Kstr=0.4339% 
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(b) Stator current=5A, ρ=45°, Kstr=3.2399% 

Fig. 12.  Mutual-inductance comparison between the measured and 
calculated values (Kstr=-5.65%, ρ=45°) 

 
The self-inductance on β-axis, Lββ is calculated and compared 

with the measured values at different ρ values as shown in Fig. 
10 and Fig. 11. 

The same calculation method is applied to the mutual 
inductance as well. Fig. 12 shows the calculated and measured 
mutual-inductance curves, where a sinusoidal curve Ksin(2θ) is 
added to indicate the mutual inductance phase.  

C. Error Discussion 
As shown above, comparisons are carried out between the 

estimated and measured inductance values, where errors could 
be found out between the curves.  

The main error comes from the inaccurate machine 
parameters. The PMSM mathematic model built up in this paper 
is for all the PMSMs, including IPMSM and SPMSM, which 
incorporates both the structural and saturation saliencies. 
However, the parameters in the model, such as Kstr, linear 
inductance value and the saturation curve, are unknown for the 
test machine. Some of these parameters are identified from the 
measured values and some parts are simplified by mainly two 
assumptions: (1) the magnetization curve is linear when the total 
current is smaller than the rotor equivalent current value; and (2) 
the saturation curve is simplified as a look up table and all the 
sections between the points are linear. 

Therefore, the error signal could be found out in the 
comparisons. Especially when the stator current magnitude is 
big, the error is large because of the inaccurate Ksat and the 
current composition angle values. 

However, if the design parameters are known, an accurate 
machine model can be developed. Kstr could be calculated by 
using the accurate Ld and Lq, and the linear inductance can also 
be found out. Ksat could be updated by using the more accurate 
magnetization curve. 

Additionally, the original inductance data are collected from 
an SPMSM by using incremental inductance method. There are 
reading errors on the dividing head, which controls the rotor 
position angle in the test, and also on the power analyzer, which 
measures the voltage, current and power on the machine phase. 
The phase winding resistance varies with the temperature, 
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especially at a high current offset, and the measured inductance 
will be influenced. After taking all the inductance values, the 
nonlinear inductance function is regressed by using the LRSS 
method, which aims to minimize the residual sum of square but 
not regress it to zero. So there is small residual error in the 
nonlinear inductance model. 

VI. EXPERIMENT VERIFICATION 
A simulation SPMSM machine block is built up in 

MATLAB/SIMULINK based on the proposed mathematical 
model. The performance of the simulation model is compared 
with the experiment result. The open loop characteristics of the 
machine are recorded. Fig. 13 shows the simulated no-load 
speed and torque of the machine. 
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(a) No-load speed performance 
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(b) No-load electromagnetic torque performance 

Fig. 13. Simulated open-loop machine performance based on the proposed 
mathematic model without load 

 
The experiment platform setup is shown in Fig. 14. The 

SPMSM is coupled with a dynamometer via the torque 
transducer, which could display the accurate mechanical torque 
and speed on the shaft. Table II shows the parameters of the 
machine. The MAGTROL hysteresis dynamometer is 
controlled by the DSP6000 series controller and can produce 
constant or variable load torque. The SPMSM drive algorithm is 
implemented by using dSPACE/ControlDesk. Table III shows 
the information of the equipments. For the no-load test, Fig. 15 
shows the measured no-load speed performance of the system, 
which is measured by using the M-TEST software. 

 

 
Fig. 14. Experiment platform setup including machine, torque transducer and 

dynamometer 
 
 

TABLE II 
PARAMETERS OF TESTED SPMSM 

Parameters Values 
Number of Poles 6 

Rated Power 1000 W 
Rated Current 6.5 A 
Rated Speed 2000 rev/min 
Rated Torque 4.8 Nm 

 
TABLE III 

EQUIPMENTS INFORMATION OF THE EXPERIMENT SYSTEM 
Equipment Model/Version 
SPMSM LanZhou 6071-6AC21-2-Z 

Dynamometer MAGTROL HD-715-8N 
Dynamometer controller MAGTROL DSP6000 

M-TEST software V5.0 (Rev 8.6.1) 
Torque transducer MCRT○R 79001V-(2-2)-NFZ-15000 

dSPACE DS1104 
ControlDesk V2.8 Unicode 
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Fig. 15. Experimental open-loop machine performance without load 

 
Then a constant load torque is applied to the rotor shaft. Fig. 

16 shows the simulated speed, torque, and phase current curves 
based on the proposed mathematic model. The load torque is 
fixed at 2 Nm.  
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(a) Loaded speed performance 
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(b) Loaded electromagnetic torque performance 
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(c) Loaded phase current curve 

Fig. 16. Simulated loaded machine performance based on the proposed 
mathematic model 
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 The same test is carried out on the experiment platform. A 
constant load torque is applied to the rotor shaft via the 
dynamometer. The rotor speed is recorded by M-TEST, and the 
phase current is recorded by ControlDesk. The performance 
curves are plotted as shown in Fig. 17. 
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(a) Loaded speed performance 
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(b) Loaded phase current curve 

Fig. 17. Experimental open-loop machine performance with 2 Nm load torque 
 
 It can be found that the simulated and experimently measured 
curves are in good agreement. The errors of the speed and 
current mainly come from the friction coefficient of the model 
and the assumptions made in the proposed mathematic model. 

VII. CONCLUSION 
This paper proposes a comprehensive mathematic model for 

PMSMs, in which the structural and saturation saliencies are 
decoupled and indicated by using Kstr and Ksat. The inductance 
matrix of the model has been carried out and expressed in both 
stationary and rotor reference frames.  

Based on inductance test, a numerical inductance model was 
built up for an SPMSM, in which the inductance was modeled as 
a function of the stator current and rotor position. According to 
the measured data, Kstr and Ksat of the test machine were 
estimated and input to the machine model.  

The estimated inductance curves were compared with the 
measured inductances. The inductance profiles showed good 
agreement and the error analysis was carried out. This nonlinear 
model can be applied to PMSMs.  

Finally, the experiment verification was carried out. A 
machine test platform was built up. The collected machine test 
data were compared with the simulated machine performances. 
The simulation results show good agreement with the real 
machine curves for both the no-load and the loaded test results, 
which indicates that the proposed comprehensive PMSM 
mathematic model can be used to model and simulate the real 
machine incorporating the magnetic saturation effect. 

APPENDIX 
Detailed derivation of the structure saliency factors, as in (8) 

and (17), are provided. These factors are defined to enable the 
equivalent current composition, which is assumed to generate 

the total flux linkage. Originally, the total equivalent current 
vector could be expressed as in (31) nonlinear condition. 

**
ffst iKii


+=           (31) 

where Kf is the composition factor. 
Once the inductance on the is direction is assumed as (32), Kf 

is defined as (33). 
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When the current vectors are projected on α-β or d-q 
reference frame, the total equivalent current and the factors are 
then defined as 
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 By substituting the Kstr definition, (35), (36), (38), and (39) 
could be simplified as in (8) and (17). 
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