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21 ABSTRACT

22

23 Limited field and flume data suggests that both uniform and graded beds appear to 
24 progressively stabilise when subjected to inter flood flows as characterised by the 
25 absence of active bedload transport. Previous work has shown that the degree of 
26 bed stabilization scales with duration of inter-flood flow, however, the sensitivity of 
27 this response to bed surface grain size distribution has not been explored. This 
28 paper presents the first detailed comparison of the dependence of graded bed 
29 stability on inter-flood flow duration. Sixty discrete experiments, including repetitions, 
30 were undertaken using three grain size distributions of identical D50 (4.8mm); near-
31 uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08).   Each bed was 
32 conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear 
33 stress below the entrainment threshold of the bed (τ*c50). The degree of bed 
34 stabilisation was determined by measuring changes to critical entrainment thresholds 
35 and bedload flux characteristics. 
36  
37 Results show that (i) increasing inter-flood duration from 0 to 960 minutes increases 
38 the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport 
39 rates were reduced by up to 90% as inter-flood duration increased from 0 to 960 
40 minutes; (iii) the rate of response to changes in inter-flood duration in both critical 
41 shear stress  and bedload transport rate is nonlinear and is inversely proportional to 
42 antecedent duration; (iv) there is a grade dependent response to changes in critical 
43 shear stress where the magnitude of response in uniform beds is up to twice that of 
44 the graded beds; and (v) there is a grade dependent response to changes in bedload 
45 transport rate where the bimodal bed is most responsive in terms of the magnitude of 
46 change. These advances underpin the development of more accurate predictions of 
47 both entrainment thresholds and bedload flux timing and magnitude, as well as 
48 having implications for the management of environmental flow design.  
49
50 Key Words; inter-flood duration, entrainment threshold, bedload flux, grain size 
51 distribution
52
53
54
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55 1. INTRODUCTION

56

57 In non-cohesive sediment beds it is traditionally assumed that bed structure and 

58 hence, resistance to entrainment, is only capable of being modified when the applied 

59 shear stress exceeds the threshold for incipient motion (Gomez, 1983; Reid et al., 

60 1985; Church et al., 1998; Powell et al., 1999). This theory suggests that low, inter-

61 flood flow periods will have no effect on bed stability and bed restructuring will only 

62 occur during flood events which result in active bedload transport modifying surface 

63 stability.  However, field (Reid and Frostick, 1984; Reid et al., 1985; Masteller et al., 

64 2019) and flume (Paphitis and Collins, 2005; Monteith and Pender, 2005; Haynes 

65 and Pender, 2007; Ockelford and Haynes, 2012; Masteller and Finnegan, 2017) data 

66 suggests that both uniform and graded beds appear to progressively stabilise even 

67 when subjected to the low shear stresses experienced during inter- flood flow 

68 periods.

69

70 Given that most commonly used sediment transport formulae use empirical 

71 relationships between bedload transport rate and flow intensity (Meyer-Peter & 

72 Müller, 1948; Bagnold, 1980; Ashmore, 1988; Parker, 1990; Zhang and 

73 McConnachie, 1994; Hassan and Woodsmith, 2004; Barry et al., 2008; Recking, 

74 2010), and tend to rely on the assumption that a single critical value of shear stress 

75 can be used to predict the onset of motion (e.g., Meyer-Peter and Müller, 1948; 

76 Engelund and Fredsøe 1975; Wong and Parker, 2006) small errors in shear stress 

77 estimations can cause significant errors in bedload transport rate estimations 

78 (Buffington and Montgomery, 1997; Recking et al., 2012; Schneider et al., 2015).  

79 Thus, understanding how periods of prolonged, inter-flood flow, affect the onset of 

Page 3 of 46

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

4

80 motion could be used to improve the predictive capability of certain sediment 

81 transport formulae.

82 These periods of antecedent flow have been termed ‘stress history’, which describes 

83 a time-dependent ‘memory’ effect, where the combined effect of the duration and 

84 magnitude of antecedent flows influences entrainment thresholds and bedload flux.  

85 This typically describes the low flow period between significant sediment-transporting 

86 events, where sediment transport rates are negligible or of very low exhibit low 

87 partial-transport conditions. Field data from the non-cohesive graded river bed of 

88 Turkey Brook showed entrainment thresholds up to three times higher during 

89 isolated flood events compared to floods which occurred with a shorter return period.  

90 Although not specifically quantified, it was hypothesised that shorter inter-flood 

91 durations left the bed material comparatively loose and more susceptible to 

92 entrainment in the subsequent flood event.  As inter-flood duration increased more 

93 advanced bed re-structuring left the bed more resistant to entrainment with lower 

94 bedload transport rates in the subsequent flood (Reid and Frostick, 1984; Reid et al., 

95 1985).  Pfeiffer and Finnegan (2018) observed that regional trends linked with 

96 hydrological regime controlled the bed surface mobility discussed in terms of the 

97 proportion of time a channel is above the conditions of threshold mobility; rivers 

98 characterised as having longer periods of high flow during snowmelt periods have 

99 higher relative mobility as compared to those characterised by abrupt brief flood 

100 events with longer inter- flood durations.  

101

102 Direct laboratory evidence provides support for the importance of stress history 

103 effects. Paphitis and Collins (2005) studied the entrainment threshold for uniform 

104 sand beds subjected to antecedent flow durations of up to 120 minutes. Their data 
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105 indicated the critical shear stress increased by up to 61% following exposure to 

106 prolonged durations of antecedent flow.  Similarly, Monteith and Pender (2005) and 

107 Haynes and Pender (2007) exposed a bimodal sand-gravel mixture to increasing 

108 antecedent conditioning flow durations; up to a 48% increase in critical bed shear 

109 stress was noted as antecedent duration was increased from 0 to 5760 minutes. 

110 Bedload flux has also been shown to be responsive to the duration of antecedent 

111 flow where the same authors noted a 38% reduction in total bedload flux as 

112 antecedent duration was increased. Using a unimodal gravel distribution and 

113 conditioning flow periods between 1 and 200 minutes Masteller and Finnegan (2017) 

114 noted an 86% reduction in bedload flux.  This reduction was characterised by a 

115 linear reduction in cumulative bedload flux in the period following antecedent flows 

116 which was attributed to the re-organisation of the highest protruding grains on the 

117 bed surface. However, they note the antecedent durations they used needed to be 

118 increased to more accurately constrain the bedload flux relationships with 

119 antecedent flow. This link between changes in bedload transport rate and bed 

120 topography in response to periods of sub threshold flow was also quantified by 

121 Ockelford and Haynes (2012).  Using the same distributions and antecedent time 

122 periods as reported herein, they quantified changes to bed topography pre and post 

123 application of sub threshold flows.  They noted that stress history response of the 

124 bed surface was grade specific, where bed roughness decreased in uniform beds 

125 but increased in graded beds in response to the application of the antecedent flow 

126 period.  This was reasoned to be due to the uniform bed having larger pore spaces 

127 and a greater freedom to rearrange (Ockelford and Haynes, 2012). Grade dependent 

128 bed stability, related to both entrainment thresholds and bedload flux, has also been 

129 linked to the proportion of fines within a distribution controlling its stability response.  
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130 Frostick et al. (1984) suggested that past floods control the proportion of fine 

131 sediment infiltrated into the coarser matrix, changing the sediment transport 

132 conditions of future floods. Marquis and Roy (2012) noted that bed 

133 dilation/contraction caused by fine sediment infiltration or winnowing in a gravel 

134 framework related to bed conditions left by previous events, highlighting the role of 

135 flood history on sediment transport in gravel-bed rivers.

136

137 Research to date has therefore shown that when beds are exposed to periods of 

138 antecedent flow they appear to stabilise.  This has been shown as both a change to 

139 the critical shear stress and the magnitude and timing of bedload flux.  However, the 

140 differences in the methodologies used, the different timeframes employed and the 

141 single grades investigated within the small body of previous stress history literature 

142 precludes direct comparison of data.  To date no studies have directly compared the 

143 response of both entrainment threshold and bedload flux within the same set of 

144 experiments and thus it has been difficult to explicitly link one with the other.   

145

146 This paper is the first to explore the relationship between the evolving critical shear 

147 stress and bedload flux characteristics in response to varying inter-flood durations in 

148 gravel bed rivers. We present a series of flume experiments that directly compares 

149 three sediment grades of equivalent D50 and examines their response to changing 

150 inter-flood duration.  In so doing, we highlight a grade dependent response to inter-

151 flood duration which has implications for the deterministic definition of entrainment 

152 and hence accurate prediction of the transition between river bed stability and 

153 instability.

154    
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155 2. Methodology

156

157 2.1Experimental Procedure

158

159 Experiments were performed within a flow-recirculating, tilting flume (13m long × 

160 1.8m wide × 0.35m deep), set to a bed slope of 1/200. Within the flume, a 2m length 

161 of coarse, immobile sediment located immediately downstream of the inlet (to help 

162 prevent scour and induce fully turbulent flow) preceded an 8m test length of mobile 

163 test sediments that was screeded to a 60mm depth (~4Dmax where Dmax is the 

164 maximum grain size of 16mm).  Due to the low transport rates within experiments, 

165 no notable scour or water surface perturbations were discernible at the immobile-

166 mobile bed transition. 

167
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168 Figure 1: Grain size distribution for the three test sediment grades.  The is 
169 calculated according to   5.0

1684 DDg 
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170
171 Three grain size distributions of identical D50 (4.8mm); near-uniform (σg = 1.13), 

172 unimodal (σg = 1.63) and bimodal (σg = 2.08) were generated using natural sub-

173 rounded sand and gravel ranging from 1 to 16mm in diameter (Krumbein, 1941) with 

174 a density of 2560km/m3 (Figure 1).  Sediments were dry sieved to obtain eight size 

175 fractions at standard ½ phi intervals and then recombined into the desired 

176 distributions with the D50 and D84 fractions painted for identification purposes (Table 

177 1).  During each experiment three phases were run: (a) an initial bedding in period; 

178 (b) an antecedent flow period and; (c) a stability test (Figure 2). 

179
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(a)
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180 Figure 2: Sample experimental hydrograph detailing the three stages of the 
181 experiment: (a) an initial bedding in period run for 30 minutes at τ* ~ 0.004; (b) an 
182 antecedent flow period run at τ*c50 for 0, 60,120, 240 or 960 minutes; and (c) a 
183 stability test run until τ*c50 is reached.  The dimensionless shear stress values for 
184 each phase of each experiment are given in Table 1 with the example here given for 
185 the uniform bed exposed to 60 minutes of antecedent flow.
186
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187 The bedding-in period employed a flow depth of 10 mm (τ* ~ 0.004) for 30 minutes 

188 duration; this was designed to remove any air pockets or unstable grains generated 

189 within the bed screeding process.  In line with the methodology of Ockelford and 

190 Haynes (2012), flow was then increased to apply a shear stress equating to 50% of 

191 the critical threshold for entrainment of the median grain size (τ*c50) benchmarked for 

192 when no inter- flood flow was applied (i.e. 0 minutes of antecedent flow applied with 

193 τ*c50 values under these conditions given in Table 1).  This was calculated using the 

194 quantitative visual definition of threshold of Neill and Yalin (1969) in which the 

195 number of grain detachments (mi) from a given bed area (A) over a given time (t) 

196 were counted, and the threshold determined according to Equation 1.

197 (Eq. 1)

 g
D

Atm

s

i









5

198 where a lower limit of  was defined by Neill and Yalin as 1.0 x 10-6, and and  s 

199 are the sediment and fluid density respectively.  The observation area ( ) was A

200 located in the centre of the flume 11m downstream of the inlet, this was sized 0.04m2 

201 and the time of observation ( ) was set 180 seconds.  Once the threshold number of t

202 detachments was reached critical shear stress was estimated from the depth-slope 

203 product corrected for the roughness effects of both the side walls and the bed 

204 according to Manning’s n and derived according to the methodology followed by 

205 Monteith and Pender (2005). This second flow stage constituted the ‘antecedent’ 

206 period, with applied dimensionless shear stress values of 0.016, 0.020, 0.019 of the 

207 D50 for the uniform, unimodal and bimodal beds respectively.  Antecedent flows were 

208 applied for either 0 (benchmark), 60, 120, 240 or 960 minutes.   No sediment 

209 entrainment was observed during this period and quasi-uniform sub-critical flow was 

210 maintained throughout.  
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211

212 A final flow stage, the ‘stability test’ was then applied in steps of increasing shear 

213 stress.  The shear stress was increased by approximately 0.24 Nm-2 during each 

214 step which equated to a 5mm flow depth increase or a dimensionless shear stress 

215 increase of 0.003 at each step.  The stability test was run until the threshold criterion 

216 derived from Neill and Yalin were satisfied. Flow steps were 600 second increments 

217 which was sufficient to allow flow stabilisation and visual assessment, using the Yalin 

218 criterion, of whether or not the new entrainment threshold had been reached. Since 

219 the critical shear stress varied according to both grain size distribution and 

220 antecedent duration the applied the stability test duration ranged from 50 to 80 

221 minutes (Table 1).   Each of these experiments was repeated three times.  Reported 

222 critical dimensionless shear stress values were calculated from an average of these 

223 three experimental runs (first three experiments detailed for each experiment 

224 combination in Table 1).   

225

226 Bedload data was collected from one additional, separate run for each of the 

227 experiment combinations (the fourth experiment detailed in Table 1).  During this 

228 separate experiment, bedload data was collected at each step of the stability test, 

229 where each step was 600 seconds long as per the entrainment threshold analysis 

230 experiments. Flow was stopped once the critical entrainment threshold, as calculated 

231 from the three previous entrainment threshold experiments, was reached.  Mobile 

232 sediment was collected in a trap located 12m downstream of the flume inlet with 

233 sampling slot 75mm wide and of streamwise length 150mm.  Bedload was collected 

234 at each step of the stability test and collected material was air dried overnight and 

235 sieved the individual size fractions.  Bedload flux calculations were both integrated 
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236 over the entire stability test (Figure 4), as well as over the individual steps of the 

237 stability test (Figure 5).  Fractional transport rates were calculated from the total 

238 bedload collected during the final step of the stability test which represents the 

239 critical threshold conditions of the D50 (Figure 6).  Sediment was not recirculated or 

240 fed into the flume during the individual experiments but was returned to the flume 

241 between experiments. The bed was fully mixed and re-screeded between 

242 experiments to preclude inheritance effects from previous experiments.  A total of 60 

243 discrete experiments (including repeats) were undertaken (Table 1). 

244

245 2.2 Experimental Uncertainty

246

247 The experiments presented herein allow for the quantification of inter-flood duration 

248 effects on bed stability via the direct measurement of critical shear stress and 

249 bedload flux. However, methodological issues can introduce uncertainty into these 

250 measurements including: (i) inaccurate screeding such that the grain size distribution 

251 of the starting bed surface distribution varies between the different experiments; and, 

252 (ii) issues of subjectivity surrounding the derivation of threshold according to the 

253 Yalin Criterion.  Given the D50 and D84 fractions were coloured, the effects of 

254 screeding were analysed using bed surface photographs taken after the initial 

255 screed.  The numbers of grains belonging to each fraction were counted and the 

256 D50:D84 ratio calculated.  Results indicate ≤1.5% variability between the screeded 

257 beds, providing confidence that any differences in bed composition stem solely from 

258 the active processes pertaining to the experiment itself.  The subjectivity in use of the 

259 Yalin Criterion was minimised via data collection using a single operator.  

260 Comparison of multiple repeats of runs shows an average variability of 4.8% in terms 
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261 of the calculated average critical dimensionless shear stress (Table 1; this is in line 

262 with experimental error of similar laboratory studies (Piedra and Haynes, 2011).  The 

263 highest variability is typically associated with the shortest antecedent flow durations 

264 where there is the greatest rate of change in the shear stress.  As such the variability 

265 in the average critical shear stress is never larger than the absolute change in shear 

266 stress and does not therefore change the relationship between critical shear stress 

267 and antecedent duration.  

268

269 3.     RESULTS

270

271 3.1Inter-flood duration effects on entrainment threshold

272

273 The relationship between entrainment threshold and inter-flood duration is 

274 summarised by Figure 3.  Under benchmark conditions with no inter-flood flow 

275 applied critical dimensionless shear stress shows a hierarchy to bed stability: 

276 unimodal (0.039): bimodal (0.033); uniform (0.031). After the application of the 

277 antecedent period there is a positive correlation with between the antecedent 

278 duration and dimensionless critical shear stress for all three grain size distributions.  

279 However, the magnitude of the increase in critical shear stress compared to the 

280 benchmark experiments is grade specific: near uniform (+18%) > bimodal (+12%)> 

281 unimodal (+9%).  

282

283 There is also an apparent difference between the rate of change in critical 

284 dimensionless shear stress in response to the applied antecedent flow.  In order to 
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285 quantify the rate of change, parametric curves have been applied to the entrainment 

286 threshold data.  The fitted curves used herein are distinct from the only other 

287 previous attempt to model growth of Paphitis and Collins (2005) whose ‘exposure 

288 correction’ described logarithmic growth of their entrainment threshold function in 

289 response to increasing inter-flood durations. Whilst their mathematical form correctly 

290 describes progressive slowing of growth of inter-flood duration effects over 

291 lengthening timeframes, it holds an implicit assumption of unbounded growth as time 

292 tends towards infinity; i.e. if left for a prolonged period of time, the bed will keep 

293 gaining in stability. As a sediment bed cannot become infinitely stressed, such a 

294 logarithmic description is inaccurate; rather, it must tend to a limiting value 

295 commensurate with the stability maxima of the bed. Two alternative mathematical 

296 forms are, therefore, considered which both start and tend to finite values.  Such 

297 parametric curves have been used in ecological modelling (Noy-Meir,1978) and in 

298 enzyme kinetics (Michaelis and Menten, 1913) to describe similar rates of change 

299 characterised by an initially linear increases which slows asymptotically towards 

300 some maximal value. The first is described by Equation 2 below with the fit 

301 parameters given in Table 2. 

302   (Eq. 2)  kt
c e 0maxmax 

303 where  represents the critical dimensionless shear stress, t represents antecedent c

304 duration (minutes), is the maximal critical dimensionless shear stress, τ0 gives the max

305 initial critical dimensionless shear stress and k is a free parameter (units mins-1) 

306 controlling how quickly τc increases.  This model assumes that there is a maximum 

307 possible stress and that the difference between the current stress and the maximum 

308 stress decreases exponentially.

309
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310 The alternative model is described by Equation 3 with the fit parameters given in 

311 Table 3: 

312   (Eq. 3)


















2

1

0max
0 tt

tc




313 where  represents the critical dimensionless shear stress, t represents antecedent c

314 duration (minutes), is the maximal  critical dimensionless shear stress, τ0 gives max

315 the initial critical dimensionless shear stress and t½ is the time until half the maximal 

316 shear stress has been reached (minutes).  Thus, both Eq. 2 and Eq. 3 assume than 

317 when t = 0 then τc = τ0; when t → ∞ then τc → τmax. The best fit models were selected 

318 based on minimising the squared error between the model and the observed data 

319 points.  

320

321 The R2, RSME and SSE data are similar for both model fits and describe the data 

322 well (Tables 2 and 3); the fits derived from Equation 2 are shown in Figure 3 given 

323 the greater model skill and are described below.  As reported, the parametric curve 

324 indicates the uniform bed to be the most responsive to the effects of antecedent flow 

325 duration and the unimodal the least (Figure 3, Table 2).  The model indicates that the 

326 rate of increase in critical dimensionless shear stress in response to increased inter-

327 flood duration varies between distributions as indicated by the time to half-life.  The 

328 unimodal bed has the greatest rate of response to inter-flood flows where the time to 

329 half-life occurs within 74 minutes.  This is compared to the bimodal and uniform beds 

330 which take approximately twice and three times as long respectively. However, both 

331 models predict that if antecedent duration continues to increase there will be very 
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332 little further stability gains; there will be a further percentage increase in stability of 

333 5%, 2% and 1% for the uniform, unimodal and bimodal beds respectively.  

334
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336 Figure 3: The relationship between antecedent duration, average critical 
337 dimensionless shear stress and grain size distribution with fits plotted derived 
338 according to Equation 2.
339

340

341 3.2 Inter-flood duration effects on bedload transport rate and characteristics

342

343 Both the magnitude and rate of response to the applied antecedent flow is grade 

344 dependent. Given most sediment transport formulae rely on the use of a single 

345 critical value of shear stress (e.g., Meyer-Peter and Müller, 1948; Engelund and 

346 Fredsøe 1975; Wong and Parker, 2006) understanding how periods of prolonged, 

347 inter-flood flow affect the onset of motion could be used to reduce the uncertainty in 
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348 these. Previous research has linked changes to entrainment thresholds in response 

349 to periods of sub threshold flow with changes to the magnitude and rate of bedload 

350 flux (Haynes and Pender, 2007; Masteller and Finnegan, 2017).  As such, transport 

351 rate and fractional analysis of the bedload transported during the stability test was 

352 undertaken to provide insight into the links between changes to entrainment 

353 thresholds and the subsequent bedload flux characteristics.  

354
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355 Figure 4: Inter-flood duration relationships with bedload transport rate, including the 
356 fitted exponential decay function of form with 0 0( ) kt
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357 R2 values of 0.93, 0.80 and 0.93 for the uniform, unimodal and bimodal beds 
358 respectively.  
359

360 Following 960 minutes of antecedent conditioning, bedload transport rates were 

361 reduced by 91% for bimodal beds, 80% for near uniform beds, and 60% for unimodal 

362 beds (Figure 4, Table 4).  The relationship between antecedent duration and bedload 

363 transport rate can be described by an exponential decay, however, akin to the 

364 entrainment threshold data, the rate of change is grade sensitive as indicated by the 
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365 half life value.  The unimodal bed has the most rapid rate of decline with a half-life 

366 time of approximately 48 minutes compared to the uniform and bimodal beds which 

367 have half live times of 60 and 68 minutes respectively.  Further, data indicates that 

368 rate of reduction is linked with the predicted minimal transport rate value derived in 

369 Table 4.  Specifically, the unimodal bed decays the fastest but has a higher overall 

370 predicted minimal transport rate as compared to the bimodal bed which decays over 

371 the longest time period but decays to a lower minimal transport rate, as given in 

372 Table 4.   

373

374 In addition to reported relationships between inter-flood duration and bedload flux, 

375 previous data has indicated that prolonged periods of sub threshold flow also have 

376 the potential to delay to the onset of entrainment in the following flood (Reid and 

377 Frostick, 1984).  The first three subplots of Figure 5 plot  at each step of the 
𝜏 ∗

𝜏 ∗
𝑐

378 stability test as a function of the bedload transport rate for the same step of the 

379 stability test.  The fitted trend line given in each of the subplots combines all of the 

380 date for each bed and collapses them onto a single straight line using a least-square 

381 error fitting approach; the power law fitted follows that of previous studies (Parker, 

382 1990;  Wilcock and Crowe, 2003;  Recking 2010;  Piedra, 2010) applicable to ranges 

383 of  < 1.3.  The final subplot of Figure 5 directly compares the trend lines derived for 
𝜏 ∗

𝜏 ∗
𝑐

384 each sediment bed.

385

386 For all three grain size distributions, there is the expected positive correlation 

387 between dimensionless shear stress and total load such that increased time into the 

388 stability test is correlated with an increase in transported load for each step of the 
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389 stability test.  An inverse relationship is also noted between the antecedent duration 

390 and transported load in each step of the stability test whereby a decrease in total 

391 load is correlated to an increase in antecedent duration.  Finally, there is an offset 

392 noted on the abscissa in the two graded beds such that transport does not 

393 commence until later in the stability test (i.e. at higher shear stresses) as antecedent 

394 duration is increased; this is particularly noted within the bimodal bed.  This suggests 

395 that the mechanisms responsible for stabilising the bed are different between the 

396 uniform and graded beds.  

397
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399 Figure 5: Relationship between  at each step of the stability test as a function of 
𝜏 ∗

𝜏 ∗
𝑐

400 the bedload transport rate for the same step of the stability test for the uniform, 
401 unimodal and bimodal beds respectively (subplots 1-3).  The fitted trend line given in 
402 each of the subplots combines all of the date for each bed and collapses them onto a 
403 single straight line.  The final subplot directly compares the trend lines derived for 
404 each sediment bed.  The exponent of the power law relationship is 11.06, 10.09 and 
405 8.77 and the R2 values of those fits are 0.63, 0.75 and 0.29 for the uniform, unimodal 
406 and bimodal beds respectively.
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407
408    
409 When the data is scaled in terms of excess shear stress ( ), the data appear to 

𝜏 ∗

𝜏 ∗
𝑐

410 collapse onto a single relationship.  However, it is also clear that whilst the data 

411 seems to more readily collapse for the uniform and unimodal beds the bimodal bed 

412 exhibits significant scatter and the data derived from the longest inter-flood durations 

413 (240 and 960 minutes)  is not described well by the trend line.  

414

415 Given the different rate and magnitude of response of the graded beds to increasing 

416 inter-flood durations the following section uses fractional bedload transport patterns 

417 to analyse the stability-mobility patterns of individual fractions within each bed in 

418 order elucidate upon the underpinning bed stabilisation processes (Figure 6). Given 

419 that the stability test was curtailed at the threshold for D50, if size selective 

420 entrainment is prominent no grains greater than the D50 should be moving (gi/Fi ≠ 1); 

421 however, if grains greater than the D50 are moving then there is a tendency towards 

422 equal mobility conditions (gi/Fi = 1).  

423

424 The unimodal bed is characterised by equal mobility conditions under 0 and 60 

425 minutes of antecedent flow. However as antecedent duration is increased beyond 

426 that the bedload response becomes more strongly size selective in the coarse and 

427 fine end members of the distribution such that these grains stabilise and leave the 

428 middle fractions of the transported distribution as being comparatively mobile. In 

429 comparison, under benchmark conditions, the bimodal bed is characterised by equal 

430 mobility particularly for in the grain fractions containing and surrounding the median 

431 grain size.  As antecedent duration is increased although size selective transport 

432 conditions begin to develop in the finest members of distribution the degree of size 

Page 19 of 46

http://mc.manuscriptcentral.com/esp

Earth Surface Processes and Landforms

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

20

433 selectivity which develops is not as strong as that which develops in the unimodal 

434 bed.     

435
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437 Figure 6: Fractional bedload transport rate of the unimodal (top plot) and bimodal 
438 bed (bottom plot) scaled by the abundance of each size (gi) in the bulk mix (Fi) 
439 plotted against dimensionless grain size for antecedent durations 0-960mins.  Given 
440 the stability test was stopped once the critical entrainment threshold of the D50 had 
441 been reached the data in this figure represent bedload which was collected during 
442 the last step of the stability test under these conditions. 
443

444 4. DISCUSSION

445 4.1 Effect of inter-flood duration on bed stability

446 This paper has provided the first direct quantification of the response of different 

447 grain size distributions to inter-flood duration effects in terms of both entrainment 

448 threshold and bedload flux response. Analysis shows that all three grain size 

449 distributions responded to changes in antecedent duration.  This is supportive of field 
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450 (e.g. Reid and Frostick, 1984; Reid et al., 1985; Willetts et al., 1987; Oldmeadow and 

451 Church, 2006; Pfeiffer and Finnegan, 2018) and laboratory (Paphitis and Collins, 

452 2005; Monteith and Pender, 2005; Haynes and Pender, 2007; Masteller and 

453 Finnegan, 2016) data which have both indirectly and directly suggested that 

454 antecedency may be an important control on entrainment thresholds and bedload 

455 flux.

456

457 Critical shear stress of the median grain size increases by up to +18% after being 

458 exposed 960 minutes of antecedent flow, with the uniform grain size distribution 

459 being the most responsive and the unimodal least responsive. The changes to 

460 entrainment threshold in this study are under half that noted by Paphitis and Collins 

461 (2005) and Haynes and Pender (2007) who observed up to a 56% and 46% increase 

462 in critical bed shear stress respectively.  The sediment beds reported by Paphitis and 

463 Collins (2005) were finer (0.19 to 0.77mm sand) and there were differences in the 

464 bed preparation techniques between studies which is likely to explain the differences 

465 in the observed results; screeded beds (this study; Church, 1978; Cooper and Tait, 

466 2008) form more resistant initial structures than those formed under still water 

467 conditions (Paphitis and Colins, 2005). Although Haynes and Pender (2007) used 

468 the same bimodal mixture as this current paper the timescales were significantly 

469 longer than those reported herein and they also used a discharge was above-

470 threshold for the D50.  

471

472 The changes to entrainment threshold have been linked with bed reorganisation 

473 during the sub threshold flow period (Hassan and Church, 2000; Haynes and 

474 Pender, 2007; Ockelford and Haynes, 2012; Masteller and Finnegan, 2016).  Given 
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475 that the applied antecedent flow in this paper was set at τ*c50, active, large scale 

476 processes of reorganisation as a result of grain entrainment are unlikely and thus 

477 significant bed surface composition change should not occur (Sutherland, 1991; 

478 Hassan and Church, 2000; Whiting and King, 2003). Instead inter-flood processes 

479 appear to increase the importance of passive, grain scale processes which, in turn, 

480 alter a beds resistance to entrainment via a change to surface texture (Dietrich et al., 

481 1989; Kirchner et al., 1990; Fenton and Abbott, 1997; Schmeeckle and Nelson, 

482 2003; Ockelford and Haynes, 2012).  Specifically, Masteller and Finnegan (2016) 

483 observe that the largest change in the bed surface elevation distribution occurs in the 

484 tails of the distribution and this change is positively correlated to antecedent flow 

485 duration.  They attribute this to pivoting of unstable grains into more stable positions, 

486 the filling of pockets left by displaced grains and the oscillation, reorientation and 

487 reduced relative protrusion of grains which occur throughout the antecedent flow 

488 period.  

489

490 Results from this paper have also shown that grain size distribution is a key control 

491 on the magnitude of response to inter-flood duration in terms of entrainment 

492 threshold response; direct comparison shows uniform beds to be up to twice as 

493 responsive as graded beds.  Ockelford and Haynes, (2012) suggest the differences 

494 in response between the uniform and graded beds is related to changes in bed 

495 roughness which develop during the antecedent period. Using bed surface 

496 topography data collected pre and post antecedent flows they observed a 12% 

497 decrease in roughness of uniform beds as compared to a 15% and 40% increase in 

498 roughness of unimodal and bimodal beds respectively. In the uniform bed the 

499 decrease in bed roughness reduced the relative depth of localised pores and hence 
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500 reduced both the shear stress magnitude and variability across the bed surface (Li 

501 and Komar, 1986; Kirchner et al., 1990; Rollinson, 2006).  Within the graded beds, 

502 the magnitude of the inter-flood flow response is controlled by the rearrangement of 

503 the bed which is permitted due the range of grain sizes.  During the sub threshold 

504 flows vertical winnowing of the finer grains serves to consolidate the framework 

505 gravels and hence increase bed stability (Frostick et al., 1984; Reid et al., 1985; 

506 Carling et al., 1992; Allan and Frostick, 1999; Marion et al., 2003; Ockelford and 

507 Haynes, 2012). 

508

509 However, data in this paper also indicates that the degree of response to increasing 

510 inter-flood duration in graded beds is strongly linked to the percentage of fines in the 

511 distribution such that the bimodal bed, which has the highest proportion of fines 

512 (20% of the distribution between 1-2mm compared to 7.5% in the unimodal bed) 

513 responds to a greater degree than the unimodal bed.  It is thought that the process of 

514 consolidation of the beds due to the infiltration of fines as described above drives this 

515 response.  This is in agreement with Cooper et al., (2009), who assessed the 

516 resistance to bedload transport of unimodal and bimodal deposits of similar D50 by 

517 linking stability with the organisation of the surface deposits.  Initially, their bimodal 

518 beds had a higher degree of mobility due to a higher proportion of the fluid force 

519 being carried by the finer grain fractions.  However, as flow periods were increased, 

520 a higher proportion of the fluid force was carried by the larger grains due to grain 

521 sheltering (Schmeeckle and Nelson, 2003) and the development of grain structures 

522 (Hassan and Church, 2000), such that the differences in the stability of the two beds 

523 decreased.

524
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525 The greatest rate of change in critical shear occurs for the shortest antecedent 

526 durations which is in line with previous stress history research Paphitis and Collins, 

527 2005; Monteith and Pender, 2005; Haynes and Pender, 2007; Ockelford and Haynes 

528 2012; Masteller and Finnegan, 2016.  However, interestingly the rate of change is 

529 also grade specific where the unimodal bed responds to increasing inter-flood flow 

530 duration is 2.5 times faster than the bimodal bed and 3 times as fast as the uniform 

531 bed.   Given the applied antecedent shear stress is set at τ*c50 , it seems logical that 

532 the uniform bed is less mobile under antecedent flows hence, it will take longer to 

533 respond but once the bed has reorganised it will not be able to rearrange any further.  

534 Within the graded beds the rearrangement processes responsible for stabilising the 

535 bed will occur rapidly during the onset of the higher discharge conditions 

536 experienced during the antecedent flow period but once the fines have winnowed 

537 through the surface and consolidated the bed very little further rearrangement will 

538 occur (Ockelford and Haynes 2012). 

539

540 In relation to the bedload response to inter-flood duration up to a 91% reduction in 

541 the bedload transport rate after 960 minutes of applied antecedent flow is observed.  

542 Akin to the response of critical shear stress, the reduction in bedload transport rate 

543 with increasing antecedent duration is nonlinear. This agrees with the previous 

544 results of Haynes and Pender (2007) who also note an exponential decline in 

545 transport rates as antecedent duration is increased. Whilst Masteller and Finnegan 

546 (2016) fitted a linear model to their cumulative bedload flux data as a function of 

547 increased conditioning flow, they do state that an exponential decline function also 

548 fitted their data, albeit with lower model skill.  Thus, these results are consistent with 

549 an overall reduction in grain mobility, implying an increase in critical Shield’s stress 
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550 with increased conditioning time. Such behaviour is similar to that of many 

551 degradation experiments (Tait et al., 1992; Proffitt and Sutherland, 1983; Pender et 

552 al., 2001). Haynes and Pender (2007) attributed this decay to the progressive 

553 stabilisation of larger areas of the bed surface such that grains became unavailable 

554 for transport. The decay to a constant flux even under the low shear stresses is 

555 possible due to turbulent fluctuations in the flow (e.g. Grass, 1970; Paintal, 1971; 

556 Graf and Pazis, 1977; Lavelle and Mofjeld, 1987; McEwan et al.,2004; Paphitis and 

557 Collins, 2005; Bottacin et al., 2008) or to the fact that a population of high protruding 

558 grains is always available for transport (Masteller and Finnegan, 2016).  

559

560 There is an observable delay to the onset of entrainment in periods of unsteady flow 

561 subsequent to sub threshold flow periods.  During floods a hysteresis loops often 

562 develop in sediment flux measurements, whereby different magnitudes of bedload 

563 flux are produced on the rising and falling limbs of hydrographs for the same flow 

564 magnitude (Reid et al., 1985; Church et al., 1998; Hassan et al., 2006; Waters and 

565 Curran, 2015; Mao, 2018). These studies have proved an intrinsic link between bed 

566 structure characteristics and the total load transported (Reid et al., 1985; Reid et al., 

567 1997), which serve to alter entrainment thresholds and hence bedload flux. Although 

568 this paper has not run a full hydrograph after the sub threshold flow period, the 

569 theoretical underpinnings behind the links between stability, surface structure and 

570 sediment flux are transferable.  This is evidenced by the fact that not only does the 

571 data in this paper show a  an offset in the initiation of motion, but that the total loads 

572 are also be reduced for comparable shear stresses of the unsteady flow as sub 

573 threshold flow duration is increased.  

574
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575 Although the bedload flux data appears to collapse readily for the uniform and 

576 unimodal beds the bedload transport rates associated with the longest inter-flood 

577 durations in the bimodal bed are not well described.  This is supported by Piedra 

578 (2010) who analysed five commonly employed sediment transport equations and 

579 found that the rapid increase in transport rates with shear stress for approximately  
𝜏 ∗

𝜏 ∗
𝑐

580 < 1.3 and the drastic reduction of the rate of increase of sediment transport rate at   
𝜏 ∗

𝜏 ∗
𝑐

581 > 1.3 (Wiberg and Smith, 1989 Hassan and Woodsmith, 2004; Bathurst, 2007) did 

582 not explain the relationships shown when sediment beds had been exposed to 

583 prolonged periods of antecedent flow.  Piedra related the deviation caused by the 

584 effects of antecedent duration, as shown by the data herein, to stabilisation of the 

585 bed surface and the delay to the onset of entrainment caused by bed surface 

586 rearrangement.  Neither factor are taken into account in commonly used transport 

587 equations which derive critical entrainment thresholds purely based on bed grain 

588 size distribution data and bed slope (Reid and Frostick, 1986; Gomez and Church, 

589 1989; Wong 2003; Recking, 2010).   

590

591 A change in the fractional transport rates following the antecedent conditioning 

592 phase is reported.  Typically, fractional bedload rates would tend towards moving 

593 from size selective transport patterns under low shear stress, partial transport 

594 conditions to equal mobility conditions under high shear stress, full mobility 

595 conditions (Wilcock and McArdell, 1997; Shvidchenko and Pender, 2000).  Since the 

596 stability test in this paper was run until τ*c50 it is assumed that the fractional mobility 

597 patterns would be characterised by size selective entrainment owing to the partial 

598 mobility conditions.  This would be irrespective of the preceding applied antecedent 

599 duration.  In the unimodal bed there is a trend towards equal mobility in the 
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600 intermediary size fractions with selective entrainment of the end members of the 

601 distribution (Ashworth and Ferguson, 1989; Wilcock and Southard, 1988; Kuhnle, 

602 1992; Wilcock and McArdell, 1993; Laronne et al., 1994).  However as antecedent 

603 duration is increased the bedload response becomes more strongly size selective in 

604 the coarse and fine end members of the distribution; as this typically goes hand-in-

605 hand with an increase in grain hiding the effect is on mobility of the middle fractions 

606 of the transported distribution (Brayshaw et al.,1983; Li and Komar, 1986; Dietrich et 

607 al., 1989; Fenton and Abbott, 1997). Conversely in the bimodal bed, under 

608 benchmark conditions, the bimodal bed is characterised by equal mobility particularly 

609 for in the grain fractions containing and surrounding the median grain size.  As 

610 antecedent duration is increased, size selectivity begins to develop, particularly in 

611 the finest members of distribution which appear to have stabilised on the bed 

612 surface.  This leaves the coarsest fractions to be over represented in the bedload.  

613 This suggests that there are significant hiding effects which develop in response to 

614 increasing inter-flood durations and underpin the theory that it is the relative size 

615 effects which drive the response to inter-flood duration (Jackson and Beschta, 1984; 

616 Ikeda and Iseya, 1988; Wilcock, 1988).  

617

618 4.2 Implications

619 A number of important implications for river flows emerge from our results.  

620 Increased bed stability in response to increased inter-flood duration manifests itself 

621 via increased critical shear stress which may preclude reliable estimates of bedload 

622 transport, as most predictive models reply on a specified critical shear stress (e.g., 

623 Meyer-Peter and Müller, 1948; Engelund and Fredsøe 1975; Wong and Parker, 

624 2006). Despite numerous revisions to the Sheild’s function, a single value of flow 
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625 intensity at particle entrainment is not just a disputed concept (Lavelle and Mofjeld, 

626 1987) but its value has been shown to depend on a range of particle parameters 

627 such as shape, size distribution and armouring (Parker et al., 1982; Carsons and 

628 Griffiths, 1985; Carling et al., 1992; Buffington and Montgomery, 1997; Church et al., 

629 1998).  These observations of an evolving, or history-dependent critical shear stress 

630 which is related to grain size distribution makes the transition towards gravel bed 

631 instability and active sediment transport difficult to predict and could form the basis 

632 for incorporating an inter flood-duration ‘correction factor’ into existing entrainment 

633 equations.  

634

635 In order to correct for the effects of inter-flood flows entrainment thresholds need to 

636 be based on experimental data derived from beds which have been exposed to 

637 antecedent flows.  The relationship between bedload transport rate and excess 

638 shear stress used herein can be described by a power law similar with similar 

639 exponent values to that used by previous authors (Parker, 1990; Wilcock and Crowe, 

640 2003;  Recking 2010;  Piedra, 2011).  However, as supported by Piedra (2011) data 

641 in this paper also indicates that there is no unique equation with fixed parameters 

642 capable of describing bedload transport behaviour for gravel channels which have 

643 been exposed to differing inter-flood flow periods.  Further, given changes in bed 

644 stability in response to inter-flood flow duration are grade sensitive our results 

645 indicate the not only is predicting entrainment based on a single critical Shields value 

646 inaccurate but also that the D50 may not be the best grain fraction from which to 

647 estimate entrainment thresholds (MacKenzie et al, 2018).  This study has shown that 

648 the finest and coarsest fractions are most responsive to inter-flood flow duration and 

649 hence more realistic entrainment models might consider using these fractions to 
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650 define bed stability (Carling, 1987,1988; Ashworth and Ferguson,1989; Eaton and 

651 Church, 2004; Tamminga et al., 2015; Eaton et al., 2015; MacKenzie and Eaton, 

652 2017).  

653

654 Increased pressure on water resources will require sophisticated environmental flow 

655 guidelines to maintain habitat diversity, ensure ecosystem health and functioning, 

656 and enable effective water resource management planning (Poff et al., 1997; 

657 Tharme, 2003; 2010; Rolls & Arthington, 2014). Given managed flows are designed 

658 to mimic natural flow regime and sediment dynamics, periods of prolonged low flow 

659 prior to release will have a fundamentally different sediment transport response than 

660 those with shorter low flow periods. Hence this research has significant implications 

661 for the management and design of such flows (Lytle & Poff, 2004; Arthington et al., 

662 2006; Kiernan et al., 2012; Olden & Naiman, 2010; Poff and Schmidt, 2016). 

663

664 5. CONCLUSION

665 Novel laboratory experiments in a recirculating flume have quantified the effects 

666 between grain size distribution and inter-flood duration on gravel river bed stability.  

667 Inter-flood duration effects have been shown to be ubiquitous regardless of surface 

668 grain size distribution where direct entrainment threshold analysis shows that critical 

669 shear stress of the median grain size increases by up  +18% due to the applied inter-

670 flood duration of 960 minutes at τ*c50. The magnitude of response is contingent upon 

671 grain size distribution; uniform beds are more responsive as compared to the graded 

672 beds.  The effects of inter-flood duration on entrainment thresholds can be well 

673 predicted using models which both start and tend to finite values such that  when t = 

674 0 then τc = τ0; when t → ∞ then τc → τmax.  Bedload transport rate has also been 
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675 shown to be responsive to inter-flood duration where up to a 91% reduction in 

676 bedload was recorded for the longest antecedent flow periods.  However, akin to the 

677 entrainment threshold data there is also a grade dependent response which has 

678 been attributed to the ability of the bed to rearrange into a more stable configuration 

679 during the sub threshold flow periods.  Changes in the transport pattern reflect this 

680 stabilisation process where the percentage of fines within a distribution control the 

681 extent to which equal mobility or size selective conditions are noted.  

682

683 Results have implications for the prediction of entrainment thresholds, the accurate 

684 prediction of bedload flux timing and magnitude and have implications for the 

685 management of environmental flow design.  However questions still remain as to 

686 how antecedent shear stress magnitude may affect the stability gains and whether 

687 there may be a threshold at which inter-flood flows may serve to destabilise the bed 

688 surface.   Further, an understanding of the interaction of the bed surface with the 

689 overlying fluid flow regime with respect to the changes in the turbulent patterns 

690 during inter-flood sub-threshold flows would also be a significant step forward in this 

691 emerging research field.    

692

693  
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Experiment 
Number

Distribution

Antecedent 
Flow 

Duration 
(Minutes)

Stability 
Test 

Duration 
(Minutes)

Critical  
Flow Depth 

(m)
Recorded Critical 

Dimensionless  Shear 
Stress values 

Average Critical 
Dimensionless 
Shear Stress

1,2,3,4 0 70 0.051 (0.025) 0.021, 0.019, 0.019 0.020 (0.013)

5,6,7,9 60 70 0.052 0.021, 0.02, 0.022 0.021

9,10,11,12 120 70 0.052 0.023, 0.021, 0.022 0.022

1314,15,16 240 80 0.056 0.022, 0.021, 0.023 0.022

17,18,19,20

Near - 
Uniform

960 90 0.060 0.025, 0.022, 0.024 0.024

21,22,23,24 0 80 0.063 (0.032) 0.026, 0.024, 0.024 0.025 (0.010)

25,26,27,28 60 80 0.064 0.026, 0.025, 0.025 0.026

29,30,31,32 120 90 0.069 0.028, 0.027, 0.026 0.027

33,34,35,36 240 100 0.072 0.029, 0.028, 0.030 0.029

37,38,39,40

Unimodal

960 90 0.070 0.030, 0.029, 0.029 0.029

41,42,43,44 0 60 0.053 (0.030) 0.022, 0.019, 0.021 0.021 (0.012)

45,46,47,48 60 60 0.054 0.021, 0.02, 0.022 0.021

49,50,51,52 120 70 0.057 0.025, 0.021, 0.024 0.023

53,54,55,56 240 70 0.056 0.024, 0.022, 0.02 0.022

57,58,59,60

Bimodal

960 80 0.060 0.024, 0.025, 0.024 0.024

1038 Table 1; Experimental information for all experiments detailing the length of the antecedent flow, the stability test duration, the critical flow 
1039 depths and the recorded dimensionless shear stress values at the critical entrainment threshold for all experiments.  Values in brackets for the 
1040 critical flow depth represents the depth at T*c50 i.e i.e. the flow depth which was applied during the antecedent flow period.  Values in brackets 
1041 for the average critical dimensionless shear stress represent the T*c50 values under benchmark conditions i.e. the shear stress which was 
1042 applied during all of the antecedent flow periods calculated from where no antecedent flow is applied.
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Bed Fit Parameters Uniform Unimodal Bimodal

Maximal dimensionless shear stress 0.038 0.043 0.037

k (Minutes-1) 0.003 0.010 0.004

Time to half saturation ( Minutes) 234 74 198

R2 0.98 0.80 0.83

RMSE 0.0003 0.0013 0.0007

SSE 1.71e-07 1.59e-06 8.84e-07

% increase in dimensionless shear 

stress between 0-960 minutes

18 9 12

Predicted % increase in 

dimensionless shear stress between 

0- and Max predicted

19 11 13

1043 Table 2; The parameters associated with the growth in shear stress over time 
1044 according Equation 2
1045

Bed Fit Parameters Uniform Unimodal Bimodal

Maximal dimensionless shear stress 0.040 0.044 0.037

Half Saturation Constant (Minutes) 285 84 214

R2 0.98 0.71 0.82

RMSE 0.0004 0.0017 0.0011

SSE 5.15E-07 2.27E-06 9.54E-07

% increase in dimensionless shear 

stress between 0-960 minutes

18 9 12

Predicted % increase in 

dimensionless shear stress between 

0 and Max predicted

24 11 13

1046 Table 3; The parameters associated with the growth in shear stress over time 
1047 according Equation 3.
1048
1049
1050
1051
1052
1053
1054
1055
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1056
Bed Fit Parameters Uniform Unimodal Bimodal

Minimal Bedload Transport rate (g/m/s) 0.015 0.018 0.012

k (Minutes-1) 0.0115 0.0143 0.0102

Half Life (Minutes) 60.22 48.37 68.29

R2 0.93 0.80 0.93

RMSE 0.009 0.006 0.017

SSE 2.38e-04 1.04e-04 8.96e-04

1057

1058 Table 4; The parameters associated with the decay in bedload transport over time 
1059 according to an exponential decay function 
1060

1061
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Figure 1: Grain size distribution for the three test sediment grades.  The is calculated 

according to   5.0
1684 DDg   
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Figure 2: Sample experimental hydrograph detailing the three stages of the 
experiment: (a) an initial bedding in period run for 30 minutes at τ* ~ 0.004; (b) an 
antecedent flow period run at τ*c50 for 0, 60,120, 240 or 960 minutes; and (c) a stability 
test run until τ*c50 is reached.  The dimensionless shear stress values for each phase 
of each experiment are given in Table 1 with the example here given for the uniform 
bed exposed to 60 minutes of antecedent flow. 
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Figure 3: The relationship between antecedent duration, average critical 
dimensionless shear stress and grain size distribution with fits plotted derived 
according to Equation 2. 
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Figure 4: Inter-flood duration relationships with bedload transport rate, including the 

fitted exponential decay function of form 
0 0( ) kt

bi bi bi biQ Q Q Q e


      with R2 

values of 0.93, 0.80 and 0.93 for the uniform, unimodal and bimodal beds respectively.   
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Figure 5: Relationship between 
𝜏∗

𝜏𝑐
∗ at each step of the stability test as a function of the 

bedload transport rate for the same step of the stability test for the uniform, unimodal 
and bimodal beds respectively (subplots 1-3).  The fitted trend line given in each of the 
subplots combines all of the date for each bed and collapses them onto a single 
straight line.  The final subplot directly compares the trend lines derived for each 
sediment bed.  The exponent of the power law relationship is 11.06, 10.09 and 8.77 
and the R2 values of those fits are 0.63, 0.75 and 0.29 for the uniform, unimodal and 
bimodal beds respectively. 
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Figure 6: Fractional bedload transport rate of the unimodal (top plot) and bimodal bed 
(bottom plot) scaled by the abundance of each size (gi) in the bulk mix (Fi) plotted 
against dimensionless grain size for antecedent durations 0-960mins.  Given the 
stability test was stopped once the critical entrainment threshold of the D50 had been 
reached the data in this figure represent bedload which was collected during the last 
step of the stability test under these conditions.  
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