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Abstract 
Wind energy, acknowledged as a promising form of renewable energy and the fastest-

growing clean method for electricity generation, has attracted considerable attention 
from many scientists and researchers in recent decades. However, wind energy 
forecasting is still a challenging task owing to its inherent features of non-linearity and 
randomness. Therefore, this study develops a hybrid wind energy forecasting and 
analysis system including a deterministic forecasting module and an uncertainty 
analysis module to mitigate the challenges in existing studies. In particular, these 
challenges are as follows: (1) It is difficult to guarantee that the data characteristics 
underlying the time series are effectively extracted; (2) in the modeling of each 
subseries, i.e., when the original data is decomposed into some time series, forecasting 
accuracy and stability are not simultaneously considered, and thus, they are not properly 
modeled; and (3) the best function to perform a deterministic forecasting and 
uncertainty analysis based on the forecaster of each subseries is unknown. The 
developed hybrid system consists of three steps: First, data preprocessing is conducted 
to capture and mine the main feature of the wind energy time series and weaken the 
noises’ negative effects; second, multi-objective optimization is proposed to achieve the 
forecasting of each subseries with improvements in accuracy and stability; finally, 
search for the best function, which obtains the deterministic forecasting and uncertainty 
analysis results using an optimized extreme learning machine based on different 
modeling objectives, is conducted. Experimental simulations are performed using data 
from three sites in a real wind farm, which indicate that the developed system has a 
better performance in engineering applications than that of other methods. Furthermore, 
this system could not only be used as an effective tool for wind energy deterministic 
forecasting and uncertainty analysis, but also for other engineering application areas in 
the future. 
Keyword: hybrid system; deterministic forecasting; uncertainty analysis; optimization; 
wind energy 
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1. Introduction 

In recent years, China has faced enormous environmental and energy challenges, 

which have a significant influence on economic growth, public health, and welfare (Li 

et al., 2018a). With the decline of conventional energy sources and increasing 

environmental pollution, the energy structure based on fossil fuels will be replaced by 

a cleaner energy structure (Zendehboudi et al., 2018). Wind energy has become 

increasingly popular worldwide, and it can make a great contribution to reduce CO2 

emissions (Wang et al., 2008; Wang and Li, 2019). To the best of our knowledge, wind 

energy, as the renewable source with greatest potential around the world, has the 

highest growth rate in the electrical power system (EPS) owing to its environmental 

and ecological friendliness and because it is easily extractable with the rapid 

development of wind power technology (Wang et al., 2018a; Liang et al., 2016; Wang 

et al., 2018b). According to the Global Wind Report 2017 (Global Wind Energy 

Council, 2018), the global wind power market remained above 50 GW in 2017, and the 

total installations in 2017 were of 52,492 MW, bringing the global total to 539,123 MW. 

The annual market was down 3.8% compared with 2016, and the cumulative total 

increased 11% over 487,279 MW at the end of 2016. With a new added capacity to the 

power grid of 19,660 MW, China again led the global markets in 2017. It was down 

15.9% compared with 2016, but China still represents 37% of the global installations. 

Moreover, it represents an increase of 11.7% over the previous year and cumulative 

installations of 188,392 MW. Therefore, to accelerate the wind power development, 

wind energy data is acknowledged as a real-world complex time series of great 

importance for the EPS, and its forecasting is presently one of the most important issues 

in clean production.  

    However, the large-scale integration of wind power could threaten the operation 

and planning of conventional power systems owing to the features of non-linearity and 

randomness inherent to wind energy, which severely hinder further development of 

wind power (Zhao et al., 2016a). One of the solutions that may help solve the above-

mentioned problems is developing an effective forecasting technique, which could play 

a significant role in power plants to control the balancing, operation, and safety of the 

grid (Li et al., 2018b). A general, accurate wind energy forecasting can reduce the 

financial and technical risks of the uncertainty of wind power for all electricity market 

participants (Foley et al., 2012). However, because of the nature of wind energy, it is 
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not possible to ensure its availability when needed, and hence, wind energy forecasting 

is a challenging issue for wind power development (Zhao et al., 2016b). For this 

purpose, proposing an effective forecasting technique for wind energy that considers 

the relevant issues associated with the large-scale integration of wind power into the 

electricity grid has become particularly desirable and should not be delayed (Ma et al., 

2009).  

  In recent decades, many forecasting methods for wind energy have been proposed, 

which mainly include three families, namely, the physical, conventional statistical, and 

intelligent forecasting approaches (Zhang et al., 2017; Jiang et al., 2019; Hao and Tian, 

2019a). The physical approaches are developed according to some meteorological 

factors, such as temperature, humidity, surface roughness, and pressure, and they 

perform better for long-term wind energy forecasting (Su et al., 2014). Moreover, they 

are not suitable for conducting small-area and short-term wind energy forecasting 

because they need extensive simulation time and resources (Sun and Liu, 2016). In 

contrast, the conventional statistical approaches, such as the autoregressive moving 

average (ARMA) (Torres et al., 2005) and the autoregressive integrated moving 

average (ARIMA) model (Sfetsos, 2002), aim to forecast the future changes by 

historical data, and although they are more suitable for wind energy short-term 

forecasting than the physical models, they fail to deal with nonlinear conditions (Xiao 

et al., 2017). With the rapid development of artificial intelligence, intelligent 

forecasting models have been successfully developed and employed in wind energy 

forecasting (Jiang et al., 2016) and, among them, the artificial neural networks (ANNs) 

(Wang et al., 2018c; Tian et al., 2018), support vector machines (SVMs) (Hu et al., 

2015), and fuzzy logic methods (Hong et al., 2010) are discussed mostly. Based on the 

various forecasting methods, many forecasting systems have been developed around 

the world. For example, the e WindTM system developed by AWS TruePower, USA, 

whose geographical locations of applications include the USA; the WPPT system 

developed by Eltra/Elsam in collaboration with Informatics and Mathematical 

Modeling at the Danmarks Tekniske Universitet (DTU), Denmark, with geographical 

locations of applications that include Denmark, Australia, Canada, Republic of Ireland, 

Holland, Sweden, Greece, and Northern Ireland; the Sipreólico system developed by 

the Universidad Carlos III, Madrid, Spain and Red Eléctrica de Espana, whose 

corresponding geographical locations of applications include Spain (Foley et al., 2012).  
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Moreover, Ma et al. (2019) point out that only the nonlinear models can obtain the 

desirable forecasting performance because the wind energy data usually present strong 

nonlinear phenomena. However, owing to the disadvantages that are inherent to the 

single methods, they cannot always obtain the desired forecasting results (Du et al., 

2018, Ma et al., 2017a). In addition, owing to the increasing penetration of wind power 

in the power grids, it is necessary to have a better understanding of the forecasting error 

and to try to reduce it as much as possible (Bludszuweit et al., 2008).  

Therefore, to remedy these weaknesses that are inherent to the single methods, many 

hybrid systems have been proposed for wind energy forecasting, which achieve better 

forecasting performance (Tian et al., 2018). In general, according to the data 

preprocessing strategy, the hybrid model could be developed by the following two 

strategies (Yang et al., 2017). (1) The decomposition and reconstruction strategy (Yang 

et al., 2017), which is a simple data preprocessing scheme that decomposes the original 

data into some subseries with different frequencies and removes the high frequency 

signals to obtain the reconstructed series. Then, the reconstructed data are used to 

develop the forecasting model. Ma et al. (2017b) developed a wind energy forecasting 

model based on singular spectrum analysis (SSA) to obtain a smoother sequence based 

on the original series. Similarly, Niu et al. (2018) also proposed a hybrid wind energy 

forecasting model based on SSA. Their case study proved that the developed model, 

based on the decomposition and reconstruction strategy, not only outperforms other 

methods, but also could be employed as an effective technique in engineering 

applications. (2) The divide and conquer strategy (Xu et al., 2017), another data 

preprocessing strategy, is the most widely used scheme in hybrid forecasting modeling. 

It employs certain data preprocessing technique to decompose the original data into 

some subseries and then constructs a predictor for each subseries. The final forecasting 

results can be obtained by aggregating all the predicted subseries. For instance, Wang 

et al. (2017) developed a forecasting system based on data preprocessing and 

optimization for wind energy. Similarly, Meng et al. (2016) developed a hybrid model 

for short term wind energy forecasting that combines data preprocessing, ANNs, and 

the optimization approach. According to the evaluation of the performance of the 

developed model, this method significantly enhances the forecasting accuracy 

compared with that of all the benchmark models. The results of the abovementioned 
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hybrid models based on these two schemes verified the forecasting ability of the hybrid 

models.  

  Based on the analysis and review of the abovementioned literature, it could be found 

that, in most cases, the divide and conquer strategy-based models are superior to the 

models using the decomposition and reconstruction strategy. The former methods 

improve the final forecasting performance to a certain extent and are now employed in 

mainstream applications. However, most of the previous studies emphasizing the 

contribution of the divide phase only improve the forecasting effectiveness to a certain 

degree. Most importantly, they ignore the significance of the conquer phase for the final 

forecasting performance, which includes two aspects. On the one hand, most of them 

adopted a traditional optimization algorithm to optimize the forecasting model for 

forecasting each subseries, which usually results in poor forecasting stability. On the 

other hand, and equally important, most of them employed a widely used integration 

way, named the direct integration method, to obtain the final forecasting results, 

whereas few of them considered other integration ways in the conquer phase, which 

leaves an area of potential improvement for future studies. Therefore, it is worth to 

conduct further research and studies on novel methods for the conquer phase. 

  Another issue of wind energy forecasting is the limited span of research directions. 

Specifically, most prior analyses have concentrated only on the deterministic wind 

energy prediction, which is insufficient for engineering applications and cannot ensure 

the reliability and controllability of the EPS. Fortunately, the probabilistic interval 

forecasting can provide more information, and its results will facilitate decision makers 

to conduct risk analysis and assessment. However, the research and applications of 

interval forecasting have not obtained enough attention from the relevant researchers, 

who are mainly centered on performing analyses based on the statistical model, such as 

the bootstrap methods (Errouissi et al., 2015), quantile regression method (Nielsen et 

al., 2016; Wang et al., 2016), and kernel density estimation method (Juban et al. 2007). 

In addition, forecasting models based on ANNs, the lower upper bound estimation 

(LUBE), and the nonparametric theory were developed for interval forecasting 

(Khosravi et al., 2011). Based on the review and analysis of the abovementioned 

interval forecasting methods, it can be found that: (1) the bootstrap method is adapted 

to a small sample, which can avoid possible discards in a quantile regression but with 

a heavy computational burden; (2) except for the heavy computational burden, the 
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quantile regression method needs a specific training sample for interval forecasting, 

with the probability of results being discarded in the process of resampling; (3) although 

the kernel density estimation method is easily performed for interval forecasting, it 

needs strict assumptions on distribution; (4) the LUBE method not only avoids the 

assumptions about distribution but also have high computational efficiency, although 

its complex objective function cannot be solved using the traditional mathematical 

method. In summary, there is not a single uniform method for interval forecasting, and 

further studies and investigations need to be conducted based on the currently available 

knowledge for obtaining more effective results (Moghram and Rahman, 1989). More 

specifically, only few of the past studies have performed in-depth analyses of the wind 

energy uncertainty and they have merely emphasized the modeling of wind energy 

centered on deterministic forecasting. More importantly, they have ignored the potential 

improvements and significance of obtaining high quality interval forecasting. Therefore, 

for the purpose of providing more information for decision makers in EPS, further 

studies of deterministic and probabilistic interval forecasting in the wind energy 

forecasting field are especially needed because of its significance. 

The main contribution of this study is that we developed a hybrid forecasting and 

analysis system to perform wind energy deterministic and probabilistic interval 

forecasting, which compensates the insufficiency of existing studies. This system 

consists of a deterministic forecasting module and an uncertainty analysis module, 

which can provide more information for decision makers in EPS and improve the 

management and scheduling of EPS. Experimental simulations are performed using 

data from three sites in a real wind farm, which indicate that the developed system 

performs better in engineering applications than the other compared models. 

  In particular, the main differences between the present research work and previous 

studies involve four points, which can be considered as a strong contribution to the 

wind energy forecasting domain. The details can be summarized as follows: (1) 

Different forecast target: This research focuses on improving the model’s accuracy and 

stability rather than only the accuracy target. Therefore, an optimized extreme learning 

machine (ELM) model is developed, which combines a multi-objective optimization 

algorithm with two targets (accuracy and stability) to provide a guarantee for the final 

forecasting performance. (2) Different integration method: By focusing on the conquer 

phase rather than on the divide phase when using the superior divide and conquer 



8 

 

strategy. In this study, another optimized ELM is developed as a new integration method 

to replace the simple direct integration method, which can obtain the final forecasting 

results by the forecasted future changes of each subseries. Owing to its outstanding 

forecasting ability, the effectiveness of the conquer stage and final forecasting 

performance can be further enhanced. (3) Different research directions: The focus is on 

providing both deterministic forecasting information and uncertainty analysis. Besides 

a deterministic forecasting module with two aims, a probabilistic interval forecasting 

model with three aims is developed to quantify the potential risks for the decision 

makers in EPS. The three aims of the fitness function are defined as follows: one is to 

maximize the forecast interval coverage probability; second is to minimize the forecast 

interval normalized average width; and third is to minimize the accumulated width 

deviation. (4) Apart from the abovementioned three differences, this research also 

provides a more comprehensive comparative study. The empirical mode decomposition 

(EMD) family is used to develop similar interval forecasting methods for comparative 

studies providing suggestions for future potential research directions of the EMD-based 

methods. Moreover, some insightful discussions are provided, such as the superiority 

of the developed system and a sensitivity analysis.  

  The remainder of the paper is organized as follows: Section 2 provides the required 

methods for the devised system. Section 3 constructs the proposed forecasting and 

analysis system. Section 4 presents the data and analyzes the results. Further 

discussions are conducted in Section 5. Finally, the conclusion is summarized in Section 

6. 

2. Methodology 

  This section provides the introduction of the required methods for the developed 

system, which include the variational mode decomposition (VMD), extreme learning 

machine (ELM), and multi-objective salp swarm algorithm (MSSA).   

2.1 Variational Mode Decomposition (VMD) 

VMD, developed by Dragomiretskiy and Zosso (2014), is a novel decomposition 

method that has been frequently used in many fields, such as biomedical image 

denoising (Lahmiri and Boukadoum, 2014), mechanical fault diagnosis (Huang et al., 

2016), and seismic time–frequency analysis (Xue et al., 2016). Many previous studies 

have proven that the VMD method is superior to other decomposition approaches such 
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as wavelet transform and EMD for signal denoising (Lin et al., 2017). The details of 

VMD are presented as Algorithm 1. 

Algorithm 1: VMD 

1 /*Set the parameters of VMD. */ 

2 /*Initialize the { }1ˆku ,{ }1
kw , 1λ̂  and n. */ 

3 REPEAT THE ITERATION 

4  n = n + 1 

5  FOR k = 1 : k DO 

6   /* Update ˆku for all w > = 0 */ 

7   
1

1
2

ˆˆ ˆ( ) ( ) ( ) / 2
ˆ ( )

1 2 ( )

n n n
i in i k i k

k n
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f w u w u w
u w
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− − +
=

+ −
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8   /* Update kw */ 

9   2 21 1 1

0 0
ˆ ˆ( ) / ( )n n n

k k kw w u w dw u w dw
∞ ∞+ + += ∫ ∫  

10  END FOR 

11  /*Dual ascent for all w > = 0. */ 

12  1 1ˆˆ ˆ ˆ( ) ( ) ( ( ) ( ))n n n
kk

w w f w u wλ λ τ+ += + −∑  

13 END UNTIL MEET TERMINATION CONDITION 

14 RETURN a series of band-limited modes 

2.2 Extreme learning machine (ELM) 

    ELM, developed by Huang et al. (2004), is a type of single hidden layer 

feedforward neural network (Jiang et al., 2017), which has a simple structure, high 

forecasting accuracy, fast calculation speeds, and fewer training sample requirements. 

Compared with some well-known neural networks, it has a good prediction ability and 

real-time learning capability (Huang et al., 2012; Huang et al., 2015; Zhang et al., 2012).  

  The ELM predictor between xi and yi can be presented as follows: 

 
1

( , , )   1, 2,...,L
L i i j ji i

f G a b x y j Nβ
=

= = =∑   (1) 

where ai is the weight vector of hidden node i, bi is polarization of node i, G is the 

excitation function, β denotes the weight vector of the input node and output node, L 

is the hidden layer number, and N is the number of training samples.  

For simplicity, Eq. (1) is transformed as follows: 

 H Yβ =   (2) 
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where H is the output matrix of the hidden layer, and the output weight can be obtained 

as follows: 

 minH Y HH Y Y H Y
β

β β+− = − = −   (5) 

 H Yβ +=   (6) 

where H+ is the Moore-Penros generalized inverse matrix of the hidden layer.  

2.3 Multi-objective salp swarm algorithm (MSSA) 

  The SSA, developed by Mirjalili et al. (2017), is a new bio-inspired optimization 

algorithm that is inspired by the swarming behavior of salps.  

  Similar to other swarm intelligence optimization algorithms, the salps’ position is 

defined as a two-dimensional matrix x. Furthermore, the food source named F is 

defined as the target in the search space.  

 The leader’s position is updated as follows: 

 
1 2 31

1 2 3

(( ) )  0
(( ) )  <0

j j j j
j

j j j j

F c ub lb c lb c
x

F c ub lb c lb c
+ − + ≥=  − − +

  (7) 

where 𝑥𝑥𝑗𝑗1 denotes the leader’s position in the jth dimension, Fj is the food source’s 

position in the jth dimension, ubj and lbj are the upper and lower bounds, respectively, 

c1, c2, and c3 are random numbers. c1 is used to balance exploration and exploitation 

and is calculated as follows: 

 
2(4 / )

1 2 l Lc e−=   (8) 

where L is the maximum number of iterations and l is the current iteration number. 

 The followers’s position is updated according to the following equation: 

 11 ( )
2

i i i
j j jx x x −= +   (9) 

where i ≥ 2 and 𝑥𝑥𝑗𝑗𝑖𝑖 shows the ith follower salp’s position in jth dimension. 
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  Different from solving the single objective problem, one cannot compare different 

solutions by the arithmetic relational operators for the multi-objective optimization 

problem. For this aim, the definitions include the Pareto dominance, Pareto optimality, 

Pareto optimal set, and Pareto optimal front (Coello Coello, 2009). 

  Definition 1 Pareto dominance 

Vector 1 2( , ,..., )kx x x x=
  dominates 1 2( , ,..., )ky y y y=

 , denoted by x y , if 

 { } [ ] [ ]1,2,..., , ( ) ( ) 1, 2,..., : ( )i i ii k f x f y i k f x∀ ≥ ∧ ∈  (10) 

Definition 2 Pareto optimality 

x X∈
 is the Pareto optimal if 

 ( ) ( )y X F y F x∈
  

ó  (11) 

Definition 3 Pareto optimal set 

The Pareto optimal set consists of all the non-dominated solutions: 

 { }: , ( ) ( )sP x y X F y F x= ∈ ∃   (12) 

Definition 4 Pareto optimal front 

The Pareto optimal front consists of the Pareto optimal solutions:  

 { }: ( )f sP F x x P= ∈  (13) 

  The multi-objective version of the SSA is developed to solve multi-objective issues, 

and it is named multi-objective SSA (MSSA). Firstly, in a similar way with the archives 

in multi-objective particle swarm optimization (MOPSO), the repository of food 

sources is equipped for the SSA algorithm. Secondly, the food source is chosen from a 

set of non-dominated solutions with the least crowded neighborhood. Finally, the 

pseudo-code of the MSSA algorithm is presented in Algorithm 2. 

Algorithm 2: MSSA 

 

Parameters: 

L—maximum iterations 

n—number of salps 

Fi—fitness of the i-th salp 

[lbj, ubj] —boundaries of the j-th dimension  

xi—position of the i-th salp 

l—current iterations 
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1 /*Set the basic parameters of MSSA. */ 

2 /*Initialize the salp population xi (i = 1, 2… n) randomly. */ 

3 WHILE (l< L) DO 

4  /*Calculate the objective values of each salp. */ 

5  /*Find the non-dominated salps. */ 

6  /*Update the repository in regard to the obtained non-dominated salps. */ 

7  IF the repository is full DO 

8   /* Remove one repository resident using repository maintenance. */ 

9   /* Add the non-dominated salp to the repository. */ 

10  END IF 

11  /* Choose a source of food from repository: F=SelectFood (repository). */ 

12  /*Update c1.*/ 

13  
2(4 / )

1 2 l Lc e−=  

14  FOR EACH salp (Xi) 

15   IF i==1 DO 

16     /*Update the position of the leading salp. */ 

17    
1 21

1 2

(( ) )  c3 0
(( ) )  c3<0

j j j j
j

j j j j

F c ub lb c lb
x

F c ub lb c lb
+ − + ≥=  − − +

 

18   ELSE IF 

19    /*Update the position of the follower salp. */ 

20    11 ( )
2

i i i
j j jx x x −= +  

21   END IF 

22  END FOR 

23  /* Amend the salps based on the boundaries [lbj, ubi]. */ 

24  l=l+1 

25 END WHILE 

26 RETURN respository 

27 /* Obtain X* based on the returned respository */ 

   Algorithm 2 shows that the main procedure is as follows: the MSSA algorithm first 

initializes the salp population randomly, then computes the objective values of each 

salps, and then the non-dominated salps are obtained. If the repository is not full, the 

non-dominated solutions are added to it; on the contrary, if it is full, the repository 
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maintenance is performed to remove the solutions with crowded neighborhood. A food 

source is chosen from the non-dominated solutions in the repository with the least 

crowded neighborhood after updating the repository. Next, c1 is updated by Eq. (8). 

Then, the positions of the leading and follower salps are updated by Eq. (7) and (9), 

respectively. It should be noted that the algorithm will amend the salps based on the 

boundaries to avoid that a salp goes outside of the boundaries. Finally, the MSSA is 

terminated when it satisfactorily meets the end condition.  

3. Construction of the wind energy forecasting and analysis system 

  This section describes the development of the forecasting and analysis system, which 

includes system design and system evaluation. 

3.1 System design 

  In this section, the overall structure of the system devised in this study is presented 

in Fig. 1, which consists of two modules: deterministic forecasting module and 

uncertainty analysis module.  
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Fig. 1. Flowchart and contribution of the devised system 

3.1.1 Deterministic forecasting module 

  The flowchart of the deterministic forecasting module of the devised system is shown 

in Fig. 1, which is composed of three phases, and the detailed information of each phase 

is as follows: 

♦ Phase I: Owing to the wind energy data’s inherent features of non-linearity and 

randomness, the utilization of wind energy is restricted by the wind energy 

forecasting performance. To weaken the noise’s negative effects in the original 

wind energy data and further improve the final forecasting performance, data 

preprocessing is conducted to decompose the original data into a number of 
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subseries for capturing and mining the main feature of the wind energy time series, 

which has made important contributions to the system’s forecasting performance.  

♦ Phase II: As discussed above, the forecasting accuracy and stability are 

indispensable for an effective and robust forecasting model in engineering 

applications. For this aim, two objectives (accuracy and stability) are defined for 

deterministic forecasting. More specifically, the forecasting accuracy is 

represented by the mean squared error of the forecasting results, which is one of 

the most widely used fitness functions to improve the model’s accuracy. Moreover, 

it is well known that the forecasting errors are one of the most important indicators 

for evaluating the performance of a model. Therefore, in this study, the stability of 

the forecasting errors is represented by the standard deviation of the forecasting 

errors, which is defined as another fitness function for improving the deterministic 

forecasting stability. Based on this, an optimized ELM is developed to forecast 

future changes of each subseries, which involves multi-objective optimization and 

ensures accuracy and stability of the final forecasting results. In particular, the 

forecasting is made using the previous data for one step ahead. 

♦ Phase III: Most of the previous studies based on the divide and conquer strategy 

only have employed the widely used direct integration method to obtain the final 

forecasting results at the third phase, while few of them have considered other 

integration ways in the conquer phase. This offers potential for improvements in 

the final forecasting performance. Therefore, in this study, different from most of 

the previous studies, another optimized ELM is developed as a new integration 

method, instead of a direct integration method. In particular, the one step ahead 

forecasting results of each subseries are inputted to the new developed integration 

method to obtain the final one step ahead wind energy forecasting results, which 

enhances the effectiveness of the conquer stage and further improves the final 

forecasting performance.  

3.1.2 Uncertainty analysis module 

  The framework of the uncertainty analysis module of the devised system is shown in 

Fig. 1, which is established based on the deterministic forecasting module to conduct 

the wind energy uncertainty analysis as developing intervals and quantify the potential 

risks for the decision makers in EPS. Moreover, to obtain the high-quality interval 

forecasting results, the multi-objective optimization algorithm is also incorporated in 
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the uncertainty analysis module. Therefore, the optimization objective, named the 

fitness function, is defined in this study.  

  The forecast interval coverage probability (FICP) and forecast interval normalized 

average width (FINAW) are two widely employed metrics for evaluating the interval 

forecasting quality. However, only considering the FICP and FINAW is not enough for 

some special conditions. In detail, if the actual value is outside the forecasted interval, 

and when the values of FICP and FINAW are approximated to the benchmark model, 

the effect of two forecasted intervals with different levels of upper and lower bounds of 

the actual target value deviating from the forecast interval cannot be reasonably 

evaluated. To solve this issue, a new metric, named the accumulated width deviation 

(AWD), is also employed to validate the performance of the uncertainty analysis 

module. Therefore, these three objectives should be considered simultaneously and 

applied in the development of the uncertainty analysis module. More specifically, 

different from the two objectives (accuracy and stability) of the deterministic 

forecasting process, another fitness function with three objectives is designed in the 

uncertainty analysis module. The first objective is to maximize the FICP (i.e., min 1 −

α − FICP), the second is to minimize the FINAW (i.e., min FINAW), and the third is to 

minimize the accumulated width deviation (i.e., min AWD).  

  In this section, based on the multi-objective optimization algorithm with the 

abovementioned three aims, a probabilistic interval forecasting model based on the 

optimized multi-input multi-output ELM is successfully developed to forecast the 

future wind energy interval based on the forecasted future changes of each subseries. 

In particular, the one step ahead forecasting results of each subseries are inputted to the 

optimized multi-input multi-output ELM to obtain the final one step ahead wind energy 

interval forecasting results, which provide desirable forecasting intervals for wind 

energy. 

3.2 System evaluation 

This section introduces a comprehensive evaluation of the devised system, which 

comprises eight metrics for the deterministic forecasting and three metrics for the 

uncertainty analysis.  

3.2.1 Deterministic forecasting evaluation 

  To test the performance of the deterministic forecasting module, the multiple error 

criteria (MEC), grey relational analysis (GRA), and Pearson’s test are used from 
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different perspectives, and the details of each perspective are as follows.  

♦ Multiple error criteria  

  Many error metrics have been widely employed in recent studies, but there is no 

universal standard for model evaluation. Therefore, researchers usually adopt multiple 

error criteria to compare the performance of the developed methods and of other 

compared models (Xu et al., 2017). By referring to the relevant literature in forecasting 

fields (Xiao et al., 2016a; Wang et al., 2018d; Xiao et al., 2016b), five common error 

criteria, including the mean absolute error (MAE), root mean square error (RMSE), 

mean absolute percentage error (MAPE), median absolute percentage error (MdAPE), 

Theil U statistic 1 (U1), and Theil U statistic 2 (U2), are adopted as multiple error 

criteria in this study and presented in Table 1. Smaller values for these metrics reveal 

a better forecasting performance (Jiang, 2018). 

Table 1  

Performance metric rules for the deterministic forecasting module 

Metric Definition Equation 

MAE 
Mean absolute error of N 

forecasting results 1

1 N

i i
i

F A
N =

= −∑MAE  

RMSE 
Square root of average of the 

error squares 
( )2

1

1 N

i i
i

F A
N =

= × −∑RMSE  

MAPE 
Average of N absolute 

percentage error 1

1 100%
N

i i

i i

A F
N A=

−
= ×∑MAPE  

MdAPE 
Median of N absolute 

percentage error 
100%i i

i

A Fmedian
A

 −
= ×  

 
MdAPE  

U1 
Theil U statistic 1 of 

forecasting results 
( )2 2 2

1 1 1

1 1 1N N N

i i i i
i i i

F A A F
N N N= = =

 
= × − × + ×  

 
∑ ∑ ∑U1  

U2 
Theil U statistic 2 of 

forecasting results 
( ) ( )2 2

1 1 1
1 1

1 1( ) / ( ) /
N N

i i i i i i
i i

A F A A F A
N N+ + +

= =

= × − × −∑ ∑U2  

♦ Grey relational analysis (GRA)  

  The GRA is considered to test whether the forecasted values’ curve has a higher 

similarity to the observed values’ curve. The main procedure is defined as follows 
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(Yang et al., 2019):  

  The reference series:  

 0 0 0 0( (1), (2),..., ( ))=X X X X n  (14) 

  The comparison series: 

 ( (1), (2),..., ( ))=i i i iX X X X n  (15) 

  The series are standardized as follows:  

 1

1 1

1( ) ( )
( )

1 1( ( ) ( ))
1

=

= =

−
=

−
−

∑

∑ ∑

n

i i
t

i n n

i i
t t

X t X t
nx t

X t X t
n n

  (16) 

  The correlation coefficient is calculated as follows: 

 0 0

0 0

min min ( ) ( ) max max ( ) ( )
( ) , (0, )

( ) ( ) max max ( ) ( )
ρ

ξ ρ
ρ

− + −
= ∈ ∞

− + −
i k i i k i

i
i i k i

x k x k x k x k
k

x k x k x k x k
    (17) 

  The grey relation degree (GRD) between x0 and xi is given as follows: 

 
1

1 ( )ξ
=

= ∑
n

i i
k

r k
n

  (18) 

  If ra < rb, the series b has a higher similarity to the reference curve than series a. 

♦ Pearson’s test 

Pearson’s test, developed by Karl Pearson, can be used to present the association 

strength of the observed and forecasted values (Wang et al., 2018b). In this study, the 

evaluation of association strength is performed based on Pearson’s test for further 

elaborating the superiority of the proposed deterministic forecasting module. Pearson’s 

test result can be presented by the metric named Pearson’s correlation coefficient (PCC). 

If PCC = 1, it means that there is a linear relationship between the observed and 

forecasted values and, on the contrary, if PCC = 0, there is no relationship between 

these two time series. 

3.2.2 Uncertainty analysis evaluation  

  As discussed in Section 3.1.2, three metrics, including the forecast interval coverage 

probability (FICP), forecast interval normalized average width (FINAW), and 

accumulated width deviation (AWD), are studied simultaneously and implemented in 

the development of the uncertainty analysis module. Owing to the significance of these 
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three indexes for the quality of interval forecasting, these three metrics are also adopted 

for uncertainty analysis evaluation, and they are defined as follows: 

Table 2  

Performance metric rules for the uncertainty analysis module 

Metric Definition Equation 

FICP 
Forecast interval coverage probability of 

testing dataset 1

1 100%
N

i
i

c
N =

= ×∑FICP  

FINAW 
Forecast interval normalized average width of 

testing dataset 1

1 ( ) 100%
N

i i
i

U L
NR =

= − ×∑FINAW  

AWDi 
Accumulated width deviation of testing sample 

i 

( ) (( )),  
0,                                 [ , ]
( ) (( )),  

i i i i i i

i i i i

i i i i i i

L A U L A L
A L U

L A U L A U

− − <
= ∈
 − − >

AWD  

AWD Accumulated width deviation of testing dataset 
1

1 N

iNR =

= ∑ iAWD AWD  

  Here, Ui and Li, respectively, denote the upper and lower bounds of the forecasted 

interval; if the actual value Ai ∈ [Li, Ui], ci =1, otherwise ci =0; and N is the length of 

the testing dataset.  

4. Data and results 

  To verify the performance of the devised forecasting and analysis system, wind 

energy datasets collected from a certain wind farm situated in Chengde, Hebei province 

of China, are used in this study.  

4.1 Data description 

  The wind measuring data were collected by the meteorological observation tower. 

The current wind measuring devices generally record data at sampling intervals of 2 s 

to 3 s. Some parameters were considered during the collection process, such as time 

date, wind speed, wind direction, temperature, and pressure. The observation tower can 

automatically calculate and record the average wind speed every 10 min. In this study, 

wind energy data from three sites in the Chengde wind farm in Hebei province, China, 

with a 10 min period are randomly assembled to propose a wind energy forecasting and 

analysis system for wind farms. In total, 5040 data points covering 35 days are selected 

for the comparison study from each dataset, which are denoted as dataset A, dataset B, 

and dataset C in this study, and the first 4032 points covering 28 days are adopted as 
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the training set, and the other 1008 data covering 7 days are used as the testing set. The 

proportion of the training and testing datasets is 4:1 in this study. The details of the 

experimental data used in the case study are listed in Table 3. The standard deviations 

are all above 3 m/s, which indicate significant fluctuations of the wind energy data 

when taken the maximum/minimum of datasets A to C, which are 22.40/0.10 m/s, 

22.50/0.10 m/s, and 23.40/0.10 m/s, respectively. It shows an evident fluctuation in 

frequency and amplitude between the series, indicating that these three series have 

different characteristics and the experiments based on them are appropriate for 

validation of the devised system. 

Table 3 

Statistical values of each data dataset used in this study 

Data Set Number 
Statistic values 

Maximum Minimum Median Mean Std. 
Dataset A  

 
    

All Samples 5040 22.4000  0.1000  6.6000  7.4676  3.9102  
Training set 4032 22.4000  0.1000  6.7000  7.6284  3.9150  

Testing set 1008 19.3000  0.2000  5.9000  6.8241  3.8256  

Dataset B       

All Samples 5040 22.5000  0.1000  6.5000  7.3006  3.8739  
Training set 4032 22.5000  0.2000  6.7000  7.3818  3.7512  
Testing set 1008 22.0000  0.1000  5.7000  6.9759  4.3168  

Dataset C       

All Samples 5040 23.4000  0.1000  6.6000  7.2519  3.8179  

Training set 4032 20.6000  0.2000  6.9000  7.3353  3.6348  
Testing set 1008 23.4000  0.1000  5.8000  6.9182  4.4626  
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Fig. 2. Decomposition results by VMD technique for dataset A 

4.2 Analysis of decomposition results by VMD technique 

In phase I, according to the construction scheme of the developed wind energy 

forecasting and analysis system, to lower the negative influence of noise on wind 

energy forecasting and improve the final forecasting performance, the VMD technique 

is employed to decompose the original data into various subseries. Taking dataset A as 

an example, the decomposition results are presented in Fig. 2. As shown in Fig. 2, the 

original data, including the training and testing sets, are respectively decomposed into 

8 subseries, which are named as S1, S2, ⋯, S7, S8. The VMD technique ensures that 

the main data characteristics underlying the time series are effectively mined and 

extracted. As mentioned above, after decomposition by the VMD technique, the two 

objectives (accuracy and stability) are defined for deterministic forecasting, which is 

combined with the multi-objective optimization algorithm MSSA to achieve these two 

specific aims. Based on this, an optimized ELM is developed based on multi-objective 

optimization with two aims (accuracy and stability) as a predictor, which ensures the 

final forecasting results’ accuracy and stability. For the previous example shown in Fig. 
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2, each subseries can be properly modeled based on the developed MSSA–ELM model, 

and the forecasting results of each subseries are shown in Fig. 3. Besides the forecasting 

results of each subseries shown in Fig. 3, the fitted results of the corresponding training 

set can also be obtained by the proposed MSSA-ELM model. Based on the fitted and 

forecasting results of each subseries, the final deterministic forecasting can be obtained 

by phase III of the deterministic forecasting module. Meanwhile, the probabilistic 

interval forecasting results can also be obtained using the developed uncertainty 

analysis module. To verify the effectiveness of the developed system in both 

deterministic forecasting and interval forecasting, the two following validation studies 

are conducted in more detail. 

4.3 Validity of the deterministic forecasting module 

  To verify the validity of the deterministic forecasting module of the devised system, 

two cases, denoted as case 1 and case 2, are designed in this section. The main 

motivation of case 1 is to verify the superiority of the components of the developed 

deterministic forecasting module, such as the ELM model, multi-objective optimization 

algorithm MSSA, and newly proposed integration method, and then the effectiveness 

of the hybridization modeling of these methods can be proved reasonably. Another 

motivation of case 1 is to prove the effectiveness and superiority of the developed 

deterministic module compared with the traditional forecasting model. Moreover, the 

data preprocessing technique plays a vital and indispensable role in wind energy 

forecasting, as it makes a great contribution to improve the forecasting results. 

Therefore, choosing a reasonable data preprocessing technique is a crucial step in the 

process of designing the wind energy forecasting model. To verify the reasonability and 

superiority of the VMD technique used in this study, case 2 is designed by comparing 

the VMD technique with other commonly used data preprocessing techniques. The 

detailed analysis for each one of the cases is as follows: 
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Fig. 3. Forecasting results of each subseries for dataset A 
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4.3.1 Case 1 

  In this case, all the experimental datasets, i.e., dataset A, dataset B, and dataset C, are 

used to evaluate the performance of the deterministic forecasting module. Moreover, 

the four following comparisons are established in this case, denoted as comparison I, 

comparison II, comparison III, and comparison IV. In comparison I, the GRNN, ENN, 

and ELM are used as the individual forecasting model’s comparison for wind energy 

forecasting, which is aimed at obtaining the best individual forecasting model for 

developing an effective wind energy forecasting and analysis system. In comparison II, 

the comparison of the ELM-based model combined with different multi-objective 

optimization methods, i.e., MODA–ELM, MOGOA–ELM, and MSSA–ELM, is 

regarded as the study of the improved version of the model, which is used to emphasize 

the significance of the optimization for the improvement of the final forecasting 

accuracy and stability. In comparison III, the ELM and MSSA–ELM are employed as 

the compared methods to validate the performance of the deterministic forecasting 

module. Meanwhile, to further reveal the superiority of the deterministic forecasting 

module, two traditional models, i.e., the persistence model and ARIMA, are regarded 

as benchmark models in comparison IV.  
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Table 4 

Results of the proposed deterministic forecasting module and other compared models in case 1 

Data Model MAE RMSE MAPE MdAPE U1 U2 GRD PCC 
Site 1 ARIMA 0.8147 1.0891 16.4396 10.3502 0.0696 0.9427 0.7927 0.9590 

Dataset A Persistence model 0.7934 1.0921 15.1921 10.3195 0.0698 0.9781 0.7996 0.9593 
 ENN 0.7766 1.0524 15.9522 9.9005 0.0674 0.9370 0.8011 0.9615 
 GRNN 0.8403 1.1124 18.1713 10.6901 0.0713 0.8574 0.7895 0.9569 
 ELM 0.7736 1.0505 15.6789 9.6814 0.0673 0.9573 0.8017 0.9616 
 MODA–ELM 0.7708 1.0455 15.5108 9.5189 0.0670 0.9640 0.8012 0.9619 
 MOGOA–ELM 0.7767 1.0524 15.5792 9.6934 0.0674 0.9460 0.7997 0.9614 
 MSSA–ELM 0.7728 1.0486 15.4527 9.5657 0.0672 0.9698 0.8008 0.9617 
 ME–VMD–MSSA–ELM 0.1000 0.1335 2.0195 1.2897 0.0085 0.0709 0.9647 0.9994 

Site 2 ARIMA 0.7138 0.9409 14.0369 9.2273 0.0574 1.2640 0.8106 0.9762 
Dataset B Persistence model 0.7114 0.9483 14.6466 9.0854 0.0583 0.8560 0.8116 0.9757 

 ENN 0.6931 0.9204 14.7438 8.9751 0.0564 0.7598 0.8156 0.9770 
 GRNN 0.8018 1.0933 17.1262 9.9674 0.0678 0.7684 0.7986 0.9696 
 ELM 0.6973 0.9229 14.5435 8.9272 0.0566 0.7895 0.8149 0.9771 
 MODA–ELM 0.7013 0.9318 14.6705 8.9084 0.0572 0.7002 0.8137 0.9766 
 MOGOA–ELM 0.7026 0.9364 14.4187 9.0608 0.0575 0.7405 0.8131 0.9765 
 MSSA–ELM 0.7004 0.9287 14.2728 9.0610 0.0569 0.7436 0.8138 0.9767 
 ME–VMD–MSSA–ELM 0.0895 0.1168 1.8574 1.1623 0.0071 0.0677 0.9683 0.9996 

Site 3 ARIMA 0.7942 1.0697 15.9145 10.0000 0.0650 1.0961 0.8060 0.9712 
Dataset C Persistence model 0.7932 1.0524 16.8574 10.1129 0.0641 1.0956 0.8037 0.9718 

 ENN 0.8091 1.0919 17.5684 10.5407 0.0674 1.0582 0.8053 0.9715 
 GRNN 0.8822 1.2440 19.5654 11.0462 0.0771 1.0640 0.7931 0.9635 
 ELM 0.7761 1.0410 17.2341 10.2149 0.0639 1.0448 0.8076 0.9730 
 MODA–ELM 0.7757 1.0325 17.0915 10.1401 0.0632 1.0656 0.8096 0.9732 
 MOGOA–ELM 0.7983 1.0814 17.0986 10.2821 0.0665 1.1058 0.8054 0.9713 
 MSSA–ELM 0.7775 1.0453 16.9580 10.2305 0.0640 1.1538 0.8081 0.9726 
 ME–VMD–MSSA–ELM 0.1026 0.1362 2.0656 1.3872 0.0083 0.0568 0.9657 0.9995 
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Fig. 4. Forecasting results of different models considered in case 1 
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  In addition, the results of the developed deterministic forecasting module and other 

benchmark methods are presented in Table 4, where the bold values represent the best 

values of MAE, RMSE, MAPE, MdAPE, U1, U2, GRD, and PCC among all models. 

Furthermore, the forecasting results are also illustrated in Fig. 4. From Table 4 and Fig. 

4, it can be evidently observed that the proposed deterministic module is superior to 

other methods, which means that this module is more suitable for wind energy 

deterministic forecasting than others. 

For wind energy deterministic forecasting in the Chengde wind farm, the results of 

case 1 are as follows: 

(a) Comparison I is designed to select the best individual forecasting model, i.e., ELM, 

among three commonly used models including the GRNN, ENN, and ELM. For 

example, the ELM model obtains the minimum value of MAPE for dataset A 

among all models, and the MAPE values of the GRNN, ENN, and ELM are 

18.1713%, 15.9522%, and 15.6789%, respectively. 

(b) Comparison II is established to choose an effective and excellent multi-objective 

optimization algorithm for developing an optimized ELM model and further 

improving the forecasting performance. For dataset A, compared with the 

MODA–ELM and MOGOA–ELM, the MAPE values of the MSSA–ELM are 

decreased by 0.3746% and 0.8120%, respectively. The results show that the 

optimization of the ELM has a positive influence for wind energy forecasting, and 

the MSSA is superior to MODA and MOGOA in solving the optimization problem 

of the ELM or other complex non-linear issues. 

(c) In comparison III, the component models of the developed forecasting module, 

i.e., ELM and MSSA–ELM, are adopted as benchmark models for another 

comparison study. It can be found that the proposed forecasting module obtains 

better results than those obtained by the ELM and MSSA-ELM. By comparing the 

ELM and MSSA–ELM, we found that the MSSA is effective for improving the 

forecasting ability of ELM. Furthermore, the significance of optimization for wind 

energy forecasting has been proved. Moreover, by comparing the developed 

forecasting module with the MSSA–ELM, we can confirm the positive influence 

of the divide and conquer theory and the new integration method for improving 

the forecasting performance. Similarly, by comparing the proposed forecasting 

module with the ELM, it is possible to quantify clearly the contributions of the 
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VMD, MSSA, and integration way to the module’s excellent performance. Thus, 

these techniques are able to effectively enhance the performance of the ELM, 

which can be widely employed in other areas. 

(d) In comparison IV, by comparing the devised forecasting module with two 

traditional models including the persistence model and ARIMA, it is obvious that 

the proposed model is superior to the typical traditional forecasting methods. For 

dataset A, the MAPE values of the developed module, persistence model, and 

ARIMA are 2.0195%, 15.1921%, and 16.4396%, respectively.  

4.3.2 Case 2 

  This case aims to compare the performance of the VMD used in this study with other 

well-known decomposition techniques including EMD, EEMD, and CEEMD. For this 

aim, the deterministic forecasting modules based on different decomposition 

approaches, i.e., ME–EMD–MSSA–ELM, ME–EEMD–MSSA–ELM, and ME–

CEEMD–MSSA–ELM, are considered as the compared models. Their only difference 

is the decomposition method used for data preprocessing in phase I. Therefore, through 

these comparisons we can not only test if the developed deterministic forecasting 

module is effective and superior, but also find the most effective and efficient way to 

decompose the original time series for enhancing the system’s performance. Moreover, 

this case can be employed to illustrate the indispensability of the data preprocessing 

method for forecasting of complex time series.  
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Table 5 

Results of the proposed deterministic forecasting module and other compared models in case 2 

Data Model MAE RMSE MAPE MdAPE U1 U2 GRD PCC 

Site 1 ME–EMD–MSSA–ELM 0.4304 0.5590 9.1486 5.6283 0.0357 0.4388 0.8721 0.9893 

Dataset A ME–EEMD–MSSA–ELM 0.2237 0.3032 4.3507 2.8693 0.0195 0.2507 0.9301 0.9973 
 ME–CEEMD–MSSA–ELM 0.1314 0.1812 2.5275 1.6722 0.0116 0.1545 0.9547 0.9989 
 ME–VMD–MSSA–ELM 0.1000 0.1335 2.0195 1.2897 0.0085 0.0709 0.9647 0.9994 

Site 2 ME–EMD–MSSA–ELM 0.4078 0.5193 8.2299 5.4140 0.0316 0.5517 0.8775 0.9930 

Dataset B ME–EEMD–MSSA–ELM 0.1779 0.2399 3.4370 2.2452 0.0146 0.2212 0.9401 0.9985 
 ME–CEEMD–MSSA–ELM 0.1138 0.1513 2.1475 1.5181 0.0092 0.1566 0.9602 0.9994 
 ME–VMD–MSSA–ELM 0.0895 0.1168 1.8574 1.1623 0.0071 0.0677 0.9683 0.9996 

Site 3 ME–EMD–MSSA–ELM 0.4388 0.6069 9.9914 5.5011 0.0373 0.4627 0.8785 0.9917 

Dataset C ME–EEMD–MSSA–ELM 0.2079 0.2841 4.6130 2.5956 0.0173 0.1485 0.9361 0.9981 
 ME–CEEMD–MSSA–ELM 0.1217 0.1697 2.7804 1.5071 0.0103 0.1127 0.9601 0.9993 
 ME–VMD–MSSA–ELM 0.1026 0.1362 2.0656 1.3872 0.0083 0.0568 0.9657 0.9995 
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Fig. 5. Forecasting results of different models considered in Case 2 
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  All the results obtained by the different data decomposition techniques considered in 

this study are presented in Table 5, where the bold values represent the best values of 

each metric. The results are also shown in Fig. 5 for providing a clear comparison. As 

can be observed from Table 5 and Fig. 5, the developed deterministic forecasting 

module, i.e., ME–VMD–MSSA–ELM, performs much better than the other three 

decomposition-based forecasting modules including ME–EMD–MSSA–ELM, ME–

EEMD–MSSA–ELM, and ME–CEEMD–MSSA–ELM. For instance, the results show 

that the MAPE values of the ME–EMD–MSSA–ELM, ME–EEMD–MSSA–ELM, 

ME–CEEMD–MSSA–ELM, and the developed module for wind energy forecasting of 

dataset A are 9.1486%, 4.3507%, 2.5275%, and 2.0195%, respectively. And the ME–

EMD–MSSA–ELM model presents the worst performance among all the benchmark 

models. The MAE errors of the developed module are decreased by 55.2973% 

compared with the ME–EMD–MSSA–ELM. Moreover, the forecasting accuracy and 

quality can be confirmed by U1 and U2, respectively. For example, the minimum values 

of U1 and U2 are obtained by the developed module for dataset A, which are equal to 

0.0085 and 0.0709, respectively. This results also reveals that selecting a proper data 

preprocessing technique can considerably reduce the difficulty and uncertainty in wind 

energy forecasting and effectively improve the system’s forecasting performance. 

Moreover, the VMD technique is proposed to decompose the original wind energy data 

with features of randomness and non-linearity, as it can effectively address the 

forecasting difficulties through the proper decomposition approach. 

  Remark for the deterministic forecasting module 

  Case 1 and case 2 kept the focus on the validation of the devised deterministic 

forecasting module’s superiority, attempting to prove it from the perspectives of the 

basic individual forecasting model, optimization, integration method, traditional 

method, and decomposition. The results demonstrated that the proposed deterministic 

forecasting module outperforms all of the compared models considered in these two 

cases. The underlying reason is that the hybridization of data preprocessing, 

optimization, forecasting, and integration can effectively address the uncertainty, 

difficulty, and potential improvements in wind energy forecasting through the proper 

forecasting approach. Based on the excellent performance of the devised deterministic 

forecasting module, we believe that it is a promising alternative for wind energy 

forecasting. 
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4.4 Validity of the results of the uncertainty analysis module 

  Different from the deterministic wind energy forecasting, the probabilistic interval 

forecasting can provide more information and its results are conducive to risk analysis 

and assessment for the decision makers in the EPS, ensuring its reliability and 

controllability. In this section, the uncertainty analysis module was developed, which is 

named as MIMO–VMD–MSSA–ELM, to perform interval forecasting and was verified 

by three datasets with 10-min periods in different sites. To verify the superiority of the 

devised system for interval forecasting, three models based on different decompositions 

and the improved multi-input multi-output scheme, including the MIMO–EMD–

MSSA–ELM, MIMO–EEMD–MSSA–ELM, and MIMO–CEEMD–MSSA–ELM, are 

developed as benchmark models to perform the same interval forecasting. We 

developed these three models mainly as comparison models because the deterministic 

forecasting modules based on these three different decomposition approaches perform 

better than the other compared models considered in the comparative case study of 

deterministic forecasting modules. Moreover, if the developed MIMO–VMD–MSSA–

ELM module outperforms all these three competitive models, we can safely believe 

that the developed uncertainty analysis module is superior to other benchmark models, 

which fully proves the effectiveness and superiority of this module.  
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Table 6 

Results of the proposed analysis module and other compared models  

 
Site 1 Dataset A  Site 2 Dataset B  Site 3 Dataset C 

MIMO–EMD–MSSA–ELM 
Alpha FICP FINAW AWD  PICP PINAW AWD  PICP PINAW AWD 

0.1 58.4325 0.0733 0.0135  57.0437 0.0643 0.0081  51.7857 0.0554 0.0172 
0.2 84.9206 0.1414 0.0034  85.9127 0.1249 0.0014  78.1746 0.1141 0.0030 

 MIMO–EEMD–MSSA–ELM 
Alpha PICP PINAW AWD  PICP PINAW AWD  PICP PINAW AWD 

0.1 62.2024 0.0735 0.0096  71.7262 0.0619 0.0053  58.3333 0.0563 0.0124 
0.2 86.1111 0.1511 0.0017  92.2619 0.1286 0.0012  80.0595 0.1047 0.0102 

 MIMO–CEEMD–MSSA–ELM 
Alpha PICP PINAW AWD  PICP PINAW AWD  PICP PINAW AWD 

0.1 93.9484 0.0715 0.0020  94.8413 0.0638 0.0013  94.9405 0.0594 0.0085 
0.2 98.1151 0.1430 0.0013  98.6111 0.1274 0.0011  97.6190 0.1185 0.0004 

 MIMO–VMD–MSSA–ELM 
Alpha PICP PINAW AWD  PICP PINAW AWD  PICP PINAW AWD 

0.1 95.4365 0.0712 0.0010  96.9246 0.0637 0.0007  95.8333 0.0589 0.0017 
0.2 99.2063 0.1429 0.0001  99.3056 0.1264 0.0001  99.0079 0.1176 0.0001 
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Fig. 6. Forecasting results of different models for dataset A 

The results of the developed MIMO–VMD–MSSA–ELM module and the other three 

benchmark models are presented in Table 6, and they comprise the experiments based 

on three sites of the Chengde wind farm. Moreover, the expectation probability, i.e., (1– 

a)×100%, is set to 90% and 80%, respectively, for evaluating the developed uncertainty 

analysis module. From Table 6, it can be observed that the proposed uncertainty 

analysis module obtains the best values of all metrics among all models, which 

demonstrates that the devised analysis module is superior to all benchmark methods. 

For example, as for 90% expectation probability, taking dataset A as an example, the 

FICP values offered by MIMO–EMD–MSSA–ELM, MIMO–EEMD–MSSA–ELM, 

MIMO–CEEMD–MSSA–ELM, and the developed uncertainty analysis module are 

58.4325, 62.2024, 93.9484, and 95.4365, respectively, while the IFAW values are 

0.0733, 0.0735, 0.0715, and 0.0712, respectively. In addition, the proposed analysis 

module leads to reductions of 0.0125, 0.0086, and 0.0010 in AWD when compared with 

the MIMO–EMD–MSSA–ELM, MIMO–EEMD–MSSA–ELM, and MIMO–

CEEMD–MSSA–ELM models, respectively.  
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Fig. 7. Forecasting results of different models for dataset B  

  Meanwhile, for presenting the comparison clearly and intuitively, the results of the 

devised module and the other compared methods are shown in Fig. 6–8, which support 

the conclusions obtained from Table 6 and provide intuitive evidence to verify the 

proposed system’s superiority for wind energy uncertainty analysis. As shown in Fig. 

6–8, the developed uncertainty analysis module obtains more effective interval 

forecasting results when compared with the other methods, and it is clear that its 

forecasted interval not only covers actual values of wind energy with a higher 

probability, but also becomes smoother than the other compared models, which means 

that the robustness of the developed uncertainty analysis module is more stable than 

that of the other models. Furthermore, the results reveal that the proposed uncertainty 

analysis module presents the same superiority for the three experiment datasets from 

different sites, which further demonstrates the effectiveness and robustness of the 

devised system for uncertainty analysis. 
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Fig. 8. Forecasting results of different models for dataset C 

  Remark for the uncertainty analysis module 

  The comparative studies are conducted based on data from different sites and three 

competitive models based on different decompositions and the improved multi-input 

multi-output scheme, and they show that the developed uncertainty analysis module 

outperforms all the compared models. Based on the excellent performance of the 

devised uncertainty analysis module, we believe that it is a promising alternative for 

wind energy probabilistic interval forecasting. 

5. Discussion 

  To further verify the performance of the devised system and provide suggestions for 

future studies, some issues are discussed in this section.  

5.1 Discussion of the proper integration way 

  Most of the prior studies only employed the simple direct integration (DI) method to 

obtain the final results based on the scheme of divide and conquer, and few of them 

considered other integration ways in the conquer phase, which offers the potential for 

improvements in future studies. Therefore, in this study, an optimized ELM is proposed 

as a new integration method for further improving the effectiveness of the conquer stage 

and final forecasting performance. For the aim of proving the superiority of the 

developed integration method and verifying the contribution of this study at the same 

time, the simple direct integration method is used as a benchmark model, denoted as 

DI–VMD–MSSA–ELM, to obtain the final forecasting results. The results, including 

eight metrics of the proposed deterministic forecasting module and of the other 
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compared models, are listed in Table 7. According to the comparative study presented 

in Table 7, we compare the MAE, RMSE, MAPE, MdAPE, U1, U2, GRD, and 

Pearson’s test, and the developed module performs better in most tests. For example, 

compared with the DI–VMD–MSSA–ELM, the MAE errors of ME–VMD–MSSA–

ELM are reduced by 10.9528%, 11.6549%, and 10.1576% for wind energy forecasting 

in datasets A, B, and C, respectively. The results show that the proper integration way 

plays an important role in wind energy forecasting based on the divide and conquer 

theory, and the newly proposed integration way has shown its significant advantage 

over the direct integration method in the conquer stage to forecast the final results based 

on the forecasted future changes of each subseries. More importantly, the developed 

deterministic forecasting module satisfactorily fits all data on the different sites, and 

thus, the module can be used as the forecasting part of the wind energy forecasting and 

analysis system.
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Table 7 

Results for the developed forecasting module and compared models 

Model MAE RMSE MAPE MdAPE U1 U2 GRD PCC 
Site 1 Dataset A         

DI–VMD–MSSA–ELM 0.1123 0.1489 2.2415 1.4267 0.0095 0.0884 0.9607 0.9992 
ME–VMD–MSSA–ELM 0.1000 0.1335 2.0195 1.2897 0.0085 0.0709 0.9647 0.9994 

Site 2 Dataset B         
DI–VMD–MSSA–ELM 0.1013 0.1312 2.1943 1.2967 0.0080 0.0882 0.9645 0.9995 
ME–VMD–MSSA–ELM 0.0895 0.1168 1.8574 1.1623 0.0071 0.0677 0.9683 0.9996 

Site 3 Dataset C         
DI–VMD–MSSA–ELM 0.1142 0.1517 2.3773 1.5061 0.0092 0.0637 0.9624 0.9994 
ME–VMD–MSSA–ELM 0.1026 0.1362 2.0656 1.3872 0.0083 0.0568 0.9657 0.9995 
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5.2 Discussion of the system’s statistical significance 

  Although the developed deterministic forecasting module has already been verified 

by eight evaluation metrics, the statistical significance needs to be tested from the 

statistical perspective using hypothesis testing. Therefore, an effective hypothesis 

testing method, i.e., the Diebold–Mariano (DM) test (Diebold and Mariano, 1995), is 

presented in this section based on the square error loss function. The DM test values 

are listed in Table 8. Furthermore, the smallest DM value is 4.2797, which is much 

bigger than Z0.01/ 2 = 2.58. Based on this, at the 1% significance level, we can reject the 

null hypothesis and consider that the devised deterministic forecasting module 

significantly performs better than the other benchmark models. Therefore, we believe 

that the proposed deterministic forecasting module not only shows excellent forecasting 

performance, but also presents a significant difference in forecasting performance level, 

which further verifies the devised system’s superiority for wind energy forecasting.  

Table 8 

DM test results for the developed forecasting module and compared models 

Model Site 1 Dataset A Site 2 Dataset B Site 3 Dataset C 

ARIMA 17.2217* 17.0170* 17.0194* 

Persistence model 15.9187* 16.3703* 17.2768* 

ENN 16.2131* 16.9979* 15.8565* 

GRNN 17.2339* 14.9825* 12.9364* 

ELM 16.2896* 17.1267* 16.6961* 

MODA–ELM 16.0098* 16.8541* 16.9938* 

MOGOA–ELM 16.1020* 16.5049* 15.9114* 

MSSA–ELM 16.0519* 16.8759* 16.5526* 

ME–EMD–MSSA–ELM 18.0716* 19.7921* 13.9840* 

ME–EEMD–MSSA–ELM 13.2885* 11.4929* 11.2910* 

ME–CEEMD–MSSA–ELM 5.9088* 6.4596* 4.5651* 

DI–VMD–MSSA–ELM 5.8904* 7.0468* 4.2797* 

ME–VMD–MSSA–ELM - - - 
* Indicates the 1% significance level. 

5.3 Discussion of the system’s forecasting stability 

  Mainly owing to the significance of achieving accuracy and stability at the same time 
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for engineering applications, the MSSA algorithm is employed to develop an effective 

system in this study and to predict future changes based on the achieved improvements 

in forecasting accuracy and stability. The abovementioned analysis is focused on the 

evaluation of the forecasting accuracy, which cannot prove the improvement of the 

proposed module in terms of stability. However, as discussed above, stability is one of 

the most important factors in the development of a model. Therefore, to perform a more 

comprehensive evaluation for the deterministic module, besides evaluating the 

performance from the forecasting accuracy perspective in Section 4, a discussion of the 

module’s forecasting stability must be conducted in this study. It is well known that the 

forecasting performance can be measured by the forecasting error. Moreover, the 

variance can represent the stability of a time series (Tian and Hao, 2018). Therefore, in 

this study, the variance of the model’s forecasting error is employed to measure its 

forecasting stability. Low variance values mean that the model performs better in terms 

of stability, while high variance values indicate that the model is more unstable than 

other models with low values (Hao and Tian, 2019b). The variances of the forecasting 

errors for different modes are listed in Table 9, which shows that the proposed 

deterministic forecasting module obtains the smallest variance values among all models 

in the different datasets. The results prove that the proposed deterministic forecasting 

module is more stable than the other compared models considered in this study and that 

it can perform wind energy forecasting with the desired stability in a real wind farm. 

Table 9 

Results of the variance of forecasting error for each model 

Model Site 1 Dataset A Site 2 Dataset B Site 3 Dataset C 

ARIMA 1.1855 0.8862 1.1454 

Persistence model 1.1937 0.8975 1.1087 

ENN 1.1066 0.8479 1.1897 

GRNN 1.2348 1.1878 1.5447 

ELM 1.1032 0.8523 1.0838 

MODA–ELM 1.0930 0.8688 1.0672 

MOGOA–ELM 1.1070 0.8773 1.1692 

MSSA–ELM 1.0995 0.8633 1.0937 

ME–EMD–MSSA–ELM 0.3109 0.2629 0.3583 
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ME–EEMD–MSSA–ELM 0.0850 0.0576 0.0773 

ME–CEEMD–MSSA–ELM 0.0328 0.0229 0.0288 

DI–VMD–MSSA–ELM 0.0222 0.0172 0.0230 

ME–VMD–MSSA–ELM 0.0178 0.0136 0.0185 

5.4 Discussion of sensitivity analysis for the multi-objective optimization algorithm 

  Owing to the significance of multi-objective optimization in the developed system, 

more comments about the tuning of the control parameters must be presented. In this 

study, there is a key parameter, named search agents’ number, which will affect the 

model’s performance. Thus, a discussion of the sensitivity analysis of search agents’ 

number in the multi-objective optimization algorithm is an important issue worth 

studying. In this section, the discussion on this important parameter is conducted based 

on dataset B, and the results measured by MAPE are shown in Fig. 9. It should be noted 

that only the search agents’ number in phase III of the deterministic forecasting module 

is considered for the discussion of sensitivity analysis. The aim is to avoid the influence 

of other parameters, including other search agents’ numbers, in phase I. Specifically, as 

shown in Fig. 9, the results prove that the search agent’s number does have an impact 

on the model’s forecasting. If the number is too large, it may result in poor forecasting 

performance and an increase in computation complexity, while if the number is too 

small, it might not achieve the best model’s parameter and provide in poor forecasting 

results. Moreover, there will be one turning point, which can be set as the model’s 

optimal parameter for wind energy forecasting. Thus, considering the model’s 

performance and computation complexity, the search agents’ number is defined as 40, 

which is the optimal parameter in this study. 
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Fig. 9. Sensitivity analysis of different search agent numbers based on MSSA 

5.5 Discussion of superiority of the multi-objective optimization algorithm 

  The comparison between different optimization-algorithm-based models has proven 

that the MSSA algorithm performs better than other two well-known algorithms. The 

theory named no free lunch (NFL) (Wolpert and Macready, 1997) has proven that no 

single algorithm can solve all the optimization problems. To achieve the better 

performance, the researchers should properly select the optimization algorithm for their 

studies. Moreover, the multi-objective optimization performance indices can serve as a 

reference standard. Therefore, in this study, multi-objective optimization performance 

indices, including the widely used metric named inverted generational distance (IGD) 

(Mirjalili et al., 2016), are presented and discussed, and they are employed to evaluate 

the optimization performance of the MSSA. In particular, IGD is the performance 

metric that shows the convergence of an algorithm and its statistical results can be used 

to measure the stability and robustness of the algorithm (Mirjalili et al., 2016; Mirjalili 

et al., 2017; Kusakci and Can, 2013). Four test functions including ZDT1, ZDT2, ZDT3, 

and ZDT1 with linear front are used. For each test function, thirty experiments are 

performed based on the following parameters: the iteration number equals 100, the 

search agents’ number equals 40, and the archive size equals 100. The results are 

presented in Table 10. From Table 10, it can be observed that the MSSA obtain the best 

values of IGD for three test functions including ZDT1, ZDT2, and ZDT1 with linear 

front. A better performance is shown in both average and standard deviation, which 
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proves how good and robust the MSSA is when solving such problems. Therefore, the 

MSSA method is superior to MOGOA and MODA in terms of convergence, stability, 

and robustness, and it has the best potential ability for model’s optimization. Moreover, 

that was the reason behind choosing a MSSA in the developed system. 

Table 10 

Statistic values of IGD for four test functions 

ZDT1 Mean Std. Median Best Worse 
MOGOA 0.015759 0.008718 0.013463 0.005627 0.044987 
MODA 0.003673 0.001496 0.003468 0.002064 0.009450 

MSSA 0.002284 0.000344 0.002243 0.001751 0.003129 

ZDT2 Mean Std. Median Best Worse 

MOGOA 0.015759 0.008718 0.013463 0.005627 0.044987 
MODA 0.003673 0.001496 0.003468 0.002064 0.009450 

MSSA 0.002284 0.000344 0.002243 0.001751 0.003129 

ZDT3 Mean Std. Median Best Worse 

MOGOA 0.023466 0.001199 0.023450 0.021290 0.026890 
MODA 0.024921 0.000484 0.024821 0.024359 0.026596 

MSSA 0.024799 0.000307 0.024793 0.024274 0.025535 

ZDT1* Mean Std. Median Best Worse 
MOGOA 0.019879 0.012171 0.015506 0.007895 0.057791 
MODA 0.003993 0.002180 0.003179 0.002013 0.011178 

MSSA 0.002474 0.000355 0.002456 0.002001 0.003761 

*: ZDT1* is ZDT1 with linear front. 

5.6 Discussion of the superiority and advancement of the developed system 

  To further prove the superiority of the developed system and emphasize the 

advancement of the paper compared with other models in the literature, a comparison 

between the devised system and other systems proposed in previous studies needs to be 

carried out. Therefore, in this section, three hybrid forecasting systems, named 

ICEEMDAN–MODA–ENN (Wang et al., 2018c), MCEEMD–MOSCA–WNN (Wang 

et al., 2018b), and CSV–MOSBO–ENN (Tian et al., 2018c), are adopted as benchmark 

models to further prove the superiority of the developed system for deterministic 

forecasting. The results of the proposed deterministic forecasting module and other 

benchmark models are presented in Table 11, where the bold values represent the 

smallest values of MAE, RMSE, MAPE, U1, and U2 and the highest values of GRD 
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and Pearson’s test among all models. From Table 11, it can be obviously observed that 

the proposed deterministic module performs better than the other compared models, 

which shows the advancement of this study with respect to the literature (Tian et al., 

2018c; Wang et al., 2018b; Wang et al., 2018c) and further validates the superiority of 

the developed system for deterministic forecasting. 

Table 11 

Results of the developed deterministic forecasting module and other models 

Data Model MAE RMSE MAPE MdAPE U1 U2 GRD PCC 

Site 1 ICEEMDAN–MODA–ENN 0.4132  0.5642  8.3086 5.2374 0.0361  0.3923  0.7857  0.9891  

Dataset A MCEEMD–MOSCA–WNN 0.1109  0.1591  2.4207 1.3765 0.0102  0.0817  0.9293  0.9992  

 CSV–MOSBO–ENN 0.1850  0.2648  3.0776 2.2159 0.0170  0.0878  0.8858  0.9977  
 ME–VMD–MSSA–ELM 0.1000  0.1335  2.0195 1.2897 0.0085  0.0709  0.9302  0.9994  

Site 2 ICEEMDAN–MODA–ENN 0.3660  0.4988  7.5334 4.7055 0.0306  0.6786  0.8599  0.9937  

Dataset B MCEEMD–MOSCA–WNN 0.1030  0.1382  3.0295 1.2627 0.0084  0.4517  0.9533  0.9995  

 CSV–MOSBO–ENN 0.1708  0.2422  3.9946 2.0818 0.0147  0.4702  0.9273  0.9986  
 ME–VMD–MSSA–ELM 0.0895  0.1168  1.8574 1.1623 0.0071  0.0677  0.9589  0.9996  

Site 3 ICEEMDAN–MODA–ENN 0.4039  0.6245  7.5831 4.6371 0.0377  0.2073  0.8529  0.9907  

Dataset C MCEEMD–MOSCA–WNN 0.1086  0.1507  3.1613 1.2783 0.0091  0.0711  0.9517  0.9994  

 CSV–MOSBO–ENN 0.2132  0.3929  3.6605 2.1411 0.0241  0.1057  0.9029  0.9975  
 ME–VMD–MSSA–ELM 0.1026  0.1362  2.0656 1.3872 0.0083  0.0568  0.9523  0.9995  

6. Conclusion 

  An effective wind energy deterministic forecasting and uncertainty analysis provide 

more information for decision makers in the EPS, which can improve its management 

and scheduling. However, owing to the features of randomness and non-linearity 

associated with the wind energy, developing an effective wind energy forecasting and 

analysis system is not only a particularly challenging issue, but also a critical task for 

the whole society. The relevant research has deficiencies, despite its significance. 

Therefore, in this study, a novel wind energy forecasting and analysis system is 

successfully developed based on the idea of divide and conquer to compensate the 

insufficiency of existing studies and conduct an effective deterministic forecasting and 

uncertainty analysis. The experimental results illustrate that the devised system can 

produce more accurate and stable deterministic forecasting results and a higher quality 
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forecasted interval than other benchmark models. Thus, we can draw the conclusion 

that the devised system outperforms all the considered compared models in engineering 

applications. 

The reasons why the devised system is superior to other benchmark models can be 

summarized as follows: (1) data preprocessing is conducted to decompose the original 

data into various subseries for capturing and mining the main features of wind energy 

data and eliminating the negative influence of noise, which has a positive effect on 

enhancing the system’s performance; (2) an optimized ELM is developed based on 

multi-objective optimization to forecast future changes of each subseries, which 

ensures an effective forecasting performance with better accuracy and stability; (3) 

different from most of the previous studies, another optimized ELM is successfully 

proposed as a new integration method to obtain the final forecasting results, which 

further improves the effectiveness of the conquer stage and ultimately enhances the 

final forecasting performance; (4) the optimized multi-input multi-output ELM is 

developed with three aims, namely, to maximize the forecast interval coverage 

probability, to minimize the forecast interval normalized average width, and to 

minimize the accumulated width deviation, to forecast future wind energy intervals 

based on the future changes of each subseries, which construct high quality forecasting 

intervals for wind energy.  

The results reveal that the devised system is an effective tool for wind energy 

deterministic forecasting and uncertainty analysis. More specifically, taking dataset A 

as an example, the comparative studies show that the developed system for 

deterministic forecasting has a lower MAPE value of 2.0195% compared with the 

MAPEs of 8.3086%, 2.4207%, and 3.0776% for the models in the previous literature, 

i.e., ICEEMDAN–MODA–ENN, MCEEMD–MOSCA–WNN, and CSV–MOSBO–

ENN, respectively. This shows that the developed system leads to reductions of 

6.2891%, 0.4012% and 1.0581% in MAPE when compared with these three models, 

respectively. Therefore, we can reasonably draw the conclusion that the devised system 

can also be widely employed in other areas of engineering applications in the future 

owing to its outstanding performance, which can reduce the financial and technical risk 

of uncertainty of wind power for all electricity market participants and finally bring 

enormous economic, social, and environmental benefits. Additionally, some 

implications based on the developed wind energy deterministic forecasting and 
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uncertainty analysis system from the perspective of the government and practitioners 

can be stated clearly as follows. (1) The government can establish and improve 

systematic and effective wind power policies and promote wind power to participate in 

market competition so as to overcome the economic obstacles to the acceptance of wind 

power by the power grid. Moreover, the governments can increase the support for 

relevant scientific research investment and promote the advancement of the wind 

energy deterministic forecasting and uncertainty analysis system. (2) The related 

practitioners can apply the effective wind energy forecasting to improve the 

performance of wind turbines, power grid scheduling ability, and other technologies, 

thus enabling the EPS to accept more wind power and breaking the technical constraints 

of the power grid to accept wind power capacity. The related practitioners can take 

practical measures to realize an effective allocation of power system resources and 

improve the economic benefit under the condition of ensuring the stability of the power 

market. 
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