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Abstract: This paper presents the optimization of fuel cost, emission of NOX, COX, and SOX gases
caused by the generators in a thermal power plant using penalty factor approach. Practical constraints
such as generator limits and power balance were considered. Two contemporary metaheuristic
techniques, particle swarm optimization (PSO) and genetic algorithm (GA), have were simultaneously
implemented for combined economic emission dispatch (CEED) of an independent power plant
(IPP) situated in Pakistan for different load demands. The results are of great significance as the real
data of an IPP is used and imply that the performance of PSO is better than that of GA in case of
CEED for finding the optimal solution concerning fuel cost, emission, convergence characteristics,
and computational time. The novelty of this work is the parallel implementation of PSO and GA
techniques in MATLAB environment employed for the same systems. They were then compared in
terms of convergence characteristics using 3D plots corresponding to fuel cost and gas emissions.
These results are further validated by comparing the performance of both algorithms for CEED on
IEEE 30 bus test bed.

Keywords: economic load dispatch; emission dispatch; combined economic emission/environmental
dispatch; particle swarm optimization; genetic algorithm; penalty factor approach

1. Introduction

The primary objective of an independent electric power producer is to generate electricity at
the minimum possible cost. The most expensive commodity in a thermal power plant is the fuel
used for the generators to produce electricity. Hence, the focus is on minimizing the production
cost; which can be achieved by dispatching the committed generators in the most economical way
possible without violating the generators and system electrical constraints and ratings. Moreover,
environmental regulatory authorities also impose certain limits on all gas emission sources because
of the alarming situation of pollution in the past few decades of many regions around the world [1].
Therefore, a simultaneous minimization of both fuel cost and emission is the obvious way to address
those challenges; hence, the idea of a combined economic emission dispatch (CEED) emerged.
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Combined dispatch is an efficient and economical solution for decreasing both fuel cost and
emission in a thermal power plant without the need to modify the existing system. The simulation gives
flexibility to the operator to set the output of generators to achieve a fuel cost benefit for the company
and emission allowed by the environmental regulatory authorities. There are many optimization
techniques being employed to solve multiobjective problems like CEED. Conventional methods are
based on mathematical iterative search which are accurate but time consuming. The nonconventional
methods are naturally inspired and give better, if not the best, solution in lesser time as compared to
conventional methods. From these artificial-intelligence-based methods, a process of hybridization
is going on to accumulate the qualities of individual methods into their hybrids counterparts. This
categorization is shown in Figure 1 [2].
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Figure 1. Optimization methods. 1 Differential Evolution-Biogeography Based Optimization. 2 Particle
Swarm Optimization-Genetic Algorithm.

Many modern artificial intelligence (AI) techniques based on the theory of Darwinian evolution
of biological organisms, e.g., genetic algorithm (GA), and social behaviors of species, e.g., particle
swarm optimization (PSO), have been invented. They have been very successful concerning results
and regarding dealing with the complexities occurred in formulating such problems. Particle swarm
optimization and genetic algorithm are the two leading methods from AI area and are being exploited
widely in every discipline including power systems [3–6]. Their hybrid versions are also reported in
the literature [7–9], where qualities of both are combined to solve a particular problem. They have
also been employed individually on other problems [10,11] where PSO was found to have better
performance than that of GA.

In recently reported literature, E. Gonçalves et al. solved nonsmooth CEED using a deterministic
approach with improved performance and Pareto curves [1]. They included valve point loading
effect but the same approach has to be extended considering other constraints like network losses
and prohibited operating zones. H. Liang et al. tackled the multiobjective combined dispatch by
developing a hybrid and improved version of bat algorithm [12] and implemented on large scale
systems considering power flow constraints. The conducted dispatch was static based on conventional
energy resources. B. Lokeshgupta et al. proposed a combined model of multiobjective dynamic
economic and emission dispatch (MODEED) and demand side management (DSM) technique using
multiobjective particle swarm optimization (MOPSO) algorithm and validated their results via three
different cases studied on a six unit test system [13] and can be extended towards distributed generation
in microgrids.
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In reported literature [14–16], in most cases, only one technique has been used to solve CEED
on IEEE test cases, and their results have been compared with previous work. In Table 1, the survey
of [17] is summarized to conclude that GA is better for low-power systems while PSO outperforms
in the case of high-power systems. However, what happens when these two leading metaheuristic
techniques are employed together to the same system? This work deals with this novel idea, hence,
both PSO and GA will be implemented individually on CEED of an independent power plant (IPP)
situated in Pakistan considering all gases (NOX, COX, and SOX) for various load demands. The results
will be of great importance as the data of an actual IPP will be utilized and they will also grade the
performance of PSO and GA for CEED of an IPP. In order to validate the results, a conventional IEEE 30
bus system is also considered. This work will contribute the results of combined dispatch of fuel and
gas emissions (economic and environmental aspects, respectively) carried out on a power plant with
two leading algorithms (PSO and GA) using MATLAB and then comparing their performance in terms
of better solution, convergence characteristics (3D plots), and computation time. The implementation,
comparison, and convergence characteristics of PSO and GA employed for the same systems are the
main contribution of this work to the field. These characteristics were compared with each other with
3D plots to analyze the better solution yielded by the two algorithms applied for CEED of the same
systems in MATLAB environment.

Table 1. Best optimization methods employed in different systems with regard to cost, emission,
and time

No. System Cost-effective Emission-effective Time-effective

1.
1 power unit, 2
cogeneration units, and
1 heat unit

Harmony search and
genetic algorithm
(HSGA)

X Cuckoo search
algorithm (CSA)

Nondominated sorting
genetic algorithm
(NSGA-II)

Nondominated sorting
genetic algorithm
(NSGA-II)

Nondominated sorting
genetic algorithm
(NSGA-II)

2. 1 power unit, 3
cogeneration units, and
1 heat unit

HSGA X Gravitational search
algorithm (GSA)

3.
4 thermal generators,
2 cogeneration units, and
1 heat unit

GSA X Effective cuckoo search
algorithm (ECSA)

Grey wolf optimization
(GWO)

GWO GWO

4. 13 power units, 6
cogeneration units, and
7 heat units

Exchange market
algorithm (EMA)

X Modified particle
swarm optimization
(MPSO)

5. 26 power units,
12 cogeneration units,
and 10 heat units

MPSO X MPSO

2. Problem Formulation

CEED comprises two objective functions (cost and emission) that are to be minimized. The fuel
cost and emission of a generator can be represented as a quadratic function of the generator’s real
power [18]. Hence, for N running generators in a plant, the total fuel cost (FC) and emission of a single
gas (Eg), respectively, are given in Equations (1) and (2).

FC =
N∑

i=1

Fi(Pi) =
N∑

i=1

(
aiP2

i + biPi + ci
)

(1)

Eg =
N∑

i=1

Ei(Pi) =
N∑

i=1

(
αiP2

i + βiPi + γi
)

(2)
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where ai, bi, and ci are cost coefficients; αi, βi, and γi are emission coefficients of unit i out of N generators.
They are computed by the following:

• Getting the heat rate curves and emission reports of operational generators from the plant.
• Then, calculating and arranging their fuel costs and emissions corresponding to their active

powers in tabular form.
• Applying the quadratic curve fitting technique on these data points to get cost and

emission coefficients.

This multiobjective optimization problem is converted to a single objective function of total cost
(TC) by imposing a penalty (hg) on the emission of G gases to convert them into emission cost (EC).

TC = FC + EC = FC +
G∑

g=1

hg × Eg (3)

There are different types of penalty factors; their benefits and drawbacks are thoroughly discussed
in [19]. The min–max penalty factor of Equation (4) is used in this work because of its superiority
reported in [19] over the others.

hi =
Fi(Pi,min)

Ei(Pi,max)
=

aiP2
i,min + biPi,min + ci

αiP2
i,max + βiPi,max + γi

(4)

where hi for each generator for every gas is calculated and all are sorted in ascending order, then
starting from the smallest hi, Pi,max of corresponding generator is added until

∑
Pi,max ≥ PD, the hi at

this stage is selected as penalty factor hg of that gas for the given load demand.
For achieving this optimization, the N generators will be dispatched with various combinations

of output powers but each combination must conform to two mandatory constraints. First of all, no
unit should violate its limits for producing output power (Pi), and secondly the total generation (PG)
should meet the load demand (PD) and transmission line losses (PL) [18].

Pi,min ≤ Pi ≤ Pi,max (5)

PG =
N∑

i=1

Pi = PD + PL (6)

The generator limits constraint is satisfied by initializing each unit’s power within prescribed
limits and then constantly checking the violation. If a unit crosses its limit, then its output is set to that
limit. The second power balance constraint is accounted for by letting algorithm to find optimal powers
for N − 1 generators and setting the power (PN) of last generator N also called slack generator to:

PN = (PD + PL) −
N−1∑
i=1

Pi (7)

If losses are ignored, then the power of slack generator will reduce to:

PN = PD −

N−1∑
i=1

Pi (8)

3. Implementation of PSO to CEED

J. Kennedy and R. Eberhart proposed this method in 1995 after observing and modeling the
social interaction within bird flocks and fish schools for searching food [20]. The particles in such
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swarms move to attain optimal objective (food) based on their personal (pbest) and swarm’s (gbest)
best experiences. Each particle is a valid solution to the problem, and hence, its dimension is that of
problem space. The position of each particle keeps on updating by its current velocity, particle’s best
position, and swarm’s best position until the optimal solution is discovered. The velocity and position
of the particle is given by Equations (9) and (10).

vk+1
j = µkvk

j + c1r1
(
pbest j − xk

j

)
+ c2r2

(
gbest− xk

j

)
(9)

xk+1
j = xk

j + vk+1
j (10)

where j is particle counter, k is iteration counter, c1 and c2 are acceleration coefficients, r1 and r2

are random numbers in the range of 0–1, pbestj is the best position of particle based on its personal
knowledge, gbest is the best position of particle based on group knowledge, and µ is the inertia weight
given by Equation (11).

µk = µmax −

(µmax − µmin

itermax

)
k (11)

The performance of classical PSO has been made a lot better by working on its various parameters
and by using different search strategies for updating the particle’s position [18]. Hence, different
variants of PSO has been introduced, such as WIPSO and TVAC-PSO, in which inertia weight µ is
improved and acceleration coefficients c1 and c2 are timely varied [21], MRPSO [22] in which particle’s
position is changed by using moderate random and chaotic search techniques, respectively. It has been
observed that the most straightforward and efficient way of making classical PSO more effective is
to use the constriction factor approach (CFA) [23], in which particle’s velocity (9) is multiplied by a
parameter called constriction factor (CF) given by Equation (12).

CF =
2∣∣∣2−ϕ− √
ϕ2 − 4ϕ

∣∣∣ (12)

where ϕ = c1 + c2 and ϕ > 4. The PSO algorithm for CEED, with corresponding flowchart in Figure 2,
is implemented in the following steps:

1. Input values of fuel coefficients, generators limits, emission coefficients, load demand, maximum
iterations, number of particles, acceleration coefficients, and inertia weight’s maxima-minima.

2. Randomly initialize power outputs (position) of N − 1 generators within their limits and change
in these powers (velocity) for all particles.

3. Calculate the power of slack generator from Equation (8) to meet the power balance condition of
Equation (6). PN should also be within its unit’s limits. If any unit out of N surpasses its boundary
at any stage throughout the algorithm, it is set to the limit which it has broken.

4. Initialize pbest and gbest to infinity and find penalty factors of all considered gases.
5. Find fuel cost FC, emission of gases Eg, emission cost EC with total cost TC for all particles from

Equations (1)–(3), respectively.
6. Update pbest of each particle with its total cost if former is greater than latter. The minimum pbest

out of all particles is stored as gbest if its present value is smaller than its previous value. The
generators’ powers corresponding to pbest and gbest are stored in separate matrices and are also
modified on every update.

7. Calculate inertia weight from Equation (11), find new velocities and positions of N-1 generators
for all particles form Equations (9) and (10), and keep them within units’ limits in case of violation.

8. For slack generator N, calculate its power from Equation (8) and this should also be in limits.
If violation is done, set this power to the limit crossed and start changing the output from first
generator until Equations (5) and (6) are satisfied.

9. If algorithm is converged, continue to next step, go to step 5 otherwise.
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10. Print neatly the results of optimal solution (gbest) including powers of all generators, line losses,
fuel cost, emission of gases, penalty factors, emission cost, and total cost for the given load demand.

4. Implementation of GA to CEED

D.E. Goldberg gave the basic theory for design and analysis of genetic algorithms based on the
concept of biological evolution in 1988–1989 [24], and later, J.H. Holland established it systematically
as a fact. In genetic algorithms, the problem variables (output powers) are coded into binary strings.
Each string is a valid solution to the problem and hence its length should be comparable to the problem
space (number of generators N). The bits reserved logically for single generator’s power (genbits) in a
string is given in Equation (13).

2genbits
≥Max[P1,max, PN,max] (13)

The length of the binary string (strlen) will be N × genbits. Each individual (string) has a fitness
value in the range 0–1 which basically relates that individual to the one having maximum fitness in
that population. The fitness function should be linked to the objective under discussion contrary to the
constraints of the objective function which should be dealt by external checks. Considering this fact
and the remarkable communication within the group by PSO parameters pbest and gbest, a new fitness
function different from the one reported in [3] and [5] for jth individual out of P individuals is given
by (14).

f it j = 1−
( pbest j − gbest

Max[pbest1, pbestP] − gbest

)
(14)

The initial population is randomly generated, keeping in view the generators’ limits but the next
generations are produced by selection, crossover, and mutation performed on the present one (powers
corresponding to pbest). Selection is basically making a mating pool of fitter strings from present
population based on the natural principle of “survival of the fittest.” It is usually done by the concept
of roulette-wheel. No new string is formed in selection phase. The greater the fitness of a string, the
greater portion of the wheel’s circumference it will occupy and the greater chance it will get to copy
into mating pool. The wheel is spun P times to select a population of good parents for producing off

springs by crossover and mutation.
Crossover is performed on two parents of selected population to produce two off springs. There

are three types of crossover: one point, multi-point, and uniform, explained in Table 2.

Table 2. The types of crossover.

Item One Point Multipoint Uniform

Parent 1 000 00000 00 00 00 00 00 00 00 00
Parent 2 111 11111 11 11 11 11 11 11 11 11

Site/Mask 3 2, 4, 6 01 01 10 10
Child 1 000 11111 00 11 00 11 01 01 10 10
Child 2 111 00000 11 00 11 00 10 10 01 01

Crossover site is selected randomly and the probability of crossover (pc) is usually taken higher.
In this work, one point crossover is performed on selected strings of mating pool. Finally, mutation
is performed on the children produced after crossover which is just flipping of the child’s bit at
mutation site selected randomly. Its probability (pm) is usually taken lower, e.g., if child is (11 11 11 11)
and mutation site is 4, then the mutated child will be (11 10 11 11). This journey of producing next
generations continues until the optimum solution is found.

The GA algorithm for CEED, with corresponding flowchart in Figure 3, is implemented in the
following steps:

1. Input values of fuel coefficients, generators limits, emission coefficients, load demand, maximum
iterations, number of individuals, genbits from Equation (13), strlen, pc, and pm.
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2. Randomly initialize power outputs of N−1 generators within their limits for all individuals.
3. Calculate the power of slack generator from Equation (8) to meet power balance condition of

Equation (6). PN should also be within its unit’s limits. If any unit out of N surpasses its boundary
at any stage throughout the algorithm, it is set to the limit which it has broken.

4. Initialize pbest and gbest to infinity and find penalty factors of all considered gases.
5. Find fuel cost FC, emission of gases Eg, emission cost EC with total cost TC for all particles from

Equations (1)–(3), respectively.
6. Update pbest of each individual with its total cost if former is greater than latter. The minimum

pbest out of all particles is stored as gbest if its present value is smaller than its previous value.
The generators’ powers corresponding to pbest and gbest are stored in separate matrices and are
also modified on every update.

7. Calculate fitness function for all individuals from Equation (14). Code the output powers to
binary strings, perform the three genetic operators (selection, crossover, and mutation), and again
decode them to output powers.

8. Keep all outputs within units’ limits in case of violation. For slack generator N, calculate its power
from Equation (8), and this should also be in limits. If violation is done, set this power to the limit
crossed and start changing the output from first generator until Equations (5) and (6) are satisfied.

9. If algorithm is converged, continue to next step, go to step 5 otherwise.
10. Print neatly the results of optimal solution (gbest) including powers of all generators, line losses,

fuel cost, emission of gases, penalty factors, emission cost, and total cost for the given load demand.

5. Simulation Results

Combined economic emission dispatch using PSO and GA for 500 iterations were implemented
on MATLAB on six generators of IEEE 30 bus system and eight committed units (gas turbines) of an
IPP in Pakistan for load demands of 1500 and 2000 MW, and 500 and 700 MW, respectively. The initial
parameters set in both algorithms were:

PSO: Particles = 10, µmax = 0.9, µmin = 0.4, c1 = 2.05, c2 = 2.05, ϕ = 4.1, and CF = 0.7298
GA: Individuals = 10, pc = 0.96, and pm = 0.033

The solutions with average operating time (t) were selected out of 50 trials for comparison between
PSO and GA.

5.1. IEEE 30 Bus System

The data for fuel cost and emission coefficients were taken from [5]. Transmission line losses were
not accounted for while all three gases (NOX, COX, and SOX) were considered; their penalty factors
were calculated using Equation (4) and the procedure following this equation, for load demands of
1500 and 2000 MW given as:

PD = 1500 MW: hNOX = 3.1669, hCOX = 0.1221, and hSOX = 0.9182
PD = 2000 MW: hNOX = 5.7107, hCOX = 0.1307, and hSOX = 0.9850

The results are summarized in Table 3 (all powers are in MW, emissions in kg/h, costs in $/h, and
time in seconds) while the convergence characteristics of both algorithms, with respect to both objectives
(fuel cost and emission) for PD = 1500 MW and PD = 2000 MW, are shown in Figures 4 and 5, respectively.
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Table 3. The real-time simulation results of PSO and GA for IEEE 30 bus system with PD = 1500 MW and PD = 2000 MW.

Case A P1 P2 P3 P4 P5 P6 ENOX ECOX ESOX E EC FC TC t

PD = 1500 MW PSO 195.79 256.55 381.25 81.69 381.85 202.27 1719.67 39,626.51 9623.04 50,969.21 19,121.26 14,827.57 33,948.83 0.1326
GA 196 255 351 79 416 203 1731.52 40,049.21 9579.83 51,360.56 19,170.74 14,835.04 34,005.78 0.4528

PD = 2000 MW PSO 256.32 320.57 541.95 133.1 500 248.06 2540.68 73,738.76 13,601.05 89,880.5 37,543.01 19,445.29 56,988.3 0.1227
GA 268 287 562 127 500 256 2537.8 75,505.33 13,450.06 91,493.19 37,608.68 19,485.44 57,094.12 0.4706
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5.2. Pakistani IPP

This thermal power plant comprises of 15 generating units out of which 10 are multi-fuel-fired gas
turbines and remaining five are steam turbines with an overall capacity of 1600 MW. The combined
dispatch was performed on eight gas turbines as the remaining two are uneconomical and mostly
turned off. Steam turbines take exhaust of gas turbines to operate, hence they were not considered as
they do not take any direct fuel.

The data calculated and used for the dispatch of all units is given in Appendix A. Transmission
line losses were ignored because IPP’s main concern is generation capacity which they have to produce
and supply to national grid, and SOX gas were not accounted for because of the unavailability of
sufficient data. Remaining two gases (NOX and COX) were considered; their penalty factors were
calculated using Equation (4) and the procedure following this equation, for load demands of 500 and
700 MW given as:

PD = 500 MW: hNOX = 1.5751, hCOX = 101.1369
PD = 700 MW: hNOX = 1.7218, hCOX = 123.8797

The results are summarized in Table 4 (all powers are in MW, emissions in mg/Nm3, costs in 103

$/h, and time in seconds) while the convergence characteristics of both algorithms, with respect to
both objectives (fuel cost and emission) for PD = 500 MW and PD = 700 MW, are shown in Figures 6
and 7, respectively.

Table 4. The real-time simulation results of PSO and GA for Pakistani independent power plant (IPP)
with PD = 500 MW and PD = 700 MW.

Case B P1 P2 P3 P4 P5 P6 P7 P8 ENOX ECOX E EC FC TC t

PD = 500 MW PSO 32.5 32.5 100 90.87 83.68 100 25 35.44 2512.49 40.04 2552.53 76 117.1 193.1 0.1531
GA 33 32.5 32 92 96 100 64 50.5 2624.22 43.32 2667.54 80.82 121.6 202.42 0.8031

PD = 700 MW PSO 130 130 100 90.83 83.82 100 25 40.35 3093.41 48.93 3142.35 108.09 158.5 266.59 0.1509
GA 130 130 100 87 96 100 25 32 3110.72 55.41 3166.13 115.1 158.4 274.4 0.5411
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6. Results Discussion

In Table 3, the power output of all six generators was presented as the sum of which is equal to
the load demand (1500 and 2000 MW) for both algorithms (PSO and GA). Then, the emissions of all
three gases (NOX, COX, SOX) from these generators were calculated and added (E) to convert into cost
(EC) using penalty factor approach. The fuel cost (FC) is calculated from the generators’ powers and is
added to the emission cost to achieve total cost (TC) of the combined dispatch. In the end, the given
time (t) represents the computational time of the algorithm for that particular load demand and PSO
produces the optimal solution 4 times quicker than that of GA for both load demands. Figure 4 shows
the 3D plot of fuel cost and emission with regard to iterations for 1500 MW. It shows that PSO starts
with lower fuel cost and emission, and converges quickly on the optimal solution as compared to GA
which starts with higher fuel cost and emission and takes some time to converge. Figure 5 shows the
similar 3D plot but for a load demand of 2000 MW in which PSO gets lost for a small time period in
non-optimized region but quickly converges on the solution with lower fuel cost and emission, while
GA converges in steps on to a solution which is not better than PSO.

Table 4 gives the output power of eight gas-fired generators and this total generation is equal
to the load demand (500 and 700 MW) for both cases (PSO and GA). From the generators’ powers,
the fuel cost (FC) and emission of two gases (NOX and COX) were calculated using quadratic relation
of generator’s output to fuel cost and emission, respectively. The emission was then totaled (E) and
converted to cost (EC) by imposing penalty factor. These two costs (related to fuel and emission) were
then added to get total cost (TC) of the combined dispatch of the power plant. In the end, t is the time
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taken by each algorithm to carry out the dispatch for a particular load demand. It is noteworthy that
PSO is 4–7 times faster than its GA counterpart for both load demands. Figure 6 shows the 3D plot of
fuel cost and emission with regard to iterations for 500 MW. In this figure, PSO starts with higher fuel
cost but in few iteration, it converges on the optimal solution while GA remains stuck in non-optimized
region. Figure 7 shows the similar 3D plot but for a load demand of 700 MW. In this simulation, both
PSO and GA starts from nearby solutions, but then, PSO converges very quickly while GA struggles
up to 300 iterations and then converges to a nearer solution of PSO, but still, this solution is not better
than the one provided by PSO.

7. Conclusions

The combined dispatch of plant generators with respect to fuel and gas emissions was carried out
using PSO and GA in MATLAB. The results demonstrate that PSO outperforms GA for the combined
dispatch in terms of achieving lower fuel cost, lower emission, fast convergence, and lesser simulation
time. This was validated for both IEEE 30 bus system and for an independent power plant with
simulation, 3D plots, and thorough discussion. The work has successfully implemented PSO and GA
algorithms for CEED of the same systems. The simulation results are compared and tabulated for
different load demands. 3D plots were discussed to highlight the convergence characteristics of PSO
and GA with respect to fuel cost and gas emissions. In future studies, the combined dispatch will be
made more realistic, by including some other practical constraints like valve point loading, ramp rate
limits, prohibited operating zones of generators, transmission line losses etc. The algorithms, PSO and
GA, can be made more efficient by studying and improving their performance parameters.
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Appendix A

Table A1. Fuel cost coefficients.

Unit a b c

1 −0.053809 29.524 −0.59888
2 −0.019141 25.719 −10.238
3 −0.14098 36.796 0.0017735
4 −0.089013 32.088 0.094472
5 −0.024246 26.81 −7.0972
6 −0.050478 28.482 −13.301
7 −0.042498 30.046 −8.1329
8 −0.098058 33.612 −3.2653

Generators Limits: 32.5 ≤ P1–2 ≤ 130 and 25 ≤ P3–8 ≤ 100.
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Table A2. NOX emission coefficients.

Unit α β γ

1 −0.033656 8.438 0.060408
2 −0.03745 8.8286 −0.038644
3 −0.02653 6.9845 −0.064953
4 −0.008363 3.9176 125.51
5 0.0064342 4.2814 0.036778
6 0.0061679 4.1367 −0.081828
7 −0.0076829 5.8882 −0.04459
8 0.0064342 4.2814 0.036778

Table A3. COX emission coefficients.

Unit α β γ

1 0.0005961 −0.036862 2
2 −7.5165 × 10−6 0.03361 0.0041904
3 0.00032592 −0.0069586 5.02
4 0.10945 −19.783 899.51
5 0.033333 −5.5833 235.7
6 −0.0016337 0.16934 6
7 0.0016643 −0.13608 9.8
8 0.0022332 −0.19187 12.4
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