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Abstract

Motivation: Advanced high-throughput sequencing technologies have produced massive amount of reads
data, and algorithms have been specially designed to contract the size of these data sets for efficient
storage and transmission. Reordering reads with regard to their positions in de novo assembled contigs
or in explicit reference sequences has been proven to be one of the most effective reads compression
approach. As there is usually no good prior knowledge about the reference sequence, current focus is on
the novel construction of de novo assembled contigs.

Results: We introduce a new de novo compression algorithm named minicom. This algorithm uses large
k-minimizers to index the reads and subgroup those that have the same minimizer. Within each subgroup,
a contig is constructed. Then some pairs of the contigs derived from the subgroups are merged into longer
contigs according to a (w, k)-minimizer indexed suffix-prefix overlap similarity between two contigs. This
merging process is repeated after the longer contigs are formed until no pair of contigs can be merged.
We compare the performance of minicom with two reference-based methods and four de novo methods
on 18 data sets (13 RNA-seq data sets and 5 whole genome sequencing data sets). In the compression of
single-end reads, minicom obtained the smallest file size for 22 of 34 cases with significant improvement.
In the compression of paired-end reads, minicom achieved 20-80% compression gain over the best state-
of-the-art algorithm. Our method also achieved a 10% size reduction of compressed files in comparison
with the best algorithm under the reads-order preserving mode. These excellent performances are mainly
attributed to the exploit of the redundancy of the repetitive substrings in the long contigs.

Availability and Implementation: https://github.com/yuansliu/minicom

Contact: Jinyan.Li@uts.edu.au

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The vast quantity of reads data produced by high-throughput

sequencing technologies presents great challenges to data storage and tools (Numanagic ef al., 2016).

been making constant progresses and improvement, and have shown much
better compression performance than the general-purpose compression

transmission (Koboldt et al., 2010; Goodwin et al., 2016). Traditional text
data compression tools, e.g., gzip (http://www.gzip.org), bzip2
(http://www.bzip.org) and 7zip (http://www.7zip.org),
have weak performance on these data sets due to their insufficient exploit
of the complicated redundancy in the reads (Zhu et al., 2013; Deorowicz
and Grabowski, 2013; Wandelt er al., 2014). Over the last decade,
specially designed algorithms for raw sequence data compression have

© The Author 2018.

Raw sequence data are usually stored in the FASTQ format. A FASTQ
file contains two main parts: nucleotide sequences (i.e., reads) along with
their corresponding quality scores indicating the reliability of every bases.
Recently, lossy compression studies for the quality scores compression
demonstrated that this lossy compression did not affect the downstream
analysis on the reads data (Cénovas et al., 2014; Malysa et al., 2015; Yu
etal.,2015; Ochoa et al., 2016; Greenfield et al., 2016). Under this context,
we focus our study on the de novo lossless compression of reads data in
FASTQ files.
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Our novel de novo algorithm (named minicom) is designed with two
key ideas: minimizer-based indexing for reads and the suffix-prefix overlap
between two contigs. The minimizer of a string is the lexicographically
smallest k-mer of the string (Roberts ez al., 2004). Given a data set, our
algorithm determines the k-minimizer for every read and index all of
the reads to subgroup those that have the same minimizer. Within each
subgroup of the reads, a contig is constructed and then some pairs of the
contigs are merged into longer contigs according to our (w, k)-minimizer
indexed suffix-prefix overlap between two contigs. This merging process
is repeated after the longer contigs are formed until no pair of contigs can
be merged. The parameter k can be untraditionally set by our algorithm
as a large number to greatly enhance the compression performance.

This approach is quite different from the existing minimizer-
based reads compression algorithms ORCOM (Grabowski et al., 2014),
Mince (Patro and Kingsford, 2015) and FaSt ore (Roguski et al., 2018).
ORCOM and Mince take minimizers to bin reads. However, ORCOM
or Mince does not detect our defined suffix-prefix overlaps within any
subgroup of the reads to generate long contigs. Although FaStore
merges neighboring contigs in the re-clustering stage, it is limited that
the merged reads cover only a narrow segment of the genome. Our
contigs merging approach is more general and is able to cover much wider
segments of the genome. Furthermore, small k-mers of the minimizers
(e.g., 8, 10 or 15) have to be used by these three algorithms to limit
the number of subgroups to obtain low-fidelity matches. However, our
minicomis allowed to adopt large k-mer (e.g., 31 for the reads of length
100bp) in order to detect long and high-fidelity overlaps (Roberts et al.,
2004). We also define (w, k)-minimizers in the detection of effective
suffix-prefix overlaps between two contigs. A (w, k)-minimizer is defined
as the lexicographically smallest k-mer in the (w + k — 1)-long string
(Roberts et al., 2004; Li, 2016). The suffix-prefix overlaps can be used
to determine an approximate optimal position of reads for improving
compression ratio. With the above two key ideas, minicom is enabled to
exhibit superior performance for the compression of both single-end reads
and paired-end reads over the existing reads compression algorithms.

In fact, the existing reads compression algorithms can be classified
into two categories: reference-based and de novo algorithms. We review
them in detail to highlight more about the background and our novelties.
The reference-based approach exploits the similarity between the target
sequences and the reference sequence. It aligns the target sequences to
the reference genome and then stores the position information and base
differences for rebuilding the targets. The reference-based approach has
demonstrated superior performances for compressing different kinds of
sequences such as aligned reads (e.g., BAM-format files) (Bonfield and
Mabhoney, 2013; Hach et al., 2014), unaligned short reads (Kingsford and
Patro, 2015; Zhang et al., 2015) and genomes (Deorowicz and Grabowski,
2011; Liu et al., 2017). Unfortunately, reference-based algorithms have
three disadvantages (Patro and Kingsford, 2015): (i) An appropriate
reference sequence is not always available; (ii) The reference sequence
used for compression must be taken as a copy to the receiver; and (iii)
Sequence alignment is a time-consuming procedure.

There are two interesting algorithms different from the traditional
reference-based algorithm. Kingsford and Patro (2015) proposed a
reference-based compression algorithm PathEnc. Though it uses a
compressed transcriptome as the shared reference, it does no alignment.
The reference is only used to generate a model in a fixed-order context
with an adaptive arithmetic coder. Quark (Sarkar and Patro, 2017)
is a reference-asymmetric compression algorithm, i.e., the reference is
only used for compression and not for decompression. The algorithm is
designed specially for RNA-seq data compression. After mapping reads
to the transcriptome, a set of islands, which is a small subset of the
transcriptome, is constructed by merging the reference sequence overlaps
of the mappings. The islands are stored in the final compressed file.

On the other hand, de novo algorithms compress reads data without
use of a reference sequence (Tembe et al.,, 2010; Jones et al., 2012;
Cox et al., 2012). They make use of similarities between the individual
reads themselves. The most prevailing idea of de novo algorithms is
to reorder reads so that reads having a large overlap can be grouped.
These algorithms usually consist of three stages: (1) Reordering; (2)
Encoding; (3) Compression. Many advanced techniques are employed
in the reordering and encoding stages, and the third stage is limited to
general-purpose compression tools such as gzip, 7zip and BSC (https:
//github.com/IlyaGrebnov/libbsc).

In the reordering stage, SCALCE (Hach et al., 2012) buckets reads
according to the longest core substring, which is derived by a locally
consistent parsing method. Mince (Patro and Kingsford, 2015) improves
the bucketing idea of SCALCE by a data-dependent bucketing scheme.
Each bucket is labeled with a minimizer, which is equivalent to the core
substring of SCALCE. ORCOM (Grabowski et al., 2014) groups reads via
the use of signatures, namely carefully selected minimizers. FaStore
(Roguski et al., 2018) follows the same clustering method of ORCOM and
a re-clustering method is proposed to merge clusters of high similarity.
The basic idea of HARC (Chandak et al., 2018) is to find the maximum
overlaps between reads so that they can be reordered according to their
approximate positions in the genome.

In the encoding stage, SCALCE just sorts reads based on the
lexicographical order with respect to the position of the core substring.
The split-swap read transformation is proposed by Mince. It extracts
common core substrings and sorts reads according to the offsets of the
core substrings. ORCOM and FaSt ore sort reads in each disk bin with the
lexicographical order of the strings obtained by swapping the left part and
right part of the beginning position of the signature for the current reads.
ORCOM generates several streams by aligning a read to its m previous
reads. FaStore builds a matching graph by finding the matches in its
m previous reads, and traverses each sub-graph to assemble reads into
contigs. HARC builds a contig for matched reads based on a majority rule
at each position. Each matched read is encoded referring to the contig.

Chandak et al. (2018) had a theoretic analysis on the reads compression
problem from the point of entropy, and proved bounds on the fundamental
limits of reads compression. The analysis demonstrates that an algorithm
can achieve the best compression ratio if reads can be reordered according
to their position in the original genome. If a good reference sequence
exists, mapping reads to the reference can decide an optimal order.
However, the reference is not available in the de novo compression
scenario. The intuitive idea is to assemble reads as contig by de novo
assembly techniques. Traditional de novo genome assembly is extreme
computationally intensive. The most difficult part is to construct de Bruijn
graphs and search Eulerian paths in the graphs. Progresses have been
made to resolve the complexity. For example, Quip (Jones et al., 2012)
and LEON (Benoit et al., 2015) both construct probabilistic de Bruijn
graphs using the Bloom filter. After that, Quit uses a simple greedy
approach to assemble contigs. While LEON stores the graph instead of
producing contigs, where the reads are represented by a k-mer anchor
and a list of bifurcation choices. Most recently, Ginart et al. (2018)
developed a compression algorithm Assembltrie via light assembly.
Assembltrie assembles reads into a compact data structure, called read
forest, instead of assembling the reads into independent contigs. It selects
potential maximum prefix-suffix overlaps between reads greedily in the
tries. The ideas for finding longer overlaps by HARC and Assembltrie
are extremely similar. HARC uses the overlap information to construct
contig, while a read forest is generated and stored by Assembltrie. It
should be noted that HARC and Assembltrie are designed for genomic
data but not well-tested for compressing RNA-seq data.

We benchmark the performance of minicom in comparison with
seven state-of-the-art algorithms on various RNA-seq and WGS (whole
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genome sequencing) data sets. On the single-end reads data sets, minicom
produces the smallest compressed files on 22 of 34 cases and better than
Quark, ORCOM, Mince and Assembltrie on all the cases. On the
paired-end data sets, minicom achieves the best results always with 1.2-
1.8 times compression gain for all of the cases. Furthermore, minicom
achieves 1 GB size reduction from the compressed files by HARC in the
reads-order preserving mode. The compression time and memory usage of
minicomare better than that of PathEnc, Mince and Assembltrie.

2 Methods
Let S = s182 - - sn, be a DNA sequence, where s; € ¥ = {A,C,G,
T}. Its length is |S| = n. For a symbol @ € X, we use @ to denote

its Watson-Crick complement. The reverse complement of .S is denoted
by S = 182+ Sy = SpSp—1 - S1. An encoding function ¢ (i.e.,
¢(A) = 0,6(C) = 1,¢(G) = 2 and ¢(T) = 3) is used to map a
k-mer to a distinct (2 X k)-bit integer. Our method can deal with the letter
‘N’ in reads, see details in Sec. 2.6.

A minimizer of a string is its lexicographically smallest k-mer. If there
are more than one such k-mers in a string, the first one is defined as its
minimizer. For a read string S, we also consider the minimizer of its
reverse complement strand S. The pseudocode to compute minimizers
is described in Supplementary Algorithm 1. A list of (w, k)-minimizers
from a string can be derived from the all possible (w + k& — 1)-long
substrings shifting from the beginning of the string to the end. We use
Supplementary Algorithm 2 to compute the first 7 minimizers in such a
list. The concept of minimizers was initially proposed by Roberts et al.
(2004) to reduce memory consumption and processing time for biological
sequence comparison. Here we use minimizers to index reads. As observed
by (Li, 2016), an invertible hashing function can be used to perform a
random ordering of the k-mers instead of a lexicographic ordering, for
better performance (Margais et al., 2017).

2.1 Reads indexing and iterative contigs merging

Our de novo assembled long contigs are generated with two stages: the
initial basic contigs generation and the subsequent contigs merging (in an
iterative way).

Initial basic contigs: First, we compute the minimizers for all of the
reads. Large k-mers are used in our minimizers in expect to obtain long
and high-fidelity overlaps between two contigs. Reads are clustered (sub-
grouped) by hashing their minimizers to a hash table. The key of the
hash table is the minimizer and the value of the hash table is a set of the
read index, the position of the minimizer in the read and the strand label
(0 representing the read itself or 1 representing its reverse complement
strand). The value of a minimizer can be very large for a large k-mer.
For example, the value of the minimizer is a 62-bit integer if & = 31.
In implementation, we limit the entries of the hash table to reduce the
memory usage of the hash table. If there is a collision to hash minimizers
to the limited entries, we sort the entry array independently according to
the minimizers after collecting all the minimizers. Therefore, we can easily
distinguish different clusters by comparing two contiguous minimizers in
the entry. If there are more than one reads in one cluster, we sort the reads
in this cluster through the position of the minimizers. Then, a contig is
constructed. The details are described in Algorithm 1. As an example, a
reads cluster from dataset SRR490961 is shown in Supplementary Figure
L.

Each base of the contig for the cluster of reads is the base with
the highest frequency. Once the contig is constructed, we compute the
Hamming distance of every read in this cluster by aligning the read to
the contig without indels. If the Hamming distance exceeds a pre-defined

Algorithm 1: Generation of the initial basic contigs

Input: Set of reads S = {S1, -+, Sn}, size of k-mer k, size of
hash table b and difference threshold e
Output: A set of contigs

Function InitialContigsSketch (.S, k, b, €) begin

H[1..b] < empty hash table > Each entry H[i] is an array;

Each element of H[i] is a tuple composed of minimizer, position

of minimizer, strand label and reads index

for t < 1tondo

(h,p,r) < MinimizerSketch (.S, k)

| Append (h, p, 7, t) to H [h%b]

W0

for e < 1tobdo

Sort Hle] = [(h,p, T, t)] by the st item h

141

for j < 1to |H[e]| do

if j = |H[e]| or H[e][j].h # He][j + 1].h then

if 5 —4 > 1then
G < empty array
for c <— i to j do

| Append (H[c].p, Hc].7, H[c].t) to G
Sort G = [(p, r, t)] by the Ist item p of tuples
(R, F) < ConstructContigSketch(S, G, k, €)
if | 7| > 1 then
| W<+ WU{(R,F)}

Liej+1

> A set of reads clusters

> More than one reads

L return WV

threshold e, this read is removed from the cluster. Finally, we determine
the alignment position of every read in each cluster and record their strand
label. Supplementary Algorithm 3 details the procedure to construct the
contig for a cluster of reads.

Actually, a minimizer is a sampling presentation of DNA sequence. It
is very sensitive to k-mer size. An example involving two reads, which
have the same 30-minimizer but different 31-minimizer, from dataset
SRR1294116 is shown in Supplementary Figure S2. To cluster more reads,
the remaining reads are then processed by the above procedure with some
smaller k-mer sizes.

Contigs merging via suffix-prefix overlaps between two contigs:
The length of the basic contigs ranges from L to (2 - L — k), where L
stands for the length of reads. To construct longer contigs, we merge
these basic contigs. Given a contig, we find a contig such that its
prefix is approximately matched with the suffix of the given contig. By
“approximately matched”, we mean that the Hamming distance between
the prefix and suffix is smaller than a threshold. To index the prefixes of
the basic contigs, we compute the first 7 number of (w, k)-minimizers of
each contig and insert these minimizers to a hash table. By default, we
set w = L/2 — k to ensure the length of the overlap is at least L/2.
Strategies (Li, 2016) such as, (i) limit the entries of hash table; (ii) sort
each entry; and (iii) store the intervals of minimizers on the sorted array,
are used to reduce the memory consumption and fast indexing. For each
contig, we enumerate all (w, k)-minimizers and search contigs sharing the
same minimizers in the hash table. Given a minimizer of this contig, a next
contig is detected if the two (w, k)-minimizers have the same strand and
the Hamming distance of the overlap substring is smaller than A. By default
A = 2 - e. We concatenate these two contigs to form a new contig. Then,
reads corresponding to these two contigs are merged into a new cluster and
we subsequently update their alignment position against this long contig.
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(w, k)-minimizer Contig indices
AACCAAATCTACCCTCCACGGCCCTGAGGCC 1,12,512,213,...
Step 1 : :
AAACTTTCTCTTCCACGGACTTTAAGCCCGG 1,2, 6987,...
CTTTAAGCCCGGTAGGAAAGAGAGAGGAGGA 1,2, 3151,.. Step 3

@ Step 2

TGAACAACCAAATCTACCCTCCACGGCCCTGAGGCCTTATCAGT...GACTGCTCCTTTGGGCTGGGCCAAGGTTTGTATGTACCACACCATGCATGACTCAGATGCCCTCAG

TGAACAACCAAATCTACCCTCCACGGCCCTGAGGCQTTATCAGTTCCACTGATTé} AAACTTTCTCTTCCACGGACTTTAAGCCCGGTAGGAAAGAGAGAGGAGGAGGGGGAAAGAGCAAACCAT CTTTCTTCCAGGCCCTT

TCCACTGATTAAAAACTTTCTCTTCCACGGACTTTAAGCCCGGTAGGAAAGAGAGAGGAGGAGGGGGAAAGAGCAAACCATCTTTCTTCCAGGCCCTTGACT ...

Fig. 1. An illustration of contigs merging via suffix-prefix overlaps. The double-ended arrows represent (19, 31)-minimizers. Step 1: The first 7 (w, k)-minimizers of each contig are

indexed into a hash table. Step 2: For a contig, we enumerate its all (19, 31)-minimizers and search for the same minimizers in the hash table to find a suffix-prefix overlap. When processing

the fifth (19, 31)-minimizer, we find the same (19, 31)-minimizer in the second contig. Both of them are highlighted with a red line. A suffix-prefix overlap, which contains 98 bases, is

determined by the (19, 31)-minimizer. Step 3: Merging two contigs to form a new long contig.

An illustration of searching suffix-prefix overlap is shown in Fig. 1. The
details of this contig merging process are presented in Algorithm 2.

Algorithm 2 merges two contigs only. We repeat this procedure many
rounds to merge more contigs, including those merged in the previous
rounds. The iteration stops when the number of merged contigs is smaller
than 100.

Our minicom is quite different from the key idea of HARC: (i) Our
initial basic contigs generation always groups duplicate reads into the same
cluster, but HARC is unable to guarantee this because it only searches
limited number of entries of the hash table; (ii) Our contigs merging
procedure makes use of the suffix-prefix overlaps between contigs, but
HARC finds the next read via suffix-prefix overlap between reads.

2.2 Realignment of singleton reads

It is possible that there can exist reads which are not covered by any cluster
(remaining as singletons) after the above contig generation stage. To move
some of these singleton reads into some clusters, we increase the difference
threshold e to align more reads to the contigs, as similarly handled by
HARC (Chandak et al., 2018). In detail, these singleton reads are indexed
into p different hash tables by the substrings (length is by default set to
17 for reads length >80bp). Given a difference threshold, we enumerate
all substrings of a contig and align the singleton reads to the contig by
searching the hash tables. For a potential match, we apply Supplementary
Algorithm 4 to compute the final difference string. If |E| < 0.4 - L,
we then group this singleton read to the cluster. To find more accurate
alignment, we increase the difference threshold by a step size 7 (default
as e) each round. We set the maximum difference threshold as L /2.

2.3 Encoding

For each cluster of reads, we store its contig sequence, the alignment
position of every read referring to the contig, the strand label and the
difference string between the read and the contig. We first sort this cluster
of reads through their alignment positions into an ascending order. The
alignment positions are further encoded by delta encoding. We use 1-bit to
record whether the read is encoded in the original or its reverse complement
strand. If reads have the same alignment position, we sort them through
their strand labels. The labels 0 or 1 can be arranged more compactly,
leading to a smaller size of the final compressed file. The alignment
positions and strand labels are written in a binary file separately. We employ
2-bit encoding to encode the contig sequence and store as a binary file as
well. The difference file consists of the matched lengths and mismatched
characters between the reads and the contig (an ASCII text file). All
of these files are compressed independently using the BSC compressor.
Supplementary Algorithm 4 presents the details of the difference encoding.

Algorithm 2: Merge contigs

Input: Set of contigs WV, window size w, size of k-mer k, number
of minimizer 7, size of hash table b and threshold A
Output: A set of contigs

Function MergeContigSketch(W, w, k, 7, b, \) begin
H[1..b] < empty hash table > Each entry H[i] is an array
foreach (R, F;) € W do

M < MinimizersSketch( R, w, k, T)

foreach (h,p,7) € M do

| Append (h,p,r,t) to H[h%b]

for e <~ 1tobdo
| Sort #[e] by the 1st item
W, v:) « (8,0)
1 | fori < 1to|W)|do
if v; = 0 then > i-th contig is not visited
M < MinimizersSketch(R;, w, k, 00)
foreach (h,p, ) € M do
foreach (R',p’,r’,t) € H[h%b] do
if ¢ # t then > exclude itself
if h = h’ and v = 0 and r = r’ then
£ < the Hamming distance of the overlap
substring of two contigs R; and Ry
if £ <= X then
Merge R; and R; to along contig R’
F'=F,UF;
Update the Istitem of 7' = [(p, r, t)]
W =W U{(R,F)}
(viyve) < (1,1)
goto 1

> v is an array

> Label visited

L return W'

2.4 Reads-order preserving mode

An optional requirement for reads compression algorithms is to maintain
the original order of the reads after decoding. It is called reads-order
preserving mode. Similarly as proposed by HARC (Chandak et al., 2018),
we additionally store the order information of the reads in the FASTQ
file along with the above information. As a FASTQ file usually contains
more than 10 million reads, the file storing the order information is a big
volume in the compressed file. To reduce the size of the position files, we
sort reads in each cluster according to the position of reads if the reads
have the same alignment position. Delta encoding is applied to encode
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the positions of reads having the same alignment position. Finally, the
positions are encoded as a binary file and it is then compressed by BSC as
well.

2.5 Handling paired-end reads

Paired-end reads contain long range positional information, keeping this
information while compressing is compulsory. Pat hEnc (Kingsford and
Patro, 2015) and Mince (Patro and Kingsford, 2015) handle paired-end
reads by merging the two ends of the pair. To keep the same strand, if
necessary, the two methods can generate a reverse complement for one of
the ends before merging. Our method minicom can preserve the pairing
information by recording a permutation rather than concatenating the two
ends. In detail, our method generates contigs, realign singleton reads and
encode as single reads. Comparing with PathEnc and Mince, we create
two more files to recover the paired-end information. Minicom uses 1-bit
to record whether a read is from the left or right end. If a read is from the
left end, we record the permutation mapping before and after reordering.
Later, we only save the permuted position of the reads from the right end.
The two files are encoded as binary files and compressed by BSC and 7zip
respectively.

2.6 Other considerations

There are special subtypes of reads. For example, all bases in aread are ‘A’,
all bases are “T” or all bases are ‘N’. From the right end of SRR635193,
we have observed 1324, 60 and 1085118 reads respectively for these
special subtypes. For these special reads, we only store the number of
reads. Another three subtypes of reads are: most bases in a read are ‘A’,
most bases are ‘T” and most bases are ‘N’. We set a threshold (length
of reads minus difference threshold e) to detect these three subtypes of
reads. Supplementary Algorithm 3 is used to encode these subtypes of
reads by replacing the contig with the sequence of pure corresponding
bases. In the reads-order preserving mode, these six subtypes of special
reads are sorted according to their position of reads in the FASTQ file
and then delta encoding is used to encode the position values. If there are
many such special reads, this technique is effective to achieve the highest
compression ratio for these reads. Otherwise, only 4 bytes are wasted for
each subtype.

To simplify reads processing, we classify reads containing ‘N’ into two
kinds: the number of ‘N’ small than o and others. If reads in the first kind,
we first convert ‘N’ to the most frequency bases in the corresponding reads.
Then, those reads are used to generate contigs as usual. Before encoding,
those changed bases are translated to ‘N’ again. The second kind contains
reads having many ‘N’s. We store these reads as an ASCII text file and
compress it by BSC.

We had parallel implementation for our algorithm. The initial contigs
generation is paralleled by the separate processing of the entries of the hash
table. After that, all procedures are paralleled by the separate processing
of the clusters.

3 Results and analysis

We tested the proposed algorithm on various real reads data. The
performance was compared with two recently published reference-based
algorithms PathEnc (Kingsford and Patro, 2015) and Quark (Sarkar
and Patro, 2017), and with four de novo compression algorithms Mince
(Patro and Kingsford, 2015), ORCOM (Grabowski et al., 2014), HARC
(Chandak et al., 2018) and Assembltrie (Ginart et al., 2018). All the
experiments were carried out on a computing cluster running Red Hat
Enterprise Linux 6.7 (64 bit) with 2x2.33 GHz Intel® Xeon® E5-2695
v3 (14 Cores) and 128 GB RAM. All algorithms were run with 24 threads
under their default/recommended parameters.

3.1 Datesets

A total 18 sequencing data sets, including 13 RNA-seq data sets and
5 whole genome sequencing (WGS) data sets, are used in this work to
benchmark the performance of the seven algorithms. 12 data sets of them
are single-end reads data and 6 of them are paired-end reads data. The
read lengths of these data sets are various, ranging from 44 to 108. Some
of these RNA-seq data sets are benchmark data sets widely used in the
literature (Kingsford and Patro, 2015; Patro and Kingsford, 2015; Sarkar
and Patro, 2017); the other RNA-seq data sets have never been tested
by the state-of-the-art methods. The WGS data sets are compiled by the
MPEG HTS working group (Numanagic et al., 2016) for benchmarking.
It covers a wide range of organisms (human metagenomic, bacterial and
plant genome) and coverage. Details of these data sets are provided in
Supplementary Table S1.

3.2 Compression performance

To test the robustness of these algorithms, the two end files of paired-end
reads are compressed independently as per HARC (Chandak ez al., 2018)
and their concatenated version is tested as well. In total, 34 single FASTQ
files are compressed and the sizes of these compressed files are presented
in Tab. 1. Our method minicom achieves the best compression result for
22 of the 34 cases and obtains the smallest total size. On the remaining 12
cases, our minicom has very close performance (always the second best)
to the best compression result. In particular, minicom performs better
than Quark, ORCOM, Mince and Assembltrie for all of the 34 cases.
The compressed files by the two reference-based algorithms PathEnc
and Quark are 39% and 15% larger than ours respectively. Seven cases
by PathEnc are even twice larger than ours. Though PathEnc wins on
two cases as the best algorithm, our minicom achieves very close results
within 5 MB in total. In comparison with the four de novo algorithms,
the size of minicom’s compressed files is about 21% smaller than that of
ORCOM and is 25% smaller than that of Mince. HARC is more competitive
to minicom and its total size of compressed files is about 519 MB larger
than ours. HARC wins on 10 cases as the best algorithm on the WGS
data sets. Minicom is better than HARC on all of the RNA-seq data sets
and wins 3 times on the WGS data sets. All of the compressed files by
Assembltrie are at least 18% and up to 66% (or on average 35%)
larger than ours.

There are many features of reads which can affect the compression
ratio, such as the reads length, sequencing depth, quality of reads and
duplication rate. Table 1 (the first 21 rows) indicates that our method
minicom can make better compression rate on RNA-seq data sets than
on WGS data sets (see last 13 rows). The reason is probably that RNA-seq
data and WGS data have different characteristics in reads. For example,
about 34% of reads in the RNA-seq data set SRR445724 are duplicate.
While only 4.5% reads are duplicate in the WGS data set SRR174310_1.
‘We did an experiment which removed duplicate reads from four data sets to
understand the performance before and after removing the duplicate reads.
Results are shown in Supplementary Table S4. The change is significant—
the compression ratio decreases by 28% and 33% after the removal of
duplicated reads on the RNA-seq data sets SRR490976 and SRR445724
respectively.

Ginart et al. (2018) have observed that more than 40% of the reads in
SRR870667_1 (reads length is 108) do not share an overlap (length > 21)
with any other reads even the Hamming distance is set as 4. In such a case, it
is difficult to generate long contigs with high-fidelity overlaps. After testing
different parameters, we found that e = 18 achieves the best compression
ratio. A larger threshold can result in more reads grouped in clusters. But,
this would cause wider difference between the reads and the contigs. On
this data set, the compressed files by HARC and Assembltrieare > 1.9
times larger than ours. The length of reads in SRR870667_2 is 74 which is
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Table 1. Sizes (in byte) of the compressed files in the compression of single-end FASTQ files

Dataset Reference-based methods de novo methods

PathEnc Quark ORCOM Mince HARC Assembltrie minicom
SRR1294116 185,505,576 185,502, 660 203,910, 373 199, 944, 420 165, 560, 320 244,190,064 156,446,720
SRR1294122 195,043,844 184,186, 666 212,361, 271 204, 841, 681 172,175, 360 248,586,788 159,528,960
SRR490961 176,903,711 160, 646, 768 177,165,498 174,581, 268 133, 068, 800 210,139,010 122,552,320
SRR490962 161,331,188 143,681,017 158,777,607 156,291, 137 118, 056, 960 190, 222,802 109,219, 840
SRR490976 188,202,449 167,241,067 195, 389, 895 173,776,052 158, 044, 160 235,760,055 146,636,800
SRR445718 159,916,858 148,637,597 172,040, 669 162,963, 826 138, 792, 960 193,122,455 126,064,640
SRR445719 152,110, 548 140,260,951 163, 741, 508 156,071,908 130, 938, 880 180,481,550 119,541,760
SRR445724 262,188,846 273,093,903 296, 775, 789 287,989, 612 272,742,400 366,182,608 245,585,920
SRR445726 237,646,946 243,123,204 263,623,124 256, 387, 742 238,776, 320 329,297,287 215,572,480
SRR635193_1 49,733,548 57,670,400 69, 152, 406 67,964,900 53,616, 640 88,363, 940 53,125,120
SRR635193_2 57,893,202 64,642,313 77,003,657 74,360,498 60, 395, 520 275,101, 281 58,716, 160
SRR635193" 93,612,837 100,437,552 116, 015, 715 115, 342,258 90, 880, 000 171,342,552 88,647,680
SRR689233_1 59,686,615 55,076,392 54,028, 762 51,396,163 36, 720, 640 56,197,400 33,669,120
SRR689233_2 67,730,999 61,475,515 62,384, 804 57,565,475 44,451, 840 66,507,677 40,417,280
SRR689233" 104,302,169 95, 806, 542 95,638, 561 89, 548, 209 66, 549, 760 113,831, 509 60, 395,520
SRR1265495_1 72,587,827 74,772,026 87,770,548 87,717,853 118, 824, 960 99, 009, 575 67,829, 760
SRR1265495_2 73,357,330 75,338,821 88,706, 224 87,163, 316 115, 548, 160 92, 204, 870 68,659, 200
SRR1265495" 126, 828,480 119,668,224 137,793, 482 137,274,758 165, 734, 400 162,352,256 101,775,360
SRR1265496_1 65,790,698 70,430,526 79,936, 259 79, 893, 390 108, 523, 520 82,211,910 65,105,920
SRR1265496_2 70,510,753 73,397,947 85,417,582 83,697,854 110,612, 480 89, 349, 347 67,676,160
SRR1265496" 116,842,428 113,010, 822 127,395,119 126, 830, 440 149, 596, 160 140,667,778 98,119, 680
SRR554369_1 13,482, 645 — 10,731,797 10,038,174 5,652,480 7,657,499 5,969, 920
SRR554369_2 14,013,314 — 11,180,413 10,571, 589 6,021,120 8,205,937 6,379, 520
SRR554369" 20, 150, 328 — 15,859, 984 15,353, 447 8,294, 400 12,158,577 8,683, 520
SRR327342_1 45,917, 884 — 35,992, 863 36, 892, 806 18,780,160 33,059, 162 19, 353, 600
SRR327342_2 58,336,493 — 49,474,721 49, 324,493 29, 655, 040 47,214, 209 27,770,880
MH0001.081026_1 55,169, 938 — 51,469, 749 50, 345, 988 41,789,440 54, 640, 426 43,161, 600
MHO0001.081026_2 60,521,876 — 57,032,946 55,881, 683 46, 848, 000 59,224,619 46,540,800
MH0001.081026" 99, 662, 933 — 92,093,916 92,053, 436 74,516,480 100, 107, 376 75,479,040
SRR870667_1 843,131,165 — 826,261, 168 687,536,058  1,372,682,240 1,703,038,318 686,796,800
SRR870667_2 447,501,976 — 315,154,162 349, 309, 795 222,197,760 715,207,920 236, 482, 560

ERR174310_1 3,102,765, 421
ERR174310_2 3,131, 250,155
ERR174310" X

1,797,748, 923
1,830,332, 018
2,536,425, 475

1,954,851, 290
1,985,838, 750
2,992,003, 750

1,399, 818, 240
1,456,107, 520
1,500, 846, 080

1,837,682, 723
1,900, 332, 740

1,497, 856, 000
1,542, 533, 120
x 1,911,060, 480

Total size —

10, 554, 786,988 11,121,604,019 8,832,819, 200

— 8,313,354,240

Notes: Bold font indicates the best result in the row. A shadowed text indicates that our method achieves the second best result. A **” indicates these files are obtained by

concatenating two corresponding FASTQ files. A *Xx’ means that the method cannot compress it using the limited RAM. Quark was not tested on the WGS data as it is

specially designed for the compression of RNA-seq data.

Table 2. Size (in byte) of compressed files for paired-end reads

Reference-based methods

de novo methods

Dataset

PathEnc Quark ORCOM Mince HARC Assembltrie minicom
SRR635193 222,826,708 151, 368,4097 410,021,128 240, 283, 883 263,720, 960 410,673, 387 154,112,000
SRR689233 180,116,872 191,811,478 423, 041, 099 176,948, 801 168,407, 040 401, 463, 383 93, 296, 640
SRR554369 25,839,093 — 70,448,471 31,101, 469 17,397,760 54,376,622 11,601,920
MHO0001.081026 143, 359, 035 — 226,753,969 174, 843,659 144,189, 440 201,121,008 113,479,680
ERR174310 X — 8,940, 636,785 6,058,152,443 2,998,538,240 7,711,063,859 2,508, 769,280
Total size — — 10,070,901, 452 6,681,330,255 3,592,253,440 8,778,698,259  2,881,259,520

Notes: Bold font indicates the best result in the row. A *?” indicates the decompressed reads are not identical to the original (see Supplementary Figure S3).

31% smaller than that of SRR870667_1. Supplementary Table S5 lists the
size of different parts of compressed files about these two data sets. We can
see that the difference file of SRR870667_1 is > 6 times larger than that of
SRR870667_2. These observations probably partly explain why the seven
methods achieved very different compression ratios on these two data sets.

Comparison results of the seven algorithms on the five paired-end reads
data sets are shown in Tab. 2. Minicom achieves significant compression

improvement over the existing de novo methods. The total size of
compressed files by ORCOM, Mince and Assembltrie are at least
twice larger than ours. Comparing with ORCOM, our minicom obtains
compression gain varying from 2.0 to 6.0 times. Minicom achieves a
compression gain from 1.5 to 2.6 times in comparison with Mince. The
improvementover Assembltriebyminicomisranging from1.7t04.3
times. The size of minicom’s compressed files is about 710 MB smaller
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than that of HARC. Minicom achieves 1.2-1.8 times better compression
than HARC. Compared with the two reference-based methods, minicom
also achieves compression gain >1.2 times except one case by Quark.
However, we note that the decompressed result by Quark on the paired-
end data set SRR635193 is not identical to the original data set. Quark is
specially designed only for RNA-seq dataset, not effective for WGS data
sets.

Of the seven algorithms, only our method minicom and HARC are
capable of preserving the reads order. The comparison results are shown
in Tab. 3. Our minicom achieves superior compression performance to
HARC on 25 of the 30 cases (sometimes with >1.4 times compression gain).
On the remaining 5 cases, the compressed file by minicomis <5% larger
than that of HARC. The compressed files by HARC are 1 GB larger than
ours in total.

Moreover, we compared the performance with a new tool
named Spring (https://github.com/shubhamchandak94/
SPRING). It should be pointed out that Spring is a revised version
of HARC. As Spring has not been formally published in the scientific
literature to date, we cannot understand its technical details and cannot
do in-depth comparison with it. We only run the tool to compare its
performance with HARC and our method (see Supplementary Tables S2
and S3). In the compression of single-end reads, our method minicomis
better than Spring on 20 cases. Spring wins 13 times—most of them
are on the WGS data sets. On the RNA-seq data sets, minicom performs
better than Springon 18 of the 21 cases, and Springis worse than HARC
on 12 cases. On the WGS data sets, minicom is better than Spring on
2 cases. In the compression of paired-end reads, Spring is better than
HARC and minicom on 4 cases and minicom wins on one case. For the
reads-order preserving mode, minicom performs better than Spring on
21 of the 29 cases.

We found that FaStore (Roguski er al, 2018) is a tool for
compressing the whole FASTQ file (all identifiers, all reads and all quality
scores), there is no option specially set to ignore the quality scores.
We used the compression mode ‘—max’, which applies a Q-score binary
thresholding and ignores read identifiers, to run the tool. This compression
performance is shown in Supplementary Table S9. We note that this
performance cannot be used to compare with minicom directly.

3.3 Comparison on computational resources

ORCOM is the fastest algorithm for the compression of these data sets.
Assembltrie had unstable compression speeds from a few minutes
to 43 hours. Minicom is always faster than PathEnc. In most cases,
minicom is significantly faster than PathEnc and Assembltrie.
Minicomis faster than Quark except from other 6 cases. For 29 of the 39
cases, minicomis faster than Mince and sometimes twice faster. In most
cases, minicomis a little slower than HARC. Detailed comparison of the
compression time costs by these algorithms is shown in Supplementary
Table S6.

Supplementary Table S7 describes the memory usage of these
algorithms in compression. HARC uses the least RAM for all of the cases.
The RAM consumption by minicom is much less than PathEnc and
Assembltrie. Minicom takes less RAM than Quark and Mince
as well. As minicom maintains all the processed reads and assembled
contigs in memory, it can be well understood that more memory is required
than by ORCOM or HARC.

The comparison of decoding time is presented in Supplementary Table
S8. ORCOM is much faster than all the other methods. The decompression
speed of minicomisatleastone order of magnitude faster than Pat hEnc;
about twice faster than Quark; and about 2.5 times faster than mince.
Though HARC achieves competitive decompression speed as ours in most
cases, its total decompression time cost is 1.8 times more. Assembltrie

Table 3. Sizes (in byte) of compressed files in the reads-order preserving mode

Dataset HARC minicom
SRR1294116 312,115,200 291,491, 840
SRR1294122 297,256,960 273,018,880
SRR490961 291,010,560 270,100,480
SRR490962 264,325,120 245,923,840
SRR490976 259,246,080 235,571,200
SRR445718 239,636,480 220,538,880
SRR445719 224,778,240 207,462,400
SRR445724 430,469,120 386,488,320
SRR445726 391,946,240 351,764,480
SRR635193_1 138,485,760 129,259,520
SRR635193_2 142,141,440 132,864,000
SRR689233_1 85,544,960 80,721,920
SRR689233_2 92,395,520 87,080,960
SRR1265495_1 146,995,200 95,272,960
SRR1265495_2 151,562,240 96,020,480
SRR1265495 244,736,000 155,965,440
SRR1265496_1 127,324,160 89,374,720
SRR1265496_2 129,536,000 91,944,960
SRR1265496 217,569,280 146,759,680
SRR554369_1 10,004, 480 10,178, 560
SRR554369_2 10,373,120 10, 547,200
SRR327342_1 64,143,360 63,395,840
SRR327342_2 74,629,120 71,505,920
MHO0001.081026_1 73,134,080 71,178,240
MHO0001.081026_2 77,056,000 76,308,480
SRR870667_1 1,540,474,880 906, 864,640
SRR870667_2 454, 359, 040 460, 574,720

ERR174310_1
ERR174310_2

2,105,876,480 2,209,443, 840
2,158,960,640 2,246,676, 480

Total size 10, 756,085, 760 9,714, 298, 880

performs a little bit faster than our methods on some cases. However,
Assembltrie performs extremely poor on 6 cases.

4 Conclusion and future work

We have introduced minicom, a new de novo algorithm for reads data
compression. The idea of (w, k)-minimizers is the first time used for reads
compression by our minicom. Itis an effective idea to find a suffix-prefix
overlap between two contigs and to determine a sub-optimal order of reads.
The experiment results obtained from various benchmark data sets confirm
that minicom can provide better compression performance than both the
state-of-the-art reference-based and de novo compression algorithms.
Although minicom has already exhibited excellent compression
performance, there are some other facets worth of investigation for further
improvement. First, its performance heavily depends on some parameters
such as the length of k-mer, the difference threshold e. The current default
setting of these parameters is assessed through the performance analysis on
some selected data sets. We will establish a robust and automated parameter
selection procedure (e.g., through feature extraction from reads) in near
future. Second, the realignment procedure for the singleton reads takes
up a large proportion of the total compression time cost. We are going
to work out a more time-efficient realignment procedure to accelerate
the compression process. Third, a disk-based mode, like ORCOM, for
contigs generation can be added to reduce the RAM usage, convenient for
a standard PC. Fourth, we will develop a more practical compression tool
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for FASTQ format file by incorporating lossy compression of the quality
scores. Last, we will investigate if the minimizer-indexed iterative contigs
generation can be used to speed up de novo genome or transcriptome
assembly and reads alignment.
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