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Abstract:   

A number of empirical methods have been developed to study China’s sectoral carbon 

emissions (CSCE). Measuring these emissions is important for climate change mitigation. 

While several articles have reviewed specific methods, few attempts conduct a systematic 

analysis of all the major research methods. In total 807 papers were published on CSCE 

research between 1997 and 2017. The primary source of literature for this analysis was taken 

from the Web of Science database. Based on a bibliometric analysis using knowledge 

mapping with the software CiteSpace, the review identified five common families of 

methods: 1) environmentally-extended input-output analysis (EE-IOA), 2) index 

decomposition analysis (IDA), 3) econometrics, 4) carbon emission control efficiency 

evaluation and 5) simulation. The research revealed the main trends in each family of 

methods and has visualized this research into ten research clusters. In addition, the paper 

provides a direct comparison of all methods. The research results can help scholars quickly 

identify and compare different methods for addressing specific research questions.  
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List of abbreviations 

Abbreviation  Description 
ABM agent-based model 
ARIMA autoregressive integrated moving average model  
CBE consumption-based emissions  
CGE computable general equilibrium 
CSCE China’s sectoral carbon emissions 
DEA data envelopment analysis 
DMU decision-making unit 
EE-IOA environmentally-extended input-output analysis 
ELC environmental learning curve 
ETS emissions trading scheme 
FDI foreign direct investment 
GIS geographic information system 
GMM generalized method of moments 
GPS Global Positioning System 
IAM integrated assessment models 
IDA index decomposition analysis 
IOA input-output analysis 
IO-LCA input-output life cycle assessment 
IPAT Impact = Population × Affluence × Technology 
IPCC  Intergovernmental Panel on Climate Change 
LCA life cycle assessment 
LLR log-likelihood ratio 
LMDI logarithmic mean Divisia index 
MRIO multi-region input-output 

MRIO-LCA multi-region input-output models and their integration with life-cycle 
assessment models 

MSIO multi-scale input-output tables 
PBE production-based emissions 
SCE sectoral carbon emissions  
SD system dynamics 
SDA structural decomposition analysis 
SRIO single-region input-output 
STIRPAT  Stochastic Impacts by Regression on Population, Affluence, and Technology 
WoS Web of Science 

1. Introduction  

Interest in formulating and applying analytical or modelling techniques to understand carbon 

emissions has profoundly increased since the Kyoto Protocol was introduced in 1997. In 
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China the largest source of CO2 emissions comes from intermediate production processes, 

which are attracting the attention of policy makers, researchers and the international 

community wishing to curb growth in emissions. Several commentators have also given 

China the title as the “factory of the world” owing to the significant proportion of global 

manufactured goods originating in China (Liu and Diamond, 2005; X. Tang et al., 2015; 

Zhang et al., 2016).  Given the growing importance of full life-cycle accounting and the 

associated embodied emissions in products – particularly for products consumed in 

developed countries that were manufactured in emerging markets – China’s national 

emissions inventory is continuing to attract global attention. The need to understand and 

operationalise emissions reductions targets is demonstrated by the wide range of methods and 

approaches that are being embraced and developed in the rapidly growing number of 

published research papers looking at China’s Sectoral Carbon Emissions (CSCE). This has 

been particularly evident since 2007 when China became the largest carbon emitting country 

in the world. Today, around one-third of global sectoral carbon emissions (SCE) research 

focuses on emissions generated in China. A number of novel modelling techniques have been 

developed and deployed to address complex SCE issues specific to the Chinese context.  

 

Tackling the CSCE problem is complex and requires diverse research approaches. While 

several attempts have been made to review specific methods in their own contexts, few, if 

any, research papers have provided an analysis of the main research methods that provide an 

overall picture of the multiple methods that have been developed to answer different research 

questions. For example, in one family of methods under the broad umbrella of CSCE, the 

method known as environmentally-extended input-output analysis (EE-IOA) was reviewed 

by Hoekstra (Hoekstra, 2010) and updated by Hawkins et al. (Hawkins et al., 2015). In 

another, a total of 80 papers were reviewed using index decomposition analysis (IDA), by Xu 
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and Ang (Xu and Ang, 2013). Data envelopment analysis (DEA) was reviewed by Meng et 

al. (Meng et al., 2016) who compared five widely used DEA efficiency methods. In addition, 

in papers that review or apply to a specific method or family of methods, it is rare for authors 

to explain why they chose a particular method to address their research problem.  

While scholars from particular fields are naturally familiar with one method or another, such 

as economists using econometrics, scholars would be in a much better position to approach 

the problem if they were aware of, and could compare, the strengths and weaknesses of the 

main methods that have been used to answer similar research questions. This review paper 

addresses this problem through a direct comparison of the strengths and weaknesses of each 

of the main research methods. It also highlights the relationships between methods and 

research themes, recent trends, the popularity of different methods as well as research gaps 

and opportunities for further research. This paper aims to fill an important gap by providing 

an analysis of all major CSCE-related methods so that scholars and policy-makers can 

quickly identify and compare different methods for answering their research needs. 

 

Instead of focusing on the detailed techniques or models that are used in a particular method, 

we outline the main methods that have been applied and the types of research questions that 

each method can answer. We use bibliometric analysis and knowledge mapping with the 

software CiteSpace to create an overall picture of the ongoing activity in CSCE research, and 

to assess the similarities and differences between the adopted methods. The paper reviews 

five families of methods that are commonly used to model and assess carbon emissions, and 

it examines the pros and cons of each method. The families of methods identified include: (1) 

environmentally-extended input-output analysis (EE-IOA), (2) index decomposition analysis 

(IDA), (3) econometrics, (4) carbon emission control efficiency evaluation and (5) 
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simulation. While we draw on carbon emissions research in China, the findings can be 

applied to carbon emissions research worldwide. 

 

The rest of this paper is structured as follows. Section 2 (Methods) describes the boundaries 

of the literature reviewed and how the research papers were analysed using bibliometric 

analysis and knowledge mapping. Section 3 (Review of methods) describes each of the 

representative methods and discusses the pros and cons for each of them. Section 4 

(Bibliometric analysis) provides a quantitative analysis which compares the main trends and 

approaches for each family of methods. Section 5 (Knowledge mapping) presents a number 

of graphical visualisations of the main research themes and summarizes the main points of 

comparison between the methods. This section also identifies key milestone papers in the 

development of the CSCE field over the last 20 years. Section 6 (Discussion) critiques the 

representative methods and explores what can be done to further develop and grow CSCE 

research. Finally, Section 7 (Conclusion) summarizes the gaps in the present literature and 

the main findings and limitations.  

 

2. Method 

2.1 Search strategy and selection of papers 
 
A systemic review of the literature was undertaken using Thomson Reuters’s Web of Science 

(WoS) database. The WoS database covers approximately 12,000 leading journals 

worldwide. It includes the Science Citation Index Expanded, the Social Sciences Citation 

Index, and the Arts and Humanities Citation Index databases. The quality and quantity of 

papers included are therefore sufficient for conducting a systemic review.  
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We searched for papers in the CSCE field using the following steps. Papers were filtered 

using key words “China”, “carbon emission*” and “industr* OR sector*” in titles, abstracts 

or indexing terms. The period selected for this analysis was from 1997 to 2017 because of the 

growing importance of CSCE since the introduction of the Kyoto Protocol in 1997. The most 

recent paper was published on 20 July, 2017. In total 1,057 papers were identified under the 

CSCE umbrella published between 2001 and 2017.  The number of papers was reduced to 

807 by filtering by document type to only include articles and reviews and exclude 

proceedings papers, book chapters, reprints, meeting abstracts, editorial material and 

retracted publications.  

 

The five families of methods listed in the introduction to this paper were identified after we 

manually reviewed the 807 papers. When we searched for articles that use a particular family 

of methods such as environmentally-extended input-output analysis, we would add relevant 

method descriptions in the search terms such as “input-output analysis”, “IOA” or “SDA”. 

For more information about the search terms for each method, see Table 1.  

 

Method Topic Search Terms 
Environmentally-Extended Input-

Output Analysis 
IO OR input-output OR embodied OR “structural decomposition” OR 

SDA 

Index Decomposition Analysis LMDI OR “index decomposition” OR “Logarithmic mean divisia 
index” OR decoupling 

Econometrics Regression OR “panel data” OR econometrics OR correlation OR 
STIRPAT OR IPAT OR statistics 

Carbon emission control efficiency 
evaluation DEA OR “data envelopment analysis” OR Malmquist 

Simulation 

Computable General 
Equilibrium  CGE OR “computable general equilibrium” 

Integrated 
Assessment “integrated assessment” OR “integrated-assessment” OR IAM 

System Dynamics  “system dynamic” OR “system-dynamic” OR SD 
Agent-Based  “agent-based model” OR “agent-based modelling” OR ABM 
Optimization Optimization 
Multi-Criteria   “multi criteria” OR “multi-criteria” 

Techno-Economic  “techno economic” OR “techno-economic” 
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Table 1 Search terms for the representative methods 

2.2 Methods used for bibliometric analysis and knowledge mapping 
 

Bibliometric analysis and knowledge mapping were used to analyse the search results. The 

bibliometric analysis revealed subject areas as well as publication and citation trends for each 

of the five families of methods. In the literature, knowledge mapping is commonly used to 

uncover and visualise groups of similar ideas or unusual features and trends by showing how 

knowledge within a field has evolved over time in a comprehensive and transparent manner 

(X. Li et al., 2017). Compared with bibliometric analysis, which mostly focuses on providing 

a general understanding of the field by undertaking a descriptive analysis, knowledge 

mapping aims to reveal structural and dynamic aspects of studies by charting, mining, 

analysing, sorting, and displaying knowledge (Shiffrin and Börner, 2004).  

 

The software used for this analysis, CiteSpace, is a popular choice for conducting knowledge 

mapping. Chen (2004) developed this software based on bibliometric analysis, data mining 

algorithms and visualization methods. We used CiteSpace in this paper to visualize research 

clusters and detect milestone developments in CSCE research. To this end, CiteSpace was 

used to explicitly establish the intellectual base for each research method and track its 

evolution based on co-citation network. The co-citation network was derived using graph-

theories, in which the vertices represent the reference papers of the 807 papers, on the basis 

of the CSCE search results from the WoS database. If two papers were cited in a third paper, 

they were co-cited, and a link was formed in the co-citation network. The co-citation network 

was further clustered by using the expectation maximization algorithm (Chen, 2014) based on 

a series of attributes, including citation frequency, first author, year of publication and the 

source of the publication.  See Figure 1 for the conceptual framework of the co-citation 
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network. The clustering analysis provided insights into the underlying knowledge structure 

by detecting fundamental and distinctive research papers in the field. In addition, CiteSpace 

uses Kleinberg’s (2003) burst-detection algorithm1 for identifying sharp increases of interest 

in a particular topic, thereby providing insights on the critical evolving paths in a timely 

manner. 

 

 

 

                                                 
1 The burst-detection algorithm is used to find features which have high intensity over a period of time and then fade away 

through analysing document streams arriving continuously (Kleinberg, 2003). The ‘bursty’ event which is 
uncharacteristically frequent, and the corresponding time period can be identified by using this algorithm. 
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Previous literature review papers published in the CSCE field have usually been expert-

dependent, and such papers cannot avoid subjectivity and individual preferences. Our 

analysis using CiteSpace was driven by bibliometric data, and no subjective preferences were 

involved in the clustering and visualisation process for identifying unique research groups.  

 
 
3. Review of methods 

In this section, five families of methods within the CSCE field are reviewed. For each 

method, we provide a brief introduction to show how it has been applied, followed by a short 

discussion of its pros and cons.  

Use key words and 
search criteria to 
get focal papers 
(A1, A2…) and their 
reference (C1, 
C2...)  from 
database. 

    
A1 A2 A3 A4 

 
C1 

 
C2 

 
C3 

 
C4 

 
C5 

 
C6 

  
C7 

Research Front 

 
C1 

 

  
C2 

  
C3 

  
C4 

  
C7 

 
C5 

 
C6 

Intellectual Base 

Build the co-
citation network 
based on citing 
relations.  
 
 
The co-citation 
network is further 
clustered by using 
the expectation 
maximization 
algorithm.  

Cluster1 

Cluster2 

Figure 1 The conceptual frame work of the co-citation network 
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3.1 Environmentally-extended input-output analysis (EE-IOA) 

Over the last ten years EE-IOA has been increasingly used to study the regional and sectoral 

effects of carbon emissions in China. It allows for the assessment of carbon emissions from 

both a production and a consumption perspective (Leontief, 1970). EE-IOA is particularly 

useful for examining the embodied carbon flows of industries both within China and 

internationally (Liu et al., 2012; Su and Ang, 2014) and provides a good foundation for 

“common but differentiated” responsibilities for tackling carbon abatement.  

 

Within EE-IOA, both the direct and indirect effects of economic activities on the 

environment are examined in the entire supply chain and production system. The influence of 

changes to production, technology and final demand on China’s carbon emissions are 

frequently examined through multiplier effect analysis (Su and Ang, 2014; Zhang et al., 

2015) and structural decomposition analysis (SDA) (Shan et al., 2017; Su and Thomson, 

2016). It is straightforward to integrate EE-IOA with other methods to provide more 

solutions to research problems in the CSCE field. For example, the integration of EE-IOA 

with life cycle assessment (LCA) enables a much more detailed account of total life-cycle 

carbon emissions, and makes it possible to adopt a cradle-to-grave approach for industries 

and regions (Bilec et al., 2010; Thiesen et al., 2008).  

 

Although EE-IOA offers several benefits, it also has several limitations. The data used to 

construct EE-IOA tables is variable and depends on the assumptions and data collection 

methods used. Significant differences can arise simply from the accounting and collection 

methods that are used. For example, estimates of consumption-based carbon emissions for 

China varied from 1,841 Mt to 4,030 Mt in 2012 with a 54% difference rate (Zhang et al., 
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2017).  Moreover, due to the large datasets required to conduct EE-IOA at high sectoral and 

regional resolution, there is a significant time lag between each new release of input-output 

data tables.  

 

3.2 Index decomposition analysis 

 

Index decomposition analysis (IDA) has been used to examine the driving forces of carbon 

emissions in China over time. IDA starts with the macro-variable of carbon emission change 

(Ang, 2004). It is commonly decomposed into “activity effect” indicators such as GDP, the 

“structure effect” indicators such as industrial structure, and the “intensity effect” indicators 

such as carbon emissions per unit of GDP (Liu et al., 2007). Through an “ideal 

decomposition” process (i.e. there is no residual term), such as the logarithmic mean Divisia 

index (LMDI) decomposition approach (Ang and Choi, 1997), IDA produces a deterministic 

result to trace the effect of each indicator used in the analysis.  

 

The popularity of this method can be attributed to its minimal data requirements, and the ease 

of application and result interpretation. The data sources available for conducting IDA are 

relatively abundant, as only aggregate sector-level data are required. In China, such data is 

readily available and is provided on an annual basis at high spatial resolution by regional and 

national bureaus of statistics. IDA has proven to be flexible in problem formulation and is 

generally easy to apply. Using this method it is possible to work with both multidimensional 

and multilevel emissions data over both time and space (Su and Ang, 2012). For example, the 

latest publications in the field cover an analysis time span of over twenty years and range 

from the city to the international level, and they can incorporate data from specific industry 

sectors and economy-wide emissions trends  (Zhao et al., 2016; Zhen et al., 2017).  
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One limitation of this method is that it fails to represent the linkages between industries and it 

is therefore unable to capture the spill-over effects of changing demand across different 

industry sectors (Hoekstra and van der Bergh, 2003). Another limitation is that IDA is only 

able to reveal changes to macro-variables owing to the limited number of predefined factors. 

Because IDA requires factors to be introduced that cancel each other out, it is not easy to 

incorporate new variables such as weather into the analysis. Moreover, because IDA looks at 

change over time for specific macro-variables, it is generally necessary to have a time-series 

over the period of interest.  

 

3.3 Econometrics 

Econometrics is used as an analytical tool to describe the contributions of multiple factors or 

policies to carbon emissions. Most of the econometrics models in the field of CSCE research 

are derived from STIRPAT (Stochastic Impacts by Regression on Population, Affluence, and 

Technology) framework. Based on the estimated relationship, STIRPAT also serves as a 

starting point to simulate carbon emissions under different scenarios (Y. Liu et al., 2015; 

Wang et al., 2013). For a more precise specification of the sensitivity of the carbon emissions 

to the driving factors, researchers have attempted to improve this approach, by using different 

model specifications or by adding more variables of interest.  

 

Panel data is the most frequently used econometrics method in CSCE. It attempts to provide 

quantitative evidence of the connections between carbon emissions and influencing factors 

across different industries in the observed period. Several changes have been introduced in an 

attempt to enable more precise measurement. Firstly, to avoid multicollinearity issues among 

socioeconomic variables, partial least squares or ridge estimation procedures are widely 
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applied (Wang and Zhao, 2015; D. Yan et al., 2017). Secondly, the Tobit model has been 

adopted to analyze the factors affecting energy-environment efficiency (Pan et al., 2013; 

Yang et al., 2014). Thirdly, because economic behavior exhibits some continuity, it is 

essential to introduce the lagged level of carbon emissions to ensure that the model 

coefficients are calculated consistently and effectively (Omri and Nguyen, 2014). To solve 

the endogeneity problem causing by the dynamic lag term of the explained variables, the 

generalized method of moments (GMM) using a set of instrumental variables is applied to 

estimate the dynamic panel data model (Guo, 2017; Zhang and Xu, 2017).  

 

A key advantage of econometrics is its versatility due to the wide variety of methods and 

techniques that can be used. For example, spatial econometrics has introduced the concept of 

‘economic distance’ into carbon emissions research to provide a new perspective on the 

impact of geospatial factors (Conley and Ligon, 2002). In addition, many other previously 

less-discussed variables have been incorporated into the econometric analysis, such as 

financial development (Mahdi Ziaei, 2015; Zhang, 2011), urbanization (Ding and Li, 2017; 

Xu and Lin, 2015), climate change (Cai et al., 2017; Hao et al., 2016), the relationship 

between CO2 and other pollutants (X. Li et al., 2015), land use and distribution (Zhang and 

Xu, 2017; Zhou et al., 2015). Moreover, due to the versatility of econometrics, it is relatively 

straightforward to find the data required to answer the research question of interest. 

 

The disadvantages of econometrics can be categorized according to the analysis procedure 

undertaken. In the data gathering phase, it is sometimes difficult to observe some variables, 

such as financial development and proxy data is often chosen, such as the amount of foreign 

direct investment (FDI). This may result in concerns about validity and reliability. In 

addition, owing to the complexity of this type of analysis, it is challenging to choose the most 
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appropriate method and conduct the right statistical tests. Even when the same data is used 

for analysis, the magnitude of an effect can vary depending on the method and the variables 

used. For example, Hang and Tu (2007) found that energy prices had a significant impact on 

energy efficiency in China, while Zhao et al. (2014) reached the opposite conclusion. In some 

cases, it can be difficult to explain why certain variables are significant, and it can be difficult 

to interpret the effects of different coefficients.  

 

3.4 Carbon emission control efficiency evaluation 

Measuring the efficiency of carbon emission control measures has been an active research 

topic in recent years. The aim is to improve productivity at levels ranging from the micro to 

the macro. The most common approach is data envelopment analysis (DEA). DEA models 

can be classified according to their reference technologies and efficiency measures (see 

Figure 2 for details). It investigates and compares the CO2 emissions across regions and 

sectors and across time (Li and Lin, 2015; Meng et al., 2016). For regions in China, most 

studies focus on measuring the carbon emission efficiency of 28–30 provinces and regions. 

For sectors, DEA either investigates specific sectors, usually energy intensive sectors, or 

adopts a comprehensive perspective which includes all the main sectors. The research spans 

the period from 1992 to 2012, especially the 2000–2010 period (Zhou et al., 2008).  

 

DEA 
Model 

Reference 
Technology 

Efficiency 
Measurement 

Treatment of 
Input and 

Output 

Returns to Scale 

Disposability 

Operating 
Characteristics 

Orientation 

Type 

The existence of 
non-discretionary, 
categorical or 
environment 
variables 

input, output or undesirable output oriented 

Radial (R), Non-radial (NR), Slacks- based 
(SB), Hyperbolic (H), Directional distance 
function (DDF), etc. 



 15 

 
Figure 2 The general structure of a DEA model adapted from (Zhou et al., 2008) 

DEA is a non-parametric method and does not assume the production ‘technology’ function 

determining the relationship between inputs and outputs of each decision-making unit (DMU) 

(Seiford and Thrall, 1990; Zhou et al., 2008). Instead, it takes each DMU as a whole, without 

considering the details internal production procedures (Kao, 2014). The method therefore 

allows hidden relationships to be uncovered.  

 

In regard to disadvantages, the model selection and choice of variables can affect the results 

dramatically. Meng et al. (2016) reviewed 18 studies using DEA to estimate carbon emission 

efficiency in China from 2006 to 2015. The analysis showed that there are five main model 

types and several variable schemes available. Meng et al. found substantial differences in the 

outputs due to different choices of models and variables. In addition, due to the unspecific 

production function, the end result of DEA is an efficiency index rather than an estimate of 

carbon emissions. When the scope of the research changes, the efficiency values also change.  

 

3.5 Simulation and other methods 
 
In the context of CSCE, simulation is usually employed to predict carbon emission trends 

when policies, technologies, or other influential factors change. This paper identifies the 

following simulation methods: computable general equilibrium models (CGEs), integrated 

assessment models (IAMs), system dynamics (SD), agent-based modeling (ABM), 

optimization and multi-criteria optimization, and techno-economic models. These methods 

are adopted worldwide to address carbon emission abatement problems.  

 
3.5.1 Computable general equilibrium models and integrated assessment models  

Commented [SK1]: Optimisation and techno economic are 
not simulation models 
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Computer general equilibrium models (CGEs) and integrated assessment models (IAMs) 

come from the same family of economic optimization models. They use real data and rely on 

a series of equations that are either empirically or theoretically derived to determine 

projections from the present state to some future equilibrium state where the system has been 

optimized. While CGE models describe the sectoral interrelationships of the whole economy 

with a focus on cost optimization, IAMs are more integrated and include not only socio-

economic activities, but also the physical relationships that drive climate change (Parson, 

1995). CGEs and IAMs are frequently used to predict how carbon emissions and economies 

will react to emissions trading schemes (Babatunde et al., 2017; W. Li et al., 2017; Wang et 

al., 2015), carbon taxes (Guo et al., 2014; Tang et al., 2017), low-carbon policies (Cheng et 

al., 2016; Kishimoto et al., 2014), technology diffusion (Hübler, 2011) and energy 

consumption (Chi et al., 2014), in order to find the ‘optimal’ option.  

 

The primary advantage of IAMs and CGEs is their ability to incorporate the complex 

relationships between the world economy and environmental policy to tackle climate change 

mitigation problems. When the effect of a specific policy is evaluated, the effects of 

‘exogenous’ variables on economic, social and environmental systems can also considered 

(Cantore, 2009). By providing simulation results based on different scenarios, the 

consequences of policy choices are presented in a clear and easy to understand way.  

 

A key output of IAMs and CGE models is forecasts of model variables under very specific 

conditions and assumptions. These models are often criticized for their unrealistic 

assumptions, such as homogenous products or services and full employment of labor 

(Böhringer and Löschel, 2006). Different models may therefore give contrasting simulation 

results, due to different modeling assumptions. In addition, for IAMs, because the physical 
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mechanisms underlying climate change are complex and partly unknown, it is difficult to set 

convincing parameter values with a sound theoretical or empirical foundation (Pindyck, 

2013).  

 
3.5.2 System dynamic models   
 
While CGE and IAM produce scenario analysis results as snapshots, system dynamics (SD) 

models reflect the dynamic evolution of systems. SD models take several simulations over a 

given period of time (Anand et al., 2005). The dynamic of system consists of two 

components: a causal loop diagram and a flow diagram. The causal loop diagram is 

developed by incorporating various subsystems, such as socio-economic factors, energy 

consumption, technologies (Anand et al., 2006), and other factors associated with industries 

which produce CO2 emissions. They reveal the interactive and reinforced causality 

relationships among the subsystems and influential factors. Research into the factors driving 

carbon emissions focus mainly on energy consumption (Feng et al., 2013), population and 

economic growth (Al-Mulali et al., 2013; Du et al., 2018), energy and economic structure 

upgrades (Mao et al., 2013; Zheng and Luo, 2013), technological progress (Lai et al., 2017; 

Liu, 2015), and policies (Xiao et al., 2016). Based on the causal loop diagram, a flow 

diagram is created to demonstrate the measurable elements in each subsystem and the 

intricacies of the interacting processes.  

 
One advantage of SD models is their capacity to explicitly model dynamic feedbacks. The 

two-way relationships among the driving factors in subsystems provide a holistic cause-and-

effect interpretation of the evolving trend of sector carbon emissions and their changes under 

different polices and social and economic conditions. Another advantage is that system 

dynamics models are easy to use for policy analysis. Researchers can directly identify the 

direction and magnitude of carbon emission changes due to policy changes from causal and 
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flow diagrams. However, the evolution ability of SD models depends on the variations in the 

values used in feedback loops and equations. Once the input values of all parameters and 

constants are fixed, the feedback mechanism itself cannot change. This creates difficulties in 

the interpretation of research results. For example, the marginal impact of a technology 

upgrade on carbon emissions will fluctuate in response to changes in market competition or 

governmental subsidies, but, such impacts are usually modeled as fixed auxiliary variables. 

This leads to biased estimates when simulations of more than ten years are conducted.  

 
3.5.3 Agent-based models   
 
IAM, CGE, and SD models estimate carbon emissions and identify the factors driving them 

from a macroscopic perspective by dealing with aggregated variables and parameters. Agent-

based models (ABMs), on the other hand, focus on the dynamic behavior at the individual or 

“agent” level. In agent-based models, final aggregate carbon emissions emerge as a result of 

the dynamic interactions of those agents. These interactions are considered to occur at each 

simulation step according to predefined decision-making rules. In the context of sector 

carbon emissions, agent-based models are most frequently used in research about strategy 

and mechanism design for carbon emissions trading. The main purpose is to understand how 

carbon emissions at an aggregate level change from the bottom up. 

 

Agent-based models are defined using two main components: (1) the selection of agents, and 

(2) the interactions between agents which lead to emergent outcomes. Firms, industries and 

governments, as carbon trading scheme participants, are the most common agents chosen 

(Jiang et al., 2016; L. Tang et al., 2015). Firms and industries usually aim at profit 

maximization. Governments, on the other hand, set carbon prices, allocate emissions quotas 

and ensure fair trade by imposing penalties and subsidies. From these interactions between 
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these agents, researchers can examine how total carbon emissions emerge from micro-level 

behavior.  

 
The main advantage of agent-based models lies in their ability to capture dynamic decision-

making process which involve adaptive and evolutionary learning. This provides a more 

realistic representation of the behaviors of bounded rational firms and governments, because 

the preferences and strategies underpinning their decision-making can change when new 

information is obtained. Another advantage is that no prior knowledge about the macro 

interdependencies and dynamics is required. However, the interactions in agent-based models 

sometimes cannot always be easily articulated to reflect reality (Bonabeau, 2002). Moreover, 

the granular information fed into the model implies that if the number of parameters involved  

is large, this may introduce sensitivities to the emergent outcomes at an aggregated level 

(Filatova et al., 2013). This calls for vigorous validation with respect to the soundness of 

model construction.  
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3.5.4 Optimization and multi-criteria optimization models 

Optimization is defined as finding universal solutions of a function that minimizes or 

maximizes its value while being subjected to constraints (Banos et al., 2011). Optimization 

can be categorized as being either single- or multiple objective problems. The latter is 

sometimes called a multi-criteria optimization model, which more likely deals with several 

conflicting objectives (Odu and Charles-Owaba, 2013). When it comes to sectoral carbon 

emissions, optimization models are most frequently used to formulate carbon mitigation 

policies (Chang et al., 2017; C. Wang et al., 2014; Zhang et al., 2013), design carbon trading 

systems, compare different taxing strategies (Wei et al., 2014; Zhou et al., 2013), upgrade 

and optimize industrial infrastructure (Chang, 2015; Chen et al., 2016; L. Li et al., 2015), and 

analyze the mechanisms of inter-regional carbon emissions transfer (Guo et al., 2016; Sun et 

al., 2017; Tan et al., 2013). 

 

The optimization or multi-criteria optimization models require the specification of objective 

functions and constraints to which the objective function is being subjected. Minimizing the 

total production costs, minimizing carbon emissions, and maximizing economic growth are 

the most frequent but conflicted objectives (Chang, 2015). In addition, several other 

constraints, such as: meeting energy demand; reaching energy and emission control targets; 

energy resource availability; and manufacturing and construction budgets are also identified 

as constraints across different research themes. For example, to find the best carbon 

mitigation policy, Zhang et al. (2012) take three distinct carbon tax policies as constrains for 

scenario analysis.  

 

Optimization or multi-criteria optimization models rely on the capacity to provide an optimal 

pathway to achieve carbon emission targets under different sets of assumptions about 
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technologies, the economy, and energy systems. However, the establishment of the 

optimization system requires detailed prior information on the functions and parameters 

which are used. In addition, it is sometimes not feasible to find a solution for the optimization 

function.  

 

3.5.5 Techno-economic model 

Rather than estimate sectoral carbon emissions directly, techno-economic models use a 

decision-making process to compare available technological options, especially for CO2 

reduction and carbon capture technologies (Cau et al., 2018; Cormos and Cormos, 2017; 

Klemeš et al., 2007). Techno-economic models approach research problems from both a 

technical and an economic perspective. From the technical perspective, productivity 

performance is assessed with reference to different configurations with and without applying 

new CO2 reduction and capture technologies under predefined operational parameters 

(Pettinau et al., 2017). The technical assessment aims to evaluate the extent to which the new 

technologies improve productivity or reduce energy consumption. From an economic 

perspective, potential benefits and costs, including investment, operation and maintenance, 

are quantified for the life of the technology (Huang et al., 2010). Techno-economic models 

employ sensitivity analysis of the key factors included in the model, such as fuel costs, 

technological growth and environmental impacts, to provide uncertainty bounds on the final 

estimation. The economic assessment aims to ensure that profits can be achieved. 

 

For estimating sector carbon emissions, the primary advantage of techno-economic models is 

that assessing new technologies from two independent perspectives enables researchers to 

evaluate their benefits in a more practical and objective manner. However, the full 

implementation of a techno-economic model is a major undertaking. Significant effort is 
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required to evaluate existing and future technical options, and to work out meaningful 

parameters. Moreover, techno-economic models rely on the synthesis of technological and 

economic expertise, which is usually very challenging for researchers. 

 
 

4. Bibliometric analysis 

As indicated in Figure 3, since China overtook the USA as the largest carbon emitter in 2007, 

CSCE research has attracted increasing attention. Over the last six years, the annual number 

of CSCE publications has increased from 14 in 2010 to 230 in 2016, with an average annual 

growth rate of 63%. The annual number of citations has also increased markedly, growing 

from 97 in 2010 to 2,716 in 2016, equating to an average annual growth rate of 47%. Though 

the number in 2017 only covers seven months of the year, the increasing trend for both 

publications and citations is evident. This compares with an estimated average annual growth 

rate of 8%–9% in global scientific output since the end of WWII, making CSCE research a 

very active area of research which is growing four times as fast (McKerlich et al., 2013). 

 

CSCE research attracts scholars from a diverse range of disciplines. The number of published 

subject areas has increased from 2 in 1997 to 25 in 2017. While the disciplines of 

environmental science, energy, engineering and technology have dominated the CSCE field, 

research in economics, meteorology, atmospheric sciences, thermodynamics, water resources 

and public management has increased significantly. Initially, CSCE research was primarily 

conducted in science subjects, but it is increasingly being conducted in fields such as urban 

studies, government, law and international relations.  
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Figure 3 Publications and citations of papers published from 1 January 1997 to 20 July 2017 

Notes:  

1. The data for 2017 only covers the first 7 months of the year.  

2. Because one paper can belong to more than one subject area, the stacked column shows the relative 

proportion for each subject. It does not indicate the publication or citation number for each subject.  

 

Table 2 indicates that IOA, IDA and econometrics are the three main methods adopted in the 

CSCE field. Around 50% of CSCE papers cite at least one of these three methods  
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Method WoS search results Percentage 
Environmentally-extended input-output analysis 182 22.55% 
Index decomposition analysis 121 14.99% 
Econometrics 135 16.73% 
Data envelopment analysis 35 4.34% 

Simulation 
and other 
methods 

Computable general equilibrium 38 4.71% 
Integrated assessment  10 1.24% 
System dynamics 6 0.74% 
Agent-based  3 0.37% 
Optimization 6 0.74% 
Multi-criteria 1 0.12% 
Techno-economic 1 0.12% 

 
Table 2 Percentages of published CSCE journal papers using each method 

Note: More than one method may be used in the same CSCE paper.  

 

Figure 4 (publications) and Figure 5 (citations) show the increasing use of the main methods 

applied in the CSCE field. Between 2010 and 2016, the number of publications grew at an 

average annual rate of 85%, with the number of citations growing at an average annual rate of 

68%. For 2017, only papers that were published before 20th July were included in the 

analysis. However, the trend is still evident. In addition, while IOA, IDA and Econometrics 

are still the dominant methods in this research field, DEA, IAM and CGE methods have 

become increasingly popular, taking up a larger share of the total percentage.  

 

Figure 4 Publication per method from 1997 to 2017 
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Note: The stacked columns show the relative proportion of each family of methods in each year.  

 

 

 
 Figure 5 Citation per method from 1997 to 2017 

Note: The stacked columns show the relative proportion of each family of methods in each year. 

 

5. Knowledge mapping through CiteSpace 

 

Figure 6 presents a landscape view of the CSCE field, generated by CiteSpace. It is based on 

807 papers and 24,744 citations between 2001 and 2017. The top 50 most-cited publications 

in each year are used to construct a network of citations for that year. Each individual 

network is then synthesized so that each node on the map represents a cited paper, and the 

node size represents the number of citations for that paper. If two papers are both cited in a 

third paper, there is considered to be a link connecting the two cited papers. The assumption 

is that if two papers are cited together, the two references are associated in some ways (Chen 

et al., 2012). The nodes with red tree-rings are references with “citation bursts”, which 
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indicate dramatic increases in their citations over one year or multiple years. These bursts 

were detected using Kleinberg’s (2003) algorithm. The colour of the cluster areas indicates 

the time when co-citation links in one area of research appeared for the first time (Chen, 

2017). Areas in green were generated earlier than areas in yellow.  

 

We used CiteSpace to cluster references that are commonly cited in CSCE research. Each 

cluster corresponds to an underlying research speciality. The co-citation network was found 

to have a high modularity Q of 0.7799. Modularity Q measures the extent to which a network 

can be grouped into clusters with distinct boundaries (Chen et al., 2010; Martin III, 2012). 

The high modularity Q suggests that the specialties of the CSCE network are clearly defined 

in terms of co-citation clusters.  

 

While the cited papers in the reference provide the knowledge base, citing papers present the 

frontier of certain subjects. In other words, the paper which cites the papers in a cluster 

reveals the latest research topic of the underlying research speciality. The clusters were 

labelled using terms in the titles of citing papers and a log-likelihood ration (LLR) weighting 

algorithm (Chaomei Chen et al., 2010). LLR algorithms are used to create labels for clusters 

by identifying the core concepts in the cluster using keywords and phrases from the titles of 

papers. In order to better reveal the focus of each cluster, we have adjusted the labels 

according to the titles and abstracts of the citing papers as shown in Figure 6.   

 

In Figure 6, it can be seen that Cluster 4 is distinct from the other clusters. Cluster 4 

concentrates on organic and black carbon emissions, while all other clusters focus on carbon 

dioxide emissions, which comprise 81% of greenhouse gas emissions (United States 

Environmental Protection Agency, 2018).  Organic and black carbon emissions are 
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components of particulate matter, produced by the incomplete combustion of carbonaceous 

fuels (Chow et al., 2012). They have a different effect on the climate and they are studied 

using different research methods. In addition, Clusters 9 and 10 are less connected with other 

clusters due to their distinct research interests.  The rest of the clusters are closely connected, 

with some areas of overlap.  
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 Figure 6 A landscape view of the co-citation network from 1997 to 2017 

 

In Table 3, a ‘silhouette score’ is calculated for each cluster to measure the quality of a 

cluster as indicated by its homogeneity and consistency (Chen et al., 2010; Rousseeuw, 

1987). The closer the silhouette score is to 1.0, the more homogeneous the cluster is thought 

to be. As indicated in Table 3, the silhouette scores for most of the largest ten clusters are 

above 0.78.  These high scores suggest that the content of each paper is well matched to its 

own cluster, and poorly matched to neighbouring clusters. In addition, the Mean (Cite Year) 

column in Table 3 is the average year of publication within a single cluster, indicating 

whether a cluster generally comprises old or recent papers (Chen, 2014). It can be seen that 

Clusters 2, 4 and 9 are relatively old clusters that contain papers with an average year of 

publication of 2007 or 2008. Clusters 3, 6, 8 and 10 are relatively new clusters that contain 

papers with an average year of publication of 2012 or later.  
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Cluster ID Size Silhouette score Cluster Label Mean (Cite Year) 

1 54 0.883 
Carbon emissions 

through international 
trade 

2010 

2 44 0.775 Carbon emissions at 
country level 2008 

3 36 0.788 Sector carbon emission 2012 

4 35 0.988 Organic/black carbon 
emission 2007 

5 31 0.807 Carbon emissions at 
regional level 2009 

6 20 0.933 Green economy 
performance evaluation 2012 

7 14 0.983 Inventory of carbon 
emission at regional level 2009 

8 10 0.963 Residential carbon 
emissions 2012 

9 5 0.994 Carbon emission 
intensity 2008 

10 4 0.977 Environmental Kuznets 
curve 2014 

 

Table 3  Summary of the largest 10 clusters 

Size: The number of reference that a cluster contains 

 

Figure 7 presents the timeline of co-citation clusters. The clusters are arranged according to 

size. The clusters, “carbon emissions through international trade”, “carbon emissions at 

country level” and “sector carbon emissions”, are the most active clusters, and they have 

been active for more than 10 years. In addition, there have been continuous breakthrough 

achievements in these clusters. This can be seen from the large nodes in red indicating ‘bursts 

in citations’. The clusters, “carbon emissions at regional level”, “green economy performance 

evaluation” and “residential carbon emission” were formed later, but are now active clusters.  
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Figure 7. The timeline of co-citation clusters from 1997 to 2017 

In Table 4 below, the main methods adopted in each cluster are identified by manually 

reviewing the top 20 citing papers in each cluster. Co-citation analysis has been criticized for 

not being able to identify whether a citation gives supportive arguments or offers a critique 

(Cheng, 2016; Kunz and Hogreve, 2011). Through a manual review, the potential bias of co-

citation analysis is minimized.  Each cluster is reviewed to confirm the research focus and 

identify the main analysis methods used, creating a more precise presentation of CSCE field.  

The clusters are arranged in order according to the average year of publication of the cluster. 

The three clusters ‘carbon emissions at country level’, ‘organic/black carbon emissions’ and 

‘carbon emissions intensity’ are the earliest clusters, with average publication years of 2007 

and 2008 respectively. The initial research interest was in carbon emissions at the country 

level. A bottom-up inventory method was adopted to produce the direct carbon emissions 

inventory, and there have been many efforts to improve its accuracy. In addition, the effect of 

the main influencing factors, especially carbon emissions intensity, on national carbon 

emissions, has attracted significant interest. IOA, IDA and econometrics were all used for the 
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impact analysis. Some comparative analysis was also conducted to compare the different 

impact factors across countries and across regions in China. Based on the inventory and 

impact factors research, some simulation models, such as the environmental learning curve 

(ELC) model, were developed to predict trends in carbon emission activities.  

The research focus moved to the regional level around 2009 due to concerns about the large 

size and imbalanced development of the Chinese economy. The ‘Inventory of carbon 

emissions at regional level’ cluster and the ‘Carbon emissions at regional level’ cluster focus 

on this topic. Similar methods were used to construct emissions inventories, analyse impact 

factors and predict future trends. In addition, this area of research also looks at carbon 

footprints across different regions and the spatial distribution of carbon emissions using life-

cycle and spatial analysis. For the emissions inventory, analysis went beyond direct 

emissions to create an embodied carbon emissions inventory based on input-output tables. 

The examination of linkages between different regions has grown in popularity. 

Research on embodied carbon emissions due to international trade has emerged as an 

important area of study which is clarifying the role that China should play in mitigating 

global carbon emissions. Although China has been the largest carbon emissions country since 

2007, as a world factory, much of these carbon emissions are induced by demand from other 

countries. While input-output databases serve to construct embodied carbon emissions, IOA 

and IDA techniques and models are frequently used to analyse the relevant impact factors.  

Research interest was gradually drawn to the sector level around 2012. Although embodied 

emissions inventory construction and impact analysis are still at the core of sector-level 

research, much of the discussion has shifted to providing policy suggestion for curbing future 

emissions. Policies discussed have included establishing a carbon tax and constructing an 
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emissions trading scheme (ETS). CGE models are frequently used to forecast the impact of 

these policies in different contexts.  

The green economy performance evaluation cluster is distinct in terms of its research content 

and methods. The main aim of studies in this cluster is to assess the performance and 

efficiency of the carbon emission control policies of regions, industries or countries. DEA, 

Malmquist index analysis, directional distance function or their hybrids are usually used to 

assess efficiency levels and to measure green total factor productivity. In addition, 

econometrics are used to analyse the impacts of particular factors on carbon emission 

efficiency.  

A growing area of research is attempting to model residential carbon emissions, due to the 

constantly increasing amounts of emissions produced by residents. In this line of research, 

two new research topics are being used. One draws on the behaviour of residents using 

survey methods and the other uses network analysis models to examine urban carbon 

emissions. The reason for this growing interest in residential emissions is that the control of 

emissions is more complete when the residential sector is considered. Network analysis could 

provide a new perspective for considering both the linkages between industries and final 

demand using a residential model.  

The most recent research cluster focuses on analysing the factors impacting carbon emissions 

by investigating the existence of environmental Kuznets curves.2 This is a relatively small 

cluster, formed around 2014. The research content itself is not new, but the cluster provides a 

new perspective based on the use of the Kuznets curve. 

                                                 
2 The environmental Kuznets curve (EKC) proposes an inverted-U relationship between pollution and economic 
development (Grossman and Krueger., 1995).  In other words, pollution increases with economic development to a certain 
income level, and after that it declines.    
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Table 4 Methods used by the top 20 citing papers for each cluster 

Clu
ster 
ID 

Adjusted 
label 

Mean 
(Year) Research focus 

Main Method 

IOA IDA Econometrics Simulation Efficiency Others 

1 

Carbon 
emission 
through 
internatio
nal trade 

2010 

1) Inventory of embodied 
carbon emissions through 
international trade at 
industry, region and 
country level  
2) Analysis of impact 
factors on the embodied 
carbon emissions through 
international trade 

 
 
IOA/SDA: 
construct 
the 
embodied 
inventory; 
 
analyse 
impact 
factors 
 

 
 
analyse 
impact 
factors 
on 
embodie
d carbon 
emission 
through 
internatio
nal trade 

   

1) Hybrid between SDA and IDA: to clarify 
the effect of impact factors on embodied 
carbon emissions through international 
trade 

2 
Carbon 
emissions 
at country 
level 

2008 

1) National carbon 
emissions inventory and 
accuracy improvement  
2) Analysis of impact facto  
on carbon  
emissions in China at regio  
and industry lev  
3) Comparative analysis  
factors impacting carbo  
emissions acro  
countries/regions in  
China 
4) Prediction for futu  
scenarios 

 
 
IOA/SDA:  
 
 
analyse the 
impact 
factors on  
carbon 
emission 

 
 
IDA / 
LMDI:  
 
analyse 
the 
impact 
factors 
on 
domestic 
carbon 
emission 

 
 
Econometrics/ 
STIRPA: 
analyse 
the impact 
factors on 
domestic 
carbon 
emission 

 
 
Environ-
mental 
learning 
curve (ELC) 
model: 
predict 
carbon 
intensity 
reduction 
potentials  

  

1) Bottom-up inventory: to construct direct 
emissions inventory at country level using 
official statistical data, latest emission 
factor, collected activity data and emissions 
sources 
2) Path analysis model:  to analyse the 
impact factors on domestic carbon emission 
3) Comparative analysis: to compare the 
different emission amounts and impact 
factors in different regions 
4) Use Individual sector prices indices used 
instead of one general GDP deflator for 
improvement in decomposition analysis 
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Clu
ster 
ID 

Adjusted 
label 

Mean 
(Year) Research focus 

Main Method 

IOA IDA Econometrics Simulation Efficiency Others 

3 
Sector 
carbon 
emission 

2012 

1) Inventory of each 
industry's carbon emissions                     
2) Analysis of impact 
factors on each industry's 
carbon emissions                      
3) Development of 
emissions trading scheme 
(ETS), including the 
allocation of carbon 
emissions among 
industries, the impact of 
ETS on certain industries 

 
 
construct 
the 
emissions 
inventory 
of 
industries 

 
 
IDA / 
LMDI:  
 
analyse 
the 
impact 
factors 
on each 
industry's 
carbon 
emission 
 

 

 
 
CGE/IAM/ 
Optimization
/System 
Dynamic/ 
ABM 
 
To provide 
policy 
suggestion 
for ETS 
design, 
carbon tax 
and examine 
its impact 

 1) Literature review: to provide policy 
suggestion for ETS design 

4 

Organic/
black 
carbon 
emission 

2007 

1) Emissions inventory of 
black carbon emissions at 
city, region and country 
levels 
2) Prediction of black 
emission amounts 

   

 
Monto Carlo 
simulation 
model, 
global 
chemical 
transport 
model, 
MOZART-4 
model 
 

 

1) Bottom-up inventory: To construct 
emissions inventory of black/organic 
carbon using official statistical data, latest 
emission factor, collected activity data such 
as vehicle activity data, and major emission 
sources in cities  
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Clu
ster 
ID 

Adjusted 
label 

Mean 
(Year) Research focus 

Main Method 

IOA IDA Econometrics Simulation Efficiency Others 

5 

Carbon 
emission 
at 
regional 
level 

2009 

1) Carbon footprint through 
different industrial spaces 
2) Impact factor analysis at 
city level 
3) Spatial analysis 
4) Prediction for future 
scenarios of low-carbon 
cities 

 

 

 
 
IDA / 
LMDI:  
analyse 
the 
impact 
factors 
on 
regional 
carbon 
emission 

 
 
analyse the 
impact factors 
on regional 
carbon 
emission 

 
 
Long-Range 
Energy 
Alternatives 
Planning 
model and 
others: 
predict 
future 
scenarios of 
cities  

 

1) Life-cycle model: to simulate the carbon 
emissions, amount of fossil energy and 
rural biomass energy of different regions of 
China 
2) Spatial analysis: to analyse the spatial 
distribution of carbon emissions 

6 

Green 
economy 
performan
ce 
evaluation 

2012 

1) Assessment of carbon 
emissions performance at 
industry, city, province and 
country levels 
2) Measure China's green 
total factor productivity 
(TFP) growth 
3) Analysis of impact 
factors on carbon emission 
levels in different stages 
and regions 

  

 
 
Econometrics/
STIRPAT/SE
M: 
analyse impact 
factors on 
carbon 
emission 
efficiency in 
different 
regions/ 
development 
stages 

 

 
 
DEA/ 
Malmquist 
index/ 
DDF: 
compare 
carbon 
emission 
performan
ce of 
industries 
or regions 

1) Hybrid among DEA, Malmquist index 
and DDF: to estimate the changes in carbon 
emission performance as well as their 
driving forces at industry and whole 
economy level, such as the meta-frontier 
non-radial Malmquist CO2 emissions 
performance index model 

 
 
7 

 
 
Inventory 
of carbon 
emissions 
at regional  
level 

 
 
2009 

 
 
1) Carbon emissions 
inventory of cities 

 
construct 
the 
embodied 
inventory 
at city level 
 

    

 
1) Bottom-up inventory: to construct direct 
emissions inventory at city level using 
official statistical data, latest emission 
factor, collected activity data and emission 
sources 
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Clu
ster 
ID 

Adjusted 
label 

Mean 
(Year) Research focus 

Main Method 

IOA IDA Econometrics Simulation Efficiency Others 

8 
Residential 
carbon 
emission 

2012 

1) Emissions inventory of 
the residents 
2) Analysis of impact 
factors on the carbon 
emissions of the residents 
3) Prediction for future 
scenarios of residential 
carbon emission 
4) Analysis of residential 
carbon emission behaviour 
5) Mitigating urban carbon 
emissions through network 
perspective 

 
 
construct 
the 
embodied 
inventory 
of residents 

 

 
 
Econometrics/
STIRPAT: 
analyse impact 
factors on the 
carbon 
emissions of 
residents 

 
 
AIM (Asia-
Pacific 
Integrated 
Model)/End
use 
model/others
: 
predict 
future 
scenarios of 
residential 
carbon 
emission 

 

1) Bottom-up inventory: to construct direct 
emissions inventory of residents using 
official statistical data, latest emissions 
factor, collected activity data and emission 
sources 
2) Divisia index decomposition method: to 
analyse impact factors on the carbon 
emissions of residents 
3) Survey study: to investigates the energy 
consumption behaviours of households 
4) Network analysis: to mitigate carbon 
emissions in a holistic way 

 
9 

 
Carbon 
emissions 
intensity 

 
2008 

 
1) Analysis of impact 
factors on carbon emission 
intensity change 

 

 
 
IDA / 
LMDI  
 

    

10 

Environme
ntal 
Kuznets 
curve 

2014 

1) Analysis of factors 
impacting carbon 
emissions through 
investigation of the 
existence of an 
environmental Kuznets 
curve 

  

 
 
Econometrics/
STIRPAT/GM
M: analyse 
impact factors 
on the carbon 
emissions 
from various 
angles 
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Important milestone papers in the development of CSCE research can be identified from the 

list of references with citation bursts (Table 5) and they reflect the dynamics of the field. A 

citation burst means that the reference it is associated with has received a sharp increase in 

the number of citations over a year or multiple years. The detection of citation bursts in 

CiteSpace is based on Kleinber’s algorithm (Kleinberg, 2003). The size of the increase in 

citations is indicated by the strength of the citation burst, which takes account of both the 

number of citations and the length of the period over which the citations occur. From 1997 to 

2017, there were 37 reference papers with citation bursts in CSCE research. Table 4 lists the 

10 references with the largest citation burst strength values. The table is arranged according 

to the strength of the citation bursts. The colour along the timeline from 1997 to 2017 

indicates the number of citations the paper received. The stronger the colour, the greater the 

number of citations. The red part represents the period when the citation burst happened.  

 

As can be seen from the method column, four out of five families of methods have been 

adopted as the main methods by the top 10 papers. The earliest two bursts, which started in 

2009 and ended in 2012, focused on decomposing carbon emission changes at the national 

level with IDA (Ang, 2004) and particularly with LMDI (Wang et al., 2005). Subsequently, 

two other bursts from 2014 to 2015 addressed consumption-based national emissions 

inventory construction with input-output databases and the analysis of the forces driving 

carbon emissions using SDA (Peters et al., 2007). From 2015 to 2017, researchers focused 

on: decomposing carbon emissions changes in the cement and transportation industries using 

LMDI (Wang et al., 2011; Xu et al., 2012); constructing residential carbon emissions 

inventories and analysing impact factors with IOA (Zhu et al., 2012); examining total factor 

carbon emissions performance with DEA (Zhu et al., 2012) and Malmquist index analysis 
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(Zhou et al., 2010); and predicting the impact of household consumption patterns on carbon 

emissions with CGE (Dai et al., 2012).   
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Table 5 Top 10 papers with the strongest citation bursts 

Strengt
h of 

burst 

Star
t of 
burs

t  

End 
of 

burs
t 

1997 - 2017 Pub
.  

Yea
r  

Author Title Journal Method Time
s 

cited 

7.1695 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃

▃▃ 

2012 Xu J., 
Fleiter T., 
Eichhamm
er W., and 

Fan Y. 

Energy 
consumption 
and CO2 
emissions in 
China's 
cement 
industry: A 
perspective 
from LMDI 
decompositio
n analysis 

 
 

Energy 
Policy 

 
IDA/ 

LMDI 

 
 

83 

5.8507 2009 2012 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂

▂▂ 

2004 Ang B.W. Decompositi
on analysis 
for 
policymaking 
in energy: 
which is the 
preferred 
method? 

 
Energy 
Policy 

 
IDA 

 
543 

5.6039 2014 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃

▂▂ 

2008 Peter G.P. From 
production-
based to 
consumption-
based 
national 

 
Ecological 
Economics 

 
IOA 

 
327 
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Strengt
h of 

burst 

Star
t of 
burs

t  

End 
of 

burs
t 

1997 - 2017 Pub
.  

Yea
r  

Author Title Journal Method Time
s 

cited 

emission 
inventories 

5.4458 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃

▃▃ 

2012 Zhu Q., 
Peng X., 

and Wu K. 

Calculation 
and 
decompositio
n of indirect 
carbon 
emissions 
from 
residential 
consumption 
in China 
based on the 
input–output 
model 

 
 

Energy 
Policy 

 
 

IOA 

 
 

38 

4.9897 2009 2012 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂▂

▂▂ 

2005  
Wang C., 
Chen J., 

and Zou J. 

 
Decompositi
on of energy-
related 
CO2 emissio
n in China: 
1957–2000 
 

 
Energy 
Policy 

 
 

IDA/LM
DI 

 
 

222 

4.8829 2014 2015 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃

▂▂ 

2007 Peters G. 
P., Weber 
C., Guan 
D., and 

China's 
Growing 
CO2 
Emissions - 

Environment
al Science 

and 
Technology 

 
 

IOA/SDA 

 
 

263 
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Strengt
h of 

burst 

Star
t of 
burs

t  

End 
of 

burs
t 

1997 - 2017 Pub
.  

Yea
r  

Author Title Journal Method Time
s 

cited 

Hubacek 
K. 

A Race 
between 
Increasing 
Consumption 
and 
Efficiency 
Gains 

4.7592 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃

▃▃ 

2012 Wang Z., 
Zeng H., 

Wei Y. and 
Zhang Y. 

Regional 
total factor 
energy 
efficiency: 
An empirical 
analysis of 
industrial 
sector in 
China 

 
Applied 
Energy 

 
 

DEA 

 
 

194 

4.7592 2015 2017 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃

▃▃ 

2012 Dai H., 
Masui T., 
Matsuoka 

Y., and 
Fujimori S. 

The impacts 
of China’s 
household 
consumption 
expenditure 
patterns on 
energy 
demand and 
carbon 
emissions 
towards 2050 

Energy 
Policy 

 
 

CGE 

 
41 
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Strengt
h of 

burst 

Star
t of 
burs

t  

End 
of 

burs
t 
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6. Discussion 

 

6.1 Critique of methods 

 

Methods cannot be discussed in isolation from the research questions they are used to 

address. As indicated in Table 3, different methods were adopted in different clusters. 

However, although the research was conducted from distinct perspectives ranging from the 

residential sector to international trade, there are three common topics: the emissions 

inventory, impact analysis, and predictions for carbon emission trends. The five families of 

methods are discussed below, in relation to these three common topics. In addition, there are 

special topics for some clusters, such as carbon trading schemes in the ‘sector carbon 

emissions cluster’. The relevant methods shall also be discussed.  

 
   
6.1.1 Carbon emissions inventory 

 

For the carbon emissions inventory topic, the two main methods used are the bottom-up 

approach and input-output analysis. Emissions inventories have been constructed at the 

household, industry, city, province, country and international trade levels. The bottom-up 

approach is generally used for calculating direct carbon emissions, using official statistical 

data, the latest emission factors, collected activity data and information about major 

emissions sources. Input-output analysis, and more specifically the databases of MRIO, SRIO 

and MSIO, are used to calculate the embodied carbon emissions of industry sectors and 

regions. In addition, the IOA database is frequently used in conjunction with other methods, 

such as life-cycle assessment, computable general equilibrium, and network analysis. While 

the direct carbon emissions inventory can be updated on an annual basis, the embodied 
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inventory is updated less frequently, due to the large data requirement. Inventory construction 

provides support to clarify the responsibilities of regions and countries for carbon emissions 

from both a production and a consumption perspective. Inventory construction could also be 

used to make decisions about how to allocate the initial quotas of certificates for an emissions 

trading scheme (ETS) in China, and how to share responsibilities for emissions reduction 

internationally.  

  

In addition, it is important to note the large fluctuation in both production-based emissions 

(PBE) and consumption-based (CBE) emissions. Zhang et al. (2017) compared ten PBE and 

CBE results for 1995, 2000, 2002 and 2005. They found significant differences in the 

quantities of carbon emissions and the differences tended to increase over time. Such 

discrepancies may result from the different assumptions that are associated with the different 

methods being used. These methods include single-region input-output models, bi-regional 

input-output models, as well as multi-region input-output models and their integration with 

life-cycle assessment models (MRIO-LCA).  

 

The different data sources on which these models are based also contribute to differences in 

results. For example, Guan et al.’s (2012) research on China concluded there was a gigatonne 

gap between the national carbon dioxide inventory and the summation of provincial 

inventory data between 1997 to 2010. More transparency is therefore urgently needed for 

data collection, processing and validation of statistical procedures. In addition, the data 

collected by statistical bureaus and agencies within China is only as reliable as the sources of 

the data, and these sources are susceptible to political pressure. Statistical agencies and 

bureaus are frequently pressured to conceal data to achieve a political goal, which further 

reduces the quality of the data being collected. However, with increasing awareness about 
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data accuracy due to commentary by domestic and international critics, attempts have been 

made by the Chinese government and scholars to address the problem. For instance, research 

by Z. Liu et al. (2015) refined carbon emissions inventories with independently assessed 

activity data and two new sets of measured emission factors for Chinese coal based on 602 

coal samples.  

 

6.1.2 Impact analysis 

 

In the process of impact analysis, the methods of input-output analysis, index decomposition 

analysis and econometrics all come into play. The main advantage of IOA techniques lies in 

the examination of system-wide effects, including the direct and indirect effects on the entire 

supply chain. However, in contrast to its wide application in emissions inventory 

construction, input-output analysis techniques were only used frequently in carbon emissions 

research at the country (Cluster 1) and international trade (Cluster 2) levels. Two lines of 

research are adopted for assessing the impacts of the factors which affect carbon emission 

levels. The first approach is based on the assumption that there is a stable technological 

structure. When the flow of outputs in any part of the system is altered, this changes the input 

requirements in all sectors in fixed proportions, leading to a multiplier effect across the 

economy (Su and Ang, 2014; Zhang et al., 2015). The second approach, known as structural 

decomposition analysis (SDA), relaxes the assumption of fixed technology coefficients and 

allows the sensitivity of changes to technical coefficients to be explored to assess their 

relative impacts (Tarancon and Del Río, 2012; J. Yan et al., 2017). Using SDA, it is possible 

to apply a disaggregated comparative statistical approach to both final demand and 

technological structure (Cellura et al., 2012; Su and Thomson, 2016). 
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 Index decomposition analysis has been used extensively for impact analysis at various levels 

of carbon emissions, including at the industry, city, province, country and international trade 

levels. IDA produces deterministic results through an “ideal decomposition” with no residual 

term. With the development of several extensions of the LMDI method such as LMDI-I, the 

number of pre-defined factors is increased from five to eleven, and the application areas are 

expanded from specific industry sectors to economy-wide energy trends (Ang and Wang, 

2015). In addition, various decomposition schemes have been proposed to satisfy a range of 

different macro-level variables, with corresponding formulas to carry out the decomposition 

(Ang, 2005; Su and Ang, 2012).  

 

IDA is especially useful for examining the effects of changes in carbon emissions intensity 

on carbon emission levels. Moreover, in the international trade research cluster, IDA is used 

in conjunction with SDA methods, such as multiplicative SDA, to clarify the roles of 

different impact factors. The popularity of IDA comes mainly from its ideal decomposition 

and annually updated data resources. Because there is no residual term in the formula, it is 

easy to interpret results. However, while IDA works well at macro and meso levels of 

analysis, it is rare for attempts to be made to use IDA at micro levels, such as the firm and 

household levels.  

 

Econometrics has increasingly been used in almost all the research clusters due to its 

versatility. Apart from impact factor analysis at the macro and meso levels, econometrics is 

also used for micro-level analysis, including at the firm and household levels. Moreover, for 

research evaluating green economy performance (cluster 6), econometrics is also used to 

investigate the driving forces behind changes to carbon emissions control efficiency. The 
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Kuznets curve cluster, focusing primarily on research that analyses the Kuznets curve, also 

takes economics as its main method.  

 

An important development in using econometrics in CSCE is to take the regional spillover 

effect and the heterogeneity of provinces into consideration. It is particularly evident in the 

research about carbon emissions at the country level (cluster 2) and regional level (cluster 5). 

The spatial autoregressive model (Zhang and Xu, 2017), spatial lag model (Chuai et al., 

2012), and exploratory spatial data analysis (Chuai et al., 2012) are usually the starting points 

for this approach. Those models assume the carbon emissions in one place manifest an 

increased likelihood of emissions in neighboring places. They capture the spillover effect by 

adding the spatial lag of the dependent variable, namely carbon emissions. In addition, 

considering that the determinants of carbon emissions such as population, income and 

technology are also directly affected by neighboring places, The Spatial Durbin Panel Data 

Model (Liu et al., 2016; Y. Liu et al., 2014) was adopted to add the spatial autocorrelation 

coefficients of the explanatory variables. This kind of random coefficient geographically 

weighted regression model effectively captures both nonstationary and spatial heterogeneities 

by relaxing the assumption of global estimators of invariant parameters (Brunsdon et al., 

1996). However, it is applicable only when high-solution and balanced data is available. The 

spatial correlation effect is statistically significant across all research, which indicates a 

remarkable spillover effect existing in China’s sectoral carbon emissions processes. 

 

In addition, the provincial heterogeneity is also considered for impact factor analysis in 

recent studies. Given China has a vast territory with significant provincial differences in 

resources distribution and economic growth, the relationships between socioeconomic 

variables and carbon emissions is nonlinear, and this may result in a biased estimation (Lin 
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and Wang, 2015). Quantile regression was attempted to solve the problem and this line of 

research demonstrated that the effects of explanatory variables are not constant across the 

spectrum of the dependent variable (carbon emission). For example, Lin and Benjamin 

(2017) found that urbanization was only significant at the tail ends (10th percentile and 90th 

percentile respectively) of the carbon emissions distribution while the gross domestic 

product, energy intensity, carbon intensity was statistically significant across the entire 

spectrum of carbon emissions. However, for the factors exerting consistent impacts across all 

the carbon emission groups, the magnitude of effects would be biased at the tail ends. This 

calls for better understanding for how the effects of explanatory variables are different across 

the distribution.  

 

6.1.3 Predictions for carbon emission trends 

The prediction of carbon emissions is active in national carbon emissions research (Cluster 

2), sectoral carbon emissions research (cluster 3), regional carbon emissions research level 

(Cluster 5), and residential carbon emissions research (Cluster 8). Apart from the prediction 

methods reviewed in part 3.5 simulation, more models and techniques within IOA, IDA and 

econometrics, which are not traditionally used for predictions, have been developed for 

forecasting. Take the increasingly used time-series econometrics models for example. They 

focus more on the simulation or prediction of carbon emissions under different scenarios, 

including GM (1,1) grey model (Tang et al., 2016), autoregressive integrated moving average 

model (ARIMA) (L. Liu et al., 2014) and the vector-error correction model (Zheng and Luo, 

2013). Although time series models are helpful for understanding the long-term trend of 

sectoral carbon emissions, historical data lasting more than two decades are required to 

obtain a robust estimation.  Data availability is another challenge in this group of study. In 

addition, in consistent with the impact analysis research, IOA, IDA and econometrics usually 
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predict carbon emissions under the impact of final demand, population, economic growth, 

technology progress, energy consumption, industrial structural change.  

 

The influence of ETS, carbon tax and other low-carbon policies on future carbon emissions 

have attracted much attention.  CGE, IAM, SD and ABS are mainly adopted to evaluate these 

initiatives based on forecast analysis. CGE, IAM and SD take a top-down approach. While 

CGE and IAM focus on scenario analysis results, SD focuses on the dynamic evolution of the 

system. The dependency and dynamics among economic, social and environmental systems 

are assumed from macro perspective. Correspondingly, the parameters of equations are 

predefined according to existing literatures, empirical evidences, expert judgements, or 

intuitive assumptions.  While the research results are straightforward, which is easy for 

interpretation, it is challenging to set appropriate and convincing parameters. On the other 

hand, ABM takes a bottom-up approach from a micro perspective, and several simulations 

were taken over a given period of time to reflect the dynamic. It focuses on the interaction at 

individual level, such as firms and industries, and approaches the changes in carbon 

emissions as an aggregated result from bottom up.  

 

The adoption of IAM and Tech-economic models encourages multi-disciplinary research.  

Apart from examining the influence of socio-economic activities, IAM considers the physical 

relationships that drive climate change while the techno-economic model considers the 

productivity performance of newly introduced technology. These integrated models make 

prediction from a more comprehensive perspective and yield a more convincing result. 

However, it is very extensive undertaking. In addition, drawing on data simulation based on 

different model assumptions, IAMs seek to provide information on climate change policy 

choices, rather than advancing the understanding for knowledge’s sake (Kolstad, 1998). 
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6.1.4 Carbon control efficiency measurement  

The green economy performance evaluation cluster is distinct from other clusters. The 

common methods used in this cluster include DEA, the Malmquist index and the directional 

distance function. Econometrics is usually used in conjunction with the above methods for 

efficiency assessment. Hybrid approaches and econometrics are increasingly being used to 

estimate the changes in carbon emissions performance and to identify the driving forces at 

the industry and whole economy levels. The meta-frontier non-radial Malmquist CO2 

emissions performance index model is a good example of this (Lin and Tan, 2016).  

 

6.1.5 Method summary 

Table 6 summarises the key features of the main methods that have been reviewed in this 

paper. Apart from these primary methods, several other less popular methods have been 

introduced for fulfilling different research purposes. For example, Moran I is has been 

introduced to analyse the spatial distribution of carbon emissions. The use of surveys was 

introduced to investigate the energy consumption behaviours of households, and network 

analysis was introduced to study carbon emissions control in a more holistic way.  
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Table 6. Comparison of the main methods in CSCE field 

 IOA IDA Econometrics DEA IAM/CGE SD ABM Optimization 
Tech-

Economic 
General and 

specific 
purpose 

Carbon emissions 
inventory;  

 
influencing factor 

analysis 

Influencing 
factor analysis 

Influencing 
factor analysis 

Efficiency 
evaluation 

Simulation 
for forecast 

 
ETS design 

Simulation for 
forecast 

 
Influencing 

factors 
analysis 

Simulation 
for forecast 

 
ETS design 

 
 
 

Simulation for 
forecast 

 
Policies 
making 

Simulation 
for forecast 

 
Evaluation 

of new 
technology 

Type of 
variables 

Production effect 
variables, such as 

GDP;  
technology change 
variables in terms 

of intermediate 
input structure or 
carbon emissions 

intensity; 
final demand 

variables 

Activity effect 
variables such 

as GDP; 
 

Structure effect 
variables, such 

as industrial 
structure;  

 
intensity effect 
variables such 

as carbon 
emissions per 

unit GDP 

Various social 
economic 
variables, 
including 

population, 
GDP, GDP per 

capital, 
technology, 

energy 
structure, 
industrial 
structure, 

energy price, 
geography, 

urbanisation, 
financial 

development 

Major input 
variables: 

labour force, 
capital stock 

and total 
energy 

consumption  
 

Major output 
variables: 
GDP and 

CO2 

Various 
Social 

economic 
variables and 

physical 
variables 
driving 
climate 
change 

Energy 
consumption, 
population, 
economic 

growth, energy 
and economic 

structure 
upgrading, 

technologies 
progress, 
policies 

Rules or 
strategies 
used for 

interaction 
among the 

agents 
 

Adaptive 
learning 

mechanism of 
agents 

Energy 
demanding, 
energy and 
emissions 

control 
targets, 
energy 

resources 
availability, 
manufacture 

and 
construction 

budget, 
carbon tax 

policies 

Predefined 
operation 

parameters 
of new 

technologies, 
measurement 

of 
productivity 
efficiency 

 
Cost and 
benefit 

components 
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IOA IDA Econometrics DEA IAM/CGE SD ABM Optimization 

Tech-
Economic 

Key 
assumptions 

Input-output 
linkages among 

the industries can 
be quantified 

Total effects 
can be 

decomposed 
into several 
influencing 

factors without 
residuals 

High accuracy 
of variables 

measurement; 
the relationship 

between 
dependent and 
independent 
variables are 

correctly 
quantified by 
the selected 

models 

Optimal 
productivity 

frontier exists 

Globally 
Pareto 

equilibrium 
exists 

Whole system 
can be 

represented by 
subsystems 
with causal 

and feedback 
loops 

Autonomous 
and 

heterogenous 
agents with 

adaptive 
learning 

ability exist 

Global 
optimal 

solution can 
be reached 

under 
nonlinear 

constraints 

Changes if 
applying 

new 
technologies 

are 
measurable   

Analytical 
approach 

Top-down Top-down Top-down Top-down Top-down Top-down Bottom-up Top-down Top-down 

Mathematical 
approach 

Linear algebra, 
statistics 

System 
decomposition, 

partial 
derivative 

Statistics, 
econometrics 

Envelopment 
analysis 

Simultaneous 
equations 

Differential 
equations 

Statistics and 
differential 
equations 

Convex 
optimization 
and nonlinear 
programming 

Statistics 

Geographical 
Coverage 

 

Global, national, 
regional, local 

Global, 
national, 

regional, local 

Global, 
national, 

regional, local, 
project 

Global, 
national, 
regional, 

local, project 

Global, 
national, 
regional, 

local 

National, 
regional, 

local 

Local National, 
regional 

Local 

Sectoral 
coverage 

High High High Medium High High Low Medium Low 

Time horizon Short Short Short Medium Long-term Long-term Short Medium Short 

Data 
requirement 

High Medium Medium Low High Medium Medium Medium High 

Static analysis Yes No Yes Yes No No No No N/A 

Time-series No Yes Yes Yes N/A N/A N/A N/A N/A 
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IOA IDA Econometrics DEA IAM/CGE SD ABM Optimization 

Tech-
Economic 

High Geo 
spatial 

Medium Low High Medium Medium Low Low Medium N/A 

Residual 
terms 

No No Yes No No No N/A No N/A 

Integration 
with other 
methods 

 
 

       N/A 

Prediction         N/A 

Flexibility to 
incorporate 

variables 

         

Parametric Yes Yes Yes No No Yes Yes Yes Yes 

Main 
Limitations 

High resolution 
data requirement; 
limited flexibility 
to incorporate new 

variables 

Overlook 
systemic effect; 

limited 
flexibility to 
incorporate 

new variables  

Hardly 
avoidable bias 
in parameter 
calculation; 

overlook 
systemic effect 

Non-
parametric 

Based on 
logically 

inconsistent 
assumptions 

to some 
extent 

Structured 
equations with 

limited 
evolving 
capacity 

Interactions 
hardly be 

articulated to 
reflect the 

reality; 
Highly 

sensitive to 
parameters   

Detailed prior 
information 

required; 
 

End up as a 
NP-hard 
problem 

Heavily 
relies on the 
synthesis of 
technologies 

and 
economic 
expertise 

Future 
directions 

Improve data 
quality and update 

frequency of 
database; 
prediction 
techniques 

development; 
hybrid model 

Prediction 
techniques 

development; 
hybrid model 

Incorporate 
more impact 

factors; 
overcome bias 

Hybrid 
model; more 
consideration 

about the 
international 
structure of 

DMU 

Improve 
scenario 
forecast 
accuracy 

Integrate more 
meaningful 
subsystems 
with more 
accurate 

measurements 

Vigorous 
validation 

with respect 
to the 

soundness of 
model 

constructions 

Integrate more 
micro-level 
constraints 

Modular-
based design 
of evaluation 

process 
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6.2 Emerging trends and gaps for method usage in CSCE field   

 

The emerging trends and gaps can be summarized according to the three common research 

topics of carbon emissions inventory, impact analysis and predictions.  

 

For carbon emissions inventory construction, there have been continuous improvements in 

data quality and update frequency, partly driven by the dramatic ‘big data’ capture and 

analysis that has evolved over recent years. The data sources used by these models have also 

become increasingly diversified. For example, Ma et al. (Ma et al., 2015) used an activity 

survey and a geographical information system (GIS) based on land use data to compile data 

on emissions from work and non-work trips. Global positioning system (GPS) data and GIS 

data are used to analyse the spatial-temporal features of emissions from taxis (Luo et al., 

2017). Remote-sensing data is increasingly used to monitor and verify carbon emissions in 

factories and workplaces in real time, for example by monitoring carbon that is released from 

burning coal (Jiang et al., 2017).  

 

There have also been recent attempts to improve the resolution and accuracy of carbon 

emissions data.  For bottom-up research relating to direct emissions, efforts are being made to 

improve and update the important factors for calculation, including emissions factors, 

oxidation rates and the quality of fossil fuels. The variations of these factors within and 

among provinces need to be considered for a comprehensive and accurate understanding. Liu 

et al. (Z. Liu et al., 2015) found that the IPCC default emissions factor for coal is on average 

40 percent higher than Chinese coal, based on on-site sampling from Chinese coal mines.  

For the MRIO database relating to embodied carbon emissions, scholars have been increasing 

the update frequency and data resolution. Wang et al. (Y. Wang et al., 2014) demonstrated a 



 59 

new approach to constructing time series data from an MRIO database for China from 1997 

to 2011 covering 30 provinces and 135 industries, as well as linkages to 185 countries. In 

addition, the introduction of multi-scale input-output tables (MSIO) (Shao et al., 2016) also 

serves as an efficient tool when MRIO data is not available.  

 

For impact analysis a multi-disciplinary perspective is needed for advancing the 

understanding of climate change and identifying more relevant variables accordingly. The 

ultimate goal of carbon emissions abatement is to mitigate climate change. The CSCE 

research is a multi-disciplinary field. The knowledge sharing among scholars will bring out 

more relevant variables and make better use of the increasingly rich data. For example, 

sectoral carbon emissions reduction is closely connected with social and economic 

development. More socioeconomic and governance information can provide extra value, such 

as income inequity, financial development, low carbon awareness of residents, regional 

economic collaboration, development concepts bearing by municipal governments and 

geopolitics around China. Moreover, the climate and geographic information are another 

source of variables to be considered.  

 

In addition, the development of techniques within each family of methods provides new 

perspectives to tackle impact analysis problems, and to improve the validity and veracity of 

model results. Benefiting from the its versatility, econometrics is increasingly being used to 

include these new variables. In addition, there is also a trend for IDA to be decomposed into 

more factors. Though IOA is frequently used as a database, the IOA analysis techniques 

should be valued more for examining the systemic effect of variables. In addition, the gap 

between IOA and IDA with regards to decomposition methods has been narrowed. For 

example, multiplicative decomposition used to only be used by IDA, but is now being 
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increasingly used by SDA (Su and Ang, 2012). DEA and LMDI are integrated to better 

assess energy efficiency (Olanrewaju et al., 2012). Several new methods and techniques have 

been introduced in the CSCE filed. For example, network analysis has recently been 

combined with IOA to track and control embodied carbon flows  (Chen and Chen, 2016; 

Wang et al., 2017).  

 

For prediction, within the family of simulation, more efforts could be made to bridge the gap 

between micro- and macro-level analysis. From the comparison of the main methods in 

CSCE field (see table 6), it is found that most of the methods are undertaken at the macro-

level. To understand the micro-meso-macro pipeline of CSCE, further research is called for 

linking microscopic behaviours modelled by agent-based models with macroscopic emission 

patterns modelled by the ones such as econometrics, IAM/CGE, and system dynamics, by 

learning from other disciplines (Eppstein et al., 2011; Geertman and Stillwell, 2009; 

LeBaron, 2012; Miller et al., 2004).   

 

For other families of methods, more techniques can be also introduced for the prediction of 

emissions. While IOA and IDA are traditionally adopted to analyse past developments, the 

trend is to do more prospective analysis. For example, the sensitivity analysis of IOA, 

sometimes combined with other techniques such as Monte Carlo, is increasingly used for 

future scenario analysis (Cao et al., 2017; Tarancon and Del Río, 2012). This trend is even 

more obvious for IDA. The projections can be based either on retrospective analysis or on 

different quantifications of the underlying drivers (Ang, 2015). IDA can also be used to 

analyse how reduced emissions can be realized through decomposing the difference between 

the projected emission levels and the business-as-usual scenario (Ang, 2015; Smit et al., 

2014).  
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From an overall perspective, an integration of multiple methods could play a crucial role in 

enhancing research developments of all the CSCE clusters. For example, building a hybrid 

estimation model by integrating econometrics with hierarchical clustering techniques, 

machine learning, induced ordered weighted harmonic averaging operator and LMDI are 

some of the new endeavours (Bai et al., 2016; Liang et al., 2016; Song et al., 2014). Yet 

another area of ongoing research activity combines spatial and geographic modelling that use 

computer vision techniques with deep learning methods, which offer additional insights by 

analysing the images from a meteorological satellite system.  

 

The integration of EE-IOA with other methods is another good example. It is now possible to 

integrate EE-IO with life cycle assessment, including input-output life cycle assessment (IO-

LCA) (Bilec et al., 2010; Thiesen et al., 2008) and hybrid life cycle assessment (hybrid LCA) 

(Finnveden et al., 2009; Suh et al., 2004). The use of hybrid approaches enables a much more 

detailed account of total life-cycle carbon emissions and makes it possible to adopt a cradle-

to-grave philosophy for industries and regions. By incorporating the strengths of bottom-up 

approaches that use LCA, and of top-down approaches offered by IOA, the benefits of both 

approaches can be maximised. Recently there have been several attempts to fuse IOA with 

index decomposition analysis (IDA) (Hoekstra and van der Bergh, 2003; Su and Ang, 2012), 

scenario analysis (Hubacek and Sun, 2001; Liu et al., 2010; Xuan and Yue, 2017), 

computable general equilibrium (CGE) (Dervis et al., 1982; Guo et al., 2014) and network 

analysis (Chen and Chen, 2016; Wang et al., 2017) to achieve different complementary 

purposes where I-O analysis on its own would not have given the solution required. 
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From a research content perspective, while the carbon emissions at a national and provincial 

level dominated CSCE research for almost a decade, a recent trend has been a focus on the 

role played by cities, firms and residents in carbon emissions reduction. To estimate 

embodied carbon emissions, the industrial connections between provinces/cities, rather than 

connections at a regional level, have begun to be the focus of attention in the search for 

opportunities to reduce carbon emissions. While the Chinese government has demonstrated 

its determination to curb carbon emissions, more discussion on relevant policies, such as a 

carbon emissions trading scheme and carbon tax, provide another important area for future 

research.  

 

 

7.  Conclusions and recommendations 

China has been playing a leading role in tackling climate change in recent years. China’s 13th 

Five-Year Plan for Economic and Social Development (2016-2020) and its 13th Five-Year 

Plan on Energy Development, set specific climate and energy targets, which demonstrate 

China’s determination to curb carbon emissions within the country. The national carbon 

trading scheme launched in 2017 is a good example of putting policy into action. In addition, 

the Three-Year Action Plan for Winning the Blue Sky, released in 2018 by China State 

Council, asked for a reduction in carbon emissions in coordination with a reduction in 

emissions of pollutants. The CSCE research is important for tackling global climate change 

and has still been an active research field.  

 

This paper presents a systematic and objective review of the main research methods adopted 

in CSCE field through a survey of 807 papers published from 1997 to 2017. It compares five 

primary ‘families of methods’ and assessed their pros and cons. In addition, the knowledge 
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mapping exercise undertaken for this study clarifies where the methods sit within different 

research clusters. The five families of methods have different focuses and they complement 

each other to solve the current and future research problems under different research themes.  

The CSCE field is a very active cross-disciplinary research area. All the methods have been 

modified and improved through problem solving in realities. From the analysis, all the 

methods aim to answer three fundamental problems. They are (i) carbon inventory 

construction, (ii) analysis of carbon emissions influencing factors and (iii) future trend 

prediction. The research results provide relevant Chinese departments with practical methods 

for carbon emissions trend prediction, low-carbon path design and environmental innovation. 

In addition, they also offer reference to similar research in other countries and regions.  

 

When it comes to identifying the most suitable method for assessing carbon emission, 

methods have their advantages from different perspectives. If the direct carbon emission 

amount produced by sectors is the research focus, the bottom-up approach is recommended 

for calculating the amount considering all the emission sources. If the carbon emission is 

assessed from consumption perspective, IOA is more suitable for examining the embodied 

carbon flows among sectors through the entire supply chain and production system.  

 

When the role played by different factors on carbon emission are assessed, IOA, IDA, 

econometrics and DEA prevail in different contexts. If the research is interested in finding 

out both the direct and indirect effects of economic activities on environment, multiplier 

effect analysis, linkage analysis and SDA developed from IOA are recommended. On the 

other hand, IDA plays a better job when the research focus is on the deterministic effect of 

macro-variables with no residual terms. While many previously less-discussed variables have 

been included into the impact analysis such as economic distance and weather data, 

econometrics is recommended due to its versatility. Moreover, DEA is recommended when 
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the research focus is on evaluating the carbon emission control efficiency of regions and 

sectors.   

 

Among simulation methods, different methods have their own advantages in predicting 

carbon emission trend. When the option of introducing a new carbon reduction /capture 

technology is considered, techno-economic model is a more appropriate option. When it 

comes to formulating carbon mitigation policies, optimization models are recommended for 

carbon emission prediction under different constraints, such as meeting energy demand and 

manufacturing budgets. When a specific policy such as carbon tax or ETS is evaluated, 

CGE/IAM is appropriate for predicting the carbon emission trend based on different 

scenarios from a top-down perspective. In addition, if the dynamic evolution of systems 

affecting future carbon emission is the primary research interest, SD is recommeded. On the 

other hand, if the research focus is on how future carbon emission will change from bottom-

up perspective, ABM is advised for its ability to reveal the interaction among different micro-

level agents behind the emission change.   

 

Although CSCE studies have made great progress in many disciplines over the last two 

decades, there are still substantial gaps that urgently need to be filled. First, the quality of the 

fundamental data needed for CSCE research have to be improved constantly. GPS, GIS and 

remote-sensing data technology, as well as onsite surveys could be employed to collect real-

time, accurate and high-resolution raw data. In addition, some new approaches need to be 

developed for constructing MRIO at higher resolutions and with higher update frequencies.   

Second, the iteration of data and new research results can help modify models and construct 

dynamic optimization models.  
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At the same time, the research needs of CSCE based researchers has been changing. While 

researchers in the past were happy to apply historically collected data, the current trend is to 

use dynamic real-time data for analysis purposes. While in the past data was sampled, the 

current tends is to use complete data. In addition, models are increasingly being integrated 

and adapted, benefiting from the advantages of increased computing power and advances in 

new methods such machine learning, deep learning, Monto-Carlo and agent-based models. 

Recent developments aim to improve carbon emissions efficiency measurement and low-

carbon policy design through analysing large-scale complex relationships among different 

driving factors for carbon emissions.  

 

The focus of research methods used for CSCE has been gradually moving away from 

technological development, to innovation in social governance systems. For example, new 

research trends are increasingly incorporating (i) the establishment of environmental policies; 

(ii) the analysis of adjustments to industrial structure, energy structure and transportation 

structure; and, (iii) the analysis of constructing efficient low-carbon energy system. In 

addition, while the CSCE used to be approached from national and provincial perspective, it 

has now expanded into regional economic zones which cross several administrative divisions. 

From regional perspective, the research focus is on the carbon emissions transfer caused by 

urbanisation, trade and population immigration, and its influence on optimizing the industrial 

structure and recognizing carbon abatement responsibilities. Moreover, it is a complex 

environmental problem to reduce carbon emissions. Efficient response mechanism needs to 

be formed to deal with problems at different levels, from non-disciplined enterprise-level 

emissions to large-scale excessive regional carbon emissions. Lastly, the emissions trading 

scheme (ETS) as well as research and innovation in carbon tax, carbon efficiency 



 66 

improvement and low-carbon policy should be further enhanced to form a solid foundation 

for reducing greenhouse gases as quickly as possible.   

 

This research was impacted by several limitations. First, this it is limited to the Web of 

Science database of English peer-reviewed journal papers. The grey literature and non-

English journal articles could add another layer of insights to this paper. In addition, while 

this paper focuses on method review, other knowledge mapping visualisation techniques or 

methods could be combined to explore and explain developments from other perspectives, 

such as the author collaboration network and more qualitative or policy-focused analysis. 

 

  

Acknowledgements  

This work was supported by National Natural Science Foundation of China (Grant no. 

71774108) and China Scholarship Council (Grant no. 201606890043). The authors thank the 

editors and three anonymous reviewers for their constructive suggestions. 

 

  



 67 

References: 
Al-Mulali, U., Fereidouni, H.G., Lee, J.Y.M., Sab, C.N.B.C., 2013. Exploring the 

relationship between urbanization, energy consumption, and CO2 emission in MENA 
countries. Renew. Sustain. Energy Rev. 23, 107–112. 
https://doi.org/10.1016/j.rser.2013.02.041 

Anand, S., Dahiya, R.P., Talyan, V., Vrat, P., 2005. Investigations of methane emissions 
from rice cultivation in Indian context. Environ. Int. 31, 469–482. 

Anand, S., Vrat, P., Dahiya, R.P., 2006. Application of a system dynamics approach for 
assessment and mitigation of CO2 emissions from the cement industry. J. Environ. 
Manage. 79, 383–398. 

Ang, A.B.W., Choi, K., 1997. Decomposition of Aggregate Energy and Gas Emission 
Intensities for Industry : A Refined Divisia Index Method. Int. Assoc. Energy Econ. 18, 
59–73. 

Ang, B.W., 2015. LMDI decomposition approach: A guide for implementation. Energy 
Policy 86, 233–238. https://doi.org/10.1016/j.enpol.2015.07.007 

Ang, B.W., 2005. The LMDI approach to decomposition analysis: A practical guide. Energy 
Policy 33, 867–871. https://doi.org/10.1016/j.enpol.2003.10.010 

Ang, B.W., 2004. Decomposition analysis for policymaking in energy: Which is the preferred 
method? Energy Policy 32, 1131–1139. https://doi.org/10.1016/S0301-4215(03)00076-4 

Ang, B.W., Wang, H., 2015. Index decomposition analysis with multidimensional and 
multilevel energy data. Energy Econ. 51, 67–76. 
https://doi.org/10.1016/j.eneco.2015.06.004 

Babatunde, K.A., Begum, R.A., Said, F.F., 2017. Application of computable general 
equilibrium (CGE) to climate change mitigation policy: A systematic review. Renew. 
Sustain. Energy Rev. 78, 61–71. https://doi.org/10.1016/j.rser.2017.04.064 

Bai, H., Qiao, S., Liu, T., Zhang, Y., Xu, H., 2016. An inquiry into inter-provincial carbon 
emission difference in China: Aiming to differentiated KPIs for provincial low carbon 
development. Ecol. Indic. 60, 754–765. 

Banos, R., Manzano-Agugliaro, F., Montoya, F.G., Gil, C., Alcayde, A., Gómez, J., 2011. 
Optimization methods applied to renewable and sustainable energy: A review. Renew. 
Sustain. Energy Rev. 15, 1753–1766. 

Bilec, M.M., Ries, R.J., Matthews, H.S., 2010. Life-cycle assessment modeling of 
construction processes for buildings. J. Infrastruct. Syst. 16. 
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000022 

Böhringer, C., Löschel, A., 2006. Computable general equilibrium models for sustainability 
impact assessment: Status quo and prospects. Ecol. Econ. 60, 49–64. 
https://doi.org/10.1016/j.ecolecon.2006.03.006 

Bonabeau, E., 2002. Agent-based modeling: Methods and techniques for simulating human 
systems. Proc. Natl. Acad. Sci. 99, 7280–7287. 

Brunsdon, C., Fotheringham, A.S., Charlton, M.E., 1996. Geographically weighted 
regression: a method for exploring spatial nonstationarity. Geogr. Anal. 28, 281–298. 

Cai, W., Li, K., Liao, H., Wang, H., Wu, L., 2017. Weather conditions conducive to Beijing 
severe haze more frequent under climate change. Nat. Clim. Chang. Press 7. 
https://doi.org/10.1038/NCLIMATE3249 

Cantore, N., 2009. The relevance of climate change integrated assessment models in policy 
design - ODI Background Notes. 

Cao, Z., Shen, L., Liu, L., Zhao, J., Zhong, S., Kong, H., Sun, Y., 2017. Estimating the in-use 
cement stock in China: 1920–2013. Resour. Conserv. Recycl. 122, 21–31. 

Cau, G., Tola, V., Ferrara, F., Porcu, A., Pettinau, A., 2018. CO2-free coal-fired power 
generation by partial oxy-fuel and post-combustion CO 2 capture: techno-economic 



 68 

analysis. Fuel 214, 423–435. 
Cellura, M., Longo, S., Mistretta, M., 2012. Application of the Structural Decomposition 

Analysis to assess the indirect energy consumption and air emission changes related to 
Italian households consumption. Renew. Sustain. Energy Rev. 16, 1135–1145. 
https://doi.org/10.1016/j.rser.2011.11.016 

Chang, N., 2015. Changing industrial structure to reduce carbon dioxide emissions: a Chinese 
application. J. Clean. Prod. 103, 40–48. 

Chang, Z., Wu, H., Pan, K., Zhu, H., Chen, J., 2017. Clean production pathways for regional 
power-generation system under emission constraints: A case study of Shanghai, China. 
J. Clean. Prod. 143, 989–1000. 

Chen, C., 2017. Science Mapping: A Systematic Review of the Literature. J. Data Inf. Sci. 2, 
1–40. https://doi.org/10.1515/jdis-2017-0006 

Chen, C., 2014. The CiteSpace Manual [WWW Document]. 
Chen, C., 2004. Searching for intellectual turning points: progressive knowledge domain 

visualization. Proc. Natl. Acad. Sci. U. S. A. 101 Suppl, 5303–5310. 
https://doi.org/10.1073/pnas.0307513100 

Chen, C., Hu, Z., Liu, S., Tseng, H., 2012. Emerging trends in regenerative medicine: a 
scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 12, 593–608. 
https://doi.org/10.1517/14712598.2012.674507 

Chen, C., Ibekwe-SanJuan, F., Hou, J., 2010. The structure and dynamics of co-citation 
clusters: A multiple-perspective co-citation analysis. J. Am. Soc. Inf. Sci. Technol. 61, 
1386–1409. 

Chen, C., Ibekwe‐SanJuan, F., Hou, J., 2010. The structure and dynamics of cocitation 
clusters: A multiple‐perspective cocitation analysis. J. Am. Soc. Inf. Sci. Technol. 61, 
1386–1409. 

Chen, L., Xu, L., Xu, Q., Yang, Z., 2016. Optimization of urban industrial structure under the 
low-carbon goal and the water constraints: a case in Dalian, China. J. Clean. Prod. 114, 
323–333. 

Chen, S., Chen, B., 2016. Tracking Inter-Regional Carbon Flows: A Hybrid Network Model. 
Environ. Sci. Technol. 50, 4731–4741. https://doi.org/10.1021/acs.est.5b06299 

Cheng, B., Dai, H., Wang, P., Xie, Y., Chen, L., Zhao, D., Masui, T., 2016. Impacts of low-
carbon power policy on carbon mitigation in Guangdong Province, China. Energy 
Policy 88, 515–527. 

Cheng, M., 2016. Sharing economy: A review and agenda for future research. Int. J. Hosp. 
Manag. 57, 60–70. https://doi.org/10.1016/j.ijhm.2016.06.003 

Chi, Y., Guo, Z., Zheng, Y., Zhang, X., 2014. Scenarios analysis of the energies’ 
consumption and carbon emissions in China based on a dynamic CGE Model. 
Sustainability 6, 487–512. 

Chow, J.C., Watson, J.G., Lowenthal, D.H., Antony Chen, L.-W., Motallebi, N., 2012. Black 
and organic carbon emission inventory: review and application to California. J. Air 
Waste Manage. Assoc. 60, 497–507. https://doi.org/10.3155/1047-
3289.60.4.497org/10.3155/1047-3289.60.4.497 

Chuai, X., Huang, X., Wang, W., Wen, J., Chen, Q., Peng, J., 2012. Spatial econometric 
analysis of carbon emissions from energy consumption in China. J. Geogr. Sci. 22, 630–
642. 

Conley, T.G., Ligon, E., 2002. Economic distance and cross-country spillovers. J. Econ. 
Growth 7, 157–187. 

Cormos, A.M., Cormos, C.C., 2017. Techno-economic evaluations of post-combustion CO2 
capture from sub-and super-critical circulated fluidised bed combustion (CFBC) power 
plants. Appl. Therm. Eng. 127, 106–115. 



 69 

Dai, H., Masui, T., Matsuoka, Y., Fujimori, S., 2012. The impacts of China’s household 
consumption expenditure patterns on energy demand and carbon emissions towards 
2050. Energy Policy 50, 736–750. https://doi.org/10.1016/j.enpol.2012.08.023 

Dervis, K., De Melo, J., Robinson, S., 1982. General equilibrium models for development 
policy., General equilibrium models for development policy. 

Ding, Y., Li, F., 2017. Examining the effects of urbanization and industrialization on carbon 
dioxide emission: Evidence from China’s provincial regions. Energy 125, 533–542. 
https://doi.org/10.1016/j.energy.2017.02.156 

Du, L., Li, X., Zhao, H., Ma, W., Jiang, P., 2018. System dynamic modeling of urban carbon 
emissions based on the regional National Economy and Social Development Plan: A 
case study of Shanghai city. J. Clean. Prod. 172, 1501–1513. 
https://doi.org/10.1016/j.jclepro.2017.10.128 

Eppstein, M.J., Grover, D.K., Marshall, J.S., Rizzo, D.M., 2011. An agent-based model to 
study market penetration of plug-in hybrid electric vehicles. Energy Policy 39, 3789–
3802. 

Feng, Y.Y., Chen, S.Q., Zhang, L.X., 2013. System dynamics modeling for urban energy 
consumption and CO2 emissions: A case study of Beijing, China. Ecol. Modell. 252, 
44–52. 

Filatova, T., Verburg, P.H., Parker, D.C., Stannard, C.A., 2013. Spatial agent-based models 
for socio-ecological systems: Challenges and prospects. Environ. Model. Softw. 45, 1–7. 

Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinée, J., Heijungs, R., Hellweg, S., Koehler, 
A., Pennington, D., Suh, S., 2009. Recent developments in Life Cycle Assessment. J. 
Environ. Manage. 91. https://doi.org/10.1016/j.jenvman.2009.06.018 

Geertman, S., Stillwell, J., 2009. Planning support systems best practice and new methods. 
Springer Science & Business Media. 

Grossman, G.M., Krueger., A.B., 1995. Economic growth and the environment. Q. J. Econ. 
110, 353–377. 

Guan, D., Liu, Z., Geng, Y., Lindner, S., Hubacek, K., 2012. The gigatonne gap in China’s 
carbon dioxide inventories. Nat. Clim. Chang. 2, 672–675. 
https://doi.org/10.1038/nclimate1560 

Guo, L., 2017. Income inequality, household consumption and CO2 emissions in China. 
Singapore Econ. Rev. 62, 531–553. 

Guo, Z., Ma, L., Liu, P., Jones, I., Li, Z., 2016. A multi-regional modelling and optimization 
approach to China’s power generation and transmission planning. Energy 116, 1348–
1359. 

Guo, Z., Zhang, X., Zheng, Y., Rao, R., 2014. Exploring the impacts of a carbon tax on the 
Chinese economy using a CGE model with a detailed disaggregation of energy sectors. 
Energy Econ. 45. https://doi.org/10.1016/j.eneco.2014.08.016 

Hang, L., Tu, M., 2007. The impacts of energy prices on energy intensity: Evidence from 
China. Energy Policy 35, 2978–2988. https://doi.org/10.1016/j.enpol.2006.10.022 

Hao, Y., Chen, H., Wei, Y.M., Li, Y.M., 2016. The influence of climate change on CO2 
(carbon dioxide) emissions: An empirical estimation based on Chinese provincial panel 
data. J. Clean. Prod. 131, 667–677. https://doi.org/10.1016/j.jclepro.2016.04.117 

Hawkins, J., Ma, C., Schilizzi, S., Zhang, F., 2015. Promises and pitfalls in environmentally 
extended input-output analysis for China: A survey of the literature. Energy Econ. 48, 
81–88. https://doi.org/10.1016/j.eneco.2014.12.002 

Hoekstra, R., 2010. A complete database of peer-reviewed articles on environmentally 
extended input-output analysis, in: Towards 18th International Input-Output Conference 
of the International Input-Output Association (IIOA). pp. 20–25. 

Hoekstra, R., van der Bergh, J.J.C.J.M., 2003. Comparing structural and index decomposition 



 70 

analysis. Energy Econ. 25, 39–64. https://doi.org/10.1016/S0140-9883(02)00059-2 
Huang, B., Xu, S., Gao, S., Liu, L., Tao, J., Niu, H., Cheng, J., 2010. Industrial test and 

techno-economic analysis of CO2 capture in Huaneng Beijing coal-fired power station. 
Appl. Energy 87, 3347–3354. 

Hubacek, K., Sun, L., 2001. A scenario analysis of China’s land use and land cover change: 
Incorporating biophysical information into input-output modeling. Struct. Chang. Econ. 
Dyn. 12. https://doi.org/10.1016/S0954-349X(01)00029-7 

Hübler, M., 2011. Technology diffusion under contraction and convergence: A CGE analysis 
of China. Energy Econ. 33, 131–142. 

Jiang, W., Jia, K., Chen, Z., Deng, Y., Rao, P., 2017. Using spatiotemporal remote sensing 
data to assess the status and effectiveness of the underground coal fire suppression 
efforts during 2000–2015 in Wuda, China. J. Clean. Prod. 142, 565–577. 
https://doi.org/10.1016/j.jclepro.2016.03.082 

Jiang, W., Liu, J., Liu, X., 2016. Impact of carbon quota allocation mechanism on emissions 
trading: an agent-based simulation. Sustainability 8, 826. 

Kao, C., 2014. Network data envelopment analysis: A review. Eur. J. Oper. Res. 239, 1–16. 
https://doi.org/10.1016/j.ejor.2014.02.039 

Kishimoto, P., Zhang, D., Zhang, X., Karplus, V., 2014. Modeling regional transportation 
demand in China and the impacts of a National Carbon Policy. Transp. Res. Rec. J. 
Transp. Res. Board 1–11. 

Kleinberg, J., 2003. Bursty and hierarchical structure in streams. Data Min. Knowl. Discov. 
7, 373–397. 

Klemeš, J., Bulatov, I., Cockerill, T., 2007. Techno-economic modelling and cost functions 
of CO2 capture processes. Comput. Chem. Eng. 31, 445–455. 
https://doi.org/10.1016/j.compchemeng.2006.06.002 

Kolstad, C., 1998. Integrated assessment modeling of climate change. Econ. policy issues 
Clim. Chang. 263–286. 

Kunz, W.H., Hogreve, J., 2011. Toward a deeper understanding of service marketing: The 
past, the present, and the future. Int. J. Res. Mark. 28, 231–247. 

Lai, X., Liu, J., Shi, Q., Georgiev, G., Wu, G., 2017. Driving forces for low carbon 
technology innovation in the building industry: A critical review. Renew. Sustain. 
Energy Rev. 74, 299–315. 

LeBaron, B., 2012. Heterogeneous gain learning and the dynamics of asset prices. J. Econ. 
Behav. Organ. 83, 424–445. 

Leontief, W., 1970. Environmental Repercussions and the Economic Structure : An Input-
Output Approach. Rev. Econ. Stat. 52, 262–271. 

Li, K., Lin, B., 2015. Metafroniter energy efficiency with CO2 emissions and its convergence 
analysis for China. Energy Econ. 48, 230–241. 
https://doi.org/10.1016/j.eneco.2015.01.006 

Li, L., Lei, Y., Zhao, L., Li, X., 2015. Study on the optimization of the industrial structure in 
a mining economic region: Taking carbon emissions as a restriction. Minerals 5, 203–
220. 

Li, W., Lu, C., Ding, Y., Zhang, Y.W., 2017. The impacts of policy mix for resolving 
overcapacity in heavy chemical industry and operating national carbon emission trading 
market in China. Appl. Energy 204, 509–524. 
https://doi.org/10.1016/j.apenergy.2017.07.017 

Li, X., Ma, E., Qu, H., 2017. Knowledge mapping of hospitality research − A visual analysis 
using CiteSpace. Int. J. Hosp. Manag. 60, 77–93. 
https://doi.org/10.1016/j.ijhm.2016.10.006 

Li, X., Qiao, Y., Shi, L., 2015. The aggregate effect of air pollution regulation on CO2 



 71 

mitigation in China’s manufacturing industry: An econometric analysis. J. Clean. Prod. 
142, 976–984. https://doi.org/10.1016/j.jclepro.2016.03.015 

Liang, Y., Niu, D., Cao, Y., Hong, W.-C., 2016. Analysis and modeling for china’s electricity 
demand forecasting using a hybrid method based on multiple regression and extreme 
learning machine: A view from carbon emission. Energies 9, 941. 

Lin, B., Benjamin, N.I., 2017. Influencing factors on carbon emissions in China transport 
industry. A new evidence from quantile regression analysis. J. Clean. Prod. 150, 175–
187. https://doi.org/https://doi.org/10.1016/j.jclepro.2017.02.171 

Lin, B., Tan, R., 2016. China’s CO2 emissions of a critical sector: Evidence from energy 
intensive industries. J. Clean. Prod. 142, 4270–4281. 
https://doi.org/10.1016/j.jclepro.2016.11.186 

Lin, B., Wang, X., 2015. Carbon emissions from energy intensive industry in China: 
Evidence from the iron & steel industry. Renew. Sustain. Energy Rev. 47, 746–754. 
https://doi.org/10.1016/j.rser.2015.03.056 

Liu, J., Diamond, J., 2005. China’s environment in a globalizing world. Nature 435, 1179–
1186. https://doi.org/10.1038/4351179a 

Liu, L., Zong, H., Zhao, E., Chen, C., Wang, J., 2014. Can China realize its carbon emission 
reduction goal in 2020: From the perspective of thermal power development. Appl. 
Energy 124, 199–212. https://doi.org/10.1016/j.apenergy.2014.03.001 

Liu, L.C., Fan, Y., Wu, G., Wei, Y.M., 2007. Using LMDI method to analyze the change of 
China’s industrial CO2 emissions from final fuel use: An empirical analysis. Energy 
Policy 35, 5892–5900. https://doi.org/10.1016/j.enpol.2007.07.010 

Liu, X., Ishikawa, M., Wang, C., Dong, Y., Liu, W., 2010. Analyses of CO2 emissions 
embodied in Japan-China trade. Energy Policy 38. 
https://doi.org/10.1016/j.enpol.2009.11.034 

Liu, Y., 2015. Dynamic study on the influencing factors of industrial firm’s carbon footprint. 
J. Clean. Prod. 103, 411–422. 

Liu, Y., Xiao, H., Zhang, N., 2016. Industrial carbon emissions of China’s regions: A spatial 
econometric analysis. Sustainability 8, 210. 

Liu, Y., Xiao, H., Zikhali, P., Lv, Y., 2014. Carbon emissions in China: a spatial econometric 
analysis at the regional level. Sustainability 6, 6005–6023. 

Liu, Y., Zhou, Y., Wu, W., 2015. Assessing the impact of population, income and technology 
on energy consumption and industrial pollutant emissions in China. Appl. Energy 155, 
904–917. https://doi.org/10.1016/j.apenergy.2015.06.051 

Liu, Z., Geng, Y., Lindner, S., Zhao, H., Fujita, T., Guan, D., 2012. Embodied energy use in 
China’s industrial sectors. Energy Policy 49, 751–758. 
https://doi.org/10.1016/j.enpol.2012.07.016 

Liu, Z., Guan, D., Wei, W., Davis, S.J., Ciais, P., Bai, J., Peng, S., Zhang, Q., Hubacek, K., 
Marland, G., Andres, R.J., Crawford-Brown, D., Lin, J., Zhao, H., Hong, C., Boden, 
T.A., Feng, K., Peters, G.P., Xi, F., Liu, J., Li, Y., Zhao, Y., Zeng, N., He, K., 2015. 
Reduced carbon emission estimates from fossil fuel combustion and cement production 
in China. Nature 524, 335–338. https://doi.org/10.1038/nature14677 

Luo, X., Dong, L., Dou, Y., Zhang, N., Ren, J., Li, Y., Sun, L., Yao, S., 2017. Analysis on 
spatial-temporal features of taxis’ emissions from big data informed travel patterns: a 
case of Shanghai, China. J. Clean. Prod. 142, 926–935. 
https://doi.org/10.1016/j.jclepro.2016.05.161 

Ma, J., Liu, Z., Chai, Y., 2015. The impact of urban form on CO2 emission from work and 
non-work trips: The case of Beijing, China. Habitat Int. 47, 1–10. 
https://doi.org/10.1016/j.habitatint.2014.12.007 

Mahdi Ziaei, S., 2015. Effects of financial development indicators on energy consumption 



 72 

and CO2 emission of European, East Asian and Oceania countries. Renew. Sustain. 
Energy Rev. 42, 752–759. https://doi.org/10.1016/j.rser.2014.10.085 

Mao, G., Dai, X., Wang, Y., Guo, J., Cheng, X., Fang, D., Song, X., He, Y., Zhao, P., 2013. 
Reducing carbon emissions in China: Industrial structural upgrade based on system 
dynamics. Energy Strateg. Rev. 2, 199–204. 

Martin III, J.G., 2012. Visualizing the Invisible: Application of Knowledge Domain 
Visualization to the Longstanding Problem of Disciplinary and Professional 
Conceptualization in Emergency and Disaster Management. Universal-Publishers. 

McKerlich, R., Ives, C., McGreal, R., 2013. Measuring use and creation of open educational 
resources in higher education. Int. Rev. Res. Open Distance Learn. 14, 90–103. 
https://doi.org/10.1002/asi 

Meng, F., Su, B., Thomson, E., Zhou, D., Zhou, P., 2016. Measuring China’s regional energy 
and carbon emission efficiency with DEA models: A survey. Appl. Energy 183, 1–21. 
https://doi.org/10.1016/j.apenergy.2016.08.158 

Miller, E.J., Hunt, J.D., Abraham, J.E., Salvini, P.A., 2004. Microsimulating urban systems. 
Comput. Environ. Urban Syst. 28, 9–44. 

Odu, G.O., Charles-Owaba, O.E., 2013. Review of multi-criteria optimization methods-
theory and applications. IOSRJEN, 3, 1–14. 

Olanrewaju, O.A., Jimoh, A.A., Kholopane, P.A., 2012. Integrated IDA–ANN–DEA for 
assessment and optimization of energy consumption in industrial sectors. Energy 46, 
629–635. 

Omri, A., Nguyen, D.K., 2014. On the determinants of renewable energy consumption: 
International evidence. Energy 72, 554–560. 

Pan, H., Zhang, H., Zhang, X., 2013. China’s provincial industrial energy efficiency and its 
determinants. Math. Comput. Model. 58, 1032–1039. 

Parson, E.A., 1995. Integrated assessment and environmental policy making. Energy Policy 
23, 463–475. https://doi.org/http://dx.doi.org/10.1016/0301-4215(95)90170-C 

Peters, G.P., Weber, C.L., Guan, D., Hubacek, K., 2007. China’s growing CO2 emissions - A 
race between increasing consumption and efficiency gains. Environ. Sci. Technol. 41, 
5939–5944. https://doi.org/10.1021/es070108f 

Pettinau, A., Ferrara, F., Tola, V., Cau, G., 2017. Techno-economic comparison between 
different technologies for CO2-free power generation from coal. Appl. Energy 193, 
426–439. 

Pindyck, R.S., 2013. Climate Change Policy: What Do the Models Tell Us? J. Econ. Lit. 51, 
1–23. https://doi.org/10.1257/jel.51.3.860 

Rousseeuw, P.J., 1987. Silhouettes: A graphical aid to the interpretationand validation of 
cluster analysis. J. Comput. AppliedMathematics 20, 53–65. 

Seiford, M., Thrall, M., 1990. Recent developments in DEA: The mathematical programming 
approach to frontier analysis. J. Econom. 46, 7–38. 

Shan, Y., Guan, D., Zheng, H., Ou, J., Li, Y., Meng, J., Mi, Z., 2017. Data Descriptor : China 
CO 2 emission accounts 1997 – 2015 1–14. 

Shao, L., Guan, D., Zhang, N., Shan, Y., Chen, G.Q., 2016. Carbon emissions from fossil 
fuel consumption of Beijing in 2012. Environ. Res. Lett. 11, 114028. 
https://doi.org/10.1088/1748-9326/11/11/114028 

Shiffrin, R.M., Börner, K., 2004. Mapping knowledge domains. Proc. Natl. Acad. Sci. U. S. 
A. 101, 5183–5185. 

Smit, T.A.B., Hu, J., Harmsen, R., 2014. Unravelling projected energy savings in 2020 of EU 
Member States using decomposition analyses. Energy Policy 74, 271–285. 
https://doi.org/10.1016/j.enpol.2014.08.030 

Song, J., Song, Q., Zhang, D., Lu, Y., Luan, L., 2014. Study on influencing factors of carbon 



 73 

emissions from energy consumption of Shandong province of China from 1995 to 2012. 
Sci. World J. 2014. 

Su, B., Ang, B.W., 2014. Input-output analysis of CO2 emissions embodied in trade: A 
multi-region model for China. Appl. Energy 114, 377–384. 
https://doi.org/10.1016/j.apenergy.2013.09.036 

Su, B., Ang, B.W., 2012. Structural decomposition analysis applied to energy and emissions: 
Some methodological developments. Energy Econ. 34, 177–188. 
https://doi.org/10.1016/j.eneco.2011.10.009 

Su, B., Thomson, E., 2016. China’s carbon emissions embodied in (normal and processing) 
exports and their driving forces, 2006-2012. Energy Econ. 59, 414–422. 
https://doi.org/10.1016/j.eneco.2016.09.006 

Suh, S., Lenzen, M., Treloar, G.J., Hondo, H., Horvath, A., Huppes, G., Jolliet, O., Klann, U., 
Krewitt, W., Moriguchi, Y., Munksgaard, J., Norris, G., 2004. System Boundary 
Selection in Life-Cycle Inventories Using Hybrid Approaches. Environ. Sci. Technol. 
38. https://doi.org/10.1021/es0263745 

Sun, L., Wang, Q., Zhang, J., 2017. Inter-industrial Carbon Emission Transfers in China: 
Economic Effect and Optimization Strategy. Ecol. Econ. 132, 55–62. 
https://doi.org/10.1016/j.ecolecon.2016.10.005 

Tan, Z.F., Song, Y.H., Shen, Y.S., Zhang, C., Wang, S., 2013. An Optimization-Based Study 
to Analyze the Impacts of Clean Energy and Carbon Emission Mechanisms on Inter-
Regional Energy Exchange. J. Environ. Informatics 22, 22(2). 123-130; 

Tang, D., Ma, T., Li, Z., Tang, J., Bethel, B.J., 2016. Trend Prediction and Decomposed 
Driving Factors of Carbon Emissions in Jiangsu Province during 2015–2020. 
Sustainability 8, 1018. 

Tang, L., Shi, J., Yu, L., Bao, Q., 2017. Economic and environmental influences of coal 
resource tax in China: A dynamic computable general equilibrium approach. Resour. 
Conserv. Recycl. 117, 34–44. 

Tang, L., Wu, J., Yu, L., Bao, Q., 2015. Carbon emissions trading scheme exploration in 
China: a multi-agent-based model. Energy Policy 81, 152–169. 

Tang, X., McLellan, B.C., Snowden, S., Zhang, B., Höök, M., 2015. Dilemmas for China: 
Energy, economy and environment. Sustain. 7, 5508–5520. 
https://doi.org/10.3390/su7055508 

Tarancon, M.A., Del Río, P., 2012. Assessing energy-related CO 2 emissions with sensitivity 
analysis and input-output techniques. Energy 37, 161–170. 
https://doi.org/10.1016/j.energy.2011.07.026 

Thiesen, J., Christensen, T.S., Kristensen, T.G., Andersen, R.D., Brunoe, B., Gregersen, T.K., 
Thrane, M., Weidema, B.P., 2008. Rebound effects of price differences. Int. J. Life 
Cycle Assess. 13. https://doi.org/10.1065/lca2006.12.297 

United States Environmental Protection Agency, n.d. Overview of Greenhouse Gases 
[WWW Document]. URL https://www.epa.gov/ghgemissions/overview-greenhouse-
gases (accessed 8.26.18). 

Wang, C., Chen, J., Zou, J., 2005. Decomposition of energy-related CO2 emission in China: 
1957-2000. Energy 30, 73–83. https://doi.org/10.1016/j.energy.2004.04.002 

Wang, C., Ye, M., Cai, W., Chen, J., 2014. The value of a clear, long-term climate policy 
agenda: A case study of China’s power sector using a multi-region optimization model. 
Appl. Energy 125, 276–288. 

Wang, P., Dai, H., Ren, S., Zhao, D., Masui, T., 2015. Achieving Copenhagen target through 
carbon emission trading: Economic impacts assessment in Guangdong Province of 
China. Energy 79, 212–227. https://doi.org/https://doi.org/10.1016/j.energy.2014.11.009 

Wang, P., Wu, W., Zhu, B., Wei, Y., 2013. Examining the impact factors of energy-related 



 74 

CO2 emissions using the STIRPAT model in Guangdong Province, China. Appl. Energy 
106, 65–71. https://doi.org/10.1016/j.apenergy.2013.01.036 

Wang, W.W., Zhang, M., Zhou, M., 2011. Using LMDI method to analyze transport sector 
CO2 emissions in China. Energy 36, 5909–5915. 
https://doi.org/10.1016/j.energy.2011.08.031 

Wang, Y., Geschke, A., Lenzen, M., 2014. Constructing a Time Series of Chinese Multi-
region Input-Output Tables 14–18. https://doi.org/10.1177/0160017615603596 

Wang, Y., Zhao, T., 2015. Impacts of energy-related CO2 emissions: Evidence from under 
developed, developing and highly developed regions in China. Ecol. Indic. 50, 186–195. 
https://doi.org/10.1016/j.ecolind.2014.11.010 

Wang, Z., Xiao, C., Niu, B., Deng, L., Liu, Y., 2017. Identify sectors’ role on the embedded 
CO 2 transfer networks through China’s regional trade. Ecol. Indic. 80, 114–123. 
https://doi.org/10.1016/j.ecolind.2017.05.013 

Wei, W., Liang, Y., Liu, F., Mei, S., Tian, F., 2014. Taxing strategies for carbon emissions: 
A bilevel optimization approach. Energies 7, 2228–2245. 

Xiao, B., Niu, D., Guo, X., 2016. Can China achieve its 2020 carbon intensity target? A 
scenario analysis based on system dynamics approach. Ecol. Indic. 71, 99–112. 

Xu, B., Lin, B., 2015. How industrialization and urbanization process impacts on CO2 
emissions in China: Evidence from nonparametric additive regression models. Energy 
Econ. 48, 188–202. https://doi.org/10.1016/j.eneco.2015.01.005 

Xu, J.-H., Fleiter, T., Eichhammer, W., Fan, Y., 2012. Energy consumption and CO 2 
emissions in China’s cement industry: A perspective from LMDI decomposition 
analysis. Energy Policy 50, 821–832. https://doi.org/10.1016/j.enpol.2012.08.038 

Xu, X.Y., Ang, B.W., 2013. Index decomposition analysis applied to CO2 emission studies. 
Ecol. Econ. 93, 313–329. https://doi.org/10.1016/j.ecolecon.2013.06.007 

Xuan, Y., Yue, Q., 2017. Scenario analysis on resource and environmental benefits of 
imported steel scrap for China’s steel industry. Resour. Conserv. Recycl. 120. 
https://doi.org/10.1016/j.resconrec.2016.12.011 

Yan, D., Lei, Y., Li, L., 2017. Driving Factor Analysis of Carbon Emissions in China’s 
Power Sector for Low-Carbon Economy. Math. Probl. Eng. 2017. 

Yan, J., Zhao, T., Lin, T., Li, Y., 2017. Investigating multi-regional cross-industrial linkage 
based on sustainability assessment and sensitivity analysis: A case of construction 
industry in China. J. Clean. Prod. 142, 2911–2924. 
https://doi.org/10.1016/j.jclepro.2016.10.179 

Yang, J., Zou, L., Lin, T., Wu, Y., Wang, H., 2014. Public willingness to pay for CO2 
mitigation and the determinants under climate change: A case study of Suzhou, China. J. 
Environ. Manage. 146, 1–8. 

Zhang, D., Liu, P., Ma, L., Li, Z., 2013. A multi-period optimization model for optimal 
planning of China’s power sector with consideration of carbon mitigation-The optimal 
pathway under uncertain parametric conditions. Comput. Chem. Eng. 50, 196–206. 

Zhang, D., Ma, L., Liu, P., Zhang, L., Li, Z., 2012. A multi-period superstructure 
optimisation model for the optimal planning of China’s power sector considering carbon 
dioxide mitigation: discussion on China’s carbon mitigation policy based on the model. 
Energy Policy 41, 173–183. 

Zhang, N., Wang, B., Chen, Z., 2016. Carbon emissions reductions and technology gaps in 
the world’s factory, 1990-2012. Energy Policy 91, 28–37. 
https://doi.org/10.1016/j.enpol.2015.12.042 

Zhang, W., Peng, S., Sun, C., 2015. CO2 emissions in the global supply chains of services: 
An analysis based on a multi-regional input-output model. Energy Policy 86, 93–103. 
https://doi.org/10.1016/j.enpol.2015.06.029 



 75 

Zhang, W., Xu, H., 2017. Effects of land urbanization and land finance on carbon emissions: 
A panel data analysis for Chinese provinces. Land use policy 63, 493–500. 

Zhang, Y.-J., 2011. The impact of financial development on carbon emissions: An empirical 
analysis in China. Energy Policy 39, 2197–2203. 
https://doi.org/10.1016/j.enpol.2011.02.026 

Zhang, Z., Zhao, Y., Su, B., Zhang, Y., Wang, S., Liu, Y., Li, H., 2017. Embodied carbon in 
China’s foreign trade: An online SCI-E and SSCI based literature review. Renew. 
Sustain. Energy Rev. 68, 492–510. https://doi.org/10.1016/j.rser.2016.10.009 

Zhao, X., Burnett, J.W., Fletcher, J.J., 2014. Spatial analysis of China province-level CO 2 
emission intensity 33, 1–10. https://doi.org/10.1016/j.rser.2014.01.060 

Zhao, X., Zhang, X., Shao, S., 2016. Decoupling CO<inf>2</inf> emissions and industrial 
growth in China over 1993–2013: The role of investment. Energy Econ. 60, 275–292. 
https://doi.org/10.1016/j.eneco.2016.10.008 

Zhen, W., Qin, Q., Kuang, Y., Huang, N., 2017. Investigating low-carbon crop production in 
Guangdong Province, China (1993–2013): a decoupling and decomposition analysis. J. 
Clean. Prod. 146, 63–70. https://doi.org/10.1016/j.jclepro.2016.05.022 

Zheng, Y., Luo, D., 2013. Industrial structure and oil consumption growth path of China: 
Empirical evidence. Energy 57, 336–343. 

Zhou, P., Ang, B.W., Han, J.Y., 2010. Total factor carbon emission performance: A 
Malmquist index analysis. Energy Econ. 32, 194–201. 
https://doi.org/10.1016/j.eneco.2009.10.003 

Zhou, P., Ang, B.W., Poh, K.L., 2008. A survey of data envelopment analysis in energy and 
environmental studies. Eur. J. Oper. Res. 189, 1–18. 
https://doi.org/10.1016/j.ejor.2007.04.042 

Zhou, P., Zhang, L., Zhou, D.Q., Xia, W.J., 2013. Modeling economic performance of 
interprovincial CO2 emission reduction quota trading in China. Appl. Energy 112, 
1518–1528. 

Zhou, Y., Liu, Y., Wu, W., Li, Y., 2015. Effects of rural-urban development transformation 
on energy consumption and CO<inf>2</inf> emissions: A regional analysis in China. 
Renew. Sustain. Energy Rev. 52, 863–875. https://doi.org/10.1016/j.rser.2015.07.158 

Zhu, Q., Peng, X., Wu, K., 2012. Calculation and decomposition of indirect carbon emissions 
from residential consumption in china based on the input-output model. Energy Policy 
48, 618–626. https://doi.org/10.1016/j.enpol.2012.05.068 

 


	Word count of the manuscript: 14, 699
	A systematic review of empirical methods for modelling sectoral carbon emissions in China
	Li Huanga,b,c, Scott Kellyc , Xuan Lud, Kangjuan Lvb, 0F*, Damien Giurcoc,
	List of abbreviations
	2.1 Search strategy and selection of papers
	Table 1 Search terms for the representative methods
	2.2 Methods used for bibliometric analysis and knowledge mapping
	3.1 Environmentally-extended input-output analysis (EE-IOA)
	3.2 Index decomposition analysis
	3.3 Econometrics
	3.4 Carbon emission control efficiency evaluation
	Figure 2 The general structure of a DEA model adapted from (Zhou et al., 2008)
	3.5 Simulation and other methods
	3.5.1 Computable general equilibrium models and integrated assessment models
	3.5.2 System dynamic models
	3.5.3 Agent-based models
	3.5.4 Optimization and multi-criteria optimization models
	3.5.5 Techno-economic model
	Figure 3 Publications and citations of papers published from 1 January 1997 to 20 July 2017
	Notes:
	Table 2 Percentages of published CSCE journal papers using each method
	Figure 4 Publication per method from 1997 to 2017
	Figure 5 Citation per method from 1997 to 2017
	Figure 6 A landscape view of the co-citation network from 1997 to 2017
	Table 3  Summary of the largest 10 clusters
	Figure 7. The timeline of co-citation clusters from 1997 to 2017
	6.1 Critique of methods
	6.1.1 Carbon emissions inventory
	6.1.2 Impact analysis
	6.1.3 Predictions for carbon emission trends
	6.1.4 Carbon control efficiency measurement
	Table 6. Comparison of the main methods in CSCE field
	6.2 Emerging trends and gaps for method usage in CSCE field
	Acknowledgements

