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ABSTRACT Information technologies such as e-commerce and e-news bring overloaded information as
well as convenience to users, cooperatives and companies. Recommender system is a significant technology
in solving this information overload problem. Due to the outstanding accuracy performance in top- N recom-
mendation tasks, two-step recommendation algorithms are suitable to generate recommendations. However,
their recommendation lists are biased towards popular items. In this paper, we propose a user based two-
step recommendation algorithm with popularity normalization to improve recommendation diversity and
novelty, as well as two evaluation metrics to measure diverse and novel performance. Experimental results
demonstrate that our proposed approach significantly improves the diversity and novelty performance while
still inheriting the advantage of two-step recommendation approaches on accuracy metrics.

INDEX TERMS Top-N recommendation, collaborative filtering, popularity normalization, two-step

recommendation algorithm

I. INTRODUCTION

NTERNET and online services, such as e-commerce, e-

news, et al., bring great convenience as well as informa-
tion overload problem. Many people have been often sur-
rounded with a large number of products when shopping or
reading news online, which sometimes even confuse people
to decide which one to buy or read. Recommender sys-
tem becomes inevitable and essential to help people choose
wisely from the huge number of products using personalized
recommendation technologies [1, 2, 3, 4, 5].

One popular approach of recommender system is collabo-
rative filtering (CF) [6, 7]. The key of CF is to analyze the
past interactions between users and items, and hence can
be readily applied in various domains, without additional
information required such as item features. Because of its
simplicity, CF based recommendation has been widely ap-
plied in different applications and industries. Conventional
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CF approaches often consider recommendation as a rating
prediction problem by analyzing user’s explicit rating feed-
back, then recommend users the items with highest predicted
rating score. For the cold start items that have not been rated,
CF might predict a score with a heuristic learning method
[8, 9, 10] or a machine learning model [11, 12, 13, 14].
Intuitionally, more accurate rating prediction algorithm
will produce better recommendation outcomes, that is why
many researchers are working so hard to improve the rating
prediction accuracy [12, 13]. However, what people really
want from recommender system is actually the items they
need [15] rather than the higher rated items. In addition,
some studies demonstrate that the ratings actually are cou-
pled together with very complicated relations rather than just
linearly, as the accuracy of rating prediction is not always
consistent with the ranking effectiveness [15, 16, 17]. There-
fore, alternatively some researchers directly consider recom-
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mendation as a ranking problem [16, 18, 19] by modelling
user preferences to rank items rather than predicting rating
scores on individual items. It has been demonstrated that the
ranking stream models outperform the rating prediction ones
as reported if recommendation is considered as a ranking
problem [16, 18, 19, 20, 21].

It is arguable that the recommendation problem is con-
sidered as ranking or prediction challenge, as the most fre-
quently used rating data is not able to fully capture user
behaviors. Typically a rating actually embeds two sorts of
user behaviors: (1) a user selects an item to rate, and (2)
rate the item with a value. It won’t be effective enough by
simply using rating or ranking prediction to generate recom-
mendations for this circumstance, because a user may simply
rate an item with any values predicted by recommendation
algorithms.

To fully capture the above two user behaviors, Hofmann
[22] decomposes the recommendation problem into two
steps: (1) predict the items to select, (2) predict the rating
given the selected items. This two step prediction process ac-
tually mimics a scenario where users are free to select items
out of their interests and rate them accordingly. We follow
the same two-step recommendation strategy since it simu-
lates the generation of user behaviors, and have proposed a
few inter two-step recommendation approaches, which are
different from the Hofmann’s intra two-step recommendation
approach by combining two separate models to process each
step [17, 20, 21]. Because of better simulation of user be-
haviors, this two-step recommendation strategy improves the
accuracy of the recommendation towards conventional ones.
However, the two-step methods are still not innovative and
diverse enough, because these models are possibly biased on
well-known items to users. In this case, these recommenda-
tion results mean little to users although they are accurate.
People generally need the information that they did not know,
which will be really valuable to them.

Let’s take a toy example in agricultural e-commerce do-
main to illustrate our motivation. A compound fertilizer is
a well-known item as a generic fertilizer for all crops, and
it may be recommended to vineyard owners though they
may have already known about it. However, the bordeaux
mixture is a better recommendation since it is a fungicide to
prevent grapes from infestations of downy mildew, powdery
mildew and other fungi. This kind of recommendations is
more acceptable since it is not only an accurate item but also
anovel one. As a result, diversity and novelty factors are also
important to recommender system in addition to accuracy.
Some studies have pointed out that one goal of recommender
system is to provide users with highly idiosyncratic or per-
sonalized items, and more diverse recommendations will
be likely to recommend more satisfied items to users [23].
More and more attentions have been paid on recommendation
diversity and novelty [24, 25, 26, 27, 28, 29, 30, 31]. The
ACM conference on Recommender Systems actually held an
independent session “Diversity, Novelty and Serendipity” in
2014.

2

Due to the poor performance of the previous two-step
recommendation approaches on diversity and novelty, this
paper aims to solve this problem and recommend more
diverse and novel items while maintaining the advantages on
accuracy metric. In this paper, we propose a user-based two-
step recommendation algorithm with popularity normaliza-
tion (UTSP) to consider item importance according to their
popularity with both similarity calculation and probability
prediction. In addition, there are two other innovations in
this paper. Firstly, to evaluate the effectiveness of recom-
mendation diversity and novelty, we propose two new evalu-
ation metrics (H:tCOV and HitCIL) based on two typical
metrics: coverage and coverage in long tail. Secondly, we
propose an improved Jaccard similarity function (IJ) com-
bined with popularity normalization to further improve the
model performance, especially on HitCOV and HitCIL.
The improved 1J function is actually helpful to recommend
more diverse items meeting user’s real interests.

The remainder of the paper is organized as follows. We
first introduce diversity and novelty challenges in recom-
mender system, and propose two metrics to measure them.
In the Recommendation algorithm Section, two-step recom-
mendation algorithms, user-based two-step recommendation
algorithms and similarity functions are introduced step by
step, which are the key parts in UTSP method. Experiments
are conducted on MovieLens dataset to compare the pro-
posed approach with baselines, as well as the discussion
of experiment results in Experiment and discussion Section,
followed by the Conclusion Section.

Il. DIVERSITY AND NOVELTY

Diversity and novelty have been grabbing more and more
attention in the Recommender System community as key
recommendation quality factors beyond accuracy in real rec-
ommendation scenarios [23, 24, 25, 26, 27, 28, 29, 30, 31,
32,33, 34]. Many different diversity and novelty metrics have
already been proposed in these studies.

In [32], the novelty of recommendations is considered that
how different it is with respect to “what has been previously
seen”, by a specific user. This means that whether the rec-
ommendations are novel or not depends on individual opin-
ions which are difficult to be measured. Diversity generally
applies to a set of items, and is related to how different the
items are with each other. A diverse recommendation set is
also related to novelty, for example, each item is “novel” with
respect to the rest of the set.

There are two kinds of diversity measures, individual
diversity and aggregate diversity [23]. Individual diversity is
defined as the diversity of recommendation lists for a given
user, which are often measured by an average dissimilarity
between all pairs of recommended items. On the contrary,
aggregate diversity considers recommendations across all
users. Therefore, it can be easily measured by the coverage of
recommendations across all users. It should be noticed that
there is no trivial relationship between individual diversity
and aggregate diversity. For example, if the system recom-
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mends to all users the same five best-selling items that are not
similar to each other, the recommendation list for each user is
diverse (i.e., high individual diversity), but only five distinct
items are recommended to all users (i.e., resulting in low
aggregate diversity) [23]. Based on the analysis, aggregate
diversity is a more important problem in our opinion, though
significant amount of work has been done on improving
individual diversity [25, 30, 31, 33, 34]. Therefore, this paper
mainly focuses on improving aggregate diversity (which
we will simply refer to as diversity throughout the paper,
unless explicitly specified otherwise) which has been largely
untouched.

In addition, making a diverse or novel set of recommen-
dations is easy. However, it is difficult to ensure that this set
contains many items that are relevant to the user preference.
The diverse, novel and accurate recommendation list will be
more reasonable, since the purpose of recommender system
is inherently linked to a notion of discovery. This is exactly
the purpose of this paper—improving the diversity and nov-
elty performance which are the weakness of the two-step
recommendation approaches while maintaining their high
accuracy advantages.

To evaluate modelling performance, we proposed two new
evaluation metrics HitCOV and HitCIL based on two
typical metrics: coverage (COV') and coverage in long tail
(CIL). COV is one of the most popular diversity metrics.
It measures the coverage or percentage of the recommended
items across the entire items. The N-dependent COV is
defined as:

U, TopN ()|

COV(N) =

(D
where I represents the entire item set, and TopN (u) is the
recommendation result for user v in top-N recommendation
task. In addition to COV', CIL indicates novelty to a certain
degree by measuring recommendation coverage in the long
tail of the items. It is defined as:

_ |Long N, TopN (u)|
B 1]

CIL(N) )
where Long represents the long tail item set. In this paper,
the long tail item set consists of the rest of top 20% popular
items.

It can be easily found that COV and CIL cannot eval-
uate whether the recommendations are effective, which just
indicates how many different items can be shown to users.
In order to measure the effectiveness of recommendation
results, the distinct item set which contains all the items that
are recommended to a user and meet the user’s preference
in top-N recommendation task is defined as Hit, it can be
written as:

Hit(N) = | J(Pre(u) N TopN (u)) 3)

u

where Pre(u) is the item set that meets the preference of user
u. Based on Hit(N), HitCOV and HitCIL are proposed
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to evaluate the effectiveness of recommendation results on
diversity and novelty. They are defined as:
_ |[Hit(N)

HitCOV(N) = I )

_|Hit(N) N Long|

HitCIL(N) 0

&)

These four metrics (COV,CIL, HitCOV ,and HitCIL)
will be used to evaluate the performance of our proposed rec-
ommendation approaches comparing with benchmark ones
in the experiment section.

lll. RECOMMENDATION ALGORITHM
A. TWO-STEP RECOMMENDATION ALGORITHM

The typical CF recommendation algorithm is based on user’s
ratings. As mentioned in our previous work [17, 20, 21],
user ratings data actually embed two sorts of user behaviors:
(1) user selects an item to rate, and (2) rate the selected
item. However, the traditional recommendation algorithms
normally try to predict or rank ratings directly on rating
values or rating ordinal relation, but ignore the first item
selection behavior. These algorithms normally assume that
if users rate an item, the rating value could be predicted.
Unfortunately, this assumption may not be always true as
some users may not tend to rate an item which is out of their
interest.

To solve the above issue, we have proposed the two-
step recommendation algorithms by considering the two
user behaviors embedded in ratings in our previous work
[17, 20, 21], as shown in Fig. 1. In a two-step recommenda-
tion algorithm, the unknown user behaviors can be predicted
as the two steps are actually a simulation of user ratings.
The first step of selecting items can be predicted by the
probability P(u, ) that user u rates item 4, then the second
step of rating the selected item is to predict the value #(u, )
which u may rate item 7. After that, the ranking score can be
computed as:

ranking(u,i) = P(u,i)#(u,1) (6)

The goal of the first step is to predict the rating behav-
iors. Intuitively, historical rating behaviors are relevant to it,
whereas rating values are not. Therefore, the probability is
predicted using only rating behaviors in the first step of our
proposed framework. In the second step, all users’ historical
rating data (both rating behaviors and rating values) are
used to predict unknown ratings. As this is a classic rating
prediction problem, therefore, existing techniques focusing
on rating prediction can be used in this step. After the two-
step calculation, the ranking score can be computed with
Eq (6). The recommendation results can be generated based
on the rankings, that is, the items with top-/N ranking values
will be recommended to the target user.
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FIGURE 1. The two-step recommendation framework

B. USER-BASED TWO-STEP RECOMMENDATION
ALGORITHM

It has been demonstrated that these two-step recommen-
dation algorithms gained good performance in top-/N rec-
ommendation task. However, these algorithms may reduce
recommendation aggregate diversity [21], which mismatch
the original purpose of recommender systems since they are
explored to solve information overload problem for users.
This problem is called “Harry Potter Problem” [35, 36].
During many years, Harry Potter is a runaway bestseller,
thus too frequently been recommended to users whenever
or whatever books they are reading. This “Harry Potter
Problem” clearly indicates that the recommended items are
biased on popular and well-known items. Furthermore, one
fact is that more popular items typically have more ratings,
but idiosyncratic items might have limited ratings. An item
with more ratings actually means easier to be recommended
to more users, which can partly explain the problem. In order
to solve the problem in two-step recommendation algorithms,
we propose a user-based two-step recommendation algorithm
with popularity normalization (UTSP) in this section.

The target of UTSP’s first step is to predict the probability
that a user rates an item with user’s historical rating behav-
iors. The rating behaviors are binary data, hence a user can be
described as an n-dimensional vector in which 1 represents
rated items and O represents unrated ones, which can be
written as:

VU(U) = ('Ul,’UQ,' o avn) (7)
1,3 € I(u)

“{on¢uw

where I (u) represents all the items rated by user w.
Conventional user-based two-step recommendation algo-
rithm (UTS) directly use this method to predict the probabil-
ity that a user would like to rate an item. If we don’t consider
user similarity, the probability can be easily calculated as:

(i € [1,n]) (8)

4

~ . 1
Plu-0) = (5]

> Vu(a)li] ©
)

a€N(u

where Vi;(a)[i] is the i*" element of the binary user model
for user a, and N (u) consists of the most similar neighbor
users of user u.

This probability represents how likely the neighbors rated
an item for a given user. Intuitively, this approach is biased
on popular items with more ratings. Let’s take a toy example
in book domain to illustrate this bias: Harry Potter verse Data
Mining [21]. Harry Potter is a very popular book, more than
20% users actually have bought this book, while less than
0.3% users only bought the professional computer science
book Data Mining. Therefore in this bias situation, for a
given user a, 10 users out of the 50 neighbors actually have
bought the popular book Harry Potter, but only 5 neighbors
bought the book Data Mining. If directly applying Eq (9)
for recommendation, user a will get a recommendation book
Harry Potter. However, the book Data Mining might be a
better recommendation because the neighbor’ purchase rate
across all users on this book are actually much higher than
book Harry Potter and the overall rate, which implies that
this user might be a computer science researcher. This toy
example indicates that the increment of the purchase rate in
a user’s neighborhood is significant for a good recommenda-
tion, which can be calculated as:

Ao ZaGN(u) Vu(a)[i]/|N (u)|
Plu.t) = T@I0]

where U represents the entire user set, and U () represents
the subset of users who have rated item 4. Note that from
this equation, the increased purchase rate might be greater
than 1, which means we’ll need a normalized step. In Eq. 10,
|N(u)| and |U| are just constants for a given user, therefore
these two constants actually will not affect the item ranking
if we delete them from the equation. Thus this equation can
be further simplified to a normalized version as:

(10)
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o 2aen(w) Vula)ld]
Plui) = =50

Eq (11) is actually a normalized version with popularity as
U (%) is the popularity for item . In addition to normalization,
the user attributes from neighbors are also very important
for a recommendation. Therefore, the equation can be further
improved by including user similarities as:

(1)

Blu. i) — ZaEN(u) sim(u,a) - Vy(a)[d]
Pt = T e i a)

where sim(u, a) is the similarity between user u and user a.

In theory, Eq. 12 should be effective to estimate how likely
a user rate an item. However, according to our previous
experiments, the recommendations from Eq (12) might be
biased towards long tail items. Let’s review the book domain
toy example Harry Potter vs Data Mining again. Assume only
one neighbor for a given user has bought book Data Mining,
Eq. 12 is likely to recommend this book to this user since this
book is less popular than Harry Potter. This recommendation
result is actually biased and experiences individual long tail
interest, rather than considering the common interests of the
whole neighbor set. In order to decrease the long tail interest
bias, the prediction equation can be further updated through
an improved popularity normalization, which can be revised
as:

12)

P(u i) = Z(LEN(u) sim(u, a) - Vu (a)ld]
7 B-VIU@| - 2 aen(w sim(u, a)

where 3 is a small constant to make sure the probability is
between 0 and 1.

The second step is considered as a classic rating prediction
problem. It can be done by making use of existing techniques.
In UTSP, we use SVD++ [12] in the second step.

As a popular matrix factorization approach, SVD++ is
capable to consider explicit rating and implicit feedbacks
for a superior recommendation model by optimizing a pre-
defined objective function. The prediction model and training
strategy of SVD++ is detailed in [12], which won’t be further
explained in this paper.

Based on the above models, UTSP can predict P(u,7)
according to Eq (13), then predict 7(u,?) using SVD++
[12, 21], followed by ranking the unrated items for users
according to Eq (6) to produce recommendation outcomes.

13)

C. SIMILARITY FUNCTIONS

Similarity function is an important part in collaborative filter-
ing approaches, which has not been discussed yet. There are
two typical similarity functions, correlation and relevance.
According to the classic rating-based recommendation task,
some studies [6, 9, 11, 17] believe that different rating scores
represent different degrees of user’s attitude towards items.
Therefore, users with similar rating values to the same item
are often considered to be similar. This type of similarity
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functions is called correlation. Another type of similarity
function is called relevance [37], which considers the users
who often rate the same items are similar.

Arguably, correlation is often considered as a better sim-
ilarity function since it utilizes more information. However,
relevance has also been demonstrated as a great similarity
function than correlation especially in the first step of two-
step recommendation algorithms [17, 38]. Among the rel-
evance similarity methods, Jaccard is a popular similarity
function which can be directly applied in the UTSP algo-
rithm. The Jaccard similarity function can be defined as:

[L(w) N 1(a)] _ >, Vo(w)[i] A Vo(a)li]
[(w)UI(a)] 32 Vo(wli] v Vu(am)

This Jaccard similarity function treats all items equally.
However, as we mentioned before, user’s behaviors on rating
items are biased according to the item popularity. There-
fore, we incorporate popularity normalization to the Jaccard
function to increase recommendation diversity. The improved
Jaccard (1J) similarity function can be defined as:

> (Vu(u)[i] A Vo (a)[i])/|U ()]
> (Vuu)ld] v Vo (a)[i])/|U (i)
From this improved version, it is clearly seen that items with
different popularity would play different roles in similarity
calculation, the impact of less popular items would be bigger
than the popular ones. The effectiveness of this improved
Jaccard similarity function will be discussed in Experiment
and discussion Section.

Sim]uccard(u7 a’) =

simy(u,a) = (15)

IV. EXPERIMENT AND DISCUSSION

A. EXPERIMENT SETUP

In the experiment, we aim to evaluate modelling performance
in terms of accuracy, diversity and novelty for our proposed
model in top-N recommendation task using 6 metrics. The
Normalized Discounted Cumulative Gain (N DCG) [39] and
1-call [40] are used as accuracy metrics, whereas COV and
HitCOV are for diversity evaluation, and C'I L and HitCIL
are mainly for novelty.

The data sets to evaluate our proposed recommendation
approach are MovieLens 100K and 1M !. MovieLens 100K
includes 100,000 ratings with 1-to-5 star scale assigned by
943 users on 1,682 movies, and MovieLens 1M includes
1,000,209 ratings with 1-to-5 star scale assigned by 6,040
users on 3,900 movies. To make sure the stable experiment
result, we also apply 5-fold cross validation for our evalu-
ation. Basically, we first split the initial data set to 5 equal
sized subset, then randomly assign 4-fold as training set and
the rest fold as test set. The recommendation algorithms
will apply user’s rating behaviors in the training set to train
models, then to test their accuracy, diversity and novelty
metrics based on test data set.

Thttps://grouplens.org/datasets/movielens/
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TABLE 1. Performance of two-step recommendation approaches.

NDCG 1-call Cov HitCOV CIL HitCIL
UTS 0.1750 0.4369 0.1034 0.0529 0.0036  0.0000
UTSP-Line 0.0084  0.0827 0.3591 0.0458 0.3151  0.0339
UTSP-Jaccard  0.1589  0.4369 0.2313 0.1207 0.0767  0.0161
UTSP-1J 0.1587 0.4358 0.2592 0.1356 0.0910  0.0250
NDCG 1-call COV HitCOV CIL HitCIL
0.175 = NDCG - 1-call 0.35{ ==m COV
0.4 = HitCOV
0.150 0.30{ mmm CIL
B HitCIL
0.125 03 0.25
0.100 0.20
0.075 02 0.15
0.050 0.10
0.1
0.025 I 0.05
o 0.0 0.00

0.000

uTs UTSP-Line  UTSP-Jaccard UTSP-I) : uTs

FIGURE 2. Performance of two-step recommendation approaches.

The conducted experiments include two parts. One is to
compare the performance between conventional user-based
two-step recommendation algorithm (UTS) and the proposed
improved algorithms UTSP. The differences among the ap-
proaches are similarity functions and prediction methods to
estimate the probability of a user rating an item. Three UTSP
variants with different similarity functions will be discussed.
The approach using Eq (12) and Eq (15) is marked as UTSP-
Line, the one using Eq (13) and Eq (14) is marked as UTSP-
Jaccard, while the one using Eq (13) and Eq (15) is marked as
UTSP-1J. These three approaches will be compared with UTS
to demonstrate the effectiveness of our proposed approach.
The second is to compare our methods with the benchmark
models on both rating and ranking prediction, for example,
UserCF [9] and SVD++ [12] for rating prediction purpose,
and pLPA [16] for ranking prediction purpose. Among these
models, UserCF is a user-based CF with Jaccard similarity,
and SVD++ is a state-of-the-art rating prediction model. For
ranking prediction methods, pLPA [16] is a probabilistic la-
tent preference analysis approach directly optimizing ranking
target based on a pairwise ordinal model.

To easily reproduce the evaluations, we also detail the
model parameters used in this paper, which include:

« the size of nearest neighbors for UserCF is 50;

¢ SVD++ model with 50 features and 25 iterations with
)\6 = )\7 = 005, and Y1 =72 = 0002,

« pLPA has 6 latent preferences and 30 iterations [16];

o UTS and UTSPs have the same neighbor size parameter
setting as UserCF model for first setp, and same settings
as SVD++ for second step.

All the experiments conducted in this Section are evaluated
by metrics NDCG, 1-call, COV, HitCOV, CIL and
HitCIL.

6

UTSP-Line

UTSP-Jaccard UTSP-1) uTS UTSP-Line UTSP-Jaccard UTSP-I)

B. RESULTS AND DISCUSSION

1) Comparison with Two-step Recommendation Approaches
Firstly, we present a performance comparison among two-
step recommendation approaches. For each approach, we
report NDCG, 1-call, COV, HitCOV, CIL and HitCIL
at the 5th position in the recommendation list. Table 1 illus-
trates the results based on MovieLens 100K dataset. The bold
cells indicate the best results for the corresponding metrics.
As can be seen from Table 1, UTS gets the best accuracy
and the worst diversity. All the UTSP approaches gain better
diversity than UTS. This indicates that the popularity normal-
ization can lead to significant diversity improvement. How-
ever, UTSP-Line does not maintain the accuracy advantage
of two-step recommendation algorithms. It is because that
directly using Eq (12) to predict probability that a user rates
an item causes the recommendation list to be biased towards
long tail interests from individual neighbors. This can be fur-
ther demonstrated by the evidence that most recommended
items (about 88%) of UTSP-Line are long tail ones.
Focusing on the conventional diversity metrics COV and
CIL, both USTP-Jaccard and UTSP-1J gain significant im-
provement of diversity with at least 124% on COV and
2050% on C1L, while maintaining the accuracy advantage
of UTS with no more than 10% loss on NDCG and 1% on
1-call. Moreover, as shown in Fig. 2, the accuracy perfor-
mance of UTSP-Jaccard and UTSP-1J are almost the same,
while 1J similarity function can further lead to about 12%
improvement compared to Jaccard on COV and 19% on
CIL, which demonstrates the effectiveness of the proposed
popularity normalization on similarity calculation. HitCOV
and HitCIL are two novel diversity metrics which can
evaluate whether the diverse recommendation is effective.
Comparing the performance on COV and HitCOV, UTSP-
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TABLE 2. Performance compared with benchmark recommendation approaches (MovieLens 100K).

NDCG 1-call (¢6)% HitCOV CIL HitCIL
UserCF  0.0131  0.0880  0.2949 0.0303 0.1700  0.0166
SVD++ 0.0468  0.1994  0.0386 0.0208 0.0065  0.0018
pLPA 0.1211  0.3213  0.0428 0.0184 0.0000  0.0000
UTS 0.1750  0.4369 0.1034 0.0529 0.0036  0.0000
UTSP-IJ  0.1587 0.4358  0.2592 0.1356 0.0910  0.0250
TABLE 3. Performance compared with benchmark recommendation approaches (MovieLens 1M).
NDCG 1-call COV HitCOV CIL HitCIL
UserCF  0.0233  0.1492  0.4040 0.0783 0.2363  0.0103
SVD++ 0.0311  0.1724  0.0385 0.0263 0.0100  0.0045
pLPA 0.1559  0.5253  0.0120 0.0115 0.0000  0.0000
UTS 0.2747 0.8118 0.1195 0.0980 0.0073  0.0038
UTSP-IJ  0.2610  0.7833  0.3866 0.3075 0.0402  0.0219
NDCG 1-call COV HitCOV CIL HitCIL
0.175 = NDCG - 1-call 0.30 == COV
0.4 m HitCoV
0.150 0.25 - CL
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0.125 03 0.20
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FIGURE 3. Performance compared with benchmark recommendation approaches (MovieLens 100K).
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FIGURE 4. Performance compared with benchmark recommendation approaches (MovieLens 1M).

1J and UTSP-Jaccard gain better HitC'OV and worse COV
than UTSP-Line. This indicates that high COV is not always
effective. Though UTSP-Line can generate more diverse
recommendations, users may hardly like them. On the con-
trary, the diverse recommendations from UTSP-1J and UTSP-
Jaccard are much more effective. UTSP-1J gains the best
performance on HitCOV, and gets good performance on
HitCIL close to UTSP-Line, which is biased towards long
tail interests.
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Generally speaking, UTSP-1J outperforms other three two-
step recommendation approaches if considering both ac-
curacy and diversity performance comprehensively, which
demonstrates the effectiveness of our proposed UTSP algo-
rithm on both probability prediction and similarity calcula-
tion.
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2) Comparison with Benchmark Recommendation

To further demonstrate the effectiveness and robustness,
UTSP-1J is also compared with the benchmark models such
as UserCF, SVD++ and pLPA with metrics NDCG, 1-call,
COV, HitCOV, CIL and HitCIL on both data sets
MovieLens 100K and 1M. We detail the comparison results
in Table 2 and Table 3, where we can clearly see the high-
lighted top 2 best performed methods.

As depicted from Fig. 3 and Fig. 4, the two rating pre-
diction models UserCF and SVD++ perform worse than our
proposed models in terms of accuracy evaluation metric. The
result indicates that the metric accuracy of rating prediction
is probably not closely relevant to the quality of top-IV
recommendation. While the ranking prediction recommen-
dation approach pLPA indeed improves the recommendation
accuracy, which proves the statement of recommendation
challenge is more likely to be a ranking prediction issue. In
addition, our proposed two-step recommendation approaches
UTS and UTSP-1J further improve the recommendation ac-
curacy to outperform the benchmark ones, which shows that
the two-step strategy is feasible for top-N recommendation
task.

In terms of diversity metrics, model UTS is almost the
worst on COV but with the 2"? best performance on
HitCOV. It means that although the recommendation di-
versity of UTS is not good, the diverse recommendations can
always meet user interests. In addition, the popularity nor-
malized model UTSP-1J significantly improves the diversity
performance. In terms of metrics HitCOV and HitCIL,
UTSP-1J is able to recommend the most diverse items. All
the above experimental comparisons clearly outline the su-
periority of our proposed model UTSP-IJ which actually
outperforms all the benchmark models both on accuracy and
diversity metrics.

3) Ablation Analysis

We performed a detailed ablation study to examine the con-
tributions of the proposed model components for recommen-
dation performance. There are three replaceable components
in this algorithm:

o UserCF: one step recommendation algorithm which
map to the first step in UTS model,

e SVD++: one step recommendation algorithm which
map to the second step in UTS model;

« UTS: a conventional user-based two-step recommenda-
tion algorithm;

o UTSP-1J: our proposed two-step recommendation al-
gorithm.

From Table 2 and Table 3, we find that the UTSP-1J algo-
rithm obtains the balanced performance of accuracy, diversity
and novelty compared to the ablated models on two data
sets. Moreover, we note that UTS can effectively improve
the recommendation accuracy, but it reduces diversity. For
this problem, we introduce an improved user-based two-step
recommendation algorithm with popularity normalization
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UTSP-1J, which not only maintains high accuracy but also
significantly improves diversity.

In particular, we can see that UTS has the best accuracy
performance on both data sets. Compared with UserCF,
UTS gains significant improvement of accuracy with at least
1079% on NDCG and 396% on 1-call. Compared with
SVD++, UTS improves accuracy with at least 274% on
NDCG and 119% on 1-call. However, UTS obtains worse
performance in terms of diversity (COV') and novelty (CIL
and HitCIL) than that of UserCF on both data sets. In
diversity, UTS is up to 70% lower than UserCF on COV'. The
accuracy performance of UTSP-1J is comparative to that of
UTS, but the performance of diversity and novelty increases
by at least 151% on COV, 156% on HitCOV, 451% on
CIL, and 476% on HitCIL on both data sets.

V. CONCLUSIONS

This paper proposes a user based two-step recommendation
model with popularity normalization UTSP which analy-
ses user behaviors embedded in rating data and recom-
mends items integrating user ratings, user similarity and
item popularity. We first propose an improved Jaccard sim-
ilarity function combined with popularity normalization to
improve modelling performance. We then integrate the im-
proved Jaccard function to the proposed user-based two
step UTSP model. The proposed model variant UTSP-1J
actually overcomes the recommendation bias on popular
items and significantly result in a more diverse and accurate
recommendation. In addition to modelling contribution in
recommender system area, we also propose two new metrics
(HitCOV and HitCIL) to evaluate diversity and novelty of
recommendation methods. Last but not least, the conducted
comprehensive experiments also demonstrate the outstanding
performance of the proposed model in terms of recommen-
dation accuracy, diversity and novelty, compared with bench-
mark models UserCF, SVD++, pLPA, and previous two-step
recommendation approach UTS.
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