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Abstract: This paper presents a transformerless step-up multilevel inverter based on a switched-capacitor
structure. One of the main contributions of the proposed topology is replacing the separated DC voltage
source with capacitors which are charged at predetermined time intervals. Therefore, a high-level staircase
voltage waveform can be achieved by discharging some of these capacitors on the load. The other
contribution of the proposed structure is to eliminate the magnetic elements which traditionally boost
the input DC voltage. In addition, asymmetrical or unequal amounts of capacitor voltages create more
voltage levels, which enable voltage level increments without increasing the number of semiconductor
devices. This paper introduces a self-balanced boost Switched-Capacitors Multilevel Inverter (SCMLI)
which is able to create a nearly sinusoidal voltage waveform with a maximum voltage of up to 45 times
that of the input voltage DC source. Higher level output voltage levels are also achievable by extending
the circuit topology. After determination of the switching angles and selecting the proper switching states
for each level, an offline NLC method is used for modulation, which eases the control implementation.
Analysis, simulation and experiments are carried out for a 91-level inverter (45 levels for positive and
negative voltages and one for zero voltage) are presented.

Keywords: multilevel inverters; self-balanced; single source; transformerless

1. Introduction

Multilevel inverters (MLIs) are widely used in high voltage high power applications such as
renewable energy resources, HVDC systems, power industry, high power motor drives, and energy
transmission systems [1]. The term “multi-level” was started with the three-level converter in 1981
by Nabae [2], and gradually expanded to higher levels. These converters include arrays of power
semiconductors, capacitors and DC sources which generate a staircase voltage waveform through a
proper pulse pattern. Neutral point clamped (NPC) and flying capacitor (FC) [3] are among the famous
topologies of MLIs, which utilize different capacitors and switches to generate a staircase voltage
waveform. Cascaded H-Bridge (CHB) topology is introduced for systems with multiple separate DC
sources such as solar cell farms [4] and a single DC source [5].
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Increasing the voltage levels improves output voltage quality but leads to an increment of
switching devices and other components. This consequently causes complexity in the control and
maintenance of such systems. Multilevel converters with asymmetrical or unequal DC sources are
introduced to achieve higher voltage levels without increasing the number of circuit components [6,7].
In order to achieve higher voltage levels at the output, [8–10] new structures with fewer components
and DC sources have been proposed. Different topologies for symmetric and asymmetric multilevel
inverters are shown in [11], which summarizes recent improved topologies. For both symmetrical
and asymmetrical topologies, multiple DC sources are required, which may not be available in all
conditions [12]. Capacitors can be used in these structures but they also need additional circuits
for voltage balancing. Therefore, a converter with the lowest possible number of DC sources and
self-balanced capacitors is essential in order to achieve higher voltage levels with a reduced number of
components [13]. On the other hand, low voltage DC input sources are used in many applications such
as photovoltaic farms [14], electric vehicles [15] and battery applications [16]. Step-up DC-AC Power
converters are required to generate voltage for AC loads or grid connection purposes. Traditionally,
multi-stage power conversion is required to achieve the required voltage. A transformerless converter
is required to convert low voltage DC to high output AC voltage at a single stage.

The authors of [17] presented a single source self-balanced SCMLI topology which uses two
switches, two diodes and a capacitor to generate each voltage level. A bipolar MLI based on CHB
structure is presented at [18] which consist of full bridge modules. These two topologies suffer from
a large number of switching components and high voltage stress on switches. To overcome this
limitation, [19] presented a modular SCMLI structure which consists of modules with three powers
switches. The number of semiconductors decreased in [20,21] by improving this topology by replacing
a diode instead of a switch, which causes a reduction of the number of required drivers as well.
The structure proposed in [22] reduces the number of switches to one in each module, which leads to
reducing drivers and ease of control in comparison with other topologies. However, the voltage stress
on each of the switches increases by voltage level increment as well as increasing the number of series
diodes. The authors of [23] presented another SCMLI to reduce voltage stress on the switches based
on cascading different modules together. The main problem of this structure is the requirement of
additional circuits for balancing purposes.

In this paper, the proposed topology solves the main issues of the mentioned topologies which
are (i) the number of switching devices, and (ii) voltage stress on different components during level
increment. Moreover, the proposed structure has the ability to boost the input voltage without using
any magnetic elements, and can convert a low DC voltage to a high voltage AC output by using
single DC source. The challenge of the number of components necessitates the presentation of a step
up DC-AC MLI converter based on SC network with reduced number of circuit elements such as
capacitors and power semiconductors. Charging the capacitors (up to multiples of input voltage) and
smart discharging of several capacitors at predetermined periods enables the proposed topology to
increase the number of voltage level steps and boost ratio of the converter. As the input voltage of the
converter is low, the rating of components is kept within an acceptable range.

The next section of the paper explains the circuit topology and its modules. Topology operation
such as switching states, mathematical analysis, modulation strategy, charging and discharging of
capacitors are analyzed at Section 3. A circuit extension and a comparative study is carried out in
Section 4. The analyses are validated by a simulation and experimental results in Section 5. A conclusion
is presented in Section 6.

2. Proposed Topology

Figure 1a shows circuit topology of the multi-stage converter presented by F. Z. Peng et al. [24]
where the capacitors of previous stages charge the capacitors of the next stages and then, the capacitors
of the last stage generate multilevel AC voltage through a specific pulse pattern. Half-bridge building
block modules (see Figure 1b) are used to connect the capacitors together. This module includes two
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two-quadrant switches (S1 and S2) which enable bidirectional current flow but can only block positive
off-stage voltage. As the capacitors of the last stage are involved in output voltage generation and all
capacitors are charged to Vin, the number of circuit components increases in order to achieve higher
output voltages. This is because of the limitation of the building blocks to control the currents from
different ports of the module. Charging capacitors to multiples of input voltage leads to decrement of
circuit components. For this purpose, building blocks are required to control the current flow from
three ports of the module. Two other switches (S′1 and S′2) are added to the module in order to control
the current flow from different sides of the module. Figure 2a shows the configuration of the proposed
converter where modified modules are used. Owing to the modified module (see Figure 2b), a number
of capacitors are combined with power semiconductors to form a multi-stage switched-capacitor
network. Special charging and discharging algorithms have to be considered to achieve multilevel
output voltage through special arrangement of switches and capacitors. The main difference between
the proposed topology and that shown in Figure 1 is the contribution of all the capacitors in multilevel
voltage generation as well as charging the capacitors to multiples of Vin. As shown in Figure 2, S′1
and S′2 can be selected as unidirectional (two-quadrant switches that are shown in circle or square
inclusion depending on the requirement for controlling current flow from one side) or bidirectional
(four-quadrant switches that are shown in rectangular inclusion) switches.
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3. Operating Principle of the Proposed Topology

Figure 3 shows a three-stage proposed converter where 9 modules and 42 switches (38 for SCMLI
and 4 for H-bridge) are used. Note that the modules of the last stage can be simplified, and some of the
switches can be eliminated. Smn is nth switch of mth module and CMi is the capacitor of ith module.
A Switching state of (SM1, SM2, . . . , SM9) can be defined for this converter where SMi (i = 1, 2, . . . , 9) is
the switching state for each module.
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4. Asymmetrical Charging of the Capacitors

As mentioned, the main concept of this inverter is to charge the capacitors to multiples of the
input voltage through switches. Figure 4 shows charging some states of different capacitors. As shown
in Figure 4a, VCM1 reaches to Vin through the switches of modules 1 and 2. Voltage of CM3 reaches
to 3Vin via CM1, CM2 and input DC source (see Figure 4b). CM6 and CM9 charges to 3Vin in parallel
with CM3 and CM5 respectively (see Figure 4c). CM8 is charged to 14Vin via specified paths, which are
shown in Figure 4d.
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Some selected capacitor charging paths are indicated in Figure 4. According to this figure, by
modeling each path, the equation of each capacitor voltage during charging can be achieved. The same
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scenario can be carried out for discharging paths to find equations of capacitors voltages during
discharging intervals.

Figure 5 shows the model of charging circuit for CM1. In this model, the following non-idealities
are considered for diodes, switches and capacitors:

VDij: Diode on-state voltage of ith module and jth diode
RDij: Diode on-state resistant of ith module and jth diode
rcn: ESR of nth capacitor
VSij: Switch on-state voltage of ith module and jth switch
RSij: RDij: Switch on-state resistant of ith module and jth switch
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In the case of calculating capacitor voltage, there is a basic equation which compromised both
power switches and diode voltage, which for the nth module during charge can be calculated as:

Vch
CMn

(t) = (VinMn − (kVSW,on + mVD,on))(1− e
−

t
τCMn ) (1)

There are different switches and diodes in each charging and discharging states and in the above
equation, k and m are the number of switches and diodes in the charging paths respectively. CMn, VdcMn

and τCMn are capacitance value, input voltage and time constant of nth module. Time constant of CMn
during charging can be calculated: (note that, on-resistance of the switches and diodes are considered
as the same.)

τCMn = (kRsw + mRD + rcn)·CMn (2)

According to different modules in the proposed asymmetric multilevel inverter (see Figure 4) the
input voltage of module 1 is Vdc − (3Vsw,on + 3VD,on) and its time constant is (3Rsw + 3RD + rc)·CM1.
Therefore, VCM1 can be shown as:

VCM1(t) = (Vdc − (3VSW,on + 3VD,on))(1− e
−

t
(3Rsw + 3RD + rc)·CM1 ) (3)

The same procedure has to be carried out to calculate all of the capacitor voltages during
charging. Table 1 shows different parameters for the calculation of all other capacitor voltages based
on Equation (1), which also illustrates the number of switches and diodes in each path.
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Table 1. Different parameters for different capacitors.

n VinMn k m

2 Vdc 3 3
3 Vdc + VCM1 (t) + VCM2 (t) 6 6
4 Vdc + VCM1 (t) + VCM2 (t) + VCM3 (t) + VCM5 (t) 12 8
5 Vdc + VCM1 (t) + VCM2 (t) 6 6
6 VCM3 (t) 3 3
7 Vdc + VCM1 (t) + VCM3 (t) + VCM4 (t) 10 6
8 Vdc + VCM2 (t) + VCM4 (t) + VCM5 (t) 10 6
9 VCM5 (t) 3 3

5. Multilevel Output Voltage Generation

Output voltage generation is carried out according to Table 2, i.e., the information provided about
specific voltage generation for each module related to their possible switching states. To achieve a
self-balanced system, charging and discharging states for the capacitors of each module should be
available by switching pattern. To generate different levels, the ability of modules to keep the voltage
within an acceptable range has to be analyzed. Therefore, Table 2 shows possible switching states for
each module to generate mentioned output voltages. For each module, capacitor voltage is shown for
the available switching states along with its charging or discharging mode. Note that “×” implies that
mentioned switching state is not used at that specific module. Charging, discharging and no change
mode of the module are shown with “N”, “H” and “–” respectively.

Having redundant states is an important issue in the generation of output voltage levels for
multilevel inverters. According to Table 2, various alternatives are available for each module, which
can be selected in order to balance the capacitors voltages. For instance, Module 1 is charged by
switching state 5 and will be discharged by A, B and 9. States 0, 3 and C bypass CM1. State D also will
charge this capacitor via input DC source. As shown in this table, whether the application of some
switching states may lead to charging or discharging the capacitor depends on the switching state of
the previous module.

With the same procedure as that used in the previous part, the voltage of each capacitor during
discharging intervals can be calculated as:

VDisch
CMn

(t) = (Vp
CMn

(t) − (kVSW,on + mVD,on))(e
−

t
τCMn ) (4)

where, VDisch
CMn

(t) is the discharge voltage of CMn and Vp
CMn

(t) is the initial voltage of the capacitor before
discharging. Other parameters (m and k) are the same as Table 1.

Choosing a proper switching pattern is the main challenge of this converter. Discharging the
combination of capacitors across the load (to form different levels of output AC voltage) may lead
to decrements in capacitor voltages. Therefore, to avoid capacitors voltage imbalance, switching
states have to be used which are able to charge one or more capacitors during discharging time of
other capacitors. This means that the charging time of all the capacitors should be distributed in the
discharging intervals.

Table 3 shows the different switching states of the proposed converter to generate different levels.
Note that proposed converter has hundreds of switching states, but only the switching states are
mentioned in this table, which is crucial for capacitor voltage balancing. As shown in this table, at least
one capacitor has the chance to be charged during the discharging of other capacitors (except 39Vin,
41Vin, 42Vin and 45Vin). Figure 6 shows the paths of charging and discharging for the four selected
switching states.
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Table 2. possible switching states for each module and voltage state of each capacitor (Charge: N,
Discharge: H, No Change: -).

VCM1 VCM2 VCM3 VCM4 VCM5 VCM6 VCM7 VCM8 VCM9

0(0000) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) 3Vin (H)

2(0010) × × × × × 3Vin (H) 14Vin(H,N) 14Vin
(H,N) ×

3 (0011) 0 (-) 0 (-) 0 (-) 0 (-) 0 (-) × × × ×

4(0100) × × × × × 3Vin (H) 14Vin (H) 14Vin (H) 0 (-, N)

5(0101) −1Vin (N) 1Vin (H) −3Vin (N) 9Vin (H)
−9Vin (H) 3Vin (H) × × × ×

6(0110) × × × × × 0 (-) 0 (-) 0 (-) _

8(1000) × × × × × 0 (-) 0 (-) 0 (-) 3Vin(H)

9(1001) 1Vin(H) 1Vin(H) 3Vin(H) 9Vin (NH)
−9Vin(H) 3Vin(H) × × × ×

A(1010) 1Vin(H) −1Vin(N) 3Vin(H) 9Vin (H)
−9Vin (H) −3Vin (N) 3Vin (N) 14Vin (H) 14Vin (H) ×

B(1011) 1Vin (H) 1Vin (N) 3Vin (H) × 3Vin (N) × × × ×

C(1100) 0 (-) 0 (-) 0 (-) × 0 (-) × × × ×

D(1101) 1Vin (N) 1Vin (H) 3Vin (N) × 3Vin (H) × × ×
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Table 3. Different switching states of proposed converter.

Level Switching States (CM1, CM2, CM3, CM4, CM5, CM6, CM7, CM8, CM9)

0VIN

5C0000000(↑− − − − − − − −) 3A0000000(−↑− − − − − − −) A550C0680(↓↓↑− − − − − −)
A530A0680(↓↓− −↑− − − −) A5A956868 (↓↓↓↑↓− − − −) 00909A864(− −↓−↓↑− −↑)

ACA506280(↓−↓↓− −↑− −) 350A50628(−↓−↓↓− −↑ −)

1VIN C3D0BA864(− −↓−↓↑− −↑)

2VIN BBD0BA864(↓↑↓−↓↑− −↑) DDD0BA864(↑↓↓−↓↑− −↑)

3VIN A5D0BA864(↓↓↓−↓↑− −↑)

4VIN
5D9CBA864(↑↓↓−↓↑− −↑) 3B9CBA864(↓↑↓−↓↑− −↑) BAD39A864(↓↑↓−↓↑− −↑)

DCD39A864(↑↓↓−↓↑− −↑)

5VIN
BBB0BA864(↓↑↓−↓↑− −↑) DDB0BA864(↑↓↓−↓↑− −↑) BBD0DA864(↓↑↓−↓↑− −↑

DDD0DA864(↑↓↓−↓↑− −↑)

6VIN
A5D0D8684(↓↓↑−↓− − − −) A5B0B8684(↓↓↓−↑− − − −) 5C9098684(↑−↓−↓− − − −)
3A9098684(−↑↓−↓− − − −) A5B0BA864(↓↓↓−↓↑− −↑) A5D0DA864(↓↓↓−↓↑− −↑)
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Table 3. Cont.

Level Switching States (CM1, CM2, CM3, CM4, CM5, CM6, CM7, CM8, CM9)

7VIN
BAD39A804(↓↑↓−↓↑− −↑) DCD39A804(↑↓↓−↓↑− −↑) 5D9CDA864(↑↓↓−↓↑− −↑)

3B9CDA864(↓↑↓−↓↑− −↑)

8VIN DDB0DA864(↑↓↓−↓↑− −↑) BBB0DA864(↓↑↓−↓↑− −↑)

9VIN
A5B0DA864(↓↓↓−↓↑− −↑) A5B0B8688(↓↓↓−↑− − −↓) A5D0D8688(↓↓↑−↓− − −↓)

5C9094684(↑−↓−↓↓− − −)3A9094684(−↑↓−↓↓− − −)

10VIN
BAB39A808(↓↑↓−↓↑− −) DCB39A808(↑↓↓−↓↑− −↓) 5D9CD4064(↑↓↓−↓↓− −↑)

3B9CD4064(↓↑↓−↓↓− −↑)

11VIN
DDA0D4064(↑↓↓−↓↓− −↑) BBA0D4064(↓↑↓−↓↓− −↑) DDB05A808(↑↓↓−↓↑− −↓)

BBB05A808(↓↑↓−↓↑− −↓)

12VIN
5C9094688(↑−↓−↓↓− −↓) 3A9094688(−↑↓−↓↓− −↓) A5D0D4688(↓↓↑−↓↓− −↓)

A5B0B4688(↓↓↓−↑↓− −↓) A5B05A808(↓↓↓−↓↑− −↓) A5A0D4064(↓↓↓−↓↓− −↑)

13VIN
5D9ABA864(↑↓↓↓↓↑− −↑) 3B9ABAA864(↓↑↓↓↓↑− −↑) BAD59A864(↓↑↓↓↓↑− −↑)

DCD59A864(↑↓↓↓↓↑− −↑)

14VIN 359ABA864(−↓↓↓↓↑− −↑) ACD59A864(↓−↓↓↓↑− −↑)

15VIN A5A956868(↓↓↓↑↓↓− −↓) 5C999A864(↑−↓↓↓↑− −↑) 3A999A864(−↑↓↓↓↑− −↑)

16VIN 5D9ADA864(↑↓↓↓↓↑− −↑) BAB59A864(↓↑↓↓↓↑− −↑)

17VIN 359ADA864(−↓↓↓↓↑− −↑)

18VIN
5C999A808(↑−↓↓↓↑− −↓) 5C9994064(↑−↓↓↓↓− −↑) 3A999A808(−↑↓↓↓↑− −↓) 3A9994064(−↑↓↓↓↓−

−↑)

19VIN
DD30B2464(↑↓− −↓↓↓−↑) DDD0CA8A0(↑↓↓− −↑−↓↓) BB30B2464(↓↑− −↓↓↓−↑)

BBD0CA8A0(↓↑↓− −↑−↓↓)

20VIN
ACA596284(↓−↓↓↓↓↑− −) A550D2684(↓↓↑−↓↓↓− −) 359A58628(−↓↓↓↓− −↑↓) A530B2684(↓↓−

−↑↓↓− −) 5C9008620(↑−↓− − − −↓↓) 3A9008620(−↑↓− − − −↓↓)

21VIN 5C9994008(↑−↓↓↓↓− −↓) 3A9994008(−↑↓↓↓↓− −↓)

22VIN
DD30D2464(↑↓− −↓↓↓−↑) BB30D2464(↓↑− −↓↓↓−↑) DDD0CA8A0(↑↓↓− −↑−↓↓)

BBD0CA8A0(↓↑↓− −↑−↓↓)

23VIN
ACA596288(↓−↓↓↓↓↑−↓) 359A54628(−↓↓↓↓↓−↑↓) A5D0C46A0(↓↓↑− −↓−↓↓)
A550D2688(↓↓↑−↓↓↓−↓) A5B0A46A0(↓↓↓−↑↓−↓↓) A530B2688(↓↓− −↑↓↓−↓)

24VIN
5D0C52408(↑↓− −↓↓↓−↓) 3B0C52408(↓↑− −↓↓↓−↓) BAA3040A0(↓↑↓− −↓−↓↓) DCA3040A0(↑↓↓−

−↓−↓↓)

25VIN
DD3052408(↑↓− −↓↓↓−↓) BB3052408(↓↑− −↓↓↓−↓) DDA0C40A0(↑↓↓− −↓−↓↓) BBA0C40A0(↓↑↓−

−↓−↓↓)

26VIN
5C9094A88(↑−↓−↓↓↓−↓) 3A9094A88(−↑↓−↓↓↓−↓) 5C9094648(↑−↓−↓↓−↓↓)

3A9094648(−↑↓−↓↓−↓↓)

27VIN 5D0AB2464(↑↓−↓↓↓↓−↑) BAD50A8A0(↓↑↓↓−↑−↓↓)

28VIN ACD50A8A0(↓−↓↓−↑−↓↓) 350AB2464(−↓−↓↓↓↓−↑)

29VIN
5C0992404(↑− −↓↓↓↓− −) 3A0992404(−↑−↓↓↓↓− −) 5C99080A0(↑−↓↓− − −↓↓) 3A99080A0(−↑↓↓−

− −↓↓)

30VIN 5D0AD2464(↑↓−↓↓↓↓−↑) 3B0AD2464(−↑−↓↓↓↓−↑)

31VIN 350AD2464(−↓−↓↓↓↓−↑) ACD50A8A0(↓−↓↓−↑−↓↓)

32VIN
5C0992408(↑−−↓↓↓↓−↓) 3A0992408(−↑−↓↓↓↓−↓) 5C99040A0(↑−↓↓−↓−↓↓)

3A99040A0(−↑↓↓−↓−↓↓)

33VIN
35933AA44(−↓↓− −↑↓↓−) ACCC98A64(↓− − −↓−↓↓↑) 5D0A52408(↑↓−↓↓↓↓−↓)

BAA5040A0(↓↑↓↓−↓−↓↓)

34VIN
ACA5062A0(↓−↓↓−↓↑↓↓) 350A52628(−↓−↓↓↓↓↑↓) A550C26A0(↓↓↑− −↓↓↓↓) A530A26A0(↓↓−

−↑↓↓↓↓) 5C0002220(↑− − − −↓↓↓↓) 3A0002220(−↑ − − −↓↓↓↓)
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Table 3. Cont.

Level Switching States (CM1, CM2, CM3, CM4, CM5, CM6, CM7, CM8, CM9)

35VIN 5D933AA48(↑↓↓− −↑↓↓↓) BACC94A64(↓↑− −↓↓↓↓↑)

36VIN
35933AA48(−↓↓− −↑↓↓↓) ACCC94A64(↓− − −↓↓↓↓↑) DD30C24A0(↑↓− − −↓↓↓↓) BB30C24A0(↓↑−

− −↓↓↓↓)

37VIN 5C9094A64(↑−↓−↓↓↓↓↑) 3A9094A64(−↑↓−↓↓↓↓↑)

38VIN BBCC94A48(↓↑− −↓↓↓↓↓) 5D9334A48(↑↓↓− −↓↓↓↓)

39VIN ACCC94A48(↓− − −↓↓↓↓↓)

40VIN 5C9094A48(↑−↓−↓↓↓↓↓) 3A9094A48(−↑↓−↓↓↓↓↓)

41VIN 099352248(−↓↓−↓↓↓↓↓)

42VIN 359352248(−↓↓−↓↓↓↓↓)

43VIN 5C09024A0(↑− −↓−↓↓↓↓) 3A09024A0(−↑−↓−↓↓↓↓)

44VIN 5D0AC24A0(↑↓−↓−↓↓↓↓) BA35024A0(↓↑−↓−↓↓↓↓)

45VIN AC35024A0(↓− −↓−↓↓↓↓)

6. Capacitor Calculation for Self-Balancing Purpose

Generally, the maximum discharge amount of each capacitor CMn during the longest discharging
period [t1, t2] can be calculated as [25]:

QCMn =

t2∫
t1

Iout sin(2π fst−φ)dt (5)

where fs is fundamental frequency, Iout is the amplitude of output current and φ is the phase difference
between output current and voltage [19]. Considering QM1 and QM2 less than 10% maximum charge
of CM1 and CM2 respectively, these capacitors can be achieved as:

CM1 >
QcM1

0.1 Vin
(6)

CM2 >
QcM2

0.1 Vin
(7)

As CM3 and CM5 are charged via DC source and series combination of CM1 and CM2, VCM3 and
VCM5 are as follows:

VCM3 = Vin +

CM1·CM2
CM1+CM2

CM1·CM2
CM1+CM2

+ CM3

×

(
VCM1 + VCM2

)
(8)

VCM5 = Vin +

CM1·CM2
CM1+CM2

CM1·CM2
CM1+CM2

+ CM5

×

(
VCM1 + VCM2

)
(9)

Therefore, CM3 and CM5 are obtained as:

CM3 =

[( CM1·CM2
CM1+CM2

)
×

(
VCM1 + VCM2

)]
+ Vin

VCM3

−

(
CM1·CM2

CM1 + CM2

)
(10)

CM5 =

[( CM1·CM2
CM1+CM2

)
×

(
VCM1 + VCM2

)]
+ Vin

VCM5

−

(
CM1·CM2

CM1 + CM2

)
(11)
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With the same procedure, other capacitors and their voltages can be calculated as:

VCM4 = Vin +


(

1
CM1

+ 1
CM2

+ 1
CM3

+ 1
CM5

)
(

1
CM1

+ 1
CM2

+ 1
CM3

+ 1
CM5

)
+ CM4

× (
VCM1 + VCM2 + VCM3 + VCM5

)
(12)

VCM6 =
CM3

CM3 + CM6
×

(
VCM3

)
(13)

CM6 =

(
CM3 ×VCM3

)
+ Vin

VCM6

−CM3 (14)

VCM9 =
CM5

CM5 + CM9
×

(
VCM5

)
(15)

CM9 =

(
CM5 ×VCM5

)
+ Vin

VCM9

−CM5 (16)

VCM7 = Vin +


(

1
CM1

+ 1
CM3

+ 1
CM4

)
(

1
CM1

+ 1
CM3

+ 1
CM4

)
+ CM7

× (
VCM1 + VCM3 + VCM4

)
(17)

7. Modulation Strategy and Switching States Selection

This is an important factor in capacitor voltage balancing due to the definition of charging and
discharging intervals which are required for voltage calculations for capacitors. In this study, a
predetermined offline PWM strategy was considered to define the switching angles (the angles in which
the levels change). Figure 7a shows a sampled staircase multilevel voltage waveform and a reference
voltage in a Nearest Level Control (NLC) modulation technique. Figure 7b shows the schematic block
diagram of this strategy. The nearest output voltage level Vn can be determined with [26]:

Vn =
1

Vc
round(Vre f ) (18)
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Figure 7. Nearest Level Control (a) Waveform synthesis, (b) Block diagram.

After determination of each voltage level and its time duration, a precise switching selection has
to be carried out according to Table 3. The selection of one state for each level defines the charging
or discharging states of each capacitor, which is an important task to keep the voltages within an
acceptable range.
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8. Comparison with Other Topologies

A comparative study is carried with other famous topologies which are presented at [13,15–19].
Table 4 shows the number of switching devices (Active switches, series diode), drivers for the switches
and capacitors versus number of levels (NL) and number of stages for the proposed inverter (nstage).
Note that, as shown in Figure 8, the relation between the number of stages and the number of levels in
the proposed converter is:

nstage =


1 0 ≤ NL ≤ 19
2 19 ≤ NL ≤ 91

3 91 ≤ NL ≤ 253
(19)

Figure 8 presents the number of capacitors and semiconductors (active switches + series diodes) for
0 to 100 levels output. This comparison shows that the proposed converter provides better performance
in terms of the number of components. As the converter is for low voltage input voltage sources,
multiples of this low voltage amount are still within the acceptable standard range of components.
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Figure 8. Comparison between proposed topology and others (a) number of semiconductors
(active switches+ series diodes), (b) number of capacitors.

Table 4. Comparison of the proposed topology with conventional and advanced structures.

Topology Number of Active
Switches

Number of
Series Diodes Number of Drivers Number of Capacitors Balance

Circuit

Proposed (2nstage·(nstage + 4)) 0 (2nstage·(nstage + 3)) + 2 (nstage+2)·(nstage+1)
2 − 1 No Need

NPC 2(NL − 1) NL − 1 2(NL − 1) (NL − 1)/2 Need
FC 2(NL − 1) 0 2(NL − 1) (NL − 2) Need

CHB 2(NL − 1) 0 2(NL − 1) (NL − 1)/2 Need
[13] 2(NL + 1) + 4 2NL 2NL + 6 ( NL − 1 )/2 No Need
[15] 3NL + 4 0 3NL + 4 ( NL − 1 )/2 No Need
[16] 2NL + 4 NL 2NL + 4 ( NL − 1 )/2 No Need
[17] 3NL − 1 NL 3NL − 1 ( NL − 1 )/2 No Need
[18] NL + 5 2NL NL + 5 ( NL − 1 )/2 No Need
[19] 2(NL + 1) + 4 0 2(NL + 1) + 4 (NL/2) Need
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9. The Simulation Results

A MATLAB simulation is conducted to achieve a 91-level output voltage with a maximum of
45 times of input DC voltage. The parameters given in Table 5 are used for the analysis.

Table 5. Simulation parameters.

Parameter Value

Input Voltage 50 Volts
Number of Output Voltage levels 91

Output Frequency 50 Hz
CM1, CM2 20,000 µF
CM3, CM5 1000 µF

CM4, CM6, CM7, CM8, CM9 100 µF
Resistive Load (R) 100 Ω

Inductive-Resistive Load (R-L) 100 Ω, 318.4 mH

Figure 9a,b show the output voltage and current at 50 Hz for two types of resistive and
resistive-inductive loads. As shown in these figures, a high level staircase output voltage is achieved.
Discharging currents of the last stage capacitors are shown in Figure 9c,d. The converter and its control
strategy are able to balance capacitor voltages within acceptable ranges with considered tolerances
(see Figure 10a–c). FFT analysis of the output voltage is shown in Figure 11, which indicates good
performance of the proposed topology because of its low harmonic distortion.

Figure 9. Simulation results (a) Output voltage and currents R load, (b) Output voltage and currents
R-L load, (c) Discharging current of the last stage capacitors with R-load, (d) Discharging current of the
last stage capacitors with R-L load.
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10. Experimental Results

To validate our simulation and analysis, an experimental test setup was built with an input voltage
of 10 volts, as shown in Figure 12a; other components are shown at Table 6. Figure 12b shows the
output voltage and current for a pure inductive load, which confirms the application of the proposed
structure and its mentioned control strategy under different operating conditions.

Table 6. Experimental Parameters.

Input Voltage 10 v

Number of Output Voltage levels 91
Output Frequency 50 HZ

CM1, CM2 20,000 µF
CM3, CM5 1000 µF

CM4, CM6, CM7, CM8, CM9 100 µF
Load 570 Ω
Diode MUR860
IGBT 12n60a4

Driver HCPL 3120
Processor DSP TMS320F28335
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Bidirectional modules are designed in order to create different paths for the capacitors to be charged 
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Figure 12. Experimental results (a) Test set up (volt/div = 200 volts), (b) Output voltage and current in
pure inductive load (Ampere/div = 1 amps) (time/div = 2500 µs).

Figure 13a–d shows the voltages and currents of selected capacitors (CM1, CM2, CM3, CM7) over a
2.5 ms period. It is clear that the number of charges and discharges for the capacitors in the first stage
is much higher than that in last stages.
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Figure 13. Voltage and current of capacitors (all channels time/div = 2500 µs) (a) CM1 (volt/div = 2 volts,
Ampere/div = 20 amps), (b) CM2 (volt/div = 2 volts, Ampere/div = 20 amps), (c) CM3 (volt/div = 10 volts,
Ampere/div = 10 amps), (d) CM7 (volt/div = 20 volts, Ampere/div = 2 amps).
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11. Conclusions

An asymmetrical step-up multilevel inverter is presented in this paper with a single DC source.
Bidirectional modules are designed in order to create different paths for the capacitors to be charged or
discharged, based on a predetermined pattern. A comprehensive mathematical analysis is conducted
to achieve capacitance values and the voltage of each capacitor during the different states. Investigation
of a three-stage proposed converter showed that 45 levels can be achieved using different switching
states. The application of a full bridge single phase inverter at the end of the proposed converter gives
91 voltage levels (45 positive, 45 negative and one zero level). According to a detailed comparison
with other classical and state-of-the-art topologies, the number of different components was reduced to
a great extent. A comprehensive simulation study and experimental results are presented to verify
the analysis.
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