Issues with the delivery of power quality in wind farms

A THESIS SUBMITTED TO FACULTY OF ENGINEERING AND INFORMATION TECHNOLOGY OF UNIVERSITY OF TECHNOLOGY SYDNEY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

Massood Keshavarz Siahpoosh

May 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

This thesis is the result of a research candidature conducted jointly with another University as

part of a collaborative Doctoral degree. I certify that the work in this thesis has not previously

been submitted for a degree nor has it been submitted as part of requirements for a degree except

as part of the collaborative doctoral degree and/or fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research

work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all

information sources and literature used are indicated in the thesis.

Signature of Student:

Production Note:

Signature removed prior to publication.

Massood Keshavarz Siahpoosh

Date: 12/05/2019

Page i

Acknowledgements

This thesis is a culmination of a perfect working relationship with my university supervisors, Dave Dorrell and Li Li and my mentor in Aurecon Company Jeffery Russell that I am eternally grateful to. Dave, Li and Jeff provided unreserved support during my PhD and generously guided me during my research development.

I am also greatly in debt to the Safe Engineering Services for CDEGS software, Power Analytics for Paladin design base software, Manitoba HVDC Research Centre for PSCAD -EMTDC software and EATON for CYMCAP software who have provided me student licence and support during my simulation and enquires.

This research is not entirely a mathematical theory or study. This research is based on actual constructed equipment and components used in wind farms. I have endeavoured to include lessons learnt from several years of construction in wind farms; all the hard work of engineers in this research therefore many people have contributed in this study so I want to thank many people who in some way contributed to the progress and research of the work contained herein.

Last but not the least is the unconditional love and encouragement provided by my wife Maryam and my two beautiful kids Ariana and Aaron who served as a secure anchor during the hard and easy times.

Thank you.

Massood

Table of Contents

Abbreviation	4
List of Figures	5
List of Tables	9
Abstract	10
1.1 Introduction	12
1.2 Statement of Problem	17
1.3 Claims to Originality	17
Chapter 2: Wind Farm Power Quality	21
2.1 Introduction	21
2.2 Wind Turbine Fundamentals	21
2.2.1 Fixed Speed Wind Turbine Generator (Type 1)	21
2.2.2 Variable Speed Wind Turbine Generator (Types 2, 3 and 4))22
2.2.3 Doubly Fed Induction Generator (DFIG)	25
2.2.3.1 DFIG Steady-State Model	28
2.2.3.2 DFIG Dynamic model	31
2.2.4 HV Cables	35
2.2.4.1 Positive and Negative Sequence Impedances of a Core Cabl	e 37
2.2.4.2 Zero Sequence Impedance of a Three-Core Cable	38
2.2.5 Load Flow and Power System Study	39
2.3 Power Quality Assessment	40
2.4 Network Connection Requirement	41
2.5 Wind Farms Case Study 1	41
2.5.1 Wind Farm Connection to Grid	47
2.5.2 MV Cable Characteristics	48
2.5.3 Transformers	49
2.5.4 Generator	51
2.5.5 Wind Farm Load Flow Analysis	51
2.5.5.1 Load Flow Assessment	52
2.5.5.2 Fault condition assessment	58
2.6 Wind Farm Power Quality Analysis	71
2.6.1 Harmonics	73
2.6.2 Voltage Fluctuation and Flicker	81
2.6.3 Voltage Unbalance	92

2.6.4	Commutation notches	93
2.6.5	System fault ride through (FRT) and short voltage dip	95
2.6.6	Wind farm power frequency response	100
2.7	Wind Farm Ferroresonance	104
2.7.1	Wind Farm Ferroresonance	106
2.7.1.1	Assessment	106
2.7.1.2	2 Modelling	106
2.8	Conclusion	118
2.9	Future Work	119
Chapter	3: Wind Farms Earthing and Lightning Protection Issues	120
3.1	Introduction	120
3.2	Soil Resistivity	120
3.3	Wind Farm Case Study 1	127
3.3.1	Turbine earthing system modelling	127
3.3.2	Turbine Lightning Risk Assessment	131
3.3.3	Step and Touch Voltage of wind turbine	142
3.3.3.	Step and Touch Voltage for humans	142
3.3.3.2	Step and Touch Voltage for Animals	144
3.4	Earth Potential Rise (EPR) Simulation	147
3.4.1	EPR during Lightning	
3.4.2	Low Frequency Earth Fault Study	151
3.4.2.	Existing System Simulation	151
3.4.2.2	2 Earthing System Simulation	156
3.4.3	Current Injection Test	157
3.5	Conclusion	159
3.6	Future work	159
Chapter	4: Wind Farm Failures	160
4.1	Power System Failure	160
4.2	Wind farm D-VAR Failure	
4.3	Mast failure	164
4.4	Blade failure	165
4.5	Gearbox failure	
4.6	Generator failure	
4.7	Transformer failure	
4 8	HV cable Failure	171

4.9	Termination Failure	. 173
4.10	Capacitor bank failure	. 174
4.11	Conclusion	. 175
4.12	Future Work	. 175
Chapter	5: Conclusions	. 176
Reference	ces	. 178
Appendi	x A: Simulation Videos	. 183
Appendi	x B: List of Publications	. 184

Abbreviation

Abbreviation	Description
AC	Alternating Current
AEMO	Australian Energy Market Operator
ASIG	Asynchronous induction generators
CDEGS	Current Distribution, Electromagnetic Fields, Grounding and Soil Structure Analysis
CIT	Current Injection Test
DC	Direct Current
DFIG	Doubly Fed Induction Generator
EPR	Earth Potential Rise
GMR	Geometric Mean Radius
HIFREQ	CDEGS software module for electromagnetic field analysis
HV	High Voltage
LFI	Low Frequency Induction
LPS	Lightning Protection System
LV	Low Voltage
MV	Medium Voltage
NER	Australian Nation Electricity Rules
NSP	Network Service Provider
PCC	Point of Common Coupling
RSM	Rolling Sphere Method
SS	Substation
STTM	Short Term Trading Market
ZEST	Zigzag Switchgear Earth Transformer

List of Figures

Figure	Description	Page No.
2-1	Schematic diagram of Type 1 wind turbine generator	22
2-2	Schematic diagram of Type 2 wind turbine generator	23
2-3	Schematic diagram of Type 3 (DGIG) wind turbine generator	24
2-4	Schematic diagram of Type 1 wind turbine generator	25
2-5	Wind Turbine component block diagram	26
2-6	DFIG Wind Turbine energy conversion block diagram	27
2-7	DFIG Wind Turbine equivalent circuit diagrams	28
2-8	DFIG Vectorial diagram in the dq reference frame	29
2-9	DFIG Wind Turbine control system block diagram	32
2-10	Cable installation for wind farm	36
2-11	Typical 3 core 33 kV Aluminium cable cross-section without armour	37
2-12	Wind farm Case Study 1 system reticulation	42
2-13	Wind Turbine and step-up transformer arrangement	43
2-14	Wind Turbine power curve	45
2-15	Wind Turbine ramp-up function in respect to wind farm	46
2-16	Site thermal resistivity test photo for Case Study 1	48
2-17	ZEST name plate photo for Case Study 1	50
2-18	Wind farm Case Study 1 in Paladin software	52
2-19	Total loss based on generated power over yearly cycle for Case Study 1	55
2-20	Wind duration record over a yearly cycle for Case Study 1	55
2-21	Power generation record for DFIG wind turbines at wind farm Case Study 1	56
2-22	Wind farm Case Study 1 SCADA block diagram	56
2-23	Voltage fluctuation for Case Study 1 PCC for 10 MW load switching	57
2-24	Frequency fluctuation for Case Study 1 PCC for 10 MW load switching	57
2-25	Voltage fluctuation at DFIGs for Case Study 1 during 10 MW load switching	58
2-26	Positive-sequence and zero-sequence impedances of a DFIG for Case Study 1	60
2-27	Positive-sequence and zero-sequence impedances of transformer for Case Study 1	60
2-28	Wind farm Case Study 2 power system	63
2-29	Case Study 2 DFIG technical data	64
2-30	Case Study 2 fault levels independently	64
2-31	Voltage and frequency during 3 phase fault at main substation (100 ms clearance time)	67
2-32	DFIG WTG1 rotor angle behaviour during 3 phase fault at main substation (100 ms clearance time)	68
2-33	DFIG WTG1 voltage behaviour during 3 phase fault at main substation (100 ms clearance time)	68
2-34	Grid power consumption behaviour during 3 phase fault at main substation (100 ms clearance time)	68

Figure	Description	Page No.
2-35	Voltage and frequency behaviour during 3 phase fault at main substation (450ms clearance time)	69
2-36	DFIG WTG1 rotor angle behaviour during 3 phase fault at main substation (100ms clearance time)	70
2-37	DFIG WTG1 voltage behaviour during 3 phase fault at main substation (450ms clearance time)	70
2-38	Grid power consumption behaviour during 3 phase fault at main substation (450ms clearance time)	70
2-39	Harmonic Voltage for WTG04 - 2MW Asynchronous generators with external variable resistor	75
2-40	Harmonic Current for WTG04 - 2MW asynchronous generators with external variable resistor	75
2-41	Harmonic Voltage for Case Study 2	76
2-42	Harmonic Current for Case Study 2	76
2-43	Detailed harmonic voltage and current for Case Study 2	77
2-44	Harmonic Voltage for WTG04 - 2MW DFIG	77
2-45	Harmonic current for WTG04 - 2MW DFIG	78
2-46	Harmonic Voltage for wind farm Case Study 2 with DFIG	78
2-47	Harmonic Voltage for Case Study 2 with DFIG	79
2-48	Detailed harmonic Voltage for Case Study 2 with DFIG	79
2-49	Detailed harmonic Current for wind farm Case Study 2 with DFIG	80
2-50	Flicker measurement and assessment procedures during continuous operation of a wind turbine	82
2-51	Flicker measurement and assessment procedures during switching operations of a wind turbine	84
2-52	Case Study 2 network connection diagram	86
2-53	Power performance curve of a 2MW Wind turbine at Case Study 2	87
2-54	10 min time-series per wind speed bins for Case Study 2	88
2-55	Flicker coefficient as a function of wind speed at Case Study 2	88
2-56	DFIG circuit arrangement model in Paladin	94
2-57	Typical waveform of commutation notches distinction from non-repetitive transient	94
2-58	South Australia blackout due to storm	95
2-59	Case Study 1 model in Paladin software	97
2-60	Case Study 1 grid connection arrangements	98
2-61	Overvoltage percentage for permitted durations	99
2-62	Simplified power frequency balance condition	101
2-63	Collapsed electricity tower in South Australia	102
2-64	Active power reduction of wind turbines in the case of over-frequency in German Transmission Code 2007	103
2-65	Frequency Response Curve from the Danish Grid Code	104
2-66	DFIG Wind turbine model in PSCAD	107
2-67	Wind farm with 8 DFIG wind turbines in PSCAD	108
2-68	Wind farm voltage, current, active power and reactive power generation curve at the 33 kV collector busbar	109

Figure	Description	Page No.
2-69	Wind farm with eight DFIG wind generators - LV voltage and current curve	110
2-70	Wind farm with eight DFIG wind turbines - 132 kV bus and current curves	111
2-71	Wind turbine (adjacent to faulty turbine) – LV(690 V) curve during the earth fault on nearby wind turbine	112
2-72	Wind farm Voltage, current, active and reactive power generation curve at 33kV collector busbar	113
2-73	voltage and current curves of a wind farm connection point to 132kV grid	114
2-74	voltage and current curves of a wind farm connection point while there is an earth fault at 33kV	115
2-75	LV terminal voltage and current curves of a wind turbine while there is a wind gust at 0.1 s after cut-in	116
2-76	Voltage and current curves of a wind farm connection point while there is an earth fault at 33 kV	117
2-77	Voltage and current curves of a wind farm connection point to 132kV grid	118
3-1	Location of soil resistivity test site	121
3-2	Soil resistivity test site	122
3-3	Borehole test log	124
3-4	Soil resistivity test plots	125
3-5	Sunde's graph	126
3-6	Soil model for wind farm Case Study 1 (soil model with lowest resistivity)	128
3-7	Soil model for wind farm Case Study 1 (soil model based on average test results).	128
3-8	Soil model for wind farm Case Study 1 (soil model with highest resistivity)	129
3-9	Two different type of wind turbine foundations	130
3-10	Wind farm model in SESCAD of HiFREQ module	131
3-11	Damaged blade by lightning	132
3-12	Lightning protection for large modern wind turbine blades	133
3-13	Example of lightning protection zones	133
3-14	IEC Standard lightning protection zones	134
3-15	IEC Standard Rolling sphere model	134
3-16	Wind turbine typical lightning and earthing system	135
3-17	An 80 m wind turbine modelled in SESShield-3D	136
3-18	Wind turbine lightning protection in SESShield3D	136
3-19	Lightning stroke current waveform	137
3-20	Wind turbine model and soil surface profiles with a three-layer soil model	139
3-21	Wind turbine response to lightning stroke potential wave form unity	140
3-22	Wind turbine soil voltage response to lightning stroke potential waveform	140
3-23	Wind turbine soil voltage response to lightning stroke	141
3-24	Conventional time/current zones of effects of a.c. currents	142
3-25	Internal partial impedances Zt of the human body during one hand to two feet touch	143
3-26	Wind turbine during the construction and animal exposure	145
3-27	Fibrillation data for dogs, pigs, sheep and persons	146

Figure	Description	Page No.
3-28	Body impedance dependence to different frequency	146
3-29	Wind farm Case Study 1 earth grid	148
3-30	Wind turbine soils voltage profile	148
3-31	Wind turbine fall of potential	149
3-32	Wind turbine base contour potential profile	149
3-33	Human Touch Voltage (1 m distance) profile	150
3-34	Animal Reach Voltage (3 m distance) profile	150
3-35	Wind turbine base Step Voltage (1 m distance) profile	151
3-36	Wind turbine earth fault current split analysis	152
3-37	Wind turbine EPR during earth fault	153
3-38	Wind turbine soil voltage profile during earth fault (values in kV)	154
3-39	Wind turbine soil Voltage 3D profile during earth fault (vertical axis in kV)	154
3-40	Wind turbine Soil Voltage zoomed (voltages in kV)	155
3-41	Wind turbine base	155
3-42	Soil Voltage profile at step up substation	156
3-43	Wind turbine soil surface voltage profile during 33 kV earth fault	157
3-44	Wind turbine current injection test	158
4-1	South Australia generation graph pre-event	160
4-2	Wind farms voltage ride-through status	162
4-3	SA interconnection power flow record	162
4-4	SA frequency record	163
4-5	SA Black-out interconnection simulation	163
4-6	D-VAR nuisance operation record at 33 kV busbar	164
4-7	Wind turbine mast failure	165
4-8	Damaged gearboxes	166
4-9	Wind speed records	167
4-10	Slip ring and brushes after failure event	167
4-11	Slip ring and brushes after failure event	168
4-12	Stator winding has an earth fault just below the slot wedge	169
4-13	690 V / 33 kV transformer failed HV coil	170
4-14	Damages in both single 33 kV windings beside the foreign material	170
4-15	Damages in 33kV windings failure on the knee of interconnected star leg	171
4-16	Three core 33kV cable joint failure (before and after)	172
4-17	Three core 33 kV cable joint bay	173
4-18	33kV cable Termination failure due to lightning	174
4-19	Capacitor bank failure	175

List of Tables

Table	Description	Page No.
2-1	Equivalent Circuit Parameters for Case Study 1 DFIG	30
2-2	Technical data of Wind Turbines for Case Study 1 (DFIG)	44
2-3	Technical data of Step up transformer for Case Study 1 (DFIG)	47
2-4	Grid Characteristics	48
2-5	Olex 33 kV Cable Characteristics	49
2-6	Transformer Characteristics	50
2-7	Case Study 1 (DFIG) Generator Characteristics	51
2-8	Load flow computation results. This is not for full load conditions, partial loadings are simulated	54
2-9	Voltage factor levels	61
2-10	Fault level calculation validation by software and manual method for Case Study 2	66
2-11	Allowable harmonic emission level for Case Study 1	73
2-12	Assumed harmonics on 2MW Asynchronous generators with external variable resistor	74
2-13	Assumed harmonics on 2MW DFIG generators	74
2-14	Planning levels for flicker in 33 kV power system	91
2-15	Wind farm Case Study 2 flicker assessment result	91
2-16	Case Study 1 steady-state voltage assessment result	99
3-1	Traverse 1 soil measurements	122
3-2	Traverse 2 soil measurements	123
3-3	Travers 2 soil measurements	126
3-4	Pre-computed FFTSES recommended frequencies	138
3-5	FFTSES additional frequencies	138
3-6	Selected soil resistivity method	144
3-7	Touch Potential Levels to IEC 60479.1.	147

Abstract

Wind farms are designed to harvest wind kinetic energy; however, their generated power is dependent on their wind streams, and therefore their operation can impact system stability. Unlike conventional steams (gas or hydro power stations), wind farms normally require vast areas and MV distribution networks to collect generated power from each wind turbine and transfer it to a point of common coupling. Scattered wind turbines with variable generated power and long cable runs or aerial lines can create some power quality issues such as flicker, transients, voltage sags, frequency fluctuation, power factor and voltage fluctuations. Most wind turbines have large power electronic converters to complete the power conversion. Power electronic converters can create harmonics and commutation notches. These aspects are known as power quality issues.

Power quality issues are important because generated power from wind farms should be connected to a power grid to be delivered to the end user. To connect and operate wind farms, the generated power by wind farms should meet network service provider (NSP) and national codes. In Australia, the Australian Energy Market Operator (AEMO) defines nationwide power quality requirements for power stations including wind farms.

In this research the intention is to use real data extracted from established wind farms to assess turbines and power network operation. Real data are used as inputs for software simulation and power quality assessment for steady state and transient conditions. The following software is used:

- EDSA-Paladin software is used for detailed power system analysis, fault condition assessment and harmonic assessment.
- PSCAD-EMTDC software is used for wind farm steady state and transient operation assessment including turbine behaviour during the fault and inrush current (during turbine start –up).

During the analysis most of the power distribution components are modelled. The cable impedances including capacitance of cables are included in the power system analysis for both steady state and transient condition assessment.

Some manual calculation methods are proposed to calculate some of the power quality aspects such as flicker, fault levels and commutation notches. Manual calculations are used to validate software simulation as well.

The transient operation of a wind farm power distribution system is another important topic which is assessed in this research. Ferroresonance can be critical during wind turbine switching or fault conditions. This results in ferroresonant harmonics and overvoltages in the system.

The ferroresonance does not have a linear nature; therefore, it cannot be predicted by analytical methods. PSCAD-EMTDC software is used to analyse the behaviour of a wind farm power network in ferroresonant states. Results prove that ferroresonance is a function of the network components, specifically the length of cables and transmission lines. A detailed study should be conducted during the design stage prior to system installation.

The earthing system of a wind turbine and its interconnection can play an important role in wind farm power system failure. The settings of protection relays should be selected with respect to human and farm animal safety and equipment protection. In this research the following issues are discussed, and improved methods are presented:

- Soil resistivity test;
- Lightning protection system analysis;
- Lightning strikes earth potential rise;
- Earth fault analysis; and
- Current injection test.

To conclude this research some of the issues which have resulted in voltage sag, interruption, turbine failure and wind farm outage are presented with root cause analysis discussions.

This research is an attempt to assess different wind farm components and fundamental considerations which should be considered during planning, design, construction and operation in order to minimize power quality issues. The state of problems has been provided in Section 1-2 of this thesis.

This research brings together several analysis techniques and real wind farm scenarios to address power quality issues. Claims are made to originality in terms of bringing together several studies to get an overall power quality assessment of a wind farm and claims are made for some new techniques. These claims are summarized in Section 1-3 of this thesis and made for work in Chapters 2 and 3.