CERTIFICATION OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for degree nor has it been submitted as part of requirement for a degree except as fully acknowledge within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information source and literature used are indicated in the thesis.

This research is supported by the Australian Government Research Training Program (RTP).

Signature of Candidate

YOUNGKWON CHOI

Production Note:
Signature removed prior to publication.
ACKNOWLEDGEMENTS

I would like to express my deepest appreciation and gratitude to my supervisor, Prof. Saravanamuthus Vigneswaran, for providing me the opportunities to conduct research in University Technology Sydney. Without his concern and support, this work would not have been completed. I also appreciate to Dr. Gayathri Naidu who gave insightful comments and recommendation for this work.

Furthermore, I would like to offer special thanks to Prof. Sangho Lee and Prof. Eun Namkung. They have motivated me to challenge myself further and mentored me all through my professional and personal life. I am also grateful to my colleagues and friends for friendship, motivation and priceless support; Dr. Mohammed Johir, Yunchul Woo, Seongchul Ryu, Myoungjun Park, Jungeun Kim, Yonghyun Shin, and my great friends (Minsu Koo and Seungwan Yoo).

Last but not the least, my heartfelt appreciation goes out to my family, my father Changsuk Choi, mother Jeongja Park, brother Youngmin Choi, sister-in-law Haeyoung Kang, lovely niece Bom Choi who have been dedicated in believing me during my PhD. Especially, I would like to really appreciate my wife, Yunju Jo. I can entirely focus on my study because of her deepest belief and devoted love to me. I would also extend my gratitude to my daughter, Jiho Choi, for inspiring me and giving me strength to finish my PhD and be the father and husband that she can be proud of. You and Yunju have given me the greatest source of happiness, and you pushed me to do better in both being a PhD candidate and a father. My greatest wish is for you to know what you really want to do in the future and fulfill your dream. As your parents, your mother and I will be with you, beside you, in every step you take.
JOURNAL ARTICLE PUBLISHED OR SUBMITTED

* Articles related to the Thesis. ** Publications made during the PhD candidature including articles not entirely related to the Thesis.

CONFERENCE PAPERS AND PRESENTATIONS

Presentation made during the PhD candidature including proceedings, oral and poster presentations.
LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGMD</td>
<td>Air gap membrane distillation</td>
</tr>
<tr>
<td>CG</td>
<td>Concentration gradient</td>
</tr>
<tr>
<td>CG ratio</td>
<td>Concentration gradient ratio ($C_{\text{Bottom}}/C_{\text{Top}}$)</td>
</tr>
<tr>
<td>CI</td>
<td>Concentration increase (C_t/C_0)</td>
</tr>
<tr>
<td>CP</td>
<td>Concentration polarization</td>
</tr>
<tr>
<td>Cr</td>
<td>Crystallizer</td>
</tr>
<tr>
<td>CSD</td>
<td>Crystal size distribution</td>
</tr>
<tr>
<td>DCMD</td>
<td>Direct contact membrane distillation</td>
</tr>
<tr>
<td>DI</td>
<td>Deionized</td>
</tr>
<tr>
<td>DiPA</td>
<td>Diisopropylamine</td>
</tr>
<tr>
<td>DOC</td>
<td>Dissolved organic carbon</td>
</tr>
<tr>
<td>F-SMDC</td>
<td>Fractional-submerged membrane distillation crystallizer</td>
</tr>
<tr>
<td>GOR</td>
<td>Gain output ratio</td>
</tr>
<tr>
<td>HF</td>
<td>Hollow fiber</td>
</tr>
<tr>
<td>HOC</td>
<td>Hydrophobic organic compound</td>
</tr>
<tr>
<td>IP</td>
<td>Ionic production</td>
</tr>
<tr>
<td>KCuFC</td>
<td>Potassium copper hexacyanoferrate</td>
</tr>
<tr>
<td>LEP</td>
<td>Liquid entry pressure</td>
</tr>
<tr>
<td>LMW</td>
<td>Low molecular weight</td>
</tr>
<tr>
<td>MC</td>
<td>Membrane contactor</td>
</tr>
<tr>
<td>MD</td>
<td>Membrane distillation</td>
</tr>
<tr>
<td>MDC</td>
<td>Membrane distillation crystallization</td>
</tr>
<tr>
<td>MSF</td>
<td>Multi-stage flash</td>
</tr>
<tr>
<td>NF</td>
<td>Nanofiltration</td>
</tr>
<tr>
<td>OD</td>
<td>Osmotic membrane distillation</td>
</tr>
<tr>
<td>PAN</td>
<td>Polyacrylonitrile</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidene fluoride</td>
</tr>
</tbody>
</table>
PW Produced water
R Recovery ratio
RC Reaction crystallization
RO Reverse osmosis
SGMD Sweep gas membrane distillation
SGPW Shale gas produced water
SWRO Seawater reverse osmosis
S-DCMD Submerged-direct contact membrane distillation
S-MD Submerged-membrane distillation
S-VMD Submerged-vacuum membrane distillation
S-VDCMD Submerged-vacuum enhanced direct contact membrane distillation
TG Temperature gradient
TOC Total organic carbon
TP Temperature polarization
VCF Volume concentration factor
VDCMD Vacuum enhanced direct contact membrane distillation
VMD Vacuum membrane distillation
VMDC Vacuum membrane distillation crystallization
ZLD Zero liquid discharge
LIST OF SYMBOLS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Concentration</td>
</tr>
<tr>
<td>C_{Bottom}</td>
<td>Concentration at the bottom portion in F-SMDC</td>
</tr>
<tr>
<td>C_f</td>
<td>Concentration at feed solution side</td>
</tr>
<tr>
<td>C_{fm}</td>
<td>Concentration on membrane surface in feed side</td>
</tr>
<tr>
<td>C_p</td>
<td>Concentration in permeate stream</td>
</tr>
<tr>
<td>C_t</td>
<td>Concentration at specific time</td>
</tr>
<tr>
<td>C_{Top}</td>
<td>Concentration at the top portion in F-SMDC</td>
</tr>
<tr>
<td>C_0</td>
<td>Initial concentration</td>
</tr>
<tr>
<td>J</td>
<td>Flux</td>
</tr>
<tr>
<td>J_t</td>
<td>Flux at specific time</td>
</tr>
<tr>
<td>J_0</td>
<td>Initial flux</td>
</tr>
<tr>
<td>K_{sp}</td>
<td>Solubility product constant</td>
</tr>
<tr>
<td>m</td>
<td>Mass</td>
</tr>
<tr>
<td>m_t</td>
<td>Mass at specific time</td>
</tr>
<tr>
<td>m_0</td>
<td>Initial mass</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>T</td>
<td>Temperature</td>
</tr>
<tr>
<td>T_c</td>
<td>Temperature of coolant in condenser</td>
</tr>
<tr>
<td>T_f</td>
<td>Temperature of feed solution</td>
</tr>
<tr>
<td>T_{fm}</td>
<td>Temperature on membrane surface in feed side</td>
</tr>
<tr>
<td>T_p</td>
<td>Temperature of permeate</td>
</tr>
<tr>
<td>T_{pm}</td>
<td>Temperature on membrane surface in permeate side</td>
</tr>
<tr>
<td>P_f</td>
<td>Hydraulic pressure of feed solution</td>
</tr>
<tr>
<td>P_p</td>
<td>Hydraulic pressure of permeate</td>
</tr>
<tr>
<td>Re</td>
<td>Reynolds number</td>
</tr>
<tr>
<td>Q</td>
<td>Volumetric flow rate</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>(v)</td>
<td>Flow rate</td>
</tr>
<tr>
<td>(v_P)</td>
<td>Flow rate of permeate stream</td>
</tr>
<tr>
<td>(V_{\text{Reactor}})</td>
<td>Volume of reactor</td>
</tr>
<tr>
<td>(V_{\text{Total,permeate}})</td>
<td>Total amount of permeate produced</td>
</tr>
<tr>
<td>(\Delta P)</td>
<td>Vapor pressure gradient</td>
</tr>
<tr>
<td>(\Delta t)</td>
<td>Time difference</td>
</tr>
<tr>
<td>(\Delta T)</td>
<td>Temperature difference</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

CERTIFICATION OF ORIGINAL AUTHORSHIP ... i

ACKNOWLEDGEMENTS .. ii

JOURNAL ARTICLE PUBLISHED OR SUBMITTED iii

CONFERENCE PAPERS AND PRESENTATIONS iv

LIST OF ABBREVIATIONS ... v

LIST OF SYMBOLS .. vii

TABLE OF CONTENTS ... ix

LIST OF FIGURES ... xvi

LIST OF TABLES ... xxii

ABSTRACT .. xxiii

CHAPTER 1 ... 1

INTRODUCTION .. 1

1.1. Introduction ... 2

1.2. Objective and motivation of this research 8

1.3. Structure of the study .. 10

CHAPTER 2 .. 13

LITERATURE REVIEW .. 13

2.1. Introduction ... 14

2.2. Seawater reverse osmosis (SWRO) brine 17

2.2.1. Influential factors on characteristics of brine 19

2.2.2. Conventional brine management options 20

2.3. Crystallization/precipitation process ... 22

2.4. Membrane distillation and crystallization process 26
2.4.1. Principles of MD/MDC ...26
2.4.2. Theoretical background ..33
2.4.3. Current status ..37
 2.4.3.1. Optimization of operation parameters in MDC44
 2.4.3.2. MDC applications ...46
 2.4.3.2.1. Brine mining and zero liquid discharge46
 2.4.3.2.2. Produced water treatment ..47
 2.4.3.2.3. Resource recovery from wastewater48
 2.4.3.2.4. Carbon sequestration ...50
2.4.4. Challenges of MDC ...50
 2.4.4.1. Membrane scaling ...51
 2.4.4.1.1. Factors of membrane scaling ...52
 2.4.4.1.2. Mitigation strategies ..54
 2.4.4.2. Membrane wetting ...55
2.4.5. Recommended crystallization techniques for MDC58
 2.4.5.1. Reaction crystallization ..59
 2.4.5.2. Drowning-out crystallization ..60
2.5. Conclusion ...62

CHAPTER 3 ...64

MATERIALS AND METHODS ...64

3.1. Introduction ..65
3.2. Experimental procedure ...65
 3.2.1. Feed solution ...65
 3.2.1.1. Simulated SWRO brine ..65
 3.2.1.2. Feed solution for S-MD with different configurations66
 3.2.1.3. Feed solution for integrated submerged MD with adsorption66
 3.2.1.4. Feed solution for F-SMDC ...67
 3.2.1.5. Feed solution for the tendency of CaSO₄ in high salinity solution70
 3.2.2. Membrane and submerged membrane module70
3.2.3. Experimental methods and lab-scale experimental set-up71
 3.2.3.1. Submerged-membrane distillation (S-MD)71
 3.2.3.1.1. Lab-scale S-MD set-up...71
 3.2.3.1.2. Air-back washing..73
 3.2.3.2. Integrated submerged MD-adsorption ..74
 3.2.3.2.1. Lab-scale integrated submerged MD-adsorption set-up74
 3.2.3.2.2. KCuFC adsorbent..75
 3.2.3.2.3. Rb adsorption equilibrium..75
 3.2.3.3. Fractional-submerged membrane distillation crystallizer (F-SMDC) ...75
 3.2.3.3.1. Lab-scale set-up of F-SMDC ..75
 3.2.3.3.2. Membrane washing ..78
 3.2.3.3.3. Masking a sulfate-rich condition...78
 3.2.3.4. Calcium sulfate (CaSO₄) crystallization79
 3.2.3.4.1. Batch crystallization..79
 3.2.3.4.2. Chemicals..80
 3.2.3.4.3. Physical factors...81
3.3. Analysis..82
 3.3.1. Crystal analysis..82
 3.3.2. Water quality and concentration of solution ..82
 3.3.3. Numerical analysis...83

CHAPTER 4 ..85

EXPERIMENTAL COMPARISON OF SUBMERGED MEMBRANE DISTILLATION CONFIGURATIONS FOR CONCENTRATED BRINE TREATMENT ..85

 4.1. Introduction ...86
 4.2. Materials and Methods ...88
 4.3. Results and discussion..89
 4.3.1. Baseline performance (DI water as feed solution)...............................89
 4.3.2. Influence of operating condition...91
 4.3.2.1. Feed concentration...92
4.3.2.2. Solution temperature ...93
4.3.2.3. Economic/energy aspect ...95

4.3.3. Performance for brine treatment (synthetic brine as feed solution)96
4.3.3.1. Permeate flux ...96
4.3.3.2. Permeate quality ...97
4.3.3.3. Crystallization in membrane ...98

4.3.4. Air backwashing ..102

4.4. Summary of this research ..104

CHAPTER 5 ...106
INTEGRATED SUBMERGED MEMBRANE DISTILLATION-
ADSORPTION SYSTEM FOR RUBIDIUM RECOVERY106

5.1. Introduction ...107
5.2. Materials and Methods ...110
5.3. Results and discussion ...111

5.3.1. Integrated submerged MD-adsorption process with granular KCuFC ..111
5.3.1.1. Model single Rb solution ...112
5.3.1.2. Performance of integrated submerged MD-adsorption process with simulated SWRO brine ..116

5.3.2. Comparing the adsorption capacity of different sized adsorbents (in integrated submerged MD-adsorption) ..123
5.3.2.1. Adsorption equilibrium and adsorption rate123
5.3.2.2. Submerged MD-adsorption with different sizes of adsorbent126

5.4. Summary of this research ...130

CHAPTER 6 ...132
FRACTIONAL-SUBMERGED MEMBRANE DISTILLATION
CRYSTALLIZER (F-SMDC) FOR TREATMENT OF HIGH SALINITY
SOLUTION ..132

6.1. Introduction ...133
6.2. Materials and Methods ...135
6.3. F-SMDC principle ..137
6.4. Results and discussions .. 139
 6.4.1. Performance comparison of F-SMDC and SMDC .. 139
 6.4.2. Continuous F-SMDC operation .. 143
 6.4.3. Crystal production in F-SMDC .. 147
 6.4.4. Effect of salinity .. 149

6.5. Summary of this research .. 152

CHAPTER 7 ... 153

EFFECT OF INORGANIC AND ORGANIC COMPOUNDS ON THE
PERFORMANCE OF FRACTIONAL-SUBMERGED MEMBRANE
DISTILLATION CRYSTALLIZER .. 153

7.1. Introduction ... 154
7.2. Materials and Methods ... 156
7.3. Results and discussion ... 157
 7.3.1. F-SMDC principle ... 157
 7.3.1.1. Concentration gradient (CG) ... 159
 7.3.1.2. Temperature gradient (TG) ... 160
 7.3.2. Influence of different inorganic salt on CG/TG ... 163
 7.3.2.1. Molecular weight .. 164
 7.3.2.2. Electronegativity of cation and anion ... 168
 7.3.3. TG and CG tendency of organic compounds ... 169
 7.4. Summary of this research ... 174

CHAPTER 8 ... 176

THE RECOVERY OF SODIUM SULFATE FROM SEAWATER
REVERSE OSMOSIS (SWRO) BRINE
USING FRACTIONAL-SUBMERGED MEMBRANE DISTILLATION
CRYSTALLIZER (F-SMDC) ... 176

8.1. Introduction ... 177
8.2. Materials and Methods ... 178
8.3. Results and discussions ... 179
8.3.1. Important issues regarding the treatment of real SWRO brine using F-SMDC ... 179

8.3.2. Treatment of synthetic SWRO brine .. 183
8.3.2.1. Reduction of calcium influence .. 183
8.3.2.2. Temperature-sensitive soluble components on concentration gradient (CG) ... 187
8.3.2.3. Analysis of a sulfate-rich scenario ... 188
8.3.2.3.1. Addition of sodium sulfate (Na₂SO₄) .. 189
8.3.2.3.2. Addition of magnesium sulfate (MgSO₄) ... 192
8.3.2.3.3. Addition of ammonium sulfate ((NH₄)₂SO₄) 194
8.3.2.3.4. Influence of sulfate-rich scenario on the growth of crystals and nucleation ... 196

8.3.3. Possibility of producing other valuable resources from concentrate 198

8.4. Summary of this research .. 200

CHAPTER 9 .. 202
EFFECT OF CHEMICAL AND PHYSICAL FACTORS ON THE
CRYSTALLIZATION OF CALCIUM SULFATE IN SEAWATER
REVERSE OSMOSIS BRINE .. 202

9.1. Introduction .. 203
9.2. Materials and Methods .. 205
9.3. Results and Discussion ... 206
9.3.1. CaSO₄ crystal formation ... 206
9.3.2. Influence of chemical factors .. 207
9.3.2.1. pH and Temperature .. 207
9.3.2.2. Concentration of NaCl ... 209
9.3.2.3. Effect of inorganic ions .. 210
9.3.2.3.1. Sole ion .. 210
9.3.2.3.2. Chemical washing agents ... 214
9.3.2.3.3. Coagulation chemicals for pre-treatment 214
9.3.3. Effect of organic matter .. 216
9.3.4. Effect of physical factors .. 218
LIST OF FIGURES

Figure 1-1. Structure of this study. ...12

Figure 2-1. Schematic diagram of reverse osmosis (RO), adopted from literature ((El-Dessouky & Ettouney 2002)) ..18

Figure 2-2. Different types of solubility curve of solutes in the solvent.24

Figure 2-3. Liquid and solid phase variation as a function of temperature.25

Figure 2-4. Concentration, temperature and vapor pressure profile over the membrane in the direct contact membrane distillation (MD) process (Image adapted from literature (Gryta 2002; Guan et al. 2014)). (\(T_f\) is the temperature in the feed solution, \(T_{fm}\) is the temperature on a membrane surface in the feed solution stream, \(T_p\) is the temperature in the permeate stream, \(T_{pm}\) is the temperature on the membrane surface in the permeate stream, \(C_f\) is the concentration in the feed solution stream, \(C_{fm}\) is the concentration on the membrane surface in the feed solution side, \(C_p\) is the concentration in the permeate stream, \(P_f\) is the hydraulic pressure of the feed solution, and \(P_p\) is the hydraulic pressure of permeate.)27

Figure 2-5. Different configurations of the membrane distillation process: (a) direct contact membrane distillation (DCMD), (b) vacuum membrane distillation (VMD), (c) air gap membrane distillation (AGMD) and (d) Sweep gas membrane distillation (SGMD).29

Figure 2-6. Experiment set-up for membrane distillation crystallization (MDC), adapted from literatures (a) (Wu et al. 1991), and (b) (Gryta 2002). ..31

Figure 2-7. Schematic diagrams of MDC with different membrane module configurations (figures adapted from previous literature): (a) with DCMD-flat sheet membrane module (Tun et al. 2005), (b) with DCMD (Edwie & Chung 2012), and (c) with hollow fiber submerged VMD (Julian et al. 2016). ...40

Figure 2-8. Proposed integrated MDC process for desalination of seawater, adapted from literature (Creusen et al. 2013). ...47

Figure 2-9. Schematic diagram of scale formation in membrane process, adapted from literature (Lee et al. 1999). ...52

Figure 2-10. Model of membrane wetting phenomenon (Initial solute: ●, Solute after \(\Delta t\): ○) (image adapted from literature ((Gryta 2002)). ...56

Figure 3-1. Schematics of lab-scale S-MD set-up with different configuration: (a) submerged-direct contact membrane distillation (S-DCMD), (b) submerged-vacuum membrane distillation (S-VMD) and (c) submerged-vacuum enhanced direct contact membrane distillation (S-VDCMD). ...72

Figure 3-2. Mechanism of fouling and scaling removal from the membrane with air backwashing ...73
Figure 3-3. Schematic of lab-scale set-up of integrated submerged MD-adsorption system. 74

Figure 3-4. Fractional submerged membrane distillation-crystallization (F-SMDC) set-up: the permeate stream (——), the stream of continuous feeding to the reactor (from feed reservoir) (——), the stream of heating water (−−−), the coolant stream (−ꞏ−). 77

Figure 3-5. Details of F-SMDC reactor showing the double wall feature for generating temperature gradient (heating in the top portion of the reactor and cooling at the bottom portion of the reactor): (a) Cross-sectional view, and (b) Aerial view. 78

Figure 3-6. Schematic diagram of batch crystallization procedure and analysis. 80

Figure 4-1. Base line test comparing the water flux of different S-MD configurations (feed solution = DI water, operating period = 1h, T_f = 55 °C, T_p = 20 °C, T_c = 10 °C and v_p = 0.66 m/s). 91

Figure 4-2. Comparison of permeate fluxes after one hour operated at different feed concentrations of NaCl (feed solution = NaCl solution, operating period = 1h, T_f = 55 °C, T_p = 20 °C, T_c = 10 °C and v_p = 0.66 m/s). 93

Figure 4-3. SEM images of used membrane surface and sodium sulfate crystals (Feed solution: 400g Na_2SO_4/L solution, and magnification: X100 and X1.2K) of (a) S-DCMD, and (b) S-VMD. 95

Figure 4-4. (a) Permeate flux and (b) quality (conductivity) of different S-MD configurations using 50% recovered brine as feed solution. 97

Figure 4-5. SEM-EDX results of the membrane surface in S-MD. 99

Figure 4-6. SEM images of used membrane for each S-MD configuration (feed solution: synthetic 50% recovered brine): (a) Virgin (Cross-section), (b) Virgin (Surface), (c) S-DCMD (Cross-section), (d) S-DCMD (Surface), (e) S-VDCMD (at 500mbar) (Cross-section), and (f) S-VDCMD (at 500mbar) (Surface). 100

Figure 4-7. SEM images of used membrane for each S-VDCMD configuration (feed solution: synthetic 50% recovered brine): (a) S-VDCMD (at 500mbar) (Cross-section), (b) S-VDCMD (at 500mbar) (Surface), (c) S-VDCMD (at 700mbar) (Cross-section), and (d) S-VDCMD (at 700mbar) (Surface). 101

Figure 4-8. The variation of flux and conductivity with periodic air backwashing. 103

Figure 4-9. SEM images of used membrane ((a) cross-sectional and (b) surface) after fourth cycle of air backwashing. 104

Figure 5-1. Comparison of Rb adsorption ratio over time in integrated submerged MD-adsorption with different granular KCuFC dose = 0.05, 0.13, 0.24 g/L (T_f = 55 °C, T_p = 20 °C, 2 L feed solution = 5 mg Rb/L (2L)) (m and m_0 are the Rb concentration at given time and at the start of experiment, respectively). 113
Figure 5-2. Normalized flux and adsorption rate as a function of time and VCF (Tf = 55 °C, Tp = 20 °C, feed solution = 5 mg Rb/L, adsorbent dosage = 0.24 g/L). .. 115

Figure 5-3. The adsorptive capacity of granular KCuFC in an integrated submerged MD-adsorption process: (a) normalized flux and adsorption rate, and (b) adsorption mass per unit time and Rb concentration variation (Tf = 55 °C, Tp = 20 °C, feed solution = simulated SWRO brine with Ca2+ (R = 50 %) (volume = 6 L), adsorbent dosage = 0.24 g/L) (m and m0 are the amount of Rb in the feed tank at the given time and initially). .. 118

Figure 5-4. Crystal formation at the end of integrated submerged MD-adsorption operation (a) on the membrane surface, and (b) in the membrane reactor (feed tank). .. 119

Figure 5-5. SEM-EDX result of KCuFC used at VCF 2.0 (a) without washing, (b) after washing using a deionized water. ... 120

Figure 5-6. The efficiency of granular KCuFC in integrated submerged MD-adsorption process: (a) normalized flux and adsorption rate, and (b) adsorption mass (mg) per unit time and Rb mass variation in the solution (m/t/m0) (Tf = 55 °C, Tp = 20 °C, feed solution = simulated SWRO brine without Ca2+ (R = 50 %), adsorbent dosage = 0.48 g/L). ... 122

Figure 5-7. The different form and size KCuFC adsorbent used in this study. 124

Figure 5-8. Batch Rb adsorption with different sizes of KCuFC adsorbents: (a) adsorption equilibrium with Langmuir model, and (b) initial adsorption rate (after 1 hour) (solution = 70 mg Rb/L, pH = 7.0 ± 0.8, feed volume = 0.2 L, adsorbent dosage = from 0.06 to 0.65 g/L). ... 125

Figure 5-9. Variation of normalized flux and Rb concentration in solution for powder and particle adsorbents (Tf = 55 °C, Tp = 20 °C, feed solution = 5 mg Rb/L, adsorbent dosage = 0.24 g/L)... 127

Figure 6-1. Set-up of F-SMDC process: permeate stream (——), stream of continuous feeding to the reactor (feed solution) (·························), stream of concentrate and crystal generated from the reactor to the crystal growth cell (−−−), the stream of heating water for the top portion of the reactor (−−−), stream of coolant water for the bottom portion of the reactor and the crystal growth cell (——). ... 136

Figure 6-2. Generation of concentration gradient (CG) in feed reactor of F-SMDC: (a) lower feed concentration at the top portion and higher feed concentration at the bottom portion, and (b) concentration effect at the top portion of the reactor containing submerged membrane. 137

Figure 6-3. Convection current in reactor by heating and cooling of (a) conventional MDC process (reactor without cooling and partition) and (b) F-SMDC process (reactor with cooling and partition). ... 139

Figure 6-4. Variation of feed concentration in the reactor during the operation in F-SMDC and SMDC modes (feed: 120 g/L Na2SO4, Ttop = 50.0±1.3 °C, Tbottom = 20±1.5 °C, Tpermeate = 16.5±0.2 °C). ... 141
Figure 6-5. Comparison of flux in F-SMDC and SMDC mode (without crystal extraction) (feed: 120 g/L Na₂SO₄, T_{Top} = 50.0±1.3 °C, T_{Bottom} = 20±1.5 °C, T_{permeate} = 16.5±0.2 °C)...142

Figure 6-6. Normalized flux and concentration tendency in F-SMDC comparing with S-VDCMD...143

Figure 6-7. Flux and concentration variation in continuous F-SMDC (without crystal extraction until the completion of each cycle)...145

Figure 6-8. Used membrane with Na₂SO₄ treatment at the end of (a) cycle 1, (b) cycle 2...145

Figure 6-9. Crystal size distribution (CSD) and change in morphology of produced Na₂SO₄ crystals with time. Images of crystals at (a) initial, and after (b) 60min and (c) 1 day and 7 days, and (d) size distribution of Na₂SO₄...149

Figure 6-10. F-SMDC with Na₂SO₄ and NaCl: (a) variation of flux and concentration at the top and bottom portion of the reactor, (b) used membrane at the end of the experiment...150

Figure 6-11. EDX analysis of crystals (a) deposited on the used membrane surface, (b) produced from the bottom portion of the reactor and external crystallizer (saturated feed solution from the top and middle portion of the reactor) (feed solution: Na₂SO₄ and NaCl)...151

Figure 7-1. Gravitation of concentrated feed solution downwards enabling formation of CG/TG in reactor of F-SMDC...159

Figure 7-2. The variation of temperature and concentration at each portion in reactor with Na₂SO₄ as feed solution (a) The temperature and solubility along the height of the reactor, and (b) Na₂SO₄ concentration profile (solubility of Na₂SO₄ at different temperature are also shown)...163

Figure 7-3. The effect of different inorganic salt on F-SMDC: (a) The variation of feed concentration at the top portion (C_t/C₀), (b) The variation of concentration gradient ratio (C_{Bottom}/C_{Top}), and (c) the normalized flux (T_{Top} = 50.0±1.2 °C, T_{Bottom} = 20±1.3 °C, T_{permeate} = 16.5±0.3 °C)...166

Figure 7-4. The influence of volume concentration factor on solubility of 1.5M KCl at the bottom portion (T_{Top} = 50.0±1.2 °C, T_{Bottom} = 20±1.3 °C, T_{permeate} = 16.5±0.3 °C)...167

Figure 7-5. The comparison of Na₂SO₄ and MgSO₄ as feed solution: (a) the variation of concentration gradient ratio (C_{Bottom}/C_{Top}), and (b) the normalized flux...169

Figure 7-6. The normalized flux and the concentration variation at the top and bottom portion with organic compound alone as feed solution...170

Figure 7-7. The concentration gradient ratio (C_{Bottom}/C_{Top}) with organic compounds alone and with organic compounds and Na₂SO₄ in the feed solution...171
Figure 7-8. The tendency of CG and the percentage difference of the organic compounds during the F-SMDC operation with organic compounds and Na$_2$SO$_4$ as feed solution (a) the concentration gradient ratio (C_{Bottom}/C_{Top}), and (b) the comparison of organic components ratio at the bottom portion of the reactor. ...173

Figure 8-1. The F-SMDC process in the treatment of real SWRO brine: (a) variation of permeate flux, concentration in the reactor (at the top and bottom sections), and (b) concentration gradient ratio of organic components. ...182

Figure 8-2. CaSO$_4$ crystals deposited on the membrane surface after the treatment of SWRO brine. ..183

Figure 8-3. Effect of calcium in the feed solution (a) on the permeate flux and CG, and (b) the concentration increase (C_i/C_0) trend during the treatment of low temperature-sensitive solubility brine (consisting of only NaCl). ...185

Figure 8-4. Crystal formation on the membrane surface during the treatment of (a) SWRO brine with Ca$^{2+}$, and (b) 1M NaCl solution. ..186

Figure 8-5. Variation of (a) permeate flux and CG ratio, and (b) concentration increase (C_i/C_0) at the top and bottom sections (here Na$_2$SO$_4$ solution was added as sole feed solution up to VCF of 2.5; after that synthetic SWRO brine was added). ...190

Figure 8-6. Na$_2$SO$_4$ crystals generated by the addition of Na$_2$SO$_4$. ...191

Figure 8-7. Effect of amount of MgSO$_4\cdot$3H$_2$O on (a) permeate flux and CG ratio, and (b) concentration increase (C_i/C_0) at the top and bottom portion. ..193

Figure 8-8. Effect of the addition of (NH$_4$)$_2$SO$_4$ on (a) permeate flux and CG ratio, and (b) concentration increase (C_i/C_0) at the top and bottom sections of the reactor. ...195

Figure 8-9. Formation of Na$_2$SO$_4$ crystals on the membrane surface during the period when rapid flux decline was observed. ..196

Figure 8-10. Na$_2$SO$_4$ crystals generated when (NH$_4$)$_2$SO$_4$ was added: (a) variation in morphology with VCF, and (b) when the operation was completed. ..198

Figure 8-11. Schematic diagram for total SWRO treatment using the hybrid F-SMDC process. ..199

Figure 9-1. Crystal morphology of CaSO$_4$ (Linnikov 2000). ...206

Figure 9-2. CaSO$_4$ crystal that was formed during the batch crystallization experiment: (a) SEM-EDX analysis, (b) CSD of ‘Length [001]’, and (c) CSD of ‘Width [100]’. ...207

Figure 9-3. Reduction efficiency of calcium ions in the feed solution after crystallization. 208
Figure 9-4. Crystal size distribution (CSD) at different heating temperatures and pH values: (a) Length [001] relative to temperature, (b) Width [100] relative to temperature, (c) Length [001] relative to pH, and (d) Width [100] relative to pH.

Figure 9-5. Crystal Size Distribution (CSD) with different salt concentrations in the feed solution: (a) Length [001], and (b) Width [100].

Figure 9-6. SEM-EDX data of crystal shape and components with the addition of ions at 60 °C of (a) Calcium with the addition of magnesium, (b) Calcium with the addition of potassium, and (c) Calcium with the addition of bicarbonate.

Figure 9-7. The reduction efficiency of calcium ions in the feed solution after crystallization with the addition of inorganic ions.

Figure 9-8. Crystal size distribution (CSD) with the addition of inorganic ions: (a) Length [001], and (b) Width [100].

Figure 9-9. Crystal size distribution (CSD) with chemical washing agent: (a) Length [001] with EDTA, and (b) Width [100] with EDTA.

Figure 9-10. Crystal Size distribution (CSD) of CaSO_4 in the presence of a coagulant: (a) Length [001], and (b) Width [100].

Figure 9-11. EDX data of CaSO_4 crystals in the presence of a coagulant.

Figure 9-12. Crystal Size Distribution (CSD) in the presence of organic matter: (a) Length [001], and (b) Width [100].

Figure 9-13. Crystal Size Distribution (CSD) at different mixing velocities: (a) Length [001], and (b) Width [100].

Figure 9-14. Suspension of crystals at different agitation intensities: (a) At lower agitation intensity (20 rpm), and (b) At higher agitation intensity (150 rpm).

Figure 10-1. Diagram of the research scope and future research gaps to be addressed: research completed (——), on-going research (−−), and future research (------).
LIST OF TABLES

Table 2-1. MDC research on the treatment of challenging solutions.................................41

Table 3-1. Composition of simulated seawater reverse osmosis (SWRO) (50 % recovery). .66

Table 3-2. Composition of model solution used in the F-SMDC. ..67

Table 3-3. The electronegativity of anion and cation (Allred 1961).................................68

Table 3-4. Component of feed solution used to study the effect of inorganic and organic compounds. ..69

Table 3-5. Composition of real SWRO brine from a seawater desalination plant.............69

Table 3-6. Composition of the standard feed solution for the CaSO4 crystallization experiment..70

Table 3-7. The additives in the standard feed solution. ...81

Table 4-1. The change of membrane wall thickness after operation in different configuration. ..91

Table 4-2. Achieved VCF in different S-MD configurations. ..98

Table 5-1. Efficiency of Rb recovery and water production in integrated submerged MD-adsorption process \((T_f = 55 \, ^\circ C, \, T_p = 20 \, ^\circ C, \, \text{feed solution} = 5.0 \, \text{mg Rb/L (volume = 6 L), adsorbent dosage} = 0.24 \, \text{g/L}) \) ...116

Table 5-2. Efficiency of integrated submerged MD-adsorption process at different adsorbent doses and in the presence/absence of Ca\(^{2+}\) in simulated SWRO brine \((T_f = 55 \, ^\circ C, \, T_p = 20 \, ^\circ C, \, \text{feed solution} = \text{simulated SWRO brine w/ Ca}^{2+}, \, \text{w/o Ca}^{2+}, \, \text{adsorbent dosage} = 0.24, 0.48 \, \text{g/L}) \) ...123

Table 5-3. The comparison of adsorption quantity for different sizes of adsorbent (powder, particle, and granular forms) \((\text{adsorbent dose} = 0.24 \, \text{g/L; operation duration 10 h, VCF 2.0}) \) ..127

Table 6-1. Volume and concentration of feed solution extracted from reactor upon F-SMDC and upon external crystallization (standing at room temperature for 24 - 72 h).................147

Table 6-2. Crystal and fresh water production by F-SMDC operation \((\text{feed: Na}_2\text{SO}_4) \)148

Table 9-1. Calcium ion rejection efficiency in presence of organic matter.218
ABSTRACT

Seawater reverse osmosis (SWRO) brine management is an important component in sustainable desalination. Improving additional water production from brine with resource recovery can substantially enhance the overall efficiency of desalination process. SWRO plants generate a large amount of concentrated brine as the recovery rate from RO is still limited to 30-50%. Recently, membrane distillation (MD) has emerged as one of the alternative technologies for systematic reduction of the amount of brine as it leads to the additional production of high-quality water. MD process is driven by vapor pressure between high temperature feed solution and low temperature permeate stream. The vapor evaporated from the feed solution to permeate stream is transported through a porous hydrophobic membrane. MD can lead to the treatment of high concentration and zero liquid discharge (ZLD) as there is no hydraulic pressure restriction in MD. Other aspect of MD is the concentration of the feed solution, resulting to a supersaturation condition of salt present in SWRO brine. It enhances the potential of resource recovery in crystal form. MD can thus be combined with a crystallization technique known as membrane distillation-crystallization (MDC). In MDC process, there are two streams produced: the high-quality water and crystals as resource. MD concentrates the feed solution continuously via the production of clean water from feed solution. This makes a favorable condition for forming crystals. Also, the extraction of salt by crystallization from feed solution mitigates the adverse influence of high concentration on mass transfer in MD.

This research focused on the investigation of hybrid systems with submerged-membrane distillation (S-MD) for resource recovery and producing additional water recovery from SWRO brine. In this study, S-MD was coupled with other technologies such as crystallization and adsorption technologies to achieve resource recovery and volume minimization of SWRO brine.
A new concept of MDC named in this study as fractional-submerged membrane distillation crystallizer (F-SMDC) was investigated to improve the water recovery and resource recovery simultaneously.

Performance of S-MD with different configuration in treatment of SWRO brine

S-MD offers an additional advantage of a compact system compared to cross-flow MD. The performances of three different S-MD configurations were evaluated in this study, namely; submerged direct contact membrane distillation (S-DCMD), submerged vacuum direct contact membrane distillation (S-VDCMD) and submerged vacuum membrane distillation (S-VMD) for SWRO brine treatment. A 13-77% higher water flux was obtained by S-MDs with incorporation of vacuum (S-VMD and S-VDCMD) compared to S-DCMD due to higher driving force. Evaluation on the influence of feed concentration and permeate temperature revealed that S-MD with high vacuum was significantly affected by feed concentration. Meanwhile S-DCMD was severely affected by feed temperature losses, due to the membrane pore crystallization formation. Moreover, the crystallization on the membrane surface was influenced by the presence of vacuum pressure. A repeated cycle of S-DCMD with membrane air-backwashing was effective for flux recovery and to reduce membrane crystallization. This enabling to concentrate SWRO brine by 2.8 times of volume concentration factor (VCF).

Integrated SMD-adsorption system to recover the rubidium (Rb) and clean water

An integrated SMD with adsorption using granular potassium copper hexacyanoferrate (KCuFC) as adsorbent was evaluated for improving water recovery from brine while extracting valuable Rb. KCuFC showed good capacity for Rb extraction. The thermal S-MD process (55 °C) with a continuous supply of Rb-rich SWRO brine enabled Rb to be concentrated (99%
rejection) while producing additional fresh water. The thermal condition with concentrated Rb helped to improve the performance of granular KCuFC in Rb extraction. An optimum dose (0.24 g/L) KCuFC was identified based on 98% Rb adsorption (9.78 mg as Rb) from RbCl solution without a continuous supply of feed. The integrated submerged MD-adsorption system was able to achieve more than 85% water recovery and Rb extraction in continuous feed supply with two repeated cycles. The presence of Ca in SWRO brine resulted in CaSO₄ crystallization deposition onto the membrane and on the surface of the granular KCuFC submerged in the feed reactor. This led to a reduced recovery rate and Rb adsorption. Significantly better MD water recovery was obtained upon removal of Ca in SWRO brine while achieving a total of 6.65 mg of Rb extraction. A comparative study conducted on the performance of different KCuFC forms (granular, particle and powder) showed that the particle form of KCuFC exhibited 10–47% higher capacity in terms of Rb adsorption.

Resource recovery from high salinity solution using F-SMDC

MDC is an attractive process for high saline SWRO brine treatment. MDC produces additional fresh water while simultaneously recovering valuable resources. In this study, a novel approach of fractional-submerged MDC (F-SMDC) process was developed and tested. In this system, MD and crystallizer are integrated in a feed tank with a submerged membrane. F-SMDC principle is based on the presence of concentration/temperature gradient (CG/TG) in the feed reactor. The conditions provided at the top portion of the feed reactor (higher temperature and lower feed concentration) was well suited for MD operation, while the bottom portion of the reactor (lower temperature and higher concentration) was favorable for crystal growth. F-SMDC performance with direct contact MD to treat brine and produce sodium sulfate (Na₂SO₄) crystals showed positive results. The presence of CG/TG in F-SMDC enabled to achieve higher
water recovery for brine treatment with a VCF of over 3.5 compared to VCF of 2.9 with a conventional S-MDC set-up. Further, the high feed concentration and low temperature at the reactor bottom in F-SMDC enabled the formation of Na₂SO₄ crystals with narrow crystal size distribution.

Moreover, the reactor of F-SMDC contained the submerged hollow-fiber membrane. This enables water and salt recovery to occur simultaneously in a single reactor. The influence of inorganic and organic compounds present in brine solutions on the development and stability of CG/TG in F-SMDC was evaluated in detail. The results showed that properties of inorganic compounds (such as molecular weight and electronegativity) played a significant role in influencing CG/TG in F-SMDC. A high CG ratio (between 1.51 to 1.83 after crystallization) was observed when using feed solutions with inorganic compounds such as KCl, MgSO₄, and Na₂SO₄. However, only low CG ratio (between 0.94 to 1.46) was achieved in feed solutions containing lower molecular weight compounds, NH₄Cl and NaCl. High CG ratio with KCl resulted in the occurrence of salt crystallization at a faster rate (from VCF 2.4 onwards) compared to the predicted theoretical salt saturation point of VCF 3.0. On the other hand, Na₂SO₄ showed lower flux decline (12.56 % flux decline) compared to MgSO₄ (55.93 % flux decline). This is due to lower cation electronegativity of Na⁺. The presence of CG in F-SMDC by concentrated inorganic compounds also enhanced organic compounds to gravitate downwards to the bottom of the reactor, potentially mitigating organic deposition on the membrane.

F-SMDC was used to recover Na₂SO₄ from simulated SWRO brine. CG and TG in the reactor enhanced the water recovery by MD and Na₂SO₄ crystallization by crystallizer. The crystals were not obtained at the bottom portion of F-SMDC due to deposition of calcium sulfate (CaSO₄) on the membrane surface and negative influence of low temperature-sensitivity.
solubility slat such as NaCl. In order to obtain the higher degree of supersaturation of Na₂SO₄, sulfate-rich condition was created by adding salts such as Na₂SO₄, MgSO₄ and (NH₄)₂SO₄. In the case of addition of Na₂SO₄ and MgSO₄, the concentration increase at the top portion was observed, resulting in low CG ratio (around 1.7). On the other hand, the addition of (NH₄)₂SO₄ achieved faster Na₂SO₄ crystallization (VCF 1.42) at the bottom portion with higher CG ratio of over 2.0. Total water recovery ratio of 72 % and 223.73 g Na₂SO₄ crystals was achieved in the laboratory-scale F-SMDC unit used while treating simulated SWRO brine.

Tendency of CaSO₄ crystallization in high salinity solution

Discharge of brine back into the sea through submarine pipelines affects the marine ecosystem. MDC can produce additional amount of clean water with valuable resources recovery from the concentrated brine. The SWRO brine contains salts, which contributes to scaling development during the MDC operation. Hence, this research also investigated the crystallization tendency of calcium sulfate (CaSO₄) under high salinity and examined the effects of other inorganic and organic compounds in forming CaSO₄ crystallization. The crystallization tendency of CaSO₄ in SWRO brine was examined at different conditions such as: temperatures; changes in pH values; and in the presence of co-existing ions such as chemical agents, and organic matters. The results showed that the size and quantity of crystals formed increased with the increase in temperature. Furthermore, an increase in the pH values (from 5 to 9) increased the crystal size. At higher pH, the complexion of NaCl along with CaSO₄ was observed.