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Iñigo Liberal,1, 2 Iñigo Ederra,1, 2 and Richard W. Ziolkowski3

1Electrical and Electronic Engineering Department,
Universidad Pública de Navarra, Campus Arrosad́ıa, Pamplona, 31006 Spain

2Institute of Smart Cities, Universidad Pública de Navarra, Campus Arrosad́ıa, Pamplona, 31006 Spain
3Global Big Data Technologies Centre,University of Technology Sydney, Ultimo, NSW 2007, Australia

(Dated: April 26, 2019)

Reactive power plays a crucial role in the design of small antenna systems, but its impact on
the bandwidth of quantum emitters is typically disregarded. Here, we theoretically demonstrate
that there is an intermediate domain between the usual weak and strong coupling regimes where
the bandwidth of a quantum emitter is directly related to the dispersion properties of the reactive
power. This result emphasizes that reactive power must be understood as an additional degree of
freedom in engineering the bandwidth of quantum emitters. We illustrate the applicability of this
concept by revisiting typical configurations of quantum emitters coupled to resonant cavities and
waveguides. Analysis of the reactive power in these system unveils new functionalities, including
the design of efficient but narrowband photon sources, as well as quantum emitters exhibiting a
bandwidth narrower than its nonradiative linewidth even under incoherent pumping.

The analysis of the reactive power [1, 2] and related quan-
tities such as the stored energy [3, 4] plays a central role in
the design of classical radiating systems and the identifica-
tion of their fundamental limits. This aspect is particularly
relevant for electrically small antennas, since the smaller
the size of an emitter, the larger the impact of the reactive
fields on its performance. In fact, following the pioneer-
ing works of Wheeler [5], Chu [6] and Harrington [7], much
attention has been devoted to the analysis of the stored
energy and the derivation of physical bounds of antenna
performance [8–15] (see, e.g., [16] for a historical review).
The importance of these works is that they fundamentally
establish what is possible and what is not possible to do
with an antenna system. They also inspire different an-
tenna designs that approach the theoretical limits [17–20],
and facilitate the implementation of optimization proce-
dures [21–23].

Quite to the contrary, the concept of reactive power is
strange to the field of quantum optics and the design of
quantum emitters. Although interactions with so-called
virtual photons are considered (see, e.g., the recent perspec-
tive [24]), these primarily lead to frequency shifts on the
emission frequency (see Figs. 1(a)-(b)). Different versions
of these shifts include the celebrated Lamb shift [25], collec-
tive Lamb shift [26, 27] and medium-assisted shifts [28–30].
In general, the spectrum is Lorentzian and its linewidth is
determined by the decay rate (see Fig. 1(b)). Therefore,
it appears that the interaction with virtual photons and/or
reactive fields has no impact in the bandwidth of a quantum
emitter. This point might appear to be particularly surpris-
ing since most quantum emitters are deeply subwavelength
radiators, even more so than electrically small antennas.

At the same time, it is known that this behavior relates
to the operation within the weak-coupling regime. On the
other hand, when a small quantum system is strongly cou-
pled to a photonic nanostructure, their interactions through
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FIG. 1. (a) Sketch of the general configuration: A quantum
emitter, modeled as a two-level system {|e〉 , |g〉} with a transi-

tion frequency ω0, has an effective current distribution ĵ (r, ω)
that is coupled to a photonic environment characterized by a
relative permittivity ε (r, ω). (b) Zeroth order (weak coupling)
approximation to the emission spectrum, where reactive inter-
actions shift the emission frequency from ω0 to ωr, and radiative
interactions define its bandwidth. (c) First-order correction to
the spectrum where both radiative and reactive interactions im-
pact the emission bandwidth.

the radiation field can significantly impact its emission
spectrum. One particularly popular example is the vac-
uum Rabi splitting, where the strong interaction between
the emitter and a cavity mode results in a two-peaked spec-
trum (see, e.g., [31]). Therefore, it is clear that when the
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coupling is sufficiently strong, the energy stored in the ra-
diation field must have an impact of the bandwidth of a
quantum emitter. Different works have addressed the emis-
sion spectrum of a quantum emitter in the weak and strong
coupling regimes [32–36]. However, the role of reactive in-
teractions on the bandwidth of a quantum emitter, and the
possibilities that could be accessed by engineering it, have
not yet been explored.

Here, we theoretically investigate the bandwidth of a
quantum emitter amid its transition from the weak to
strong coupling regimes, emphasizing the role of the re-
active power associated with the emitter’s current distri-
bution. Specifically, we demonstrate that there is an inter-
mediate domain between the usual weak and strong cou-
pling regimes in which the emission spectrum is Lorentzian,
but the associated bandwidth of the emitters is directly af-
fected by the dispersion properties of the reactive power
(see Fig. 1(c)). This result highlights the reactive power as
an additional degree of freedom in controlling the quantum
emitter’s bandwidth that can be harnessed to introduce
photon sources with unprecedented characteristics. Specifi-
cally, we will demonstrate how managing the reactive power
enables: (i) increasing the efficiency of a quantum emitter
while maintaining a narrow bandwidth, and, (ii) designing
a quantum emitter exhibiting a bandwidth narrower than
its nonradiative linewidth, even with incoherent excitation.

I. THEORETICAL FRAMEWORK

As schematically depicted in Fig. 1, we investigate the
emission properties of a small quantum system modeled
as a two-level system. It has excited |e〉 =

´
d3rψe (r) |r〉

and ground |g〉 =
´
d3rψg (r) |r〉 states that are separated

by the transition frequency ω0. The system is coupled to
a macroscopic lossy photonic environment that is charac-
terized by the dispersive relative permittivity ε (r, ω) =
εR (r, ω)+i εI (r, ω). We model this quantum system within
the framework of macroscopic QED (see, e.g., [35]). Its
Hamiltonian can be written as

Ĥ = Ĥ0 + ĤB + ĤI (1)

with

Ĥ0 =
}ω0

2
σ̂z (2)

ĤB =

ˆ ∞
0

dωf

ˆ
d3r }ωf f̂

† (r, ωf ) · f̂ (r, ωf ) (3)

ĤI = − q

2m

[
p̂ · Â (r̂) + Â (r̂) · p̂

]
+

q2

2m
Â2 (r̂) (4)

where r̂ and p̂ are the position and momentum opera-
tors, respectively; m is the mass of the electron; and

σ̂z = |e〉 〈e| − |g〉 〈g| and f̂ (r, ωf ) are polaritonic operators
representing the excitations of the photonic environment.
The vector potential operator is given by

Â (r) =

ˆ ∞
0

dωf

ˆ
d3r′

√
}
πε0

ωf

c2

√
εI (r′, ωf )

×
{
G (r, r′, ωf ) · f̂ (r′, ωf ) + h.c.

}
(5)

where G (r, r′, ωf ) is the dyadic Green’s function of the
macroscopic environment.

In order to draw a closer connection with classical an-
tenna theory, we rewrite the interaction Hamiltonian as a
function of a current density operator. To this end, we dis-

regard the Â2 (r) nonlinear term and expand the vector po-
tential operator in the position representation to find that
the interaction Hamiltonian can be rewritten as follows

ĤI = −
ˆ
d3r ĵ (r) · Â (r) (6)

Here, we have defined the current density operator

ĵ (r) =
1

2m
ρ̂ (r) p̂ + h.c. (7)

where ρ̂ (r) = q |r〉 〈r|. These operators are defined such
that their expectation values recover the charge density
ρ (r, t) = 〈ρ̂ (r)〉 = q |ψ (r, t)|2 and the current density

j (r, t) =
〈̂
j (r)

〉
= q

2m (−i})ψ∗ (r, t)∇ψ (r, t) + h.c., in

such a manner that they satisfy the continuity equation
∂tρ (r, t) + ∇ · j (r, t) = 0 (see, e.g., in [37] p. 32). For
a two-level system, {|e〉 , |g〉}, the current density oper-

ator can be decomposed as follows: ĵ (r) = jge (r) σ̂ +

j∗ge (r) σ̂†+jee (r) σ̂†σ̂+jgg (r) σ̂σ̂†, with jab (r) = 〈a| ĵ (r) |b〉
and σ̂ = |g〉 〈e|.

In the following, we will be mostly concerned with the
properties of the fields generated by the quantum emit-
ters. Therefore, we compute the source field operators in
the Heisenberg picture by solving the equation of motion,

i} ∂tâ =
[
â, Ĥ

]
, for the polaritonic operator f̂ (r′, ωf ; t);

and we find that the Laplace transform of the source vec-
tor potential and electric field operator can be conveniently
written in analogy with their classical counterparts as func-
tions of the current density as follows

ÂS (r;ω) = µ0

ˆ
d3r′G (r, r′, ω) · ĵ (r′, ω) (8)

ÊS (r; ω) = iωµ0

ˆ
d3r′G (r, r′, ω) · ĵ (r′, ω) (9)
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II. EMISSION SPECTRUM

Next we examine the emission spectrum during a decay
process, i.e., when the emitter is initially excited and the
photonic environment is in its vacuum state: |ψ (t = 0)〉 =
|e〉 |{0}〉. This configuration is relevant for incoherent
pumping or when the quantum emitter is resonantly ex-
cited via an initialization pulse. Similar to the usual rotat-
ing wave approximation, we approximate the interaction
Hamiltonian by keeping only those terms that preserve the
number of excitations:

ĤI = −
ˆ
d3r

(
σ̂† (t) j∗ge (r) · Â(+)

S (r; t) + h.c.
)

(10)

where Â
(+)
S (r; t) is the inverse Laplace transform of

Â
(+)
S (r;ω) = µ0

´
d3r′G (r, r′, ω) · jge (r′) σ̂ (ω). Adapting

the theory introduced in [32–34, 36] to our current density
formulation within the one-photon correlation approxima-
tion, we find that the emission spectrum is given by

S (r, ω) =

〈(
Ê

(+)
S (r; ω)

)†
· Ê(+)

S (r; ω)

〉

= Cprop (r, ω)S0 (ω) (11)

with

Cprop (r, ω) = ω2µ2
0

∣∣∣∣ˆ d3r′G (r, r′, ω) · jge (r′)

∣∣∣∣2 (12)

being the propagation term which accounts for the directive
emission properties of the current density and its environ-
ment. The term S0 (ω) =

〈
σ̂† (ω) σ̂ (ω)

〉
is the polarization

spectrum; it accounts for the impact of the emitter dynam-
ics. It can be written as

S0 (ω) =
1

(ω − ω0 −∆ω (ω))
2

+ Γ2(ω)
4

(13)

We have defined in this expression the (in general disper-
sive) decay rate, Γ (ω), and frequency shift, ∆ω (ω), which
can be written as a function of the current densities as fol-
lows

4ω (ω)− i Γ (ω)

2
=

= −µ0

}

ˆ
d3r

ˆ
d3r′ j∗ge (r) ·G (r, r′, ω) · jge (r′) (14)

In view of Eq. (14), it is elucidating to draw an anal-
ogy with classical antenna theory. In fact, although
the expression for Γ (ω) and ∆ω (ω) have been de-
rived within the macroscopic QED formalism in a self-
consistent manner, they present a clear mathematical anal-
ogy with the fields radiated by a classical current den-
sity jge (r). In order to illustrate this point, we define

Ecl (r, ω) = iωµ0

´
d3r′G (r, r′, ω) · jge (r′) as the classi-

cal time-harmonic field (exp(−iωt) time-convention) that
would be generated by the current distribution jge (r′). In
doing so, we can directly relate the dispersive decay rate
and frequency shift to the supplied and reactive powers
associated with this classical current density, respectively
[1, 2]

4ω (ω)− i Γ (ω)

2
=

2

}ω
[Preac (ω)− iPsup (ω) ] (15)

with

Psup =
1

2

˛
S∞

dS·(Ecl ×H∗cl)+
ω

2

ˆ
V∞

d3r ε0 εI (r, ω) |Ecl|2

(16)
and

Preac =
ω

2

ˆ
V∞

d3r
[
ε0 εR (r, ω) |Ecl|2 − µ0 |Hcl|2

]
(17)

The volume integrals are taken over an asymptotically large
volume, V∞, bounded by a surface S∞ in the far-zone of the
sources jge (r). On the one hand, Psup is the time-averaged
power supplied by the current distribution jge (r). It con-
tains both the power radiated away from the system, as
well as the power dissipated in the surrounding environ-
ment. The reactive power, Preac, is related to the energy
stored in the electric and magnetic fields during the inter-
action process; but it does not lead to any net energy trans-
fer. However, it has a critical impact on the performance of
classical systems, including its bandwidth and robustness
against undesired loss channels, as well as stability and lin-
earity aspects. Therefore, it could be expected that reac-
tive interactions should also play a role in the performance
of quantum emitters, beyond determining its frequency of
operation.

In general, it is clear from Eq. (13) that the polarization
emission spectrum for a quantum emitter is determined by
the dispersion properties of ∆ω (ω) and Γ (ω). We can ex-
pect that the spectrum will exhibit peaks at the resonant
frequencies given by the solutions to the implicit equation:
ωr = ω0 + 4ω (ωr). In the neighborhood of one of these
resonances, the zeroth order approximation to the emis-
sion spectrum would be to neglect all dispersion properties
near the resonance frequency. This approximation recovers
the usual Born-Markov approximation (or weak-coupling
regime), which leads to the zeroth order (Lorentzian) spec-
trum depicted in Fig. 1(b):

S0th
0 (ω) =

1

(ω − ωr)
2

+ Γ2(ωr)
4

(18)

Within this approximation, the 3dB bandwidth of the emis-
sion (frequency range between the half-maximum points)
will be simply given by the decay rate BW 0th

3dB = Γ (ωr). In
stark contrast with antenna theory, while the reactive part
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of the interaction energy term is intimately related to the
stored energy, it does not have any impact on the quan-
tum emitter’s bandwidth. As anticipated at the outset,
this feature is in part surprising since quantum emitters are
deeply subwavelength structures. Intuitively, the reason for
this behavior is that, in contrast with small antennas, the
quantum emitter is already intrinsically tuned to the res-
onance and the interaction with the electromagnetic field
is considered a small perturbation. Therefore, the reactive
energy term only leads to a small perturbative frequency
shift.

However, this behavior changes when the strength of the
coupling to the photonic environment is increased and leads
to significant changes on the emission spectrum. In order to
elucidate the transition between the usual weak and strong
coupling regimes, we next introduce a first order correction
to the emission spectrum. To this end, we take a Taylor’s
series expansion of ∆ω (ω) around ωr. We also note in anal-
ogy with resonant antennas [4] that quantum emitters are
typically tuned to be at either a maximum or a minimum
of the dispersive decay rate, i.e., at a frequency for which
∂ωΓ (ωr) ' 0. The specific choice depends on whether one
is using a photonic nanostructure to accelerate or decel-
erate the spontaneous emission process. Admittedly, there
are other scenarios in which the dispersion properties of the
decay rate cannot be neglected or even they can be dom-
inant. As shown in Appendix A, this mainly leads to an
asymmetric Lorentzian line.

Here, we are mainly interested in the impact of reactive
interactions on the emission spectrum, and their ability to
control the emission bandwidth. Therefore, we introduce
a first-order correction to the emission spectrum by ap-
proximating ∆ω (ω) ' 4ω (ωr) + (ω − ωr) ∂ω4ω (ωr) and
Γ (ω) ' Γ (ωr). This approximation leads to the following
first-order correction to the emission spectrum:

S1st
0 (ω) = A

1

(ω − ωr)
2

+ 1
4

(
Γ(ωr)

1−∂ω4ω(ωr)

)2 (19)

with A = (1− ∂ω4ω (ωr))
−2

. It is clear from Eq. (19) that
the emission spectrum still preserves a Lorentzian lineshape
within this first-order correction. However, the linewidth
is not entirely determined by the decay rate, but it di-
rectly depends on the dispersion of the frequency shift,
BW 1st

3dB = Γ (ωr) /(1 − ∂ω4ω (ωr)). This implies that one
has an additional degree of freedom to control the band-
width of quantum emitter, opening new possibilities in the
design of a quantum emitter’s bandwidth (see Fig. 1(c)).

In order to understand what is possible and what is
not possible to do with this extra degree of freedom, it
is interesting to further draw analogies with classical an-
tenna theory. In particular, the dispersion properties of
the frequency shift, ∂ω4ω (ω) = ∂ω

{
2ω−1Preac (ω)

}
, are

directly related to the dispersion of the reactive power, i.e.,
∂ωPreac (ω). Adapting the derivations in [1, 4] to our pur-
poses, the latter can be written in terms of field related

quantities as follows (see Appendix B)

∂ωPreac = −1

2

ˆ
V∞

d3r
[
µ0 |Hcl|2 + ε0 ∂ω {ωεR (r, ω)} |Ecl|2

]

+ω ε0

ˆ
V∞

d3r εI (r, ω) Im {E∗cl · ∂ωEcl}

+µ0

˛
S∞

dΩ r |F (ur, ω)|2 (20)

where F (ur, ω) is the emission pattern in the far-zone, i.e.,
in the limit limr→∞Ecl (r, ω) =

(
ei

ω
c r/r

)
F (ur, ω).

Equation (20) provides information about the behav-
ior of the system in some limiting cases. For exam-
ple, if the system can be considered lossless, i.e., when
εI (r, ωr)→ 0, and nonradiating, i.e., when F (ur, ωr)→ 0
near the resonant frequency ωr, we can write ∂ωPreac (ω) '
− 1

2

´
V∞

d3r
[
µ0 |Hcl|2 + ε0∂ω {ωεR (r, ω)} |Ecl|2

]
. Conse-

quently, the frequency derivative of the reactive power will
be negative, ∂ωPreac (ω) < 0, as a manifestation of Fos-
ter’s reactance theorem [1]. It can be readily checked that
∂ω4ω (ωr) < 0 for such a lossless and nonradiating system.
Actually, a similar behavior is expected in most cases since
the reactive power is dominated by contributions from the
near fields. This implies that taking into account the im-
pact of the reactive power will predict, in most cases, a
narrower bandwidth of emission. However, for resonance
frequencies ωr near strongly radiating and/or dissipative
points it is possible to observe the reverse behavior, i.e.,
∂ωPreac (ω) > 0. This outcome in turn leads to a broaden-
ing of the bandwidth.

In general, Eq. (19) illustrates that there is an interme-
diate domain between the usual weak and strong coupling
regimes where the emission bandwidth can be controlled
not only through the decay rate, but also through the reac-
tive power. This provides and additional degree of freedom
in controlling the bandwidth, which can be used to either
broaden or compress it. Thus, it offers new opportunities
of engineering the emission spectrum of quantum emitters.

III. EXAMPLES

The basic theory introduced in the previous section can
be applied to a variety of quantum emitters and photonic
nanostructures. In the following, we provide some examples
illustrating the role of the reactive power in typical config-
urations of quantum emitters coupled to photonic nanos-
tructures. As we will show, taking into account the role of
the reactive power provides a better understanding of the
transition from the weak to the strong coupling regimes,
and unveils novel functionalities even in well-studied sys-
tems such as resonant cavities and waveguides.
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FIG. 2. (a) Sketch of the single-mode cavity geometry: A quantum emitter with transition frequency ω0 and intrinsic decay rate
Γ0 = 10−6ω0 is coupled to a single-mode cavity with resonance frequency ω1 = ω0, linewidth Γ1 = 10−4ω0, and coupling strength
Ω1. (b) Dispersive frequency shift ∆ωstr(ω) and decay rate Γstr(ω) normalized to their maximum value Ω2

1/Γ1. (c) 3dB emission
bandwidth, normalized to the intrinsic decay rate Γ0, as a function of the normalized coupling strength Ω1/Γ1. Comparison between
the predictions for the full spectrum S0(ω) and zeroth S0th

0 (ω) and first S1st
0 (ω) order approximations. (d) Normalized emission

spectrum for coupling strengths Ω1 = 0.2 Γ1, Ω1 = 0.5 Γ1 and Ω1 = 0.8 Γ1.

When considering the coupling of a quantum emitter to
an inhomogeneous photonic environment, it is convenient
to decompose the dyadic Green’s function G (r, r′, ω) =
Gstr (r, r′, ω) + G0 (r, r′, ω) into the addition of a term as-
sociated to the modes of a structure of interest Gstr (r, r′, ω)
(e.g., a cavity or a waveguide), as well as a term G0 (r, r′, ω)
accounting for the rest of the optical modes. Common
decompositions include homogeneous and scattering parts
[38, 39] and cavity and radiating modes [34], although the
decomposition into any arbitrary basis is possible. This
leads to a similar decomposition for the decay rate, Γ (ω) =
Γstr (ω) + Γ0, and frequency shift, ∆ω (ω) = ∆ωstr (ω) +
∆ω0. Here, it is typically assumed that the interactions
with the modes not of interest are in the weak-coupling
regime. This provides a frequency shift that can be in-
cluded in the emitter’s transition frequency ω0 +∆ω0 → ω0

(i.e., the Lamb shift), and an intrinsic decay rate Γ0 that
accounts for all of the radiative decay paths different from
the modes of interest. This decay rate can also account
for the nonradiative processes intrinsic to the emitter [32–
34, 40], although a more sophisticated description would be
required for nonradiative processes leading to an intrinsinc
non-Lorentzian spectrum (e.g., emitters with large phonon
sidebands).

In this manner, the polarization spectrum can be written

as follows:

S0 (ω) =
1

(ω − ω0 −∆ωstr (ω))
2

+ (Γstr(ω)+Γ0)2

4

(21)

A. Single-mode cavity: transition from weak to
strong coupling regimes

For illustrative purposes, we start by revisiting the popu-
lar example of coupling a quantum emitter with resonance
frequency ω0 to a high-Q single-mode cavity, characterized
by the resonant frequency ω1, linewidth Γ1, and coupling
strength distinguished by the vacuum Rabi frequency Ω1

(see Fig. 2(a)). This configuration is a basic textbook ex-
ample. However, it will serve to illustrate how the proposed
intermediate regime describes the transition from the weak
to the strong coupling regimes. First, we note that for a
moderate-Q cavity (ω1 � Γ1), the decay rate and frequency
shift can be approximated by [41] (see also Appendix C)

∆ωstr (ω)− iΓstr (ω)

2
=
Ω2

1

4

1

ω − ω1 + iΓ1

2

(22)

This model can describe a large number of emitter-cavity
configurations. Here, we select parameters typical of a
quantum dot coupled to a photonic crystal cavity, including
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a moderate Q resonator with Γ1 = 10−4ω0, well within the
range of known optical cavities (see, e.g., [42]), and an in-
trinsic linewidth Γ0 = 10−6ω0 typical of quantum dots (see,
e.g., [41], Fig. 5). Coupling strengths Ω1 enabling the ob-
servation of the strong coupling regime have been reported
in a number of experiments (see, e.g., [43]).

Fig. 2(b) represents the decay rate Γstr (ω) and frequency
shift ∆ωstr (ω), confirming that the dispersion is character-
ized by the Lorentzian line of the cavity. As anticipated,
the frequency derivative of the frequency shift is negative
at most frequencies, i.e., ∂ω∆ωstr (ω) < 0. However, this
trend is reversed near the resonance: ω ∼ ω0, where we ob-
serve ∂ω∆ωstr (ω) > 0. Therefore, we can anticipate that
as the coupling strength of an emitter tuned to the cav-
ity resonance is increased, the bandwidth will tend to be
broadened with respect to what could be expected from the
zeroth order approximation (weak coupling regime) simply
by looking at the dispersion of the reactive term ∆ωstr (ω).
In this manner, considering the impact of the dispersion
of the reactive power provides additional insight into the
transition from the weak to the strong coupling regimes.

This point is more clearly illustrated in Fig. 2(c), which
depicts the 3dB bandwidth as a function of the coupling
strength. It also compares the bandwidth predicted within
the zeroth (Eq. (18)) and first (Eq. (19)) order approxima-
tions. For small coupling strengths: Ω1 < 0.3 Γ1, the 3dB
bandwidth is correctly predicted by all three formulations.
However, for larger coupling strengths, the common zeroth
order approximation provides a pessimistic prediction of
the bandwidth, i.e., it fails to account for the broadening
induced by the dispersion of the reactive power. Our first-
order correction correctly predicts the bandwidth for an
extended regime up to roughly Ω1 ∼ 0.7 Γ1. For larger
coupling strengths, the system enters into the strong cou-
pling regime, and the spectrum is characterized by the well-
known two-peaked spectrum usually referred to as Rabi
splitting (see Fig. 2(d)).

B. Two-mode cavity: highly-efficient narrowband
source

Next we move to the more interesting question of whether
the additional degree of freedom provided by the reac-
tive power can be leveraged to introduce photon sources
with novel functionalities. We illustrate this point by an-
alyzing a two-mode resonant cavity and show how this
simple structure can be utilized to enable the design of
highly-efficient narrowband sources. Typically, the emis-
sion efficiency (quantum yield or beta factor) is defined
as the ratio between the desired and total decay rates:
η = Γstr(ω0)/(Γstr(ω0) + Γ0) [40]. Usually, efficient photon
sources are designed by enhancing the decay rate of the
desired channels by means of coupling to photonic nanos-
tructures, i.e., to ensure that Γstr(ω0) � Γ0. For this rea-
son, increasing the efficiency is intrinsically associated with

bandwidth enlargement. In turn, this feature hinders the
design of highly-efficient, but narrowband photon sources.

However, highly-efficient, but narrowband single pho-
ton sources would be of great interest for a number of
applications. For example, bandwidth compression has
been shown to help in generating indistinguishable pho-
tons, particularly when different physical systems are in-
terfaced [44]. Narrowband sources are of natural interest
for metrology systems, and they would also facilitate spec-
troscopy with non-classical light, either by interrogating
biological or chemical samples with high spectral precision,
and/or by enhancing the emission from a molecular tran-
sition while avoiding the spectral overlap with neighboring
transitions. They would also expedite frequency-division
multiplexing in quantum communications.

Managing the reactive power can provide a pathway to
circumvent the direct relationship between efficiency and
narrowband operation. To illustrate this point, we consider
a quantum emitter coupled to a cavity supporting two non-
interacting modes (or coupled to two different cavities) as
depicted in Fig. 3(a). For the sake of simplicity, we assume
that both resonant modes have similar characteristics in
terms of coupling strengths, Ω1 = Ω2, and quality factors
Γ1 = Γ2, but their resonant frequencies are detuned from
the transition frequency of the emitter by symmetric shifts
ω1 = ω0 − ω∆ and ω2 = ω0 + ω∆, respectively. For this
configuration, the frequency shift and decay rate can be
written as follows

∆ωstr (ω)− iΓstr (ω)

2
=

Ω2
1

4

(
1

ω − ω0 + ω∆ + iΓ1

2

+
1

ω − ω0 − ω∆ + iΓ1

2

)
(23)

The associated dispersion properties of the decay rate
and frequency shift are depicted in Fig. 3(b). These re-
sults show how the response of the system is characterized
by the superposition of two Lorentzian lines, each corre-
sponding to one of the two uncoupled resonant modes. In-
terestingly, we observe Γstr (ω0) ' ζ Γ1, ∆ωstr (ω0) = 0,
and ∂ω∆ωstr (ω0) ' −ζ at the emitter transition frequency,
where we have defined the normalized coupling parameter
ζ = (Ω1/ω∆)

2
/ 2. Therefore, this configuration allows

for simultaneously enhancing the efficiency by increasing
the decay rate, while compressing the bandwidth by the
action of the reactive power.

This effect is illustrated in Fig. 3(c), which depicts the
3dB bandwidth and efficiency of the emitter as functions of
the coupling factor ζ. The figure shows that as the coupling
factor increases, the emission bandwidth becomes narrower
than the one predicted within the zeroth order approxima-
tion. For example, we have η ' 0.98 at ζ = 0.5, while
exhibiting a bandwidth that is 33% smaller than the one
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𝑆0
0th 𝜔

𝑆0 𝜔
𝑆0
1st 𝜔

FIG. 3. (a) Sketch of the two-mode cavity geometry: A quantum emitter with transition frequency ω0 and intrinsic decay rate
Γ0 = 10−6ω0 is coupled to two single mode cavities whose resonance frequencies are ω1 = ω0 +ω∆ and ω1 = ω0−ω∆. The detuning
parameter ω∆ = 5 Γ1, the linewidth Γ1 = Γ2 = 10−4ω0, and the coupling strength Ω1 = Ω2. (b) Dispersive frequency shift ∆ωstr(ω)
and decay rate Γstr(ω) normalized to their maximum value Ω2

1/Γ1. (c) Comparison between the predictions for the full spectrum
S0(ω) and zeroth S0th

0 (ω) and first S1st
0 (ω) order approximations. (Left) 3dB emission bandwidth normalized to the intrinsic decay

rate Γ0. (Right) efficiency η as a function of the coupling parameter ζ = (Ω1/ω∆)2 /2. (d) Normalized spectrum for the coupling
parameters ζ = 0.3, ζ = 0.4 and ζ = 0.5. For reference, the zeroth order approximation is included as a dashed curve.

predicted purely based on the decay rate. Again, we have
used parameter values typical of a quantum dot coupled
to a photonic crystal cavity (Γ1 = 10−4ω0, ω∆ = 5 Γ1,
Γ0 = 10−6ω0). Sweeping the coupling parameter ζ from
0 to 0.5 in this example corresponds to varying the cou-
pling strength Ω1/Γ1 from 0 to 5. Values of Ω1/Γ1 = 2.1
[45], Ω1/Γ1 = 2.7 [46] and Ω1/Γ1 = 6.4 [47] have been
demonstrated for quantum dots coupled to photonic crys-
tal cavities with similar quality factors.

In this configuration, the first-order correction provides
a very accurate prediction of the 3dB bandwidth for the en-
tire studied parameter range. This effect is justified by the
fact that ∂2

ω∆ωstr (ω0) = 0, which substantially increases
the domain of validity of the first-order correction to the
emission spectrum. The normalized spectrum for the cou-
pling parameters ζ = 0.3, ζ = 0.4 and ζ = 0.5 are reported
in Fig. 3(d), which confirms that the spectrum remains
Lorentzian but with a bandwidth narrower than the predic-
tion of the zeroth order approximation (shown as a dashed
line). Ultimately, the first-order correction to the emission
spectrum will lose its validity when the coupling strength
is large enough to enter into the strong coupling regime,
characterized by the presence of multiple emission peaks.
This effect is illustrated in Fig. 4, which shows the emission
spectrum for an extended range of frequencies and coupling
strengths. The figure illustrates how for coupling strengths
larger than those studied in Fig. 3, additional peaks would

appear in the emission spectrum, signaling the ascension
into the strong coupling regime.

ζ=0.5

ζ=0.75

ζ=1

0.999 0.9995 1 1.0005 1.001
0

0.25

0.5

0.75

1

ω/ωp

S0(ω)

FIG. 4. Normalized emission spectrum for the configuration
studied in Fig. 3 of the main text, but for extended coupling
parameters, ζ = 0.5, ζ = 0.75 and ζ = 1.

It would be expected that additional functionalities will
always come at some cost. In this case, the efficiency
achieved for a given cavity system will be smaller than if
the emitter was tuned at resonance with the cavity. How-
ever, once the quality of the cavity system is high enough
so that the efficiency at resonance would become saturated,
our results demonstrate that one can achieve a significant
bandwidth compression while maintaining a high efficiency.
In general, this result sets the basis for the design of highly-
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efficient but narrowband single-photon sources. Future evo-
lutions of this concept might include many other configu-
rations, for instance, coupled-cavities and asymmetric sys-
tems, as well as the optimization of the involved param-
eters, e.g., the quality factors and resonant frequencies of
the cavities. These advanced design efforts are beyond the
scope of the present investigation.

C. Multimode waveguide: sub-nonradiative linewidth

The possibility of compressing the bandwidth by man-
aging the reactive power poses the question of how nar-
row the bandwidth of an initially excited quantum emitter
could be theoretically. Typically, one can narrow the band-
width of a quantum emitter by reducing its decay rate, e.g.,
by using a closed cavity [48] or a photonic crystal exhibit-
ing a band-gap [49, 50]. However, both approaches come
with the cost of sacrificing efficiency, and, ultimately, this
narrowing process stops when the linewidth becomes dom-
inated by nonradiative processes. However, the additional
degree of freedom provided by reactive interactions can al-
low us to circumvent this limit, potentially getting access
to sub-nonradiative loss linewidths, even when the emitter
is incoherently excited.

We illustrate this possibility by examining a quantum
emitter coupled to a multimode waveguide as schematically
depicted in Fig. 5(a). For this configuration, the dispersive
decay rate and frequency shift can be written as [41, 51]

∆ωstr (ω)− iΓstr (ω)

2
= −i ω

∑
m

αm ngm (ω) (24)

where αm is the coupling parameter to the mth mode. It
includes, for instance, the effects of the overlap of the emit-
ter current distribution with the mode’s field profile and
its effective volume. The group index of the mth mode is
ngm (ω) = c/vgm (ω), where vgm (ω) is the associated group
velocity.

It is clear from Eq. (24) that engineering the dispersion
properties of the group index ngm (ω) empowers the design
of different light-matter interactions within optical waveg-
uides. To focus our discussion, we consider a coupled res-
onator optical waveguide (CROW) illustrated in Fig. 5(a)
[52, 53]. The dispersion relation of a CROW waveguide
within the tight-binding approximation can be described as
a set of m pass-bands [52, 53] whose individual dispersion
relations ω(k) = ωm + κmcos(kd) are centered around the
resonance frequencies of the cavity ωm and whose band-
widths are equal to two times their coupling rates: 2κm.
The group index associated with each of these modes is then
given by ngm(ω) = ngm0/

√
1− (ω − ωm)2/κ2

m, with ngm0

being the group index at the center of its pass-band [54].
We consider the impact of two bands located around the
emitter’s transition frequency, and set the band parameters
to ω1 = 0.9975ω0, ω2 = 1.0025ω0, κ1 = κ2 = 0.00158ω0

and ngm0 = 15. Thus, our model matches the band struc-
ture and group index reported in CROW waveguide exper-
iments [55] (see Fig. 5(b)).

Fig. 5(c) presents the corresponding dispersive frequency
shift ∆ωstr(ω) and decay rate Γstr(ω). They serve to illus-
trate some of the salient features of the light-matter interac-
tions within dispersive waveguides. For example, the decay
rate is strongly enhanced near the edges of the pass-bands
since it is associated with a large group index, i.e., a near-
zero group velocity [41]. Similarly, the medium-assisted
Lamb shift is enhanced at the side of the band-edge that
lies within the band-gap [29]. On the other hand, the decay
rate is strongly suppressed within the band-gaps, leading
to an inhibition of the spontaneous emission [49, 50] and
the formation of long-lived bound states [56–58].

Simultaneously, Fig. 5(c) suggests new opportunities as-
sociated with the management of the reactive power within
the band-gap. For example, we note that if an emitter
tuned within the band-gap has a non-zero intrinsic decay
rate Γ0, then the dynamics of the quantum emitter would
still be dominated by an exponential relaxation through
the channels external to the waveguide system. This fea-
ture is true even if Γstr(ω0) = 0. In such a case, the emis-
sion spectrum would be expected to be a Lorentzian line
with a 3dB bandwidth Γ0. However, at the center of the
band-gap, we have ∆ωstr(ω) = 0 and a negative frequency
derivative ∂ω∆ωstr(ω) < 0. These are the necessary in-
gredients for bandwidth compression beyond that induced
by an inhibition of spontaneous emission. This effect is
shown in Figs. 5(d) and 5(e) in which the quantum emit-
ter 3dB bandwidth and emission spectrum are depicted as
functions of the coupling parameter α1 = α2. As expected,
the bandwidth is identical to the intrinsic decay rate Γ0

for small coupling parameters α1 ∼ 0. On the other hand,
it is compressed beyond this limit as the coupling param-
eter strengthens and the zeroth order approximation is no
longer valid. Again, different parameters of the system,
e.g., the separation and width of the propagating bands,
could be optimized to achieve a better performance for
specific waveguide implementations and/or particular ap-
plications. Other structures exhibiting a band-gap, such as
photonic crystal [59] and metamaterial [60, 61] waveguides,
could also be considered.

In general, these results demonstrate the real possibility
of using a photonic nanostructure to compress the band-
width of a quantum emitter beyond the limit of its nonra-
diative linewidth. It is worth remarking that the so-called
sub-natural linewidth photon emission based on resonance
fluorescence operating in the Heitler’s regime has been re-
ported [62–64]. However, recent theoretical developments
indicate that subnatural-linewidth and antibunching can-
not be observed simultaneously in this configuration unless
the coherent part of the emitted light is reduced by destruc-
tive interference with an external coherent signal [65]. The
operating principle of our configuration is entirely differ-
ent. First, since it is not based on resonance fluorescence, it
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FIG. 5. (a) Sketch of the multimode waveguide geometry: A quantum emitter with transition frequency ω0 and intrinsic decay
rate Γ0 decays into m modes of a photonic waveguide with coupling factors αm. Potential implementation is based on a coupled
resonator optical waveguide (CROW). (b) Dispersion diagram of the CROW. (c) Dispersive frequency shift ∆ωstr(ω) and decay
rate Γstr(ω) normalized to its absolute value at the center of the first band Γstr(ω1)/2 = α1 ω1 ng1(ω1). (d) 3dB emission bandwidth
normalized to the intrinsic decay rate Γ0 as a function of the coupling parameter α1 = α2. (e) Normalized spectrum for the coupling
parameters α1 = 0, α1 = 0.00005 and α1 = 0.0001.

does not require the exact compensation of different terms
in order to guarantee antibunching. Second, our proposed
system is consistent with incoherent pumping and is thus
compatible with electronically-driven devices. In fact, if
the intrinsic decay rate Γ0 is dominated by a radiative com-
ponent (outside the waveguide system), our system would
allow for on-demand operation. Finally, achieving an in-
trinsic line narrower than the width associated with the
nonradiative losses might have important implications in
the dynamics of different decoherence channels beyond ma-
nipulating the emission bandwidths of quantum emitters.

IV. CONCLUSIONS

Our results demonstrate that reactive interactions can
be exploited as an additional degree of freedom in con-
trolling the bandwidth of quantum emitters. This degree
of freedom can be used either in the compression or ex-
pansion of the bandwidth, while maintaining a Lorentzian
spectrum. Being able to control the bandwidth of emis-
sion beyond the manipulation of its decay rate provides a
finer control and offers new possibilities. For instance, it
is possible to elude a direct relationship between the band-
width and efficiency. This feature facilitates the design of
efficient quantum emitters preserving a narrow bandwidth.
It also enables the compression of the source’s bandwidth
beyond limits imposed by nonradiative decay rates intrin-

sic to the emitter. We have outlined the basic theory and
presented examples associated with applications involving
resonant cavities and waveguides. This basic theory and
these configurations could be implemented through a vari-
ety of systems, including different quantum emitters (cold
atoms, ions, quantum dots, color centers, ... ), multiple
emitters, resonant cavities (defect cavity modes in photonic
crystals, nanopillar cavities, whispery gallery modes, plas-
monic cavities, ...) and/or photonic crystal and metamate-
rial waveguides. Many other configurations, e.g., coupled
cavities, nanoparticle systems, and waveguides with differ-
ent dispersion profiles, could also be explored. In general,
our results take inspiration from classic antenna theory to
provide a new perspective on the interactions of quantum
emitters with their photonic environments. Moreover, they
may find important applications in the development of non-
classical light sources.

Appendix A: Impact of the dispersion of the decay
rate in the emission spectrum

This work mainly focuses on studying the impact of re-
active interactions on the bandwidth of quantum emitters.
However, for the sake of completeness, here we discuss the
impact of the dispersion of the decay rate on the emis-
sion spectrum. To this end, a first-order correction to
the emission spectrum, including the impact of the dis-
persion of the decay rate, can be found by approximating
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∆ω (ω) ' ∆ω (ωr) and Γ (ω) ' Γ (ωr) + ∂ωΓ (ωr) (ω − ωr),
around the resonance frequency, and leading to

S1st
0,Γ (ω) =

1

(ω − ωr)
2

+ Γ2(ωr)
4 (1 + CΓ (ω − ωr))

(A1)

with CΓ = 2∂ωΓ (ωr) /Γ (ωr). It is clear from Eq. (A1) that
this correction introduces an additional term proportional
to (ω − ωr), which changes sign around ωr. Therefore, we
conclude that the first-order effect of the dispersion of the
decay rate is inducing an asymmetry on the Lorentzian line.

If we simultaneously consider a first-order correction of
both the decay rate and the frequency shift, the spectrum
can be written as follows:

S1st
0,Γ,∆ω =

1

C2
∆

1

(ω − ωr)
2

+ Γ2(ωr)
4C2

∆
(1 + CΓ (ω − ωr))

(A2)

with the definition C∆ = 1 − ∂ω∆ω (ωr). It can be con-
cluded from Eq. (A2) that the resulting spectrum will be
again be an asymmetric line. However, the overall width of
this asymmetric line will then be controlled by the disper-
sion of the frequency shift (reactive interactions) via the C∆

parameter. Therefore, we expect that our findings could be
extended even to configurations where the dispersion of the
decay rate cannot be neglected.

Appendix B: Dispersion properties of the reactive
power. Derivation of Equation (20)

In this appendix we provide the derivation of Eq. (20) of
the main text, i.e., an expression of the frequency derivative
of the reactive power in terms of field quantities. To this
end, we adapt previous results of antenna theory [1, 4] to
our case with a fixed current distribution. Our starting
point is the time-harmonic Maxwell curl equations for the
classical electric and magnetic vector fields

∇×E (r, ω) = iωµ0H (r, ω) (B1)

∇×H (r, ω) = −iωε0ε (r, ω)E (r, ω) + j (r) (B2)

and their frequency derivatives

∇× ∂ωE (r, ω) = iµ0H (r, ω) + iωµ0∂ωH (r, ω) (B3)

∇× ∂ωH (r, ω) = −iε0∂ω {ωε (r, ω)}E (r, ω)

−iωε0ε (r, ω) ∂ωE (r, ω) (B4)

The explicit spatial and frequency dependencies of the field
and permittivity quantities are omitted hereafter to al-
leviate the notation. Next, we construct a variation of

Poyntings theorem by substracting ∇ · (∂ωE×H∗) and
∇ · (E× ∂ωH∗), and taking the imaginary part, so that
we can write

Im∇ · (∂ωE×H∗ −E× ∂ωH∗) = −Im {j∗ · ∂ωE}

+µ0 |H|2 + ε0∂ω {ωεR} |E|2 − 2ωε0εIIm {∂ωE∗ ·E} (B5)

In this manner, we can compute the frequency derivative
of the reactive power by integrating (B5) over an asymp-
totically large volume V∞ bounded by the surface S∞:

∂ωPreac (ω) = −1

2

ˆ
V∞

d3r Im{j∗ · ∂ωE}

= −1

2

ˆ
V∞

d3r
[
µ0 |H|2 + ε0∂ω {ωεR} |E|2

]

+ωε0

ˆ
V∞

d3r εI Im {∂ωE∗ ·E}

+
1

2
Im

˛
S∞

dS · (∂ωE×H∗ −E× ∂ωH∗) (B6)

We simplify the last term by noting that the surface integral
is taken in the far-zone of the sources j (r). Therefore, we
can write the following limits for the electric and magnetic
fields

lim
r→∞

E =
ei

ω
c r

r
F (ur) (B7)

lim
r→∞

H =
1

η0

ei
ω
c r

r
ur × F (ur) (B8)

where F (ur) is the emission pattern in the far zone, and
for their frequency derivatives

lim
r→∞

∂ωE =
i

c
F (ur) ei

ω
c r (B9)

lim
r→∞

∂ωH =
i

c

1

η0
ur × F (ur) ei

ω
c r (B10)

By using these limits, the last term in (B6) reduces to

1

2
Im

˛
S∞

dS · (∂ωE×H∗ −E× ∂ωH∗)

= µ0

˛
S∞

dΩ r |F (ur)|2 (B11)

Finally, introducing (B11) into (B6), one recovers Eq. (20)
of the main text.
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Appendix C: High quality factor approximation for
the interaction with a single-mode cavity

Here we provide additional details on the expression used
to model the interaction energy term for a quantum emitter
coupled to a single mode cavity, i.e., Eq. (22) of the main
text. In particular, we consider a single-mode cavity with
resonant frequency ω1, decay rate Γ1 and normalized mode
function u1 (r). The dyadic Green’s function of this system
can be written as follows [41]

G (r, r′, ω) = −ω2 u1 (r)u∗1 (r′)

ω2 − ω2
1 + iωΓ1

(C1)

This expression is commonly used to model the interac-
tion between a quantum emitter and a single-mode cav-
ity. However, a simpler but very accurate expression
can be obtained by taking the narrowband approximation:
ω2 − ω2

1 + iωΓ1 ' 2 (ω − ω1 + iΓ1/2) in the denominator,
and ω2 ' ω2

1 in the numerator. In this manner, the dyadic
Green’s function reduces to

G (r, r′, ω) ' −ω
2
1

2

u1 (r)u∗1 (r′)

ω − ω1 + iΓ1

2

(C2)

Consequently, following the definition of the dispersive fre-

quency shift and decay rate in Eq. (14), we find

4ω (ω)− i Γ (ω)

2
=

=
1

ω − ω1 + iΓ1

2

µ0ω
2
1

2}

∣∣∣∣ˆ d3r j∗ge (r) · u1 (r)

∣∣∣∣2 (C3)

which is identical to the expression used in the main text,
with the definition of the coupling strength

Ω2
1 =

2µ0ω
2
1

}

∣∣∣∣ˆ d3r j∗ge (r) · u1 (r)

∣∣∣∣2 (C4)

We remark that this approximation is extremely accurate
even for cavities with much smaller Γ1/ω1 ratios than those
considered in the manuscript.
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