MINIATURIZED ON-CHIP PASSIVE DEVICES FOR MILLIMETRE-

WAVE APPLICATIONS IN BI-CMOS TECHNOLOGY

by Meriam Gay Bautista

Dissertation submitted in fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

under the supervision of

Prof. Eryk Dutkiewicz and Dr. Forest Zhu

School of Electrical and Data Engineering University of Technology Sydney Sydney, Australia

January 2019

ABSTRACT

Recent advances in silicon-based integrated circuits (ICs) have successfully demonstrated promising system-on-chip (SoC) solutions to support microand millimeter-wave (mm-wave) applications. As the end of Moore's Law is approaching, the full potential of active devices is eventually going to be reached. The technical advancement of these emerging technologies can further push through the introduction of alternative equivalent scaling techniques such as the implementation of new design geometries. As the interest in the mm-wave band grows, circuit miniaturization is faced with a unique set of challenges and constraints. In this work, we looked at the growing potential of monolithic integration to design high-performance transceiver system building blocks.

This thesis presents a passive inspired implementation of resonator and bandpass filters designed, and fabricated using IHP 0.13 μ m SiGe Bi-CMOS process. Two unique miniaturization design methodologies are presented in this work. In order to fully demonstrate the insight of this approach, a simplified equivalent LC-circuit model is used for theoretical analysis. Using the analyzed results as a guideline along with a full-wave electromagnetic (EM) simulator, two compact bandpass filters (BPFs) are implemented and designed for mm-wave applications.

The first design methodology is a folded-strip-line-based design. The proposed method is based on a planar structure in which neither broadside coupling nor crossover between metals is required. Only a single metal layer is used to implement a compact resonator. To demonstrate its flexibility a

BPF is designed. The 1st BPF has one transmission zero at 58 GHz with a peak attenuation of 23 dB. The center frequency of this filter is 27 GHz with an insertion loss of 2.5 dB, while the S_{11} is better than 10 dB from 26 to 31 GHz. The 2nd BPF has two transmission zeros, and a minimum insertion loss of 3.5 dB is found at 29 GHz. The S₁₁ is better than 10 dB from 26 GHz to 34 GHz. Also, more than 20 dB stop-band attenuation is achieved from DC to 20.5 GHz and from 48 GHz to 67 GHz. The chip sizes of these two BPFs, excluding the pads, are only 0.023 mm² and 0.028 mm², respectively.

The second methodology is designed with ultra-wideband and low insertion loss. The proposed approach uses merely a combination of meander-line structures with metal-insulator-metal (MIM) capacitors. For the 1st BPF, the return loss is better than 10 dB from 13.5 to 32 GHz, which indicates a fractional bandwidth of more than 78%. Also, the minimum insertion loss of 2.3 dB is achieved within the frequency range from 17 GHz to 27 GHz, and the in-band magnitude ripple is less than 0.1 dB. The chip size of this design, excluding the pads, is $0.148 \ mm^2$. To demonstrate a miniaturized design, a 2nd design example is given. The return loss is better than 10 dB from 17.3 to 35.9 GHz, which indicates a fractional bandwidth of more than 70%. Also, the minimum insertion loss of 2.6 dB is achieved within the frequency range from 21.4 GHz to 27.7 GHz, and the in-band magnitude ripple is less than 0.1 dB. The chip size of the 2nd design, excluding the pads, is only 0.066 mm².

The overall performances of both proposed structures are suitable for miniaturizing design in silicon-based technology. The presented design can be useful to co-design with active devices. As compared to the previously published literature, the presented design in this thesis offer a promising solution in scaling down the physical size of the passive component.

CERTIFICATE OF ORIGINAL AUTHORSHIP

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This research is supported by Endeavour Postgraduate Scholarship.

Name of Student: Meriam Gay Bautista

Production Note: Signature of Student: Signature removed prior to publication.

Date: May 10, 2019

ACKNOWLEDGMENTS

First, I would like to acknowledge the Endeavour Postgraduate Scholarship administered by the Australian Government Department of Education and Training for the generous support throughout my Ph.D. program.

I would like to express my sincere gratitude to my supervisor Prof. Eryk Dutkiewicz, who has been very supportive of all my endeavors in researchrelated and professional/social involvements. For the motivation, and providing me with the opportunity to expand my knowledge in a significant way and allowing me to grow as a researcher. My sincere appreciation also to my co-supervisor Dr. Forest Zhu, for his insightful comments, valuable inputs, and encouragement. For sharing his knowledge and expertise. I could not have imagined having a better supervisor/co-supervisor and mentors for my Ph.D. program.

I would like to thank my case managers from Scopeglobal for the monthly updates and for making sure that I can achieve the professional and academic objectives of my program.

Special thank you to all my wonderful colleagues and friends for their warm encouragement and beautiful friendship.

Also, my deepest gratitude to my family. My beloved parents, Francisco, and Myrle Bautista, my two loving sisters, Melanie Giselle and Mylene Grace, my brother-in-law Julius and my niece Juliene Kate for their unconditional love and support throughout my studies and life in general.

And above all, to Almighty God for the guidance and wisdom.

Dedicated to My Beloved Parents Francisco and Myrle Bautista

Contents

Abstract	iii
Acknowledgments	ix
Table of Contents	xiii
List of Figures	xix
List of Tables	xxvii
List of Publications	xxix
1 Introduction	1
1.1 Background	2
1.1.1 Emerging Technologies	2
1.1.2 Why Millimetre-Wave Spectrum?	3
1.1.3 Semiconductor and Integrated Circuit (IC) Technologies	5
1.1.3.1 Passive Devices	7
1.1.3.2 Passive Microwave and mm-wave IC	8
1.2 Challenges and Motivation	9
1.3 Contributions	10
1.4 Organization of the Thesis	11
1.5 Summary	13

2	Lite	rature	Review		15
	2.1	Overvi	iew of Int	egrated Passive Technology	16
	2.2	Techno	ological R	oadmap of Passive Components	17
	2.3	Design	and Tecl	nnology Trade-off's	19
		2.3.1	System 1	Level Requirements	20
		2.3.2	Type of	Transmission Line	21
		2.3.3	Type of	Manufacturing Technology	22
		2.3.4	Fabricat	ion Technology Process	23
		2.3.5	Design 7	Trade-off Summary	25
	2.4	Review	v of Relat	ed Passive Design Structures	25
		2.4.1	Interdigi	tal Structure	26
			2.4.1.1	5-order Symmetric Interdigital Bandpass Filter	26
			2.4.1.2	Switched Interdigital Resonator	27
			2.4.1.3	Micro-fabricated Bandpass Filter using Interdigital	
				Capacitor	29
		2.4.2	Stepped-	Impedance Technique	30
			2.4.2.1	Stepped Impedance Resonator-Meandering-Hairpin	
				(SIR-MH) Microstrip Bandpass Filter	30
			2.4.2.2	Stepped-Impedance Technique with Grounded Pedestal	
					31
			2.4.2.3	Stepped-Impedance Open Resonator	34
		2.4.3	Slow-Wa	ve Structure	35
			2.4.3.1	Slow Wave Filter Design	35
		2.4.4	Coplana	r Waveguide (CPW) Based Structure	36
			2.4.4.1	Combline Type CPW	36
			2.4.4.2	Shielded Coplanar Waveguide	39
			2.4.4.3	Crossed Coplanar Waveguide (CPW) vs. Stacked	
				Grounded CPW	40

		2.4.5	Meander	-Line Type	41
			2.4.5.1	Meander-line Resonator	41
		2.4.6	Edge Co	upled	42
			2.4.6.1	Edge Coupled Meander Line	42
			2.4.6.2	Edge-Couple Cells	42
		2.4.7	Closed a	nd Open Loop Structure	45
			2.4.7.1	Folded (Closed) Loop	45
			2.4.7.2	Folded (closed) Loop via Hole	46
	2.5	Comp	arison of I	Related Literature	47
	2.6	Trend	s		49
	2.7	Summ	ary		50
9	Dec	ion on	d Implo	nontation of an On Chin Folded Strin Line Rea	
3	Des	ign an	u mpiei	nentation of an On-Chip Folded Strip-Line Res-	F 0
	ona	tor			53
	3.1	Introd	uction .		54
	3.2	Overv	iew of the	e Design Technology	55
		3.2.1	Design N	Methodology	55
		3.2.2	Microstr	ip Line Implementation	57
		3.2.3	Metal St	ack-up	61
		3.2.4	Process	Technology Minimum Design Rule Check	62
	3.3	Overv	iew of Pro	pposed Folded Strip-Line Resonator	63
	3.4	Simpli	ified LC-E	Equivalent Circuit Model of the Resonator	64
	3.5	Implei	mentation	of Folded Strip-Line Resonator	67
	3.6	Measu	rement R	esults	72
	3.7	Design	n Example	e of a Compact Edge-Couple Resonator Design	73
	38	Specif			77
	0.0	opeen	ication Su	Immary	11

4	Des	ign an	d Implementation of Passive Bandpass Filters	81
	4.1	Introd	uction	82
		4.1.1	Bandpass Filters	82
	4.2	Design	and Implementation of 1st-BPF Design	82
		4.2.1	MIM Capacitor	83
		4.2.2	Simplified LC-Equivalent Circuit Model of the 1st BPF \ldots	84
		4.2.3	Implementation of the 1st BPF	89
	4.3	Design	and Implementation of the 2nd BPF	91
		4.3.1	Implementation of the 2nd BPF	93
	4.4	Bandp	ass Filter Measurement Results	96
	4.5	Design	Example of an Edge-Couple Bandpass Filter	99
		4.5.1	Edge-couple BPF Measurement	99
	4.6	Summ	ary	101
5	Ulti	ra-wide	eband and Low Insertion Loss Millimetre-wave Bandpass	
5	Ultı Filt	ra-wide er	eband and Low Insertion Loss Millimetre-wave Bandpass	103
5	Ulta Filt 5.1	r a-wide er Introd	eband and Low Insertion Loss Millimetre-wave Bandpass uction	103 104
5	Ulta Filt 5.1 5.2	r a-wide er Introd Design	eband and Low Insertion Loss Millimetre-wave Bandpass uction uction and Implementation of BPFs	103 104 105
5	Ultı Filt 5.1 5.2	ra-wide er Introd Design 5.2.1	eband and Low Insertion Loss Millimetre-wave Bandpass uction uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for	103 104 105
5	Ultr Filt 5.1 5.2	ra-wide er Introd Design 5.2.1	eband and Low Insertion Loss Millimetre-wave Bandpass uction uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design	103 104 105 105
5	Ultr Filt 5.1 5.2	ra-wide er Introd Design 5.2.1 5.2.2	eband and Low Insertion Loss Millimetre-wave Bandpass uction	103 104 105 105 113
5	Ultr Filt 5.1 5.2	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3	eband and Low Insertion Loss Millimetre-wave Bandpass uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design Design Flow Implementation of the 1st-BPF	103 104 105 105 113 117
5	Ultr Filt 5.1 5.2	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3 5.2.4	eband and Low Insertion Loss Millimetre-wave Bandpass uction uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design Design Flow Implementation of the 1st-BPF Implementation of the 2nd BPF	103 104 105 105 113 117 118
5	Ultr Filt 5.1 5.2	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3 5.2.4 Measu	eband and Low Insertion Loss Millimetre-wave Bandpass uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design Design Flow Implementation of the 1st-BPF Implementation of the 2nd BPF	103 104 105 105 113 117 118 124
5	Ultr Filt 5.1 5.2 5.3 5.4	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3 5.2.4 Measu Summ	eband and Low Insertion Loss Millimetre-wave Bandpass uction	103 104 105 105 113 117 118 124 126
5	Ultr Filt 5.1 5.2 5.3 5.4 Cor	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3 5.2.4 Measu Summ	eband and Low Insertion Loss Millimetre-wave Bandpass uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design Design Flow Implementation of the 1st-BPF Implementation of the 2nd BPF rement Results ary And Future Work	 103 104 105 105 113 117 118 124 126 129
5 6	Ultr Filt 5.1 5.2 5.3 5.4 Con 6.1	ra-wide er Introd Design 5.2.1 5.2.2 5.2.3 5.2.4 Measu Summ nclusion Resear	eband and Low Insertion Loss Millimetre-wave Bandpass uction and Implementation of BPFs Simplified LC-Equivalent Circuit Model and its Analysis for Ultra-Wideband BPF Design Design Flow Implementation of the 1st-BPF Implementation of the 2nd BPF rement Results ary h and Future Work	 103 104 105 113 117 118 124 126 129 130

CONTENTS	xvii
Abbreviations	133
Bibliography	139

List of Figures

1.1	Millimetre-wave spectrum	3
1.2	Millimetre-wave band	3
1.3	Thesis Organization	12
2.1	A Hierarchy of Integrated components [1]	17
2.2	Requirements for product development	18
2.3	Passive Integrated Circuit trade-offs analysis flow chart [2]	20
2.4	RFIC Manufacturing and Fabrication technologies	22
2.5	MMIC and RFIC die photos from different semiconductor Processes [3].	25
2.6	Summary of the design trade-off and optimization process [2]. \ldots	26
2.7	Structure of a 5-order Symmetric interdigital Bandpass filter [4]	27
2.8	Micrograph Photo of the fabricated filter design proposed in Figure	
	2.7, [4].	28
2.9	3D structure of the proposed interdigital resonator and its equivalent	
	circuit model of the pair interdigital strips [5]. \ldots \ldots \ldots \ldots	29
2.10	Switched interdigital resonator, and its an equivalent circuit of the	
	resonator [6]	29
2.11	Layout of the Micro-fabricated bandpass filter (a) Layout of the BPF	
	with a simplified equivalent circuit (b) Enlarged scanning electron	
	microscopy image of the air-bridge structure and (c) Enlarged focused	
	ion beam image of IDC. (note: Dimensions are in micrometers) [7].	30

2.12	2D structure of the proposed 4th-order cross-coupled SIR-MH Band-	
	pass filter [8]	31
2.13	Die photograph of the 4th-order cross-coupled SIR-MH Bandpass Fil-	
	ter [8]	32
2.14	(a) 3D Structure of the implemented dual-mode ring Bandpass filter	
	(b) Microphotograph [9]	33
2.15	2D- Structure of the proposed bandpass filter using Stepped-impedance	
	resonator [10]	33
2.16	3D-Layout schematic of the Bandpass filter [10]	34
2.17	(a) 3d Structure of the proposed CMOS bandpass filter on the stepped-	
	impedance open resonator with step impedance stubs (b) Micropho-	
	tograph [9]	35
2.18	2D Structure of the proposed slow-wave structure [11]. \ldots	36
2.19	Illustration of the conventional combline type Bandpass filter [12]	37
2.20	2D structure of the proposed coplanar waveguide [12]	37
2.21	Structure of the proposed 2nd order combline Bandpass filter [13]. $\ . \ .$	38
2.22	(a) Metal stack-up of a BiCMOS 9MW technology (b) 3D structure	
	view of the Shielded coplanar waveguide [14]	39
2.23	Chip Microphotograph of the proposed first-order T-junction [14]	40
2.24	Chip Microphotograph [15]	41
2.25	The top view and cross-section view indicating the left and right	
	shielding at A-A' and B-B' [16]	42
2.26	(a) 2D view of the three layers of the proposed edge-coupled (b)	
	schematic top view of the dimensions [17]. \ldots \ldots \ldots \ldots \ldots	43
2.27	Different resonator structure with loaded ECC [18]. \ldots \ldots \ldots	44
2.28	Implementation BPF using ECC method [18]	44
2.29	Die Photograph [18].	45

2.30	Schematic and cross-sectional view of the proposed Bandpass filter	
	and the metal stack-up [19]. \ldots \ldots \ldots \ldots \ldots \ldots	46
2.31	Structure of the folded loop dual mode resonator and its transmission	
	line model [19]	46
2.32	Configuration of the proposed resonator [20]	47
2.33	2D Structure of the proposed cascaded quadruplet Bandpass filter	
	using folded loop resonator via hole [20]	47
2.34	Comparison and trend forecast of the area of passive designs presented	
	in Table 2.3	49
2.35	Linear forecast of the insertion loss	50
2.36	Linear forecast of the return loss	50
3.1	The design flow of passive MMIC	56
2.9	Microstrip line section and its equivalent lumped element model	57
0.2 3 3	Some Common Microstrip discontinuities and their lumped element	01
0.0	model	60
3 /	Motel stack up used for implementation	61
0.4 2.5	Decign rules of the selected process for the ten two motel levers	60
5.5 2.6	2 Design rules of the proposed receptor and the metal stack up used for	02
5.0	5-D view of the proposed resonator and the metal stack-up used for	
	implementation. (Note: ground smelding is removed for better visi-	co
0.7	$\mathbf{D}(\mathbf{H}, \mathbf{y}) = \mathbf{D}(\mathbf{H}, $	03
3.7	2-D view of the proposed folded strip-line resonator	64
3.8	2-D Half Circuit Simplified LC-equivalent circuits	65
3.9	Full Circuit Simplified LC-equivalent circuits.	65
3.10	(a) 3-D mapping of the resonant frequency f_0 against C_1 and L_1 of	
	the simulated $ S_{21} $ using the circuit model presented in Figure 3.9	67
3.11	C_1 is swept while L_1 is fixed at 120 pH of the simulated $ S_{21} $ using	
	the circuit model presented in Figure 3.9	67

3.12	L_1 is swept while C_1 is fixed at 60pF pH of the simulated $ S_{21} $ using	
	the circuit model presented in Figure 3.9	68
3.13	2-D view of the folded strip-line resonator using TM2 only and the	
	physical dimension used	68
3.14	2-D EM simulated $ S_{21} $ of the resonator implemented in TM2: W_f	
	and W_g are fixed as 2μ m and 4μ m, respectively	69
3.15	EM simulated $ S_{21} $ of the resonator implemented in TM2: W_g and	
	L_c are fixed as 4μ m and 268μ m, respectively	70
3.16	EM simulated $ S_{21} $ of the resonator implemented in TM2: W_f and	
	L_c are fixed as 2μ m and 268μ m, respectively	70
3.17	2-D view of the folded strip-line resonator using TM1 only with di-	
	mension	71
3.18	EM simulated $ S_{21} $ of the resonator implemented in TM1	71
2 10	Die microphotographs of the proposed Folded Strip-line resonator de-	
0.19	Die interophotographis of the proposed Forded Strip interesonator de	
0.19	signs	73
3.20	signs. Signs. Measured S-parameters of the folded strip-line resonator.	73 73
3.19 3.20 3.21	Signs. Signs. Measured S-parameters of the folded strip-line resonator. Full LC-equivalent circuit model of edge-couple resonator.	73 73 74
3.20 3.21 3.22	Signs. Signs. Measured S-parameters of the folded strip-line resonator. Signs. Full LC-equivalent circuit model of edge-couple resonator. Simplified LC-equivalent circuit model of edge-couple resonator.	73737474
3.20 3.21 3.22 3.23	Signs. Signs. Measured S-parameters of the folded strip-line resonator. Signs. Full LC-equivalent circuit model of edge-couple resonator. Simplified LC-equivalent circuit model of edge-couple resonator. Simplified LC-equivalent circuit (a) Y _{even} mode (b) Y _{odd} mode. Simplified LC-equivalent circuit (a) Y _{even} mode (b) Y _{odd} mode.	 73 73 74 74 75
 3.19 3.20 3.21 3.22 3.23 3.24 	 Signs	 73 73 74 74 75
3.20 3.21 3.22 3.23 3.24	Sie interophotographs of the proposed Folded Strip line resonator designs	 73 73 74 74 75
3.20 3.21 3.22 3.23 3.24	See interophotographs of the proposed Forded Strip line resonator designs	 73 73 74 74 75 76
 3.19 3.20 3.21 3.22 3.23 3.24 3.25 	Signs	 73 73 74 74 75 76 77
3.20 3.21 3.22 3.23 3.24 3.25 3.26	Signs	 73 73 74 74 75 76 77 77 77
3.20 3.21 3.22 3.23 3.24 3.24 3.25 3.26 3.27	Signs	 73 73 74 74 75 76 77 78
3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28	Signs	 73 73 74 74 75 76 77 77 78 78 78
3.20 3.21 3.22 3.23 3.24 3.25 3.26 3.27 3.28 3.29	Signs	 73 73 74 74 75 76 77 78 78 79

4.1	Block diagram of the designed BPF using resonator design presented	
	in Figure 3.9.	83
4.2	(a) MIM Capacitor (b) Circuit Representation.	83
4.3	MIM Capacitor minimum design rule (IHP)	84
4.4	Simplified LC-equivalent circuit model of the 1st BPF	85
4.5	3-D mapping of the resonant frequency f_1 against C_1 and L_1	86
4.6	3-D mapping of the FBW against C_2 and C_3 when $L_1 = 100$ pH and	
	$C_1 = 20 \text{ fF.}$	88
4.7	3-D mapping of the Q_{ex} against C_2 and C_3 when $L_1 = 100$ pH and	
	$C_1 = 20 \text{ fF.} \ldots \ldots$	88
4.8	Calculated S-parameters of the folded strip-line and the 1st BPF. $\ . \ .$	89
4.9	Simulated S-parameters of the 1st BPF with different feeding capac-	
	itances where C_3 is fixed as 0.1 pF	90
4.10	Simulated S-parameters of the 1st BPF with different feeding capac-	
	itances where C_2 is fixed as 0.2 pF	91
4.11	3-D view of the 1st BPF with highlighted MIM capacitors	92
4.12	Simplified LC-equivalent circuit model of the 2nd BPF	92
4.13	3-D mapping of the resonant frequency f_0 against C_s and L_s	94
4.14	Comparison of the calculated S-parameters of two BPFs with and	
	without low-frequency transmission zero	94
4.15	Frequency responses of the 2nd BPF, $C_s = 0.78$ pF and C_2 is swept	
	from 60 fF to 100 fF with a step of 20 fF. \ldots	95
4.16	Frequency responses of the 2nd BPF $C_2 = 80$ fF and C_s is swept from	
	0.5 pF to 0.9 pF with a step of 0.2 pF	95
4.17	3-D view of the 2nd BPF with highlighted MIM capacitors	96
4.18	Measured S-parameters of the 1st-BPF.	97
4.19	Measured S-parameters of the 2nd-BPF	97
4.20	Simplified LC-equivalent circuit model for bandpass filter design	99

4.21	Die microphotograph of the bandpass filter design	00
4.22	Measurement result of the BPF	01
5.1	An indication of the generic idea used for BPF design in this work 1	06
5.2	Simplified lumped-element circuit model used for BPF design 1	07
5.3	Simplified equivalent circuit models (a) even-model excitation, (b)	
	odd-mode excitation.	08
5.4	Resonance pole frequency as a function of inductance. Note: while	
	$L_1 = 0.12 \text{ nH}, L_2 = 0.4 \text{ nH}, C_1 = 60 \text{ fF}, C_2 = 0.5 \text{ pF}, C_3 = 0.4 \text{ pF}.$ 1	09
5.5	Simulated S_{21} of the circuit model in Figure 5.2, while C_1 is swept	
	from 50 fF to 70 fF with a step of 10 fF, $C_2 = 0.5$ pF and $C_3 = 0.4$ pF.1	10
5.6	Simulated S_{21} of the circuit model in Figure 5.2, while C_2 is swept	
	from 0.4 pF to 0.6 pF with a step of 0.1 pF, $C_1 = 60$ fF and $C_3 = 0.4$	
	pF	11
5.7	Simulated S_{21} of the circuit model in Figure 5.2, while C_3 is swept	
	from 0.3 pF to 0.5 pF with a step of 0.1 pF, $C_1 = 60$ fF and $C_2 = 0.5$	
	pF	11
5.8	Simulated S_{21} of the circuit model in Figure 5.2, while L_1 is swept	
	from 0.1 nH to 0.14 nH with a step of 20 pH, $C_1 = 60$ fF, $C_2 = 0.5$	
	pF and $C_3 = 0.4$ pF	12
5.9	Simulated S_{21} of the circuit model in Figure 5.2, while L_2 is swept	
	from 0.3 nH to 0.5 nH with a step of 0.1 nH, $C_1 = 60$ fF, $C_2 = 0.5$	
	pF and $C_3 = 0.4$ pF	12
5.10	Simulated S_{21} of the circuit model in Figure 5.2, while L_3 is swept	
	from 0.14 nH to 0.18 nH with a step of 20 pH, $C_1 = 60$ fF, $C_2 = 0.5$	
	pF and $C_3 = 0.4$ pF	13
5.11	Top-view of the EM structure used for design and implementation of	
	BPF	14

5.12	EM Simulated S_{21} of the EM structure shown in Figure 5.11, while
	W_H is swept, $C_1 = 60$ fF, $C_2 = 0.5$ pF and $C_3 = 0.4$ pF
5.13	EM Simulated S_{21} of the EM structure shown in Figure 5.11, while
	W_L is swept, $C_1 = 60$ fF, $C_2 = 0.5$ pF and $C_3 = 0.4$ pF
5.14	EM Simulated S_{21} of the EM structure shown in Figure 5.11, while
	W_F is swept, $C_1 = 60$ fF, $C_2 = 0.5$ pF and $C_3 = 0.4$ pF
5.15	The top-view of the designed 1st BPF with selected metal stack-up
	for implementation
5.16	EM simulated S_{21} of the designed BPF, while C_1 is swept from 10 fF
	to 50 fF with a step of 20 fF, $C_2 = 0.4$ pF and $C_3 = 0.4$ pF 118
5.17	EM simulated S_{21} of the designed BPF, while C_2 is swept from 0.2
	fF to 0.6 fF with a step of 0.2 fF, $C_1 = 30$ fF and $C_2 = 0.4$ pF 119
5.18	EM simulated S_{21} of the designed BPF, while C_3 is swept from 0.2
	fF to 0.6 fF with a step of 0.2 fF, $C_1 = 30$ fF and $C_2 = 0.4$ pF 119
5.19	The top-view of the designed 2nd BPF
5.20	The 3D-view of a section 2nd BPF showing the connection between
	TM2 and TM1
5.21	EM simulated S_{21} of the designed BPF, while C_1 is swept from 20 fF
	to 40 fF with a step of 10 fF, $C_2 = 0.4$ pF and $C_3 = 0.2$ pF 122
5.22	EM simulated S_{21} of the designed BPF, while C_2 is swept from 0.3
	pF to 0.5 pF with a step of 0.1 pF, $C_1 = 30$ fF and $C_3 = 0.2$ pF 122
5.23	EM simulated S_{21} of the designed BPF, while C_3 is swept from 0.15
	pF to 0.25 pF with a step of 50 fF, $C_1 = 30$ fF and $C_2 = 0.4$ pF 123
5.24	Die microphotograph of the 1st BPF
5.25	Die microphotograph of the 2nd BPF
5.26	Comparisons between EM simulated and measured results of the 1st
	design

List of Tables

2.1	Printed transmission lines limitation [2].	22
2.2	Selection of technology process according to integration level, maxi-	
	mum RF power, and cost [2]. \ldots \ldots \ldots \ldots \ldots \ldots	23
2.3	Specification Summary and Comparison of Performance	48
3.1	Gap between Metal Layers.	62
3.2	Physical dimensions of the Folded Strip-Line resonator implemented	
	in TM2 layer.	69
3.3	Physical dimensions of the Folded Strip-Line resonator implemented	
	in TM1 layer.	71
3.4	Specification Summary and Comparison of the Proposed Resonator	
	Designs	80
4.1	MIM Capacitor minimum design rule	85
4.2	Physical Dimensions of the 1st-BPF.	90
4.3	Physical Dimensions of the 2nd-BPF	95
4.4	Performance comparisons with the other state-of-the-art designs	98
4.5	Specification Summary and Comparison of the Proposed BPF Designs	
	and some Related Literature.	101
5.1	Physical dimensions of the 1st-order BPF	117
5.2	Physical dimensions of the 2nd-order BPF	121
5.3	Performance comparisons with the other state-of-the-art designs 1	127
	xxvii	

List of Publications

Journal publications

 Meriam Gay Bautista, , He Zhu, Xi Zhu, Yang Yang, Yichuang Sun, and Eryk Dutkiewicz "Compact Millimeter-Wave Bandpass Filter Using Quasilumped Elements in 0.13µm (Bi)-CMOS Technology for 5G Wireless Systems," in *IEEE Transactions on Microwave Theory and Techniques: Special Issue* on 5G Hardware and System Technologies (recently accepted - 4th-Jan.2019) (Corresponding to Chapter 3 and 4)

Conference publications

- Meriam Gay Bautista, Xiao Pu Zhang, Xi Zhu, Eryk Dutkiewicz "Design of On-Chip Edge-Coupled Resonator and Its Application for Bandpass Filter in CMOS Technology," in *Proc. 2018 18th International Symposium on Communications and Information Technologies (ISCIT)*, Bangkok, Thailand, 2018, pp. 1-4. doi: 10.1109/ISCIT.2018.8587994 (Corresponding to chapter 4)
- Meriam Gay Bautista, Jefferson Hora, Eryk Dutkiewicz "Design Methodology of a Miniaturized Millimetre Wave Integrated Passive Resonator Using (Bi)-CMOS Technology," in Proc. 2018 18th International Symposium on

Communications and Information Technologies (ISCIT), Bangkok, Thailand, 2018, pp. 147-151. doi: 10.1109/ISCIT.2018.8587921 (Corresponding to chapter 3)

- Meriam Gay Bautista, Yang Yang, Eryk Dutkiewicz, "Compact On-Chip 60 GHz Resonator with Ring Defected Ground Structure for Millimetre-wave Applications," in Proc. 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Manila, 2017, pp. 1-4.
- Meriam Gay Bautista, Eryk Dutkiewicz, Yang Yang, "Design of a Compact Self-Coupled Resonator and Dual-band Bandpass Filter in 0.13-μm CMOS Technology for Millimetre-wave Application," in *Proc. 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL)*, Singapore, 2017, pp. 2653-2658.doi: 10.1109/PIERS-FALL.2017.8293586 (Corresponding to chapter 3 and 4)
- Meriam Gay Bautista, Jin Bao Zhu, Forest Zhu, Yang Yang, Eryk Dutkiewicz "Design of On-Chip Quadrature Hybrid (3dB) Branchline Coupler in 0.13μm SiGe Technology For Millimeter-wave Applications," in Proc. 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, QLD, 2017, pp. 1-5. doi: 10.1109/ISCIT.2017.8261191
- Meriam Gay Bautista, Forest Zhu, Diep Nguyen, Eryk Dutkiewicz "Double-Balanced Gilbert Mixer with Current Bleeding for RF FrontEnd Using 0.13μm SiGe BiCMOS Technology," in *Proc. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring)*, Sydney, NSW, 2017, pp. 1-5. doi: 10.1109/VTC-Spring.2017.8108424
- Meriam Gay Bautitsa, Eryk Dutkiewicz, Xiaojing Huang, Deip Nguyen, Forest Zhu, "Quadrature Broadband Phase Shift Generation Using Passive RC

Polyphase Filter for RF Front-end," in *Proc. 2016 16th International Symposium on Communications and Information Technologies (ISCIT)*, Qingdao, 2016, pp. 597-601. doi: 10.1109/ISCIT.2016.7751702

- Meriam Gay Bautista, Qadier Idris Jillah, Micheal Heimlich, Eryk Dutkiewicz, "Design of Low Power, High PSRR, Low Drop-out Voltage Regulator," in Proc. 2015 International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM), Cebu City, 2015, pp. 1-5. doi: 10.1109/HNICEM.2015.7393171
- Meriam Gay Bautista, Eryk Dutkiewicz, Micheal Heimlich, "Sub-Threshold Energy Harvesters for Biomedical Implants Application," in *Proc. 10th EAI International Conference on Body Area Networks*, September 28-30, 2015, Sydney, Australia, pp. 127-131, ISBN: 978-1-63190-084-6
- Meriam Gay Bautista, Eryk Dutkiewicz, Michael Heimlich, "Sub-Threshold Energy Harvesters for Biomedical Implants Application," Grace Hopper Conference for Women in Computing Emerging Technology tract presentation, Oct. 2015

Co-Authored Conference publications

- Mengze Li, Yi Xin Cai, Meriam Gay Bautista, Yang Yang and Xi Zhu, "Broadband on-chip bandpass filter using ring resonator with capacitive loading," in *Proc. 2018 Australian Microwave Symposium (AMS)*, Brsibane, QLD, 2018, pp. 55-56. doi: 10.1109/AUSMS.2018.8346979
- Hang Liu, Jinbao Zhu, Meriam Gay Bautista, Yi Zhong "Design of an Oscillator in a 0.25μm GaN-on-SiC HEMT Technology for Long Range Remote Sensing Applications," in Proc. 2017 17th International Symposium on

Communications and Information Technologies (ISCIT), Cairns, QLD, 2017, pp. 1-4 doi: 10.1109/ISCIT.2017.8261204

- Yichuang Sun, Xi Zhu and Meriam Gay Bautista "Design of Fifth-order Leap-frog 0.05 deg. Linear Phase Low-pass Filter with Gain Boost Using Nauta OTA," in Proc. 2017 17th International Symposium on Communications and Information Technologies (ISCIT), Cairns, QLD, 2017, pp. 1-4. doi: 10.1109/ISCIT.2017.8261201
- Y.Sun, Meriam Gay Bautista, Forest Zhu and Eryk Dutkiewicz "Design of an Elliptic Filter using Multiple-Loop Feedback Structure in CMOS Technology for Analogue Signal Processing," in *Proc. 2017 IEEE 85th Vehicular Technology Conference (VTC Spring)*, Sydney, NSW, 2017, pp. 1-5 doi: 10.1109/VTCSpring.2017.8108421