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ABSTRACT

Recent advances in silicon-based integrated circuits (ICs) have successfully

demonstrated promising system-on-chip (SoC) solutions to support micro-

and millimeter-wave (mm-wave) applications. As the end of Moore’s Law

is approaching, the full potential of active devices is eventually going to

be reached. The technical advancement of these emerging technologies can

further push through the introduction of alternative equivalent scaling tech-

niques such as the implementation of new design geometries. As the interest

in the mm-wave band grows, circuit miniaturization is faced with a unique

set of challenges and constraints. In this work, we looked at the growing

potential of monolithic integration to design high-performance transceiver

system building blocks.

This thesis presents a passive inspired implementation of resonator and

bandpass filters designed, and fabricated using IHP 0.13 μm SiGe Bi-CMOS

process. Two unique miniaturization design methodologies are presented

in this work. In order to fully demonstrate the insight of this approach, a

simplified equivalent LC-circuit model is used for theoretical analysis. Using

the analyzed results as a guideline along with a full-wave electromagnetic

(EM) simulator, two compact bandpass filters (BPFs) are implemented and

designed for mm-wave applications.

The first design methodology is a folded-strip-line-based design. The

proposed method is based on a planar structure in which neither broadside

coupling nor crossover between metals is required. Only a single metal layer

is used to implement a compact resonator. To demonstrate its flexibility a





BPF is designed. The 1st BPF has one transmission zero at 58 GHz with

a peak attenuation of 23 dB. The center frequency of this filter is 27 GHz

with an insertion loss of 2.5 dB, while the S11 is better than 10 dB from

26 to 31 GHz. The 2nd BPF has two transmission zeros, and a minimum

insertion loss of 3.5 dB is found at 29 GHz. The S11 is better than 10 dB

from 26 GHz to 34 GHz. Also, more than 20 dB stop-band attenuation is

achieved from DC to 20.5 GHz and from 48 GHz to 67 GHz. The chip sizes

of these two BPFs, excluding the pads, are only 0.023 mm2 and 0.028 mm2,

respectively.

The second methodology is designed with ultra-wideband and low inser-

tion loss. The proposed approach uses merely a combination of meander-line

structures with metal-insulator-metal (MIM) capacitors. For the 1st BPF,

the return loss is better than 10 dB from 13.5 to 32 GHz, which indicates a

fractional bandwidth of more than 78%. Also, the minimum insertion loss

of 2.3 dB is achieved within the frequency range from 17 GHz to 27 GHz,

and the in-band magnitude ripple is less than 0.1 dB. The chip size of this

design, excluding the pads, is 0.148 mm2. To demonstrate a miniaturized

design, a 2nd design example is given. The return loss is better than 10

dB from 17.3 to 35.9 GHz, which indicates a fractional bandwidth of more

than 70%. Also, the minimum insertion loss of 2.6 dB is achieved within the

frequency range from 21.4 GHz to 27.7 GHz, and the in-band magnitude

ripple is less than 0.1 dB. The chip size of the 2nd design, excluding the

pads, is only 0.066 mm2.

The overall performances of both proposed structures are suitable for

miniaturizing design in silicon-based technology. The presented design can

be useful to co-design with active devices. As compared to the previously

published literature, the presented design in this thesis offer a promising

solution in scaling down the physical size of the passive component.
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