UNIVERSITY OF TECHNOLOGY SYDNEY

Faculty of Engineering and Information Technology

Advances in Multi-output Learning via Nearest Neighbours

by

Donna Xu

A Thesis Submitted for the Degree of Doctor of Philosophy

Sydney, Australia

January, 2019

Certificate of Authorship/Originality

I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as a part of the requirements for other degree except as fully acknowledged within the text.

I also certify that this thesis has been written by me. Any help that I have received in my research and in the preparation of the thesis itself has been fully acknowledged. In addition, I certify that all information sources and literature used are quoted in the thesis. This research is supported by the Australian Government Research Training Program.

© Copyright 2019 Donna Xu

Production Note: Signature removed prior to publication.

ABSTRACT

Multi-output learning aims to simultaneously predict multiple outputs given an input. It is an important learning problem due to the pressing need for sophisticated decision making in real-world applications. Inspired by big data, the 4Vs characteristics of multi-output imposes a set of challenges to multi-output learning, in terms of the *volume*, *variety*, *velocity* and *veracity* of the outputs. *Volume* refers to the explosive growth of output labels that have been generated and it leads to two challenges, large output dimensions and unseen outputs. *Variety* refers to heterogeneous nature of output labels and it results in complex structures of the output. *Velocity* refers to speed of output label acquisition including the phenomenon of concept drift and update to the model. The challenge imposed by velocity could be the change of output distributions, where the target outputs are changing over time in unforeseen ways. The nearest neighbours is one of the most classic frameworks in handling multi-output problems. In this thesis, I focus to overcome the challenges encountered by the first three of the 4Vs characteristics of multi-output, using nearest neighbours-based methods.

The first work of this thesis deals with the challenges imposed by *volume* and *variety* of multi-output. It focuses on the nearest neighbours-based semantic retrieval and zero-shot learning, which are sub-problems of multi-output learning. I propose a novel concept-based information retrieval system that combines general semantic feature representation and a metric learning model. It achieves better semantic retrieval performance for domain-specific information retrieval problems. Together with the better learned semantic representation, the distance metric can be generalized to unseen output labels and can be applied to zero-shot learning applications. The second work of the thesis handles the challenge of changing of output distribution caused by velocity of multi-output. Nearest neighbours cannot be successfully adapted to deal with this challenge due to the inefficiency issue. This work focuses on improving the nearest neighbours efficiency for multi-output learning problems.

An online product quantization (online PQ) model is developed to accommodate to the streaming data with time and memory requirements. A loss bound is derived to guarantee the performance of the model.

Acknowledgements

I would like to express my deep appreciation to my supervisor, Prof. Ivor W. Tsang, for his help and guidance provided to me throughout my PhD study. His help has been immense in every aspects. He has taught me the basics and advances of machine learning to eable me to develop an understanding of machine learning and help me to acquaire a solid foundation of knowledge in this area; he has taught me how to conduct research and industry projects and write academic papers step by step; he has been very patient to explain every question I asked and always provided me valuable feedbacks on my works. He focuses on what students have learned and improved and how students grow as a research scientist. His ways of supervision and encouragement make me become more confident during my study. His enthusiasm, devotion and attitude to research have greatly inspired me. I thank him for his positive influence not only to my PhD study but also to my future career life. I could not have imagined having a better supervisor for my PhD study.

I would also like to express my gratitude to my fellow students in my group, for discussing research works with me and generously sharing their knowledge and advice. I feel very fortunate to be a member in this group in my PhD study and am very grateful for all the help the group has offered to me.

Finally, a big thank to my parents and my husband for all their love, care and constant support and encouragement. Without their precious support it would not be possible for me to complete this thesis.

Donna Xu Sydney, Australia, 2019.

Contents

	Certificate		ii
Abstract			iii
	Acknowledgments		v
	List of Figures		X
1	1 Introduction		1
	1.1 Background		1
	1.2 The 4Vs Challenges of I	Multiple Outputs	3
	1.3 Research Topics		4
	1.3.1 Semantic Retrie	eval	5
	1.3.2 Zero-shot Learn	ning	6
	1.3.3 Efficiency of Ne	earest Neighbours	6
	1.4 Thesis Contributions .		6
	1.4.1 Sub-problem of	Multi-output Learning: Concept-based	
	Semantic Retrie	eval via K-nearest Neighbours	7
	1.4.2 Sub-problem of	Multi-output Learning: Concept-based	
	Zero-shot Learr	ning via K-nearest Neighbours	8
	1.4.3 Improving Near	rest Neighbours Search Efficiency in Dynamic	
	Database Envir	ronment	8
	1.5 Thesis Organization .		8
	1.6 Dublications		0

2	Lit	eratu	re Survey	12
	2.1	Life Cy	vcle of Output Labels	12
		2.1.1	How is Data Labeled	13
		2.1.2	Forms of Label Representations	14
		2.1.3	Label Evaluation and Challenges	15
	2.2	Proble	m Definition of Multi-output Learning	16
		2.2.1	Zero-shot Learning	17
		2.2.2	Semantic Retrieval	18
	2.3	Model	Evaluation Metrics	19
	2.4	Seman	tic Retrieval	23
	2.5	Zero-sh	not Learning	24
	2.6	Hashin	g and Online Hashing	25
3	Co	Concept-based Semantic Retrieval with K-nearest Neigh-		
•		urs	3	29
	3.1	Motiva	${ m tion}$	29
3.2 Concept-based Retrieval System		Concep	ot-based Retrieval System	32
		3.2.1	M1. General Concept Extraction	33
		3.2.2	M2. Domain-Specific Concept Mining via Distance Learning .	34
		3.2.3	M3. Retrieval	41
		3.2.4	Module-Task Alignment	42
		3.2.5	Advantages of the Proposed System	43
	3.3	Experi	ments	
		3.3.1	Data sets	40

				viii	
		3.3.3	Relevant Document Recommendation	48	
		3.3.4	Document Discovery with Boolean Queries	54	
	3.4	Conclus	sions	61	
4	Co	\mathbf{ncept}	-based Zero-shot Learning with K-nearest Neigh	1 -	
	bo	urs		62	
	4.1	Motiva	tion	62	
	4.2	Distanc	ce Learning Model with Semantic Concepts Embedding for		
		Zero-sh	ot Learning	64	
		4.2.1	Notations and Preliminaries	64	
		4.2.2	Concept-based Zero-shot Learning	64	
	4.3	Experin	ments	65	
		4.3.1	Baselines and Settings	65	
		4.3.2	Evaluation Metrics	66	
		4.3.3	Generalized Zero-shot Learning for Document Categorization .	67	
	4.4	Conclus	sion	68	
5	On	ıline P	roduct Quantization for Nearest Neighbour Sea	rch	70
	5.1	Motiva	tion	70	
	5.2 Online Product Quantization with Budget Constraints		74		
		5.2.1	Preliminaries	74	
		5.2.2	Online Product Quantization	76	
		5.2.3	Mini-batch Extension	78	
		5.2.4	Partial Codebook Update	78	

5.2.5

	5.4	Online	Product Quantization over a Sliding Window	85
		5.4.1	Online Product Quantization with Data Insertion and Deletion	ı 86
		5.4.2	Connections among Online PQ Algorithms	87
	5.5	Experi	ments	89
		5.5.1	Datasets and evaluation criterion	89
		5.5.2	Convergence	90
		5.5.3	Online vs mini-batch	92
		5.5.4	Update time complexity vs search accuracy	92
		5.5.5	Baseline methods	94
		5.5.6	Object tracking and retrieval in a dynamic database	94
		5.5.7	Continuous querying on dynamic real-time data	102
	5.6	Conclu	sion	106
6	Co	onclusi	ions and Future Works	107
6.1 Conclusions		sions	107	
	6.2	Future	Works	108
		6.2.1	Challenges by Variety	108
		6.2.2	Challenges by Veracity	111
Bibliography 11				112

List of Figures

1.1	The origanization of the thesis	10
2.1	The life cycle of the output label	12
3.1	System diagram of the proposed concept-based retrieval system with three modules	32
3.2	In the Mac Hardware domain, a learned metric allows documents in general concept representation to be transformed to a domain-specific concept space, in which the importance of each concept has been re-weighted	34
5.1	Hashing vs PQ in online update. The hash codes of the data points in the reference database will get updated if the hash functions get updated by the new data. The index of the codewords in the PQ codebook, on the other hand, will remain the same even though the codebook gets updated by the new data. Thus online PQ is able to save severely much time by avoiding codewords maintenance of the reference database. (Best viewed in colors)	72
5.2	A general procedure for Online Product Quantization update. At	

5.3	A schematic figure of online product quantization with budget	
	constraints. There are two subspaces where each subspace has two	
	sub-codewords. After the codebook adapting to the new data, two of	
	the four sub-codewords get hugely changed (highlighted in a red	
	dashed rectangle) and the rest two sub-codewords barely changed	79
5.4	Approaches of Handling Data Streams. Streaming: data streams one	
	at a time. Mini-batch: a mini-batch of data with size 3 is processed	
	by the model at each iteration t. Sliding window: a moving window	
	with size 3 applied on continuously changing data	86
5.5	Convergence of online PQ using ImageNet dataset. Effective	
	iterations are shown on the x-axis	91
5.6	The left figure shows the update time for each iteration of update.	
	The time of the online version for each iteration sums up the update	
	time of the streaming data corresponding to the ones in the	
	mini-batch. The right figure shows the recall@1, 20 and 100 for each	
	iteration	91
5.7	Trade-offs between update time cost and the search accuracy. The	
	first column shows the impact of the subspace update constraint.	
	The second column shows the impact of the sub-codeword update	
	constraint. The red line is the reference line for the scatter plot. $\ . \ .$	93
5.9	Results for news and image retrieval in a dynamic database	
	comparison against online hashing methods. Recall@20 performance	
	(1st row) and Update time cost (2nd row). 1st column: News20. 2nd	
	column: Caltech-101. 3rd column: Sun397. 4th column: Half dome.	
	Time cost is in log scale	98
5.10		99
5 11		101

5.12	Online PQ over a sliding window approach between deletion and no		
	deletion of the expired data to the model for Sun397. Recall@20 (1st		
	row) and Update time cost (2nd row)		
6.1	The conclusions of the thesis		