KEY TECHNOLOGIES FOR ADVANCED CELLULAR BASE STATION ANTENNAS

Haihan Sun

Faculty of Engineering and Information Technology University of Technology Sydney

> A thesis submitted for the degree of Doctor of Philosophy

> > May 2019

Certification of Original Authorship

I, Haihan Sun, declare that this thesis, is submitted in fulfilment of the requirements for

the award of Doctor of Philosophy, in the Faculty of Engineering and Information

Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In

addition, I certify that all information sources and literature used are indicated in the

thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: 27 May 2019

I

Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor Prof. Yingjie Jay Guo for his continuous guidance and support throughout my PhD study. Prof. Guo has provided me with an excellent research environment and has given me insightful advice and innovative ideas for my research projects. His profound knowledge of antennas and wireless communications, insight into academic frontiers, and rigorous academic attitude have deeply inspired and influenced me.

I am profoundly grateful to Prof. Bevan Jones for providing me with industrial guidance. He led me into the field of base station antennas and taught me how to combine scientific knowledge with industrial realizations. I am greatly inspired by his deep insights into technical issues. I would not have been able to carry out some industrial-orientated projects without his guidance.

I would like to thank my co-supervisor Dr. Can Ding and my collaborator Dr. He Zhu for their valuable suggestions on this work, support with testing and experiments, and advice on papers and thesis writing.

I would like to thank Prof. Trevor Bird and Prof. Richard W. Ziolkowski for their support and encouragement during my PhD study. Their dedication to scientific research inspires our young researchers greatly. I would like to thank Prof. Zheng Li for his valuable suggestions on my work. My sincere thanks also go to Dr. Pei-Yuan Qin, Dr. Wei Lin, Prof. Yanhui Liu, Prof. Jianquan Huang, and fellow doctoral students at Global Big Data Technologies Centre (GBDTC), especially Mr. Shulin Chen, Mr. Tianyu Yang, Miss Lizhao Song, Mr. Jiwei Lian, and Miss Xuan Wang, for their kind help and support.

In addition, I would like to thank my friends who have brought joy to my life. Those thanks especially go to Miss Marie Joshua Tapas, Miss Tomoyo Moriwaki, Miss Chao Lan, Miss Yang Qian, Miss Jiayi Shi, Mr Wei Huang, Dr. Kireesan Sornalingam, Mr Ye Shi, and Mr Henry Cheung.

Last but not least, I would like to express my forever thanks to my parents for their unconditional love, unreserved support and encouragement throughout my life.

List of Publications

Peer-Reviewed Journal Papers

- 1. **H. Sun**, C. Ding, B. Jones, and Y. J. Guo, "A wideband base station antenna element with stable radiation pattern and reduced beam squint," *IEEE Access*, vol. 5, pp. 23022 23031, 2017.
- 2. **H. Sun**, H. Zhu, C. Ding, and Y. J. Guo, "Wideband planarized dual-linearly-polarized dipole antenna and its integration for dual-circularly-polarized radiation," *IEEE Antennas and Wireless Propagation Letters*, vol. 17, pp. 2289 2293, Dec. 2018.
- 3. **H. Sun**, C. Ding, H. Zhu, B. Jones, and Y. J. Guo, "Suppression of cross-band scattering in multiband antenna arrays," *IEEE Transactions on Antennas and Propagation*, vol. 67, pp. 2379 2389, Jan. 2019.
- 4. C. Ding, **H. Sun**, R. W. Ziolkowski, and Y. J. Guo, "Simplified tightly-coupled cross-dipole arrangement for base station applications," *IEEE Access*, vol. 5, pp. 27491 27503, 2017.
- 5. T. S. Bird, V. Lingasamy, K. T. Selvan, and **H. Sun**, "Improved finite-range gain formula for open-ended rectangular waveguides and pyramidal horns," *IET Microwaves, Antenna & Propagation*, vol. 14, issue 14, pp. 2054 2058, 2017.
- 6. C. Ding, **H. Sun**, R. W. Ziolkowski, and Y. J. Guo, "A dual-layered loop array antenna for base stations with enhanced cross-polarization discrimination (XPD)," *IEEE Transactions on Antennas and Propagation*, vol. 66, pp. 6975 6985, Dec. 2018.
- 7. H. Zhu, **H. Sun**, B. Jones, C. Ding, and Y. J. Guo, "Wideband dual-polarized multiple beam-forming antenna arrays," *IEEE Transactions on Antennas and Propagation*, vol. 67, pp. 1590 1604, Dec. 2018.
- 8. **H. Sun**, H. Zhu, C. Ding, B. Jones, and Y. J. Guo, "Choking techniques for scattering suppression in multi-band base station antenna arrays," *IEEE Transactions on Antennas and Propagation*. (Under review)
- 9. **H. Sun**, B. Jones, C. Ding, and Y. J. Guo, "A method to enhance the bandwidth and reduce the size of dual-polarized antennas," *IEEE Transactions on Antennas and Propagation*. (Under review)

Peer-Reviewed Conference Papers

- 1. **H. Sun**, C. Ding, Y. J. Guo, and R. Mittra, "A wideband dipole antenna based on a non-uniformly segmented structure," *European Conference on Antennas and Propagation (EuCAP)*, 2017.
- 2. **H. Sun,** C. Ding, T. Yang, Y. J. Guo, and P. Q, "A wideband base station antenna with stable radiation pattern," *Australian Microwave Symposium* (AMS), **Best Student Paper**, 2018.
- 3. **H. Sun**, C. Ding, and Y. J. Guo, "A novel dual-polarized planar antenna," *IEEE International Symposium on Antennas and Propagation (APS)*, *Honourable Mention in Student Paper Competition*, 2018.
- 4. **H. Sun**, C. Ding, and Y. J. Guo, "A wideband base station antenna with reduced beam squint," *European Conference on Antenna and Propagation (EuCAP)*, 2018.
- 5. **H. Sun**, C. Ding, T. S. Bird, and Y. J. Guo, "A base station antenna element with simple structure but excellent performance," *Australian Microwave Symposium (AMS)*, 2018.
- 6. **H. Sun**, C. Ding, H. Zhu, B. Jones, and Y. J. Guo, "Suppression of cross-band scattering in multi-band base station antenna arrays," *Australian Symposium on Antennas (ASA)*, *Student Prize for Best Oral Presentation*, 2019.
- 7. C. Ding, **H. Sun**, Y. J. Guo, P. Qin, and Y. Yang, "Beamwidth control of base station antennas employing reflectors and directors," *International Symposium on Antennas and Propagation (ISAP)*, 2015.
- 8. D. Guan, C. Ding, **H. Sun**, and F. Yuan, "Wide-band SIW cavity-backed circular polarized array antennas with sequential rotation technique," *International Conference on Electromagnetics in Advanced Applications* (ICEAA), 2016.
- 9. C. Ding, B. Jones, **H. Sun**, P. Y. Qin, Y. J. Guo, and L. Ji, "Wideband feeding method for full-wave dipole," *2017 IEEE International Symposium on Antennas and Propagation (APS)*, 2017.
- 10. C. Ding, **H. Sun**, Y. J. Guo, and R. W. Ziolkowski, "A general design and optimization method of tightly-coupled cross-dipoles for base station," *European Conference on Antenna and Propagation (EuCAP)*, 2018.

To my parents

Table of Contents

Acknowledgements	II
List of Publications	III
Table of Contents	VI
List of Figures	IX
List of Tables	XX
List of Abbreviations	XXI
Abstract	XXII
Chapter 1: Introduction	1
1.1 Background	1
1.1.1 Cells	1
1.1.2 Antenna Beams	2
1.1.3 Phased Array	5
1.1.4 Diversity Systems	8
1.1.5 Antenna Bands	8
1.1.6 Specifications of Cellular BSAs	9
1.2 Motivation and Contribution	9
1.2.1 Motivation	9
1.2.2 Original Contribution	10
1.3 Thesis Outline	11
Chapter 2: Literature Review	15
2.1 Dual-Polarized Antenna Elements	15
2.2 Multi-Band Antenna Arrays	22
2.3 Butler Matrix Beam-Forming Networks	25
Chapter 3: Square-Dipole-Array Antennas	29
3.1 Introduction	29
3.2 Square-Folded-Dipole-Array Antenna	29
3.2.1 Antenna Configuration	29
3.2.2 Working Principle	30
3.2.3 Feed Network	35
3.2.4 Experimental Results	41
3.3 Simplified Square-Dipole-Array Antenna	44
3.3.1 Antenna Configuration	44
3.3.2 Analysis and Optimization	46

3.3.3 Experimental Results	49
3.4 Comparison	51
3.5 Summary	52
Chapter 4: Cross-Dipole Antennas	53
4.1 Introduction	53
4.2 Simplified Tightly-Coupled Cross-Dipole Antenna	54
4.2.1 Model Description	54
4.2.2 Coupling Analysis	55
4.2.3 Design Methodology	60
4.2.4 Antenna Design.	69
4.3 Bandwidth Enhancement of Cross-Dipole Antennas	74
4.3.1 Antenna I: Loop-Connected Isolated Cross-Dipole Element	74
4.3.2 Antenna II: Loop-Connected Tightly-Coupled Cross-Dipole Element	81
4.3.3 Comparison	86
4.4 Summary	87
Chapter 5: Dual-Dipole Antennas	89
5.1 Introduction	89
5.2 Working Mechanism of the Dual-Dipole Radiators	90
5.3 Three-Layer Planarized Dual-Dipole Antenna	92
5.3.1 Antenna Configuration	92
5.3.2 Feed Network	93
5.3.3 Experimental Results	95
5.4 Two-layer Planarized Dual-Dipole Antenna	97
5.4.1 Antenna Configuration	97
5.4.2 Experimental Results	99
5.5 The Integration of Planarized Dual-Dipole Antennas	101
5.5.1 Configuration of the Wideband Coupler	102
5.5.2 Configuration of the Integrated Dual-CP Antenna	104
5.5.3 Experimental Results	106
5.6 Summary	109
Chapter 6: Multi-Band Base Station Antenna Arrays	111
6.1 Introduction	111
6.2 Statement of Cross-band Scattering Problem	111
6.3 Choking Techniques to Suppress Cross-Band Scattering	114
6.3.1 Choke 1: The Spirals	115

6.3.2 Choke 2: The Coaxial Chokes	118
6.3.3 Choke 3: The Stripline Chokes	121
6.3.4 Discussion	123
6.4 Application I: Interleaved 3G and 4G Base Station Antenna Array	124
6.4.1 Design of Stripline-Choked LB Element	125
6.4.2 Experimental Results	137
6.5 Application II: Interleaved 4G and 5G Base Station Antenna Array	141
6.5.1 Design of Spiral LB Element	142
6.5.2 Experimental Results	146
6.6 Summary	152
Chapter 7: Multi-Beam Base Station Antenna Arrays	153
7.1 Introduction	153
7.2 Beam-Forming Antenna Array System	154
7.3 Wideband Beam-Forming Network	156
7.3.1 Three-Beam Butler Matrix	157
7.3.2 Wideband Power Dividers	169
7.4 Beam-Forming Arrays	172
7.4.1 Configuration and Performance of the Radiating Element	173
7.4.2 Configuration of Beam-Forming Arrays	175
7.4.3 Experimental Results	176
7.5 Summary	180
Chapter 8: Conclusion and Future Work	181
8.1 Conclusion	181
8.2 Future Work	183
References	185

List of Figures

Figure 1.1 Configuration of a typical base station array [2].	1
Figure 1.2 Three-sector cell plan.	2
Figure 1.3 Cross-dipole with reflector for azimuth pattern forming	2
Figure 1.4 (a) Illustration of coverage of mechanical tilt [3], and (b) horizontal rad	iation
pattern with different downtilt angles of mechanical tilt.	3
Figure 1.5 (a) Illustration of coverage of electrical tilt [3], and (b) horizontal rad	iation
pattern with different downtilt angles of electrical tilt.	4
Figure 1.6 Contour of the normalized radiation pattern of a cross-dipole placed ab	ove a
ground plane.	4
Figure 1.7 Arrangement of N-element linear array.	5
Figure 1.8 Field patterns with (a) $N = 4$, and (b) $N = 8$.	6
Figure 1.9 Field pattern with electrical downtilt of 10°.	6
Figure 1.10 Field patterns with (a) uniform amplitude distribution, and (b) sinus	soidal
amplitude distribution.	7
Figure 1.11 Field patterns with (a) $d = 0.5\lambda$, and (b) $d = 1.5\lambda$.	7
Figure 2.1 Configurations of dual-polarized patch antennas reported in the literature	es (a)
[8], and (b) [10]	16
Figure 2.2 Configurations of dual-polarized cross-dipole antennas reported i	n the
literatures (a) [13], (b) [15], (c) [16], and (d) [17]	17
Figure 2.3 Configurations of dual-polarized ME-dipole antennas reported is	n the
literatures (a) [31], and (b) [34]	18
Figure 2.4 Configurations of dual-polarized square-dipole-array antennas reported	in the
literatures (a) [38], and (b) [39]	19
Figure 2.5 Configurations of dual-polarized slot antennas reported in the literatur	es (a)
[42], (b) [44], and (c) [49]	20
Figure 2.6 Configurations of dual-dipole antennas reported in the literatures (a) [5]	1], (b)
[52], (c) [53], and (d) [54]	21
Figure 2.7 Configurations of dual-band antenna elements reported in the literatur	es (a)
[57], and (b) [58]	22

Figure 2.8 Different base station antenna array schemes: (a) Up-and-down scheme, (b)
embedded scheme, and interleaved schemes with (c) one HB columns and
one LB column and (d) two HB columns and one LB column24
Figure 2.9 Schematic for the beam-forming arrays
Figure 2.10 Butler matrix designs using microstrip lines [77], striplines [78] and CPW
[79]27
Figure 3.1 (a) Perspective view of the proposed antenna, and (b) top view of the aperture.
30
Figure 3.2 (a) Configuration of the radiator without feed network, and (b) the current
distribution on the radiator at 2.2 GHz
Figure 3.3 (a) The simulated and (b) the calculated HPBW variations of HP, VP, -45° -
polarized patterns of the element in the horizontal plane with an infinite
ground plane31
Figure 3.4 The variation of co-polar HPBWs across the band with (a) different distance
D between the folded dipole elements, (b) different antenna height H, and (c)
different widths W of ground plane
Figure 3.5 The HP, VP and co-polar HPBWs of the antenna element placed on a ground
plane of width 170 mm. 34
Figure 3.6 Current distribution illustration of (a) a cross-dipole, and (b) the four folded
dipole elements; contour plot of beam of (c) a cross-dipole, and (d) the four
folded dipole elements in u-v coordinates
Figure 3.7 (a) Feed method, and (b) the equivalent circuit model of the impedance 36
Figure 3.8 Input impedance of the folded dipole elements (Z) on the Z-Smith for
parameters (a) <i>D</i> , (b) <i>H</i> , (c) <i>OP</i> , (d) <i>IP</i>
Figure 3.9 Configuration of the matching circuit. 38
Figure 3.10 Calculated $ S_{II} $ of the matching circuit model
Figure 3.11 The impedance of (a) the folded dipole input, (b) the folded dipole input and
the line transformer I, (c) the folded dipole input, line transformer I, and balun
(d) the folded dipole input, the line transformer I, balun, and line transformer
II on the Smith chart from 1.60GHz to 2.80 GHz
Figure 3.12 Realization of the matching circuit. (a) Top view of antenna aperture, and
perspective views of the feed network for (b) $+45^{\circ}$ polarization, and (c) -45°
polarization40

Figure 3.13 (a) Front view, and (b) side view of the prototype of the proposed antenna.
41
Figure 3.14 Simulated and measured S-parameters
Figure 3.15 Simulated and measured radiation patterns in the horizontal plane at (a) 1.7
GHz, (b) 2.2 GHz, and (c) 2.7 GHz42
Figure 3.16 Simulated and measured HPBWs and gains
Figure 3.17 Simulated and measured beam squint at 10° down-tilt
Figure 3.18 Antenna configuration: (a) perspective view; (b) top view; (c) detached view
of balun A; (d) detached view of balun B45
Figure 3.19 (a) Schematic current distribution and (b) equivalent circuit model of the
concentrically arrange dipoles without feed network
Figure 3.20 Variation of the (a) real and (b) imaginary parts of the antenna input
impedance with different W_g
Figure 3.21 Variation of the (a) real and (b) imaginary parts of the antenna input
impedance with different L_g
Figure 3.22 Simulated (a) HPBW (b) cross-polarization level within main lobe with
optimized gap size
Figure 3.23 Equivalent circuit and the physical implementation of the antenna feed
network. (Optimized values for circuit elements: TL_M: 250 Ω , 8.3 mm; LL:
100 Ω , 6.6 mm; SL: 416.7 Ω , 50.7 mm; OL: 113.6 Ω , 20.5 mm; TL: 91.77 Ω ,
23.2 mm.)
Figure 3.24 The calculated, simulated and measured S-parameters of the antenna 49
Figure 3.25 Prototype of the antenna
Figure 3.26 Simulated and measured radiation patterns. (a) 1.7 GHz, (b) 2.2 GHz, and (c)
2.7 GHz
Figure 3.27 Simulated and measured HPBW and gain
Figure 4.1 Cross-dipole geometry. (a) Model-A: tightly-coupled cross-dipoles consisting
of a driven dipole and a parasitic dipole. (b) Model-B: driven dipole only. 54
Figure 4.2 Variations of the impedance of Model-A and Model-B in the target band. (a)
Resistance. (b) Reactance. 55
Figure 4.3 Current distributions on the traces of the models. (a) Model-A. (b) Model-B.
56

Figure 4.4 S	Simulated currents. (a) Current magnitudes on the middle branches of Model-
	A and Model-B. (b) Current magnitudes on the side branches of Model-A and
	Model-B. (c) Current phases on three different branches of Model-A 57
Figure 4.5 3	3D radiation pattern of the proposed tightly-coupled cross-dipole58
Figure 4.6	Comparison of x- and y-aligned radiation patterns of Model-A and Model-B
	60
Figure 4.7	Representation of the current distributions. (a) Schematic for the tightly-
	coupled cross-dipole antenna. (b) Equivalent six-element dipole array for
	model-A. (c) Reduced, equivalent three-element dipole array model 61
Figure 4.8 S	Simulated radiation patterns. (a) E-plane pattern and (b) H-plane pattern of a
	single half-wavelength dipole placed a quarter-wavelength above an infinite
	ground plane and oriented parallel to it. (c) Three-element array factor pattern
	alone. (d) Model-A-based cross-dipole radiation pattern
Figure 4.9 I	Revised and simplified cross-dipole configuration
Figure 4.10	HPBW plotted on the Z-Smith diagram for the parameters: (a) L, (b) s, (c) W
	(d) W', (e) h, and (f) G66
Figure 4.11	Input impedance plotted on the Z-Smith diagram for the parameters: (a) L
	(b) s, (c) W, (d) W', (e) h, and (f) G67
Figure 4.12	Optimized simplified cross-dipole antenna. (a) Perspective view. (b) Details
	of the two feed networks implemented using PCBs. (c) Circuit theory model
	of the matching circuit.
Figure 4.13	Photos of the antenna and measurement system. (a) Fabricated and assembled
	antenna prototype. (b) Mounting the antenna. (c) Antenna under test (AUT).
	71
Figure 4.14	Simulated and measured reflection coefficients of the two ports72
Figure 4.15	Simulated and measured co- and cross-polarization radiation patterns at (a)
	1.7, (b) 2.2, and (c) 2.7 GHz
Figure 4.16	Simulated and measured HPBW for the two polarizations across the target
	band
Figure 4.17	Configuration of the radiator of the loop-loaded isolated cross-dipole74
Figure 4.18	8 (a) Design procedure of the loop-connected radiator. (b) Impedance of
	radiators at different steps from 1.65 GHz to 2.75 GHz in Smith Chart75

Figure 4.19	(a) Circuit model of a practical feed network for dipole, (b) matching result	ts
	for Models B and E	7
Figure 4.2	O Current distribution at 2.2 GHz on the loop-loaded isolated cross-dipol	le
	radiator	7
Figure 4.21	I Impedance of the radiator from 1.7 GHz to 2.7 GHz with different values of	of
	(a) LD, (b) WD, (c) LL, (d) WL, and (e) G	8
Figure 4.22	2 (a) Perspective view of the antenna I. Plots of (b) balun 1, and (c) balun 2. (c)	1)
	Fabricated prototype of the antenna I	9
Figure 4.23	3 Simulated and measured S-parameters of antenna I	0
Figure 4.24	4 Horizontal radiation patterns of +45°-polarized radiation of antenna I at (a	a)
	1.7 GHz, (b) 2.2 GHz, and (c) 2.7 GHz	1
Figure 4.25	5 Simulated and measured HPBW and realized gain of the antenna I8	1
Figure 4.20	6 Radiator of loop-loaded tightly-coupled cross-dipoles. (R = 14.4 mm, A	=
	83.6°, L= 28 mm, W= 0.8 mm, and G = 0.56 mm)	2
Figure 4.27	7 (a) Design procedure of radiator. (b) Impedance of radiators at different step	S
	from 1.7 GHz to 3.2 GHz in Smith Chart. (c) Matching results for Models	F
	and G using circuit in Figure 4.19(a).	3
Figure 4.28	8 Influence of length of loop L to the radiator's impedance	3
Figure 4.29	9 (a) Perspective view of the antenna II. Plots of (b) balun 3, and (c) balun 4	4.
	(d) Fabricated prototype of the antenna II	4
Figure 4.30	S-parameters of loop-loaded tightly-coupled cross-dipole	5
Figure 4.31	1 Radiation patterns of the loop-loaded tightly-coupled cross-dipole at (a) 1.	7
	GHz, (b) 2.2 GHz, (c) 2.7 GHz, and (d) 3.2 GHz	5
Figure 4.32	2 (a) HPBW, and (b) gain of the loop-loaded tightly-coupled cross-dipole8	6
Figure 5.1	(a) Traditional, and (b) new configurations of communication system	ıs
	consisting antennas and RF modules.	9
Figure 5.2	(a) Configurations of the radiators; and (b) the simulated current distribution	n
	when excite dipole 1 and 2.	1
Figure 5.3	Comparison of the calculated HPBWs from the mathematic models of the or	ıe
	dipole and two dipoles configurations, and the simulated HPBWs of the actual	al
	antenna with four dipoles.	2
Figure 5.4	Antenna configuration: (a) Perspective view; Top views of the (b) top, (c	2)
	middle and (d) hottom metallic layers	13

Figure 5.5 Circuit representation of the	feed network. 94
Figure 5.6 SWR results of the circuit me	odel and physical model94
Figure 5.7 Physical realization model	94
Figure 5.8 Prototype of the three-layer p	planarized dual-LP antenna96
Figure 5.9 Circuit matching results, and	the simulated and measured S parameters96
Figure 5.10 Simulated and measured rad	diation patterns. (a) 1.7 GHz, (b) 2.2 GHz, (c) 2.7
GHz	97
Figure 5.11 Simulated and measured HI	PBWs and gains97
Figure 5.12 Configuration of the wideba	and ±45°-polarized antenna98
Figure 5.13 (a) Equivalent circuit, and (b) physical realization of the feed network 98
Figure 5.14 Simulated reflection coef	ficients of the antenna with ideal circuit feed
network and its physical rea	lization99
Figure 5.15 Prototype of the dual-linear	ly polarized antenna99
Figure 5.16 Simulated and measured S	parameters
Figure 5.17 Simulated and measured rac	diation patterns. (a) 1.7 GHz, (b) 2.2 GHz, and (c)
2.7 GHz	100
Figure 5.18 Simulated and measured HI	PBWs and gains101
Figure 5.19 (a) Circuit design and (b) the	e printed circuit board realization of the wideband
coupler	102
Figure 5.20 Simulated (a) magnitude of	S_{11} and $S_{21},$ (b) magnitude of S_{31} and $S_{41},$ and (c)
phases of S_{31} and S_{41} of the	wideband coupler
Figure 5.21 Configuration of the widel	pand dual-circularly-polarized antenna: (a) high-
angle perspective view, (b)	low-angle perspective view, and (c) detail view
of the vertical coupler	104
Figure 5.22 Current distribution on the o	coupler with (a) a traditional ground plane and (b)
a defected ground plane, and	d (c) the resultant AR for the two cases106
Figure 5.23 Prototype of the dual-circula	arly polarized antenna: (a) top view, (b) side view,
and (c) perspective view	106
Figure 5.24 Simulated and measured	reflection coefficients of the dual-circularly-
polarized antenna	107
Figure 5.25 Simulated and measured ax	ial ratio of the dual-circularly-polarized antenna.
	107

Figure 5.26 Simulated and measured radiation patterns of LHCP at (a) 1.5 GHz, (b) 2	2
GHz, and (c) 3.0 GHz)8
Figure 5.27 Simulated and measured HPBWs and Gains of the dual-circularly-polariz	ed
antenna)8
Figure 6.1 Configuration of the interleaved BSA array section: (a) top view, and (b)
perspective view1	12
Figure 6.2 Simulated S-parameters for the LB and HB antennas when working alor	ıe.
1	13
Figure 6.3 Current distribution on the array section when HB array on the right colum	nn
is excited	13
Figure 6.4 Horizontal radiation patterns of the HB array i) without, and ii) with t	ne
unaltered LB element at (a) 1.7 GHz, (b) 1.8 GHz, and (c) 1.9 GHz1	14
Figure 6.5 One example of the choked radiator	15
Figure 6.6 (a) Configuration of spiral structure. (b) Demonstration of spiral structure	re
illuminated by plane wave1	16
Figure 6.7 Maximum induced current on the spiral structure with different (a) gap g , (b)
inner diameter d, and (c) width of strip w	17
Figure 6.8 Maximum induced current on the spiral structure resonating at 3.5 GHz with	th
different combinations of parameters	18
Figure 6.9 Configuration of coaxial chokes.	18
Figure 6.10 Maximum induced current on the arm with coaxial chokes with different (a)
l_choke , (b) d_in , and (c) d_out .	20
Figure 6.11 Maximum induced current on the arm with coaxial chokes with resonant points.	nt
at 3.5 GHz but with different combinations of parameters	20
Figure 6.12 Configuration of choke 3 with conducting lines	21
Figure 6.13 Maximum induced current on the radiator with conducting lines with	th
different (a) w , (b) h , and (c) s	22
Figure 6.14 . Magnitudes of the induced currents on the arm with stripline chokes wi	th
resonant point at 3.5 GHz but with different combinations of parameters: (a)
different combination of s and h when fix w , and (b) different combination	of
w and h when fix s (unit: mm)	23
Figure 6.15 Dual-band dual-polarized base station antenna array configuration wi	th
interleaved scheme	24

Figure 6.16	Circuit model of the choke
Figure 6.17	(a) Top, and (b) side view of the realized choke
Figure 6.18	(a) Model 1: a strip with a length of around $\lambda/2$ at 2.0 GHz (middle frequency
	at high band) and a width of 11 mm; Model 2: the strip in Model 1 cut in the
	middle and bridged with an inductive line. (b) Comparison of induced HB
	current on the strip in Model 1, and on the strip in Model 2 with different
	value of l . (c) Comparison of induced HB current on the strip in Model 1, and
	on the strip in Model 2 with different value of g. (d) Comparison of induced
	HB currents on the strip in Model 2 with optimized $\{g, l\}$ values for open
	circuit point at 2.0 GHz.
Figure 6.19	(a) Model 3: a strip with a length of around $\lambda/2$ at 0.89 GHz (middle frequency
	at low band) and a width of 11 mm; Model 4: the strip in Model 3 cut in the
	middle and bridged with a choke. (b) Comparison of induced LB current on
	the strip in Model 3, and on the strip in Model 4 with different values of w.
	(c) Induced LB current on the strip in Model 4 with optimized $\{g, l, w\}$ values
	for open circuit point at 2.0 GHz and short circuit point at 0.89 GHz 129
Figure 6.20	(a) The LB dipole arms with different number of cuts. (b) Top view of the
	LB dipole arm with chokes inserted in
Figure 6.21	(a) Model to determine effect of segment length l_s in free space illuminated
	by HB plane wave. (b) Maximum induced HB current on the segment with
	different l_s . 131
Figure 6.22	Configuration of optimized choked LB radiator
Figure 6.23	The E-field cuts in the zx-plane under the circumstances of i) only HB array,
	ii) HB array with unaltered LB radiators, and iii) HB array with choked LB
	radiators
Figure 6.24	Comparison of HB radiation patterns under the circumstances of i) only HB
	array, ii) HB array with unalthered LB radiators, and iii) HB array with
	choked LB radiators at (a) $1.7~\mathrm{GHz}$, (b) $1.9~\mathrm{GHz}$, (c) $2.1~\mathrm{GHz}$, and (d) $2.3~\mathrm{GHz}$
	GHz. 133
Figure 6.25	(a) Perspective view of the choked LB antenna. Configurations of (b) balun
	1, and (c) balun 2. (The baluns are printed on both sides of a substrate with a
	dielectric constant of 4.4, a loss tangent of 0.0025, and a thickness of 1.5 mm.)
	125

Figure 6.26	S-parameters of the choked LB element and the unaltered LB element 136
Figure 6.27	Radiation patterns of the choked LB element and the unaltered LB element
	at (a) 0.82 GHz, (b) 0.88 GHz, (c) 0.92 GHz, and (d) 0.96 GHz136
Figure 6.28	(a) Top, and (b) side views of the dual-band dual-polarized interleaved array.
Figure 6.29	Simulated and measured reflection coefficients of the HB array138
Figure 6.30	Simulated and measured radiation patterns of the HB array. (a) Port 1 at 1.7
	GHz. (a) Port 2 at 1.7 GHz. (c) Port 1 at 2.0 GHz. (d) Port 2 at 2.0 GHz. (e)
	Port 1 at 2.3GHz. (f) Port 2 at 2.3 GHz. 139
Figure 6.31	Simulated and measured horizontal HPBW and realized gain of the HB array.
Figure 6.32	Simulated and measured S-parameters of the choked LB antenna140
Figure 6.33	Simulated and measured radiation pattern of the choked LB antenna. (a) Port
	1 at 0.82 GHz. (b) Port 2 at 0.82 GHz. (c) Port 1 at 0.88 GHz. (d) Port 2 at
	0.88 GHz. (e) Port 1 at 0.96 GHz. (f) Port 2 at 0.96 GHz141
Figure 6.34	Simulated and measured HPBW and realized gain of the choked LB antenna.
Figure 6.35	(a) Configuration of spiral structure. (b) Current suppression capability at
	around 3.7 GHz
Figure 6.36	Arrangement of the interleaved dual-band array with spiral LB radiators.
Figure 6.37	The E-field cuts in the zx-plane under the circumstances of i) only HB array,
	ii) HB array with unaltered LB radiators (dipole arm in strip form), and iii)
	HB array with spiral LB radiators
Figure 6.38	Comparison of HB radiation pattern in the horizontal plane (zx-plane) under
	the circumstances of i) only HB array, ii) HB array with unaltered LB
	radiators, and iii) HB array with spiral LB radiators at (a) 3.3 GHz, (b) 3.4
	GHz, (c) 3.6 GHz, (d) 3.7 GHz
Figure 6.39	(a) Perspective view of the spiral LB antenna. (b) Configuration of two baluns
	for spiral LB antenna. 145
Figure 6.40	S-parameters of the spiral LB antenna
Figure 6.41	Horizontal radiation patterns of spiral LB antenna at 1.7 GHz, 1.9 GHz, and
	2.2 CU ₇

Figure 6.42	2 (a) Perspective view of the dual-band antenna array model. (b) View of t	he
	feed network for the dual-band antenna array. (c) Front view, and (b) si	de
	view of the fabricated antenna array prototype1	47
Figure 6.4	3 (a) Simulated and (b) measured reflection coefficients for HB ports.	(c)
	Simulated and (d) measured isolations between HB ports1	48
Figure 6.44	Normalized simulated and measured radiation patterns in the horizontal pla	ne
	for the HB antennas. (a) Port 1 at 3.3 GHz, (b) port 2 at 3.3 GHz, (c) port 1	at
	3.5 GHz, (d) port 2 at 3.5 GHz, (e) port 1 at 3.7 GHz, and (f) port 2 at 3.5 GHz, and (f) port 3 at 3.	3.7
	GHz1	49
Figure 6.45	5 (a) Simulated and (b) measured HPBW in the horizontal plane. (c) Simulat	ec
	and (d) measured gain for the HB antennas in the two columns	50
Figure 6.46	6 Simulated and measured S-parameters for the LB antenna	50
Figure 6.47	Normalized simulated and measured radiation patterns in the horizontal pla	ne
	for the LB antenna. (a) Port 5 at 1.7 GHz, (b) port 6 at 1.7 GHz, (c) port 5	a
	1.9 GHz, (d) port 2 at 1.9 GHz, (e) port 1 at 2.2 GHz, and (f) port 2 at 2.2 GHz	łΖ
		51
Figure 6.48	8 Simulated and measured HPBW and gain for the LB antenna	52
Figure 7.1	Configurations of two beam-forming arrays for LTE base stations: (a) usi	ng
	5-element array; (b) using 6-element array	55
Figure 7.2	Configuration of the proposed wideband three-beam Butler matrix for LT	ГΕ
	base stations. 1	56
Figure 7.3	Equivalent transmission line models of two quadrature couplers: (a) tradition	ıal
	type; (2) tandem type	59
Figure 7.4	Configuration of (a) Cross-sectional view of the stripline implementation us	ec
	in the design of quadrature coupler; (b) 3D model of the construct	ed
	quadrature coupler	61
Figure 7.5	Simulated reflection coefficients of the antenna with ideal circuit feed netwo	rk
	and its physical realization	62
Figure 7.6	Equivalent transmission line models of the wideband phase shifter: (a) pha	ısc
	shifter; (b) reference line	63
Figure 7.7	3D model of the constructed phase shifter	64
Figure 7.8	Synthesized and full-wave simulation results of the phase shifter: (a)	S-
	narameters: (h) differential phase	65

Figure 7.9	3D model of the proposed three-beam Butler matrix for LTE base stations.
Figure 7.10	Simulated S-parameters of the fabricated Butler matrix: (a) return loss and
	isolations; (b) transmission coefficients; (c) differential phases167
Figure 7.11	Photograph of the fabricated Butler matrix prototype
Figure 7.12	Measured S-parameters of the fabricated Butler matrix: (a) return loss and
	isolations; (b) transmission coefficients; (c) differential phases169
Figure 7.13	Wideband Wilkinson dividers: (a) the printed circuit board realization; (b)
	equivalent circuit. 170
Figure 7.14	Simulated (a) magnitude of S_{11} and S_{21} , (b) magnitude of S_{31} and S_{41} , and (c)
	phases of S_{21} and S_{31} of the wideband power divider
Figure 7.15	5 Configuration of (a) the ±45°-polarized antenna element; (b) radiator; (c)
	balun 1; and (d) balun 2
Figure 7.16	Simulated S-parameters of the $\pm 45^{\circ}$ -polarized single antenna element 174
Figure 7.17	Simulated radiation pattern at 1.8 GHz, 2.2 GHz, and 2.6 GHz for the $\pm 45^{\circ}$ -
	polarized antenna element. 174
Figure 7.18	Simulated HPBW and gain for the $\pm 45^{\circ}$ -polarized antenna element 175
Figure 7.19	Configuration of (a) 5-element antenna array, and (b) 6-element antenna array
Figure 7.20	The tested LTE beam-forming array including the beam-forming network
	and 6-element antenna array: (a) test environment; (b) overall structure176
Figure 7.21	$Measured\ return\ loss\ and\ isolation\ at\ input\ ports\ of\ two\ beam-forming\ arrays:$
	(a) using 5-element array; (b) using 6-element array
Figure 7.22	Simulated and measured radiation patterns at 1.8 GHz, 2.2 GHz, and 2.6 GHz
	for the 6-element antenna array fed by the beam-forming network: (a) beam
	1 at 1.8 GHz; (b) beam 2 at 1.8 GHz; (c) beam 3 at 1.8 GHz; (d) beam 1 at
	2.2 GHz; (e) beam 2 at 2.2 GHz; (f) beam 3 at 2.2 GHz; (g) beam 1 at 2.6
	GHz: (h) beam 2 at 2.6 GHz: (i) beam 3 at 2.6 GHz. 178

List of Tables

Table 1.1 Frequency Bands, Short References, and Services	9
Table 2.1 Comparison of Wideband Butler Matrices	28
Table 3.1 Optimized Parameters of the Radiator	30
Table 3.2 Optimized Parameters for the Physical Implementation of the	Matching
Network	40
Table 3.3 Comparison of Antenna Performances	51
Table 4.1 Comparison of the Radiation Performance of Model-A and Model-B	56
Table 4.2 Optimized Dimensions of the Simplified Cross-dipole Antenna	65
Table 4.3 Optimized Dimensions of the Two Feed Networks	71
Table 4.4 Comparison of Antennas' Performances	86
Table 5.1 Optimized Parameters of the Matching Elements.	95
Table 5.2 Optimized Parameters of the Matching Elements	99
Table 5.3 Optimized Parameters for Coupler	103
Table 5.4 Comparison of Dual-CP Antennas' Performance	109
Table 6.1 SSBW of Spiral with Different Combinations of Parameters	118
Table 6.2 SSBW of Coaxial Chokes with Different Combinations of Parameter	rs120
Table 6.3 SSBW of Stripline Chokes with Different Parameter Combinations	123
Table 6.4 Optimized Parameters of the Choked Antenna	132
Table 6.5 Optimized Parameters of Baluns for the Choked Antenna	135
Table 7.1 Power and Phase Distribution on the 5-Element Array	155
Table 7.2 Power and Phase Distribution on the 6-Element Array	156
Table 7.3 Related Parameters of Two Quadrature Couplers	161
Table 7.4 Related Parameters of Two Power Dividers	172
Table 7.5 Optimized Parameters of the ±45°-polarized antenna element	174
Table 7.6 Overall Performance of the 6-element Array Fed By the Beam	n-Forming
Network	179

List of Abbreviations

AR Axial Ratio

BSA Base Station Antenna
CP Circularly-Polarized
GLL Grating Lobe Level
FBR Front-to-Back Ratio

HB High Band

HPBW Half-Power Beamwidth
ICD Isolated Cross-Dipole

LB Low Band

LHCP Left-Handed Circular Polarization

LP Linearly-Polarized

ME-dipole Magneto-Electric Dipole

MIMO Multiple-Input Multiple-Output

PDR Power Division Ratio

RHCP Right-Handed Circular Polarization

SLL Side Lobe Level

TCCD Tightly-Coupled Cross-Dipole

XPD Cross Polarization Discrimination

Third Generation of Cellular Mobile Communications
 Fourth Generation of Cellular Mobile Communications

Fifth Generation of Cellular Mobile Communications

Abstract

Cellular base station antennas (BSAs) are critical components in mobile communication systems. As the cellular mobile communication systems evolve rapidly to the fifth generation (5G), BSAs that can simultaneously support different standards and have high data capacity are in high demand. Multi-band arrays and multi-beam arrays are good solutions, but they place additional stringent requirements on the antennas. Firstly, high performance characteristics of antenna elements are required. Secondly, cross-band scattering, which is a long-existing issue in multi-band antenna arrays, needs to be suppressed to maintain the performance and stability of antenna systems. Thirdly, for multi-beam antenna arrays, they are desired to have wide operating bandwidth and consistent patterns with low side-lobe levels. All of these are difficult to achieve. This thesis addresses the challenges mentioned above by making three main contributions.

The first contribution is the improvement of the base station antenna elements. Three configurations have been thoroughly studied, including square-dipole-array, cross-dipole and dual-dipole configurations. Different methods are investigated to enhance bandwidth, stabilize radiation patterns, or minimize beam squint, and the outcomes of these are implemented in antenna designs. In addition, circuit models of feed networks are proposed to facilitate wideband impedance matching. Two antennas featuring planarized configurations are designed for the ease of system integration. In total, eight antenna elements have been designed, fabricated and tested to achieve the desired wideband radiation performances.

The second contribution is the development of new approaches to minimize cross-band interference in multi-band BSA arrays. Chokes that can minimize scattering currents are implemented in the antenna designs. The working principles and capabilities of suppressing scattering of three different types of chokes are analyzed. Based on these techniques, two dual-band antenna arrays have been designed. Experimental results verify that cross-band scattering is suppressed and both arrays have stable radiation patterns across wide operating bandwidths. The techniques presented for suppressing cross-band scattering guarantee the co-existence of antennas for different services, and facilitate the evolution of communication standards.

The third contribution is the development of multi-beam antenna arrays to increase system capacity with a wide coverage area. Cross-dipoles with a compact configuration

and stable radiation performances are chosen as array elements. Wideband beam-forming networks formed by Butler matrices and power dividers are used to provide correct phase increments and power levels for elements. Three-beam antenna arrays have been designed with required beamwidth and crossover level. The proposed designs can be used in a wide range of LTE base stations to increase system capacity.