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Abstract

Central to many state-of-the-art classification systems via deep learning is
sufficient accurate annotations for training. This is almost the bottleneck
of all machine learning algorithms deployed with deep neural networks.
The dilemma behind such a phenomenon is essentially the trade-off
between the low expensive model design and the low expensive sample
collection. For practical purposes to alleviate this issue, learning with
noisy supervision is a critical solution in the Big Data era, since the
noisily annotated data on the social websites and Amazon Mechanical
Turk platforms can be easily acquired. Therefore, in this dissertation,
we explore to solve the fundamental problems when training deep neural
networks with noisy supervision.
Our first work is to introduce the low expensive noise structure information
to overcome the decoupling bias issue existed learning with noise transi-
tion. We study the noise effect via a variable whose structure is implicitly
aligned by the provided structure knowledge. Specifically, a Bayesian
lower bound is deduced as the objective and it naturally degenerates to
previous transition models in the case that there is no structure information
available. Furthermore, a generative adversarial implementation is given
to stably inject the structure information when training deep neural
networks. The experimental results show the consistently improvement
in the different simulated noises and the real-world scenario.
Our second work targets to substitute the previous ill-posed stochastic
approximation to the noise transition with a rigorous stochastic re-
allocation regarding the confusion matrix. This work discovers the reason
that causes the unstable issue in modeling the noise effect by a neural
Softmax layer and introduces a Latent Class-Conditional Noise model
to overcome it. In addition, a computational effective dynamic label
regression method is deduced for optimization, which stochastic trains the
deep neural network and safeguards the noise transition estimation. The
proposed method achieves the state-of-the-art results on two toy datasets
and two large real-world datasets.
The last work aims to alleviate the difficulty that the ideal assumption on
the accurate noise transition is usually not fulfilled and the noise could



still pollute the classifier in the back-propagation. We specially introduce
a quality embedding factor to apportion the reasoning in the back-
propagation, yielding a quality-augmented class-conditional noise model.
On the network implementation, we elaborately design a contrastive-
additive layer to infer the latent variable and deduce a stochastic optimiza-
tion via reparameterization tricks. The results on a noisy web dataset and
a noisy crowdsourcing dataset confirm the superiority of our model in the
accuracy and interpretability.
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