## **Electronic Supplementary Material**

High-latitude mass coral bleaching in Sydney Harbour driven by the 2015–2016 heatwave

Samantha Goyen <sup>1\*</sup>, Emma Camp <sup>1</sup>, Lisa Fujise <sup>1</sup>, Alicia Lloyd <sup>1</sup>, Matthew Nitschke <sup>1,2</sup>, Todd LaJeunensse <sup>3</sup>, Tim Kahlke <sup>1</sup>, Peter J. Ralph <sup>1</sup>, David J. Suggett <sup>1</sup>

<sup>1</sup> University of Technology Sydney, Climate Change Cluster, Broadway, Ultimo NSW 2007, Australia

<sup>2</sup> Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal

<sup>3</sup> Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory,

University Park, PA 16802, USA.

**Supplementary Table S1.** Physio-chemical *in situ* parameters measured in February, April, June and August at Fairlight (FL) and Middle Head (MH) (bi-monthly average  $\pm$  SEM) and tank conditions measured in December, January and February (pre-bleaching), June and August (recovery) (average of n = 4 tanks  $\pm$  SEM). Total alkalinity and pH were used with temperature and salinity to calculate pCO<sub>2</sub> and aragonite saturation state. Light (µmol photons m<sup>-2</sup> s<sup>-1</sup>) was calculated based on the diffuse attenuation coefficient model at 7 m for Sydney Harbour data and is represented as an average of n=4 tanks  $\pm$  SE for the tank experiment. Nutrient values are n=3  $\pm$  SD.

| Sydney Harbour                         |                  |                 |                             |                 |                    |                  | Tank Experiment      |                 |                  |                  |                  |                                 |                    |
|----------------------------------------|------------------|-----------------|-----------------------------|-----------------|--------------------|------------------|----------------------|-----------------|------------------|------------------|------------------|---------------------------------|--------------------|
|                                        | February         |                 | April<br>(During bleaching) |                 | June<br>(Recovery) |                  | August<br>(Recovery) |                 | Describer        | Ţ                | Eshanan          | June                            | August             |
| Physio-<br>chemical<br>variable        | FL               | МН              | FL                          | МН              | FL                 | МН               | FL                   | МН              | $(T_0)$          | $(T_1)$          | $(T_2)$          | (Bleached)<br>(T <sub>3</sub> ) | (Recovery)<br>(T4) |
| pH                                     | 7.91             | 8.17            | 7.96                        | 8.22            | 7.96               | 8.27             | 8.11                 | 8.24            | 7.92             | 7.76             | 7.88             | 7.97                            | 7.94               |
| (total scale)                          | ± 0.02           | ± 0.008         | ± 0.02                      | ± 0.01          | ± 0.06             | ± 0.006          | ± 0.02               | ± 0.01          | ±0.09            | ± 0.03           | ± 0.06           | ± 0.09                          | ± 0.04             |
| Temperature                            | 25.9             | 26.6            | 23.1                        | 23.7            | 18.4               | 18.3             | 17.2                 | 17.5            | 20.5             | 22.1             | 25.9             | 19.1                            | 17.8               |
| (°C)                                   | ± 0.9            | ± 0.2           | ± 0.3                       | ± 0.7           | ± 0.4              | ± 0.07           | ± 0.7                | ± 0.1           | ± 0.4            | ± 0.3            | ± 0.5            | ± 0.1                           | ± 0.1              |
| Aragonite<br>saturation<br>state       | 2.7<br>± 0.2     | 2.6<br>± 0.06   | 3.6<br>± 0.1                | 2.9<br>± 0.06   | 3.02<br>± 0.2      | 2.1<br>± 0.08    | 3.8<br>± 0.08        | 3.8<br>± 0.1    | 3.4<br>± 0.1     | 3.3<br>± 0.2     | 2.3<br>± 0.07    | 2.09<br>± 0.2                   | 3.05<br>± 0.09     |
| pCO <sub>2</sub>                       | 226.7            | 263.1           | 214.3                       | 258.8           | 202.7              | 188.9            | 241.1                | 248.3           | 244.4            | 305.1            | 227.3            | 272.1                           | 238.4              |
| (µatm)                                 | ± 10.3           | ± 5.9           | ± 5.9                       | ± 9.5           | ± 15.9             | ± 7.9            | ± 8.7                | ± 10.6          | ± 18.1           | ±11.1            | ± 22.2           | ± 26.0                          | ± 19.6             |
| Total<br>Alkalinity<br>(µmol<br>Kg/SW) | 2193.3<br>± 15.5 | 2208.3<br>± 9.3 | 2383.9<br>± 9.7             | 2370.5<br>± 5.6 | 2019.8<br>± 18.5   | 2025.8<br>± 10.7 | 2442.1<br>± 9.5      | 2456.3<br>± 5.5 | 2209.3<br>± 34.4 | 2082.3<br>± 29.7 | 2176.9<br>± 49.8 | 2172.3<br>± 106.8               | 2336.2<br>± 5.8    |
| Salinity                               | 34.6             | 34.1            | 35.7                        | 35.4            | 35.2               | 33.6             | 34.8                 | 34.2            | 35.2             | 35.1             | 34.7             | 35.0                            | 34.7               |
| (ppm)                                  | ± 0.3            | ± 0.1           | ± 0.1                       | ± 0.2           | ± 0.7              | ± 1.7            | ± 0.08               | ±0.4            | ± 0.07           | ± 0.08           | ± 0.2            | ± 0.06                          | ± 0.1              |
| DO                                     | 7.82             | 7.88            | 8.31                        | 8.20            | 9.04               | 9.01             | 9.39                 | 9.40            | 8.25             | 8.02             | 8.61             | 9.05                            | 9.58               |
| (mg/L)                                 | ± 0.2            | ± 0.05          | ± 0.3                       | ± 0.05          | ± 0.2              | ± 0.03           | ± 0.1                | ± 0.04          | ± 0.06           | ± 0.3            | ± 0.08           | ± 0.8                           | ± 0.4              |

| Nitrate                                                              | 156.9 | 155.0 | 137.9  | 138.7  | 105.5  | 154.32 | 114.1  | 148.6 | 148.0           | 143.4           | 153.1           | 162.4           | 76.8            |
|----------------------------------------------------------------------|-------|-------|--------|--------|--------|--------|--------|-------|-----------------|-----------------|-----------------|-----------------|-----------------|
| (µg L <sup>-1</sup> )                                                | ± 1.2 | ± 2.0 | ± 1.8  | ± 0.3  | ± 0.06 | ± 5.3  | ± 0.3  | ± 0.3 | ± 12.6          | ± 10.2          | ± 12.3          | ± 6.1           | ± 4.8           |
| Nitrite                                                              | 4.7   | 5.7   | 13.2   | 11.0   | 6.1    | 5.78   | 6.5    | 7.0   | 0.7             | 6.9             | 2.1             | 1.06            | 11.73           |
| (µg L <sup>-1</sup> )                                                | ± 0.7 | ± 0.7 | ± 0.4  | ± 0.4  | ± 0.9  | ± 0.08 | ± 0.2  | ± 0.4 | ± 0.3           | ± 0.01          | ± 0.1           | ± 0.2           | ± 0.2           |
| Phosphate                                                            | 3.1   | 4.9   | 7.9    | 9.23   | 2.5    | 2.4    | 8.3    | 5.54  | 27.4            | 32.1            | 45.8            | 29.4            | 20.1            |
| (µg L <sup>-1</sup> )                                                | ± 0.1 | ± 0.1 | ± 0.0  | ± 0.06 | ± 0.2  | ± 0.1  | ± 0.5  | ± 0.8 | ± 0.5           | ± 0.38          | ± 4.9           | ± 0.9           | ± 0.5           |
| Ammonium                                                             | 16.7  | 17.5  | 14.6   | 37.0   | 15.3   | 9.91   | 20.5   | 18.5  | 18.8            | 14.4            | 12.7            | 9.3             | 20.6            |
| (µg L <sup>-1</sup> )                                                | ± 0.3 | ± 0.4 | ± 0.03 | ± 0.5  | ± 1.2  | ± 0.5  | ± 0.1  | ± 1.0 | ± 9.1           | ± 2.9           | ± 3.8           | ± 1.01          | ± 1.5           |
| Light<br>( $\mu$ mol<br>photons m <sup>-2</sup><br>s <sup>-1</sup> ) | 253   |       | 195.63 |        | 120.5  |        | 152.94 |       | 307.3<br>± 11.5 | 298.9<br>± 10.7 | 308.1<br>± 10.3 | 171.8<br>± 10.5 | 184.1<br>± 26.5 |

**Supplementary Table S2.** Raw data measurements for the experimental period (December-August) for the corals *P. versipora* and *C. mcneilli*. Measurements include net photosynthesis ( $P_G$ ), respiration (R), calcification (G) and *Symbiodinium* density  $\pm$  SE. ANOVA with Tukey's post-hoc and Kruskal-Wallis tests with pairwise comparisons and Bonferroni correction were used for statistical analysis across timepoints and species. (4) indicates significant difference from T<sub>4</sub>, (3) indicates significant difference from T<sub>3</sub>, \* indicates significant difference from all (p < 0.05).

|                               | Species      | $P_{G}$                        | R                                                        | GL                    | Symbiodinium density                                                          |
|-------------------------------|--------------|--------------------------------|----------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------|
|                               |              | $(\mu mol \ cm^{-2} \ h^{-1})$ |                                                          |                       | (cells/cm <sup>-2</sup> )                                                     |
| December                      | P. versipora | 1.77                           | 0.78                                                     | 0.52                  | $3.8 \times 10^6$                                                             |
| $(T_0)$                       |              | ± 0.36                         | (4) $(100)$                                              | $\pm 0.17$            | $\pm 0.9 \times 10^{\circ}$                                                   |
|                               | C. mcneilli  | 1.40<br>± 0.15                 | 0.64<br>± 0.07                                           | 0.42<br>± 0.10        | $\begin{array}{c} 3.7 \ x \ 10^6 \\ \pm \ 4.8 \ x \ 10^5 \end{array}$         |
| January<br>(T <sub>1</sub> )  | P. versipora | 1.72<br>± 0.41                 | $ \begin{array}{c} 1.10 \\ \pm 0.15 \\ (4) \end{array} $ | 0.23<br>± 0.08        | $\begin{array}{c} 3.7 \ x \ 10^6 \\ \pm \ 4.8 \ x \ 10^5 \end{array}$         |
|                               | C. mcneilli  | 1.40<br>± 0.15                 | 0.64<br>± 0.07                                           | 0.44<br>± 0.10<br>(3) | $3.6 \times 10^{6} \pm 4.5 \times 10^{5}$                                     |
| February<br>(T <sub>2</sub> ) | P. versipora | 1.67<br>± 0.27                 | 1.02<br>± 0.17                                           | 0.45<br>± 0.10        | $\begin{array}{c} 3.3 \text{ x } 10^6 \\ \pm 1.7 \text{ x } 10^5 \end{array}$ |

|            | C. mcneilli  | 1.54       | 0.68       | 0.44       | $3.7 \times 10^6$          |
|------------|--------------|------------|------------|------------|----------------------------|
|            |              | $\pm 0.21$ | $\pm 0.18$ | $\pm 0.12$ | $\pm 3.23 \text{ x } 10^5$ |
|            |              |            |            | (3)        |                            |
| June       | P. versipora | 0.78       | 0.70       | 0.22       | 0.5 x 10 <sup>6</sup>      |
| (bleached) |              | $\pm 0.09$ | $\pm 0.11$ | ± 0.13     | $\pm 3.8 \text{ x } 10^4$  |
| $(T_3)$    |              |            |            |            | *                          |
|            | C. mcneilli  | 2.03       | 0.72       | 0.03       | $3.6 \times 10^6$          |
|            |              | $\pm 0.27$ | $\pm 0.10$ | $\pm 0.12$ | $\pm 4.6 \text{ x } 10^5$  |
|            |              | (4)        |            | (1,2)      |                            |
| August     | P. versipora | 0.80       | 0.18       | 0.10       | $1.9 \ge 10^6$             |
| (recovery) | _            | $\pm 0.16$ | $\pm 0.04$ | $\pm 0.04$ | $\pm 0.9 \text{ x } 10^5$  |
| $(T_4)$    |              |            | (0,1)      |            | *                          |
|            | C. mcneilli  | 1.22       | 0.25       | 0.12       | 3.7 x 10 <sup>6</sup>      |
|            |              | ± 0.13     | $\pm 0.10$ | $\pm 0.05$ | $\pm 3.9 \text{ x } 10^5$  |
|            |              | (3)        |            |            |                            |
|            |              |            | 1          |            |                            |



Supplementary Figure S1: Annotated photo of bleached and pale *P. versipora* colonies from Fairlight.



**Supplementary Figure S2:** Relationship between gross photosynthesis and *Symbiodinium* density over the experimental period (December T<sub>0</sub>- August T<sub>4</sub>) for *P. versipora* (left panel) and *C. mcneilli* (right panel).



**Supplementary Figure S3:** Gross photosynthesis per symbiont cell density over the experimental period (December  $T_0$ - August  $T_4$ ) for *P. versipora* (left panel) and *C. mcneilli* (right panel).



**Supplementary Figure S4.** Bacterial community composition (relative abundance %) of *P. versipora* for pre-anomaly (healthy), active anomaly healthy, active anomaly bleached and post-anomaly (recovered). Data is shown at the class level where possible. Shown taxon have a relative abundance >5%. The low abundance category contains the sum of all genera that made up <5% of the community. UC: Unclassified.



**Supplementary Figure S5.** Bacterial community composition (relative abundance %) of *C. mcneilli* for pre-anomaly (healthy), active anomaly healthy, active anomaly bleached and post-anomaly (recovered). Data is shown at the class level where possible. Shown taxon have a relative abundance >5%. The low abundance category contains the sum of all genera that made up <5% of the community. UC: Unclassified.



**Supplementary Figure S6:** February (pre-bleaching) dominant OTU mean proportion comparison for *P. versipora* (green) and *C. mcneilli* (purple). PERMANOVA; p = 0.014, t= 1.33 (significantly different).



**Supplementary Figure S7:** August (recovery) dominant OTU mean proportion comparison for *P*. *versipora* (green) and *C. mcneilli* (purple). PERMANOVA; p = 0.004, t = 1.584 (significantly different).