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Abstract
This and the companion paper present a constitutive model for granular materials with evolving contact structure and con-
tact forces, where the contact structure and contact forces are characterised by some statistics of grain-scale entities such as 
contact normals and contact forces. And these statistics are actually the “fabric” or “force” terms in the “stress–force–fabric” 
(SFF) equation. The stress–strain response is obtained by inserting the predicted “fabric” or “force” terms from evolution 
equations into the SFF equation. Discrete element modelling is used to verify the slightly modified SFF equation and also 
to obtain the data of how the contact structure and contact forces evolve in various loading paths. It is demonstrated that a 
normalised contact force is a better measure of the contact forces in polydisperse granular assemblies and strong contacts 
should be contacts with larger normalised contact forces. The modified SFF equation is shown to predict the stress accurately. 
The constitutive equations regarding the response of the contact structure and contact forces are presented and they along 
with the SFF equation form a constitutive model, which is found capable of capturing the observed phenomena correctly and 
predicting the mechanical response in various loading conditions. The model is shown to be an extension to the hypoplastic 
models with more state variables.

Keywords  Constitutive model · Stress–force–fabric relationship · Hypoplasticity · DEM · Granular materials

List of symbols
�	� Deviatoric tensor measuring anisotropy of con-

tact normals
�	� Directional coordination number
D	� Diameter of grain
E	� Elastic modulus of grain
EPDF(n)	� Probability density function of contact normal
e	� Void ratio
f gc	� Contact force on grain g at contact point c
f n,gc	� Normal contact force
f t,gc	� Shear contact force
f̃
gc

	� Normalised contact force
�	� Deviatoric tensor measuring anisotropy of nor-

mal contact forces

�
t	� Deviatoric tensor measuring mobilisation of 

contacts
I	� Inertia number
kn,t,r	� Elastic stiffness of contacts
mg	� Mass of grain g
Mgc	� Contact moment on grain g at contact point c
ngc	� Contact normal on grain g at contact point c
Ng	� Number of grains
Nc	� Number of contacts
p	� Mean stress
q	� Deviatoric stress in triaxial settings
rg	� Position vector of grain g
ut,gc	� Relative shear displacement
V	� Volume
Z	� Coordination number
�n,t	� Viscous damping constants
�gc	� Penetration depth at contact c
�z	� Axial strain in triaxial settings
𝜀̇v	� Volumetric strain rate
�̇	� Strain rate tensor
�̇	� Deviatoric strain rate tensor
�b,gc	� Relative bend rotation
�	� kn∕ks
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Λ	� Equation 24
Λ

n
(n)	� Average normalised normal contact force in 

direction n
�	� Friction coefficient at contacts
�r	� Rolling resistance coefficient at contact
�grain	� Density of grains
�	� Stress tensor
Ω	� Solid angle

1  Introduction

The constitutive modelling of granular materials is a popular 
topic [1–3] in the research community because it is impor-
tant not only in understanding the material but also in the 
numerical investigation of various geotechnical problems 
[4–6]. Granular materials are conventionally modelled as 
continuum media because a body of interest in the prob-
lem-scale (such as a landslide mass) can be continually sub-
divided into infinitesimal elements with similar properties to 
those of the bulk material, which is due to the fact that there 
are still a great number of grains in the infinitesimal ele-
ments such that the fluctuation of macro-measurable entities 
is negligible. At every continuum point, physical quantities 
should be actually seen as statistics of the grain-scale entities 
over a representative volume element (RVE), which contains 
a large number of grains and voids. The classic continuum 
mechanical descriptions, such as the yield surface, flow rule 
and hardening rule, are summarised from observations of 
experiments [2, 7].

With recent developments in experimental technology 
[8–10] and grain-based numerical algorithms [11, 12], direct 
observation and quantitative measurement of grain-scale 
data and processes offer researchers opportunities to study 
and inspect granular materials at the grain-scale. Oda [8] 
was among the first to study the anisotropy of contact struc-
ture and grain orientations (both are the fabric). Kanatani 
[13] studied directional functions such as the probability 
density function of contact normal, approximated them with 
Fourier–Laplace series, defined several fabric tensors and 
unveiled their relationship. Through experiments [8–10, 14], 
the soil has been shown to be highly anisotropic in terms of 
fabric entities associated with orientation of particles, voids, 
contact normal vectors, etc. and this anisotropy of fabric 
significantly influences the response of soils. These micro-
mechanical findings have inspired and been incorporated 
into classic models. For example, Dafalias and Li [15] devel-
oped a model for inherently anisotropic sands. In the model, 
some classic ingredients such as the critical state line and 
plastic modulus are functions of a scalar-valued parameter 
measuring the inherent anisotropy. In their later models [16], 
a fabric tensor enters the framework as an internal variable 
and a rate equations of evolution is developed for it.

In terms of analytical study in micro-mechanics, Roth-
enburg and Bathurst [17] were the first to realize that aver-
age contact forces are also directionally distributed and 
they presented a stress–force–fabric (SFF) relationship for 
two-dimensional (2D) systems, which establishes a con-
nection between the stress state and the grain-scale meas-
ures of contact structure (“fabric” term) and contact forecs 
(“force” term). A large number of related studies have been 
conducted in the next several decades, which are mostly 
about exploring how anisotropic features influence the shear 
resistance of granular materials and how the “force” and 
“fabric” terms change under various kinds of loadings [18, 
19] because the SFF equation is only an equation of stress 
and does not explicitly contain deformation. One possible 
approach of constitutive modelling is that, if evolution equa-
tions for both “force” and “fabric” terms under deformation 
are developed, the predicted “force” and “fabric” terms are 
then inserted into the SFF equation and a stress–strain rela-
tionship is naturally obtained. Therefore, in this framework, 
the SFF equation and evolution equations form the full con-
stitutive model, which is also the primary aim of the present 
study. However, these “force” and “fabric” terms are defined 
on grain-scale entities, which are very hard to determine 
unless highly idealised discrete element modelling (DEM) 
is used. In real sands, not only the contact are complex, but 
also the shape of grains is irregular. The DEM simulations 
are far from capturing the physical picture. Thence the pro-
posed study may be more appealing in the understanding 
of some grain-scale mechanism and also possibly in giv-
ing some insights to constitutive modelling, rather than in 
numerical investigations where model parameters are cali-
brated from tests of real materials.

In this part, the stress and strain obtained from DEM tests 
serve as the “experimental” results of our virtual granular 
material. Grain-scale entities are also recorded in DEM and 
these data are used to calculate the the “force” and “fabric” 
terms. These terms are firstly inserted into the SFF equation 
to verify the accuracy. Secondly, these terms can also serve 
as observations of how contact structure and contact forces 
change under deformation and rate equations with model 
parameters are proposed for them. In the constitutive model, 
the “force” and “fabric” terms are not from DEM results any 
more, but from rate equations and these terms are inserted into 
the SFF equation to predict the stress, which is compared to the 
stress from DEM to examine the performance of the model. 
The detailed description of the granular assembly of interest, 
contact model, parameters, simulation procedure is given in 
Sect. 2. In Sect. 3, firstly, the SFF equation is briefly recapped 
and related notations are introduced. and we show that for 
polydisperse granular assemblies, strong contacts should be 
the contacts with larger normalised contact force and also 
the benefit of using normalised contact force in SFF analysis. 
In Sect. 4, the normalised contact force leads to our slightly 
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different SFF equation and in our derivation, the uncorrelated 
assumption between contact vector and contact force is not 
necessary. The constitutive model and some discussions are 
presented in Sect. 5.

2 � Discrete element modelling

Discrete element simulations have been used to verify the 
modified stress–force–fabric relationship and also to obtain 
the data of contact structure and contact forces such that their 
response under deformation could be observed, summarised 
and a constitutive model could be built.

The commercial software PFC3D is used in this study. 
The granular material of interest is an assembly of spheri-
cal grains, which have a mean diameter D of 0.17 mm with 
± 20% dispersion (uniform distribution). The mean diam-
eter is chosen similar to that of Toyoura sand [20]. A roll-
ing resistance liner model is used for the contacts. Given a 
grain g and one of its neighbouring grain b. They have posi-
tion vectors ( xg , xb ), velocities ( vg , vb ), angular velocities 
( �g , �b ) and diameters ( Dg , Db ). If the penetration depth 
�c = (Dg + Db)∕2 − |xg − xb| is positive, they are in contact 
(the contact point is denoted as c) and grain g experiences a 
force f gc = f n,gc + f t,gc and a rolling resistance moment Mgc 
from grain b. The contact forces are also divided into an elas-
tic part and a viscous part ( f ∗,gc = f ∗e,gc + f ∗v,gc ). They are 
calculated as:

where ngc is the contact normal on grain g at contact point 
c, m∗ = mgmb∕(mg + mb) is the effective mass, kn,t and �n,t 
are the elastic stiffness and viscous damping constants, 
Δvt,c is the relative shear velocity at the contact c and 
Δ�b,c is the relative bend rotation. Equations 2 and 3 are 
in an incremental style. The normal stiffness kn is calcu-
lated as kn = [�∕2]ED∗ , where E is the elastic modulus and 
D∗ = DgDb∕(Dg + Db) is the effective diameter. The ratio 
between the normal and tangential stiffness � = kn∕kt is 
fixed for all contacts. The rolling stiffness is calculated as 
kr = kt(D

∗∕2)2 . Both the tangential contact force and the 
rolling resistance moment have limits, which are imposed as 
|f t,gc| ⩽ �|f n,gc| and |Mgc| ⩽ �rD

∗|f n,gc|∕2 , respectively. The 

(1)
f n,gc = (f ne,gc + f nv,gc)(−ngc) =

�
kn𝛿

c + 2𝛽n
√
m∗kn𝛿̇

c
�
(−ngc)

(2)
f t,gc = f te,gc + f tv,gc =

��
f te,gc

�
0
+ ktΔv

t,cΔt
�
+ 2�t

√
m∗ktΔv

t,c

(3)Mgc = (Mgc)0 + krΔ�
b,cΔt

rolling moment is introduced to model some physical phe-
nomena existing at contacts [21] such as the uneven distribu-
tion of contact pressure, plastic deformation around contacts, 
surface adhesion, etc. Most importantly, it is included to 
compensate for the lost rolling resistance due to the use of 
spherical grains in DEM.

The density of quartz (a very common sand mineral) is 
2650 kg/m3 and this value is used for �grain . The viscous damp-
ing constants ( �n and �s ) are chosen as 0.2, which is equivalent 
to a restitution coefficient of about 0.5. A relatively small 
Young’s modulus ( E = 0.15GPa ) [22] is used such that a 
greater time step ( Δt ∼

√
m

E
 ) can be used and simulations are 

speeded up slightly. It is not recommended to have � greater 
than 0.5 [23], therefore, 0.4 is used in this study. Regarding the 
rolling resistance coefficient ( �r ), although a higher value can 
lead to higher critical state strength that is comparable to real 
sand, a small value 0.1 is used here because the higher critical 
state strength of real sands is due to other unconsidered physi-
cal effects. In summary, the DEM model parameters are listed 
in Table 1.

All the simulations are performed in 3D periodic domains 
(explained by Thornton [24]) without gravity. Periodic simu-
lations have an advantage over wall-controlled simulations in 
that specimens are homogeneous over large strain scales. In 
wall-controlled simulations, close to the rigid walls, the void 
ratio can be larger than that far away from walls. Additionally, 
the contact normals between grains and rigid walls constitute 
a large portion of whole contacts due to the limited number 
of grains used in DEM and they will always be perpendicular 
to the wall.

Specimens are generated by randomly inserting grains 
within a cuboidal domain (each side is 4 mm long) with the 
possibility of overlap until a target void ratio is achieved. Then, 
the domain is enforced to have no deformation, contacts are 
created and specimens are left to reach a stable state in two 
steps. In the first step, different combination of � and �r is 
used to have various specimens and in the second step, � and 
�r are fixed as in Table 1. Specimens with a variety of initial 
densities (density is defined relative to the critical state line in 
this paper) can be obtained. Depending on the void ratio, the 
number of grains in a specimen ranges from 13,800 to 15,000.

Several axisymmetric loading paths considered in this study 
are: (a) constant volume triaxial compression (CV), which 
approximates the conventional undrained triaxial tests in lab-
oratory; (b) constant radial stress triaxial compression (CR), 
which approximates the conventional drained triaxial tests; (c) 
constant mean stress triaxial compression (CP), which keeps 

Table 1   DEM simulation 
parameters

D (mm) �grain (kg/m3) E (GPa) � �n �s � �r

0.17 ( 1 ± 20%) 2650 0.15 2 0.2 0.2 0.4 0.1
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the mean stress constant and compresses the specimen in the 
axial direction; (d) isotropic compression (ISOC), which com-
presses the specimen at identical rates in all three directions 
and (e) isotropic dilation (ISOD). During simulations, the 
strain ( � ) and strain rate ( 𝜺̇ ) are estimated from the size and 
deformation of the periodic domain and the stress is estimated 
from the grains by the Love’s equation as in the literature [17, 
25]:

Here, V is the volume of RVE, the contact vector lgc is the 
vector pointing from the centre of gravity of grain g to the 
contact point c. The summation is performed over all con-
tacts ( c ∈ g ) of every grain ( g ∈ V  ) in RVE. Wensrich [26] 
argued that when contact moment is introduced, the contact 
vector lgc should be shifted by an eccentricity vector calcu-
lated from the moment and the normal contact force. How-
ever, his analysis is based on the assumption that contact 
moment arises solely from uneven distribution of contact 
pressure. However, in most DEM simulations, the contribu-
tion of this source to the contact moment is negligible. And 
contact moment is introduced mostly to model the missing 
rolling resistance due to the use of spherical grains. We have 
also conducted several wall-controlled triaxial simulations 
where the stress could be estimated directly from the wall, 
it is found that the estimation of Eq. 4 is very accurate even 
with contact moment.

In the present study, compressive stress and strain are 
defined as positive. The z axis is in the axial loading direc-
tion, therefore, �z is the axial strain. the deviatoric stress is 
q = �1 − �3 , the mean stress is p = (�1 + �2 + �3)∕3 and the 
void ratio is denoted as e.

In stress-controlled simulations (e.g. CR and CP tests), a 
servo-control mechanism is used and the strain rate is esti-
mated from the following equation if a target stress �t is 
expected.

where ∗ can be x, y or z and indicates the direction, �c
∗
 is the 

current stress in direction ∗ , A∗ is the face area of the cuboi-
dal domain. The stiffness K∗ is estimated from the stiffness 
of all contacts.

where Nc is the number of contacts in RVE and n∗ is the 
directional unit vector. For the smooth control of the speci-
men, the strain rate is actually a weighted average of the 
value calculated from Eq. 5 at current step and at previ-
ous step (i.e. 𝜀̇∗ = 0.25[𝜀̇∗]t + 0.75[𝜀̇∗]t−Δt ). All simulations 

(4)� = −
1

V

∑

g∈V

∑

c∈g

lgc ⊗ f gc

(5)𝜀̇∗ =
1

K∗Δt

(
𝜎t
∗
− 𝜎c

∗

)
A∗

(6)K∗ =
1

Nc

∑

g∈V

∑

c∈g

kgc
n
(ngc ⋅ n∗) + k

gc

t (1 − ngc ⋅ n∗)

are conducted with p below 3 MPa such that the average 
penetration rate of contacts ( �c∕D ) is smaller than 2% and 
the small-overlap assumption of DEM is not violated. Also, 
the grains are far from breakage such that crushability does 
not enter into play [27]. da Cruz et al. [28] suggested that 
the quasi-static regime is achieved when the inertia number 
I = |𝜺̇|D(�grain∕p)1∕2 is smaller than 10−3 and the norm of a 
tensor is its Euclidean norm. In the present shear tests, the z 
direction is displaced at a constant strain rate of 𝜺̇z = 10 s−1 , 
therefore, even at the lowest p of 0.1 MPa, I is smaller than 
3 × 10−4 and quasi-static deformation condition is met.

Figure 1 presents the e–p path of some shear tests. It could 
be seen that the initial density of specimens spans a wide 
range, they all converge towards a unique critical state e–p 
line after undergoing either kind (CV, CR or CP) of shearing, 
which agrees with laboratory observations of real sands [20]. 
However, because spherical grains are used in DEM, the void 
ratios are as expected smaller than that of real sands. One thing 
to note is that in CV simulations, the specimens are sheared at 
strain rate with zero volumetric term. For some CV tests where 
p changes dramatically (For example, tests with e0 = 0.606 
in Fig. 1), the volume of the specimen does not change, but 
the void ratio changes slightly because when the void ratio is 
estimated in this study, we account for the volume of the small 
overlap between contacting grains. And this volume undergoes 
noticeable changes when p changes dramatically, which leads 
to the small variation of e. The critical state strength is found 
to be M = 0.92 . However, most real sands have M greater 
than 1. For example, M = 1.25 for Toyoura sand [20]. This is 
because some other physical effects are not considered in the 
highly idealised DEM model such as the irregular shape effect 
of grains, surface adhesion at contacts, etc. and these effects 
can contribute to the critical state strength as well. It is also 
possible that M in DEM is comparable to that of real sand if 

0.2 0.5 1 2 3

0.6

0.65

0.7

0.75

0.8
Critical state
Initial state
CV path
CP path
CR path
Model prediction

Fig. 1   e–p path for various monotonous shear tests
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higher values of � and �r are used. But in this case, the higher 
values of � and �r are “unrealistic” and we prefer to use the 
“realistic” DEM parameters here.

3 � Normalised contact force

The SFF equation relates the stress of granular material 
to some statistics of grain-scale entities which have clear 
physical meanings. The derivation of the SFF equation is 
extensively discussed in the literature [17, 25]. Firstly, The 
summation in Eq. 4 can be grouped within different contact 
normal ( n ) directions as in the following equation. Please 
note that two grains are in contact at one point, lgc and f gc 
are different on the two grains and therefore two different 
contacts are considered in the present study.

where Ω is the solid angle and it represents all possible 
orientations of the contact normal n . Denote EPDF(n) as 
the probability density function of contact normal, it has 
∫
n∈Ω

EPDF(n)dΩ = 1 and there are Nc(n) = NcE
PDF(n)dΩ 

contacts whose normal is in direction n . Denote the average 
of lgc ⊗ f gc for contacts in direction n as l⊗ f (n) , Eq. 7 can 
be written as

Subsequently, distributions of l(n) and f (n) are assumed 
uncorrelated and therefore l⊗ f (n) = l(n)⊗ f (n) . In the 
next step, the directional functions ( EPDF(n) , l(n) and f (n) ) 
are approximated by the Fourier–Laplace series [17]. For 
example, EPDF(n) can be approximated by the following 
second-order approximation in the present study

where the fabric tensor � is a second-order deviatoric tensor 
measuring the anisotropy of contact normals. It is calculated 
as a statistic of the contact normals in the RVE using the 
following equation.

where � is the isotropic unit tensor. f (n) can be approximated 
by the following second-order approximation [17].

(7)� = −
1

V

∑

n∈Ω

Nc(n)∑

j=1

lgc ⊗ f gc

(8)

� = −
Nc

V

∑

n∈Ω

l⊗ f (n)EPDF(n)ΔΩ = −
Nc

V ∫n∈Ω

l⊗ f (n)EPDF(n)dΩ

(9)EPDF(n) =
1

4�
[1 + (n)T�n]

(10)� =
15

2

[
1

Nc

Nc∑

k=1

nk ⊗ nk −
1

3
�

]

(11)f (n) = −f n[1 + (n)T�nn]n − f n(�tn − [(n)T�tn]n)

where f n is the average normal force over all directions, �n 
and �t are deviatoric tensors for normal and tangential force, 
respectively. l(n) ≈ Dn∕2 . The last step is to substitute all 
the Fourier–Laplace approximations into Eq. 8 and the fol-
lowing SFF equation is obtained if only lower-order terms 
are considered.

For a polydisperse granular RVE whose diameter of grains 
ranges from D0 to DNd

 . The grains can then be grouped 
into Nd groups, where the diameter for grains in group k is 
between Dk−1 and Dk . The summation in Eq. 4 can then be 
grouped not only based on n , but also based on the diameter 
D.

The inner is the summation of lgc ⊗ f gc for the Nc(n, k) con-
tacts whose corresponding grain has diameter between Dk−1 
and Dk and the contact normal is in direction n . Taking a 
similar procedure as the one from Eqs. 7 to 8, one has

where Nc(k) is number of contacts on grains in group k. 
Therefore, the contact network is partitioned into Nd distinct 
subsets, where the union of all Nd subsets form the complete 
contact network. The stress tensor is contributed by 
�N(k) = −

Nc

V
∫
n∈Ω

l⊗ f (n, k)EPDF(n, k)dΩ of each subset 

with a weight of Nc(k)

Nc

.

Similarly, an SFF equation for the polydisperse granular 
RVE is obtained:

where D(k) , f n(k) , �(k) , �n(k) , �t(k) are for group k only.
However, Eq. 14 can be re-arranged and re-interpreted. 

Firstly, V = (1 + e)Vg , where Vg =
∑Nd

k=1
Vg(k) is the total 

volume of grains. For each subset, Vg(k) = Ng(k)�D
3
k
∕6 . 

Define Z = Nc∕Ng as the coordination number and also 
Z(k) = Nc(k)∕Ng(k) . With these definitions, Eq.  14 is 
expressed as:

(12)� =
NcDf

n

3V

[
� +

2

5

(
� + �

n +
3

2
�
t
)]

(13)� = −
1

V

Nd∑

k=1

∑

n∈Ω

Nc(n,k)∑

j=1

lgc ⊗ f gc

(14)� = −
Nc

V

Nd∑

k=1

Nc(k)

Nc
∫n∈Ω

l⊗ f (n, k)EPDF(n, k)dΩ

(15)� =

Nd∑

k=1

Nc(k)

Nc

�
N(k)

(16)

� =

Nd∑

k=1

Nc(k)

Nc

NcD(k)f
n(k)

3V

[
� +

2

5

(
�(k) + �

n(k) +
3

2
�
t(k)

)]
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Different from Eq. 15, this equation means that the total 
stress tensor is contributed by �V(k) of each subset with a 
weight of Z(k)

Z

Vg(k)

Vg

 , where Z(k)
Z

 is a ratio of coordination num-

bers, Vg(k)

Vg

 is the volume fraction of subset k. �V(k) is

Here, some properties of spherical grains are used such as 
the contact vector is always in the direction of contact nor-
mal lgc = ��(D∕2)ngc . Because two contacting grains have 
a small overlap, the magnitude of contact vector is slightly 
smaller than the radius and �′ here (slightly smaller than 1) 
is to correct this. A normalised contact force can be defined 
f̃
gc
= 3��f gc∕(�D2) and Eq. 17 is expressed as

A DEM simulation is conducted to investigate �N(k) and 
�V(k) of each subset. During a CV test of a dense specimen 
( p0 = 0.21 MPa and e = 0.606 ), the grains are divided into 
5 groups based on their diameters and both �N(k) and �V(k) 
are calculated and presented in Fig. 2. For comparison, �N(k) 
and �V(k) are normalised with � . It can be seen that coarse 
grains (larger D) have larger �N(k) and their �N(k) could be 
several times larger than that of fine grains. However, Fig. 2 
shows that �V(k) of different groups is approximately the 
same. To better explain this, a 2D example is given in Fig. 3. 
A specimen (Fig. 3a) is sustaining an external deviatoric 
stress with �zz∕�xx = 2.0 . The specimen is stratified and the 
grains in upper stratum have greater diameter than those 

(17)

� = −
1

1 + e

Nd∑

k=1

Nc(k)

Vg
∫n∈Ω

l⊗ f (n, k)EPDF(n, k)dΩ

= −
1

1 + e

Nd∑

k=1

Nc(k)

Vg

Vg(k)

Ng(k) ∫n∈Ω

6

𝜋D3
k

l⊗ f (n, k)EPDF(n, k)dΩ

= −
Z

1 + e

Nd∑

k=1

Z(k)

Z

Vg(k)

Vg
∫n∈Ω

6

𝜋D3
k

l⊗ f (n, k)EPDF(n, k)dΩ

=

Nd∑

k=1

Z(k)

Z

Vg(k)

Vg

�
V(k)

(18)

�
V(k) = −

Z

1 + e ∫n∈Ω

6

𝜋D3
k

l⊗ f (n, k)EPDF(n, k)dΩ

= −
Z

1 + e

1

Nc(k)

∑

Dk−1<D<Dk

6

𝜋D3
lgc ⊗ f gc

= −
Z

1 + e

1

Nc(k)

∑

Dk−1<D<Dk

ngc ⊗
3𝜆�

𝜋D2
f gc

(19)

� = −
Z

1 + e

Nd∑

k=1

Z(k)

Z

Vg(k)

Vg
∫n∈Ω

n⊗ f̃ (n, k)EPDF(n, k)dΩ

below. Figure 3b gives the contact forces between grains 
and warmer colour means larger contact forces. Therefore, 
the average contact force in the upper stratum is larger than 
that in the bottom stratum and strong contacts concentrate 
in the upper part of specimen, which corresponds to the fact 
that coarse grains have larger �N(k) . Figure 3c gives the 
normalised contact forces and it can be seen that contacts 
with larger f̃  scatter around the whole specimen, but primar-
ily oriented along z axis (the direction of major principal 
stress), which corresponds to the fact that grains of different 
groups have similar �V(k) . It is extensively addressed in the 
literature that strong contacts are the dominant source in 
sustaining the deviatoric stress [25, 29, 30]. For the case in 
Fig. 3, strong contacts concentrate in the upper part, does 
it mean that the stress in the bottom part is less deviatoric? 
This is clearly not the case and the evaluated stress tensor 
in both the top and bottom parts is actually the same with 
�zz∕�xx = 2.0 . Therefore, in the analysis of polydisperse 
granular assemblies, strong contacts should be the contacts 
with larger normalised contact force.

Another benefit of using normalised contact force is that 
because �V(k) of different groups is approximately the same 
(i.e. �V(1) ≈ �V(2) ≈ ⋯ ≈ �V(Ng) ≈ � ), the summation and 
weight in Eq. 19 can be ignored

Therefore, there is no need to study the SFF of each subset 
as in Eq. 16.

The normalised contact force is actually closely related 
to the penetration rate of contacts. The normal force mod-
elled in this study is f n,gc = −�ED∗�gcngc∕2 if the viscous 
term is ignored. Therefore, the normalised normal con-
tact force is f̃

n,gc
= −(3�∕2)E(�gc∕D∗)ngc , which means 

that it is proportional to the elastic modulus of the mate-
rial and the penetration rate of contact ( �gc∕D∗ ). Generally, 

(20)� = −
Z

1 + e ∫n∈Ω

n⊗ f̃ (n)EPDF(n)dΩ.

Fig. 2   Stresses of grains in different groups
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any dimensionally consistent contact model should have 
similar results. For example, the Hertz–Mindlin model is 
f n,gc = −

4

3
E[�gc]3∕2[D∗]1∕2ngc . The normalised normal 

contact force for it is f̃
n,gc

= −(4�∕�)E(�gc∕D∗)3∕2ngc . The 
only difference is that this relationship reveals a power pro-
portionality. The coarse and fine grains have similar nor-
malised contact forces and therefore, they have similar pen-
etration rate ( �gc∕D∗ ). In the present study, a new notation 
( �gc = f̃

gc
∕E ) is introduced and it is also a normalised con-

tact force. However, it is dimensionless and it implies pen-
etration rate of contacts in linear contact models ( �gc∕Dg is 
smaller than 2% in the present study). Accordingly, Eq. 20 is

4 � Modified stress–force–fabric relationship

Subsequently, the techniques used in deriving the SFF equa-
tion [17, 19] can be similarly applied, but here a slightly 
different procedure is used and the uncorrelated assumption 
between l(n) and f (n) is not necessary any more. Firstly, the 
normalised contact force can be decomposed into a normal 
and tangential component ( � = −Λnn + �

t = f̃
n
∕E + f̃

t
∕E ) 

and the following equation is obtained.

Here, Λ
n
(n) is the average normal component of �gc for con-

tacts in direction n and �(n) = −n⊗ �
t(n) is the average of 

the outer product between n and the tangential component 
of �gc . Λ

n
(n) is approximated with a second-order series.

(21)� = −E
Z

1 + e ∫n∈Ω

n⊗ �(n)EPDF(n)dΩ.

(22)

� = E
Z

1 + e

[

∫n

[Λ
n
(n)EPDF(n)]n⊗ ndΩ − ∫n

n⊗ �
t(n)EPDF(n)dΩ

]

(23)Λ
n
(n) = Λ[1 + (n)T�n]

where Λ is a scalar measuring the average of normalised 
normal contact force and � is a second-order deviatoric ten-
sor measuring the anisotropy of normalised normal contact 
force. They are both calculated as statistics of contact nor-
mals and normalised normal contact forces in the RVE as

�(n) is approximated with a zero-order series.

As shown by He et al. [19], �t measures the overall mobilisa-
tion of contacts. It is also a deviatoric tensor and is calcu-
lated as a statistic of contact normals and normalised tan-
gential contact forces.

The last step is to substitute all the Fourier–Laplace approxi-
mations into Eq.  22 and the following SFF equation is 
obtained.

This SFF equation relates the stress to some statistics of 
grain-scale entities (e.g. Z, Λ , � , � , �t , etc.) which have clear 
physical meanings. Ignore the higher-order coupled terms 

(24)Λ =
1

Nc

Nc∑

k=1

Λn,k

1 + (nk)T�nk

(25)� =
15

2

[
1

Λ

1

Nc

Nc∑

k=1

Λn,knk ⊗ nk

1 + (nk)T�nk
−

1

3
�

]

(26)�(n) = Λ�t

(27)�
t =

1

Λ

1

Nc

Nc∑

k=1

−nk ⊗ �
t,k

1 + (nk)T�nk

(C0)

� = E
ZΛ

1 + e

[
1

3
� +

2

15
� +

2

15
� +

2

105
tr(��)� +

8

105
�� + �

t
]

Fig. 3   An example to illustrate 
the difference between contact 
force and normalised contact 
force
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involving � and � (relatively smaller than other terms), the 
mean stress p, the deviatoric stress tensor � = � − p� and the 
stress ratio �∕p can be written as

This means that the mean stress p of granular material is 
proportional linearly to the elastic modulus E of the grain, 
the coordination number Z, a statistic Λ measuring the aver-
age of normalised normal contact force and the solid fraction 
� = 1∕(1 + e) . The stress ratio �∕p is related to three dimen-
sionless deviatoric tensors ( � , � and �t ). In other words, the 
strength is contributed by three sources: the anisotropy of 
contact structure � , the anisotropy of normal contact force 
� and the mobilisation of contacts �t.

The SFF equation is from rigorous derivation and some 
“edge” cases can also be inferred form it. Firstly, � = � if (a) 
E = 0 , which means that the grains are so soft to sustain any 
external load, the stress of the assembly can therefore only 
be zero; or (b) the coordination number Z is zero, which is 
only possible when the grains in an RVE are not in contact 
at all. In this case, the RVE is not sustaining any external 
load and the stress is zero; or (c) the void ratio is infinity, 
which means that in a RVE, there is no grains, the stress is 
of course zero; or (d) the average normalised contact force 
Λ is zero, which means that although the grains in an RVE 
can have geometric contacts, the contact forces are zero. In 
this case, due to the balance of forces for boundary grains, 
the external forces are also zero and the stress is zero. The 
stress is isotropic if 2

5
� +

2

5
� + 3�t = � . One trivial case is 

that all the deviatoric stress tensors are zero. Another pos-
sibility is that the contact structure and the normal contact 
forces are both anisotropic and �t is zero, but 2

5
� +

2

5
� = � . 

This corresponds to the consolidation of specimen with ini-
tial fabric anisotropy.

To verify the SFF equation, the “force” and “fabric” 
terms are calculated from DEM simulations and inserted 
into the SFF equation and results are shown in Figs. 4, 5, 6, 7 
and 8 with dashed lines. It could be seen that all the SFF 
predictions are extremely close to the results from DEM 
simulations. Better results can also be obtained if higher-
order terms in the Fourier–Laplace are used. For exam-
ple, Sufian et al. [25] used fourth-order approximation for 
EPDF(n) instead of two.

(28)p =
1

3
E

ZΛ

1 + e

(29)� = E
ZΛ

1 + e

[
2

15
� +

2

15
� + �

t
]

(30)
�

p
=

2

5
� +

2

5
� + 3�t

5 � Constitutive model and discussion

The major aim of this paper and the companion paper is 
to build a constitutive model around the SFF equation. If 
all the variables in the right hand side of Eq. C0 could be 
appropriately modelled by several equations of incremen-
tal type, a constitutive model is immediately obtained. In 
this approach, more state variables are introduced and also 
more equations are required. However, as a result, the state 
of granular materials is also more precisely defined. The 
constitutive equations regarding the response of the contact 
structure and contact forces are explained in detail in the 
companion paper and they are listed here

where �c = Ac �̇

|�̇| , �
c = Fc �̇

|�̇| and �tc = Ftc �̇

|�̇| are the critical 
state value of � , � and �t , respectively. Zc and Λc are the critical 
state coordination number and critical state normalised normal 
contact force. They are related to the void ratio and fitted by 
equations (e.g. Zc(e) = 4 + ccZ(ecmax − e)�cZ and Λc(e) =

ccΛ(ecmax − e) ). f d,A = exp(�dA[Λ
c − Λ]) , f e,A = ceA∕Λ

�eA , 
f e,Z = ceZexp(�eZ[Λ

c − Λ]) , f e,F = [|�c|∕|�c|]f e,A , f d,F = f d,A 
and f e,Λ = ceΛΛ

�Λ f e,Z are stiffness functions. f v,Z and f v,Λ are 
coefficients to model the response of Z and Λ under volumetric 
deformation and the following equations are found to model 
the observed phenomena. The proposed constitutive equations 
(Eqs. C1–C5) together with the SFF equation form a constitu-
tive model and the model parameters for the material of inter-
est is listed in Table 2. There are overwhelming number of 
parameters in the model. This is partly due to the complexity 
of granular materials, which also makes the study of them con-
stantly a popular topic. For example, at least five model param-
eters in the evolution equations of Z or Λ are to account for the 
rate under volumetric deformations. However, if we are inter-
ested only in the response under shear deformation other than 
the ISOC or ISOD deformations, a single parameter is found 
enough. Additionally, it is highly possible that some parame-
ters are not specific for a single granular material, but applica-
ble to all granular materials and therefore, it is not necessary 
to calibrate them. For example, the equation for � has several 
model parameters. The mechanism of contact number change 
is the same for all granular materials, so do we really need to 
have different parameters for this equation for different granu-
lar materials? These questions are not within the primary aim 
of the present study and therefore are saved for later research.

(C1)�̇ = f e,A|f d,A�c − �|𝛾A
(
f d,A�c − �

)
|�̇|

(C2)Ż = f e,Z(Zc − Z)|�̇| + f v,Z 𝜀̇v − cZf e,Z|�̇|

(C3)�̇ = f e,F|f d,F�c − �|𝛾F
(
f d,F�c − �

)
|�̇|

(C4)Λ̇ = f e,Λ|�|(Λc − Λ)|�̇| + f v,Λ𝜀̇v

(C5)�̇
t = cM

(
�
tc − �

t
)
|�̇|



A constitutive model for granular materials with evolving contact structure and contact forces—…

1 3

Page 9 of 16  16

Here, Zcom(e) = 4 + ccom(ecmax − e)�cz characterise a com-
pression line in the e − Z space.

5.1 � Hypoplastic nature

This model could be essentially categorised into the family 
of hypoplastic models [1]. Firstly, within this model there 
is no need to define the loading–unloading criteria or to 
decompose the total strain rate into elastic and plastic parts. 
Additionally, taking a total differential of the SFF equation 
and ignoring the higher-order coupled terms, the following 
incremental equation regarding the stress is obtained.

Considering the format of the constitutive equations 
(Eqs. C1–C5), Eq. 33 could be conceptually expressed as

Therefore, this model can be seen as an extension to the 
hypoplastic models [1] by adding more state variables. e, 
Z and Λ appear in both linear and non-linear terms and 
they are mostly to measure the compaction of the materi-
als. In the literature, a number of similar parameters (such 
as the state parameter in Dafalias [2]) have been used for 
the same purpose. The anisotropy of contact structure and 
contact force only enter into the non-linear term, which sug-
gests that for the extension of existing hypoplastic models 
in literature to account for the fabric effect, a fabric tensor 
should be regarded as an internal variable and added into 

(31)f v,Z =

{
exp(𝛽vZ[Z

com − Z])
dZcom

de
(1 + e) 𝜀̇v > 0

cvZ∕Λ 𝜀̇v < 0

(32)f v,Λ =

{
ccΛ(1 + e) 𝜀̇v > 0

cvΛd(1 + e) 𝜀̇v < 0

(33)
�̇ =

�

Z
Ż +

�

Λ
Λ̇ −

�

1 + e
ė +

2E

15

ZΛ

1 + e
�̇ +

2E

15

ZΛ

1 + e
�̇ + E

ZΛ

1 + e
�̇t

(34)
�̇ = Lv(e,�, Z,Λ)𝜀̇v� + Ls(e,Z,Λ)�̇ + �(e,�, Z,Λ,�, �, �t)|�̇|

the non-linear term. Also, a seperate evolution equation for 
it is needed.

5.2 � Performance

Model predictions are compared with virtual experimen-
tal results in Figs. 4, 5, 6, 7 and 8. The stress and strain 
obtained from DEM tests are plotted in solid lines. For both 
the dashed lines and dotted lines, the stress is obtained by 
inserting the “force” and “fabric” terms into the SFF equa-
tion. The difference is that in the verification of SFF equa-
tion, both these terms are calculated as statistics of grain-
scale entities, but in the constitutive model, they are from 
evolution equations.

Figure 4 gives the results of some CV tests at different 
void ratios. Some key phenomena observed in undrained 
triaxial tests of real sand [20] can also be found in DEM 
simulations. For example, specimens ultimately reach the 
same p–q line ( M = 0.93 ) irrespective of the void ratio or 
initial confining pressure. The stiffness and the peak strength 
is largely affected by the initial state ( Denser specimens 
have higher stiffness and peak strength). Additionally, in the 
p–q diagram, the hook-type response of medium dense sam-
ples (p decreases initially before q∕p = M and then, increase 
along the q∕p = M line) can also be observed as shown in 
the inset of Fig. 4a and the rightmost line in Fig. 4e. How-
ever, this effect is far less profound than that in real sands. 
As shown in the companion paper, the coordination num-
ber Z has initially a decreasing trend in CV tests and this 
decrease of coordination number can lead to the decrease of 
p. Due to the use of spherical grains in DEM, Z is smaller in 
DEM than in real sands and the decreasing trend is also less 
profound, which can probably explain the insignificance of 
the hook-type response.

Figure 5 presents the results of some CR tests at different 
confining pressure. Similar to real sands [20], depending 
on the initial state, specimens may have different stiffness 
and peak strength. They all reach the critical state at large 

Table 2   Parameters of the constitutive model

Critical state

ecmax ccZ �cZ ccΛ Ac Fc Ftc

0.76 5.57 0.7 0.098 0.45
√
3∕2 0.77

√
3∕2 0.045

√
3∕2

Contact structure

ceA �eA �dA �A ceZ �eZ cZ ccom cvZ �vZ

1.0 0.65 35 0.4 4.96 70 0.125 7.2 0.3 3

Contact force

�F �Λ ceΛ cvΛd cM

0.2 0.65 100 0.075 100
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shear strain. Figure 6 presents the results of some CP tests, 
which have similar phenomena to the CR tests. However, the 
initial drop of void ratio for dense specimens are not clearly 
observed in CP tests. Because the critical state is a refer-
ence state in all the equations (Eqs. C1–C5), as long as the 
critical state lines are correctly captured by the fittings (e.g. 
Zc(e) = 4 + ccZ(ecmax − e)�cZ and Λc(e) = ccΛ(ecmax − e) ), the 
model is able to correctly predict the critical state for all 
monotonous shear tests (Figs. 4, 5, 6).

Figure 7 presents some ISOC or ISOD tests in e–p plots. 
Similar to findings in laboratory oedemeter tests, the granu-
lar material is found to be stiffer in compressibility after 
been compressed. The compressbility depends on the void 
ratio and the confining pressure. Figure 8 presents some CP 
cyclic tests. In the cyclic program, p is kept constant at 0.5 
MPa and the shear direction is reversed at a greater axial 
strain than that of the last loop (e.g. at 1%, − 1%, 2%, − 2%, 

3%, − 3% and 4% axial strain). Figure 8b is the response 
of q for a loose specimen ( e0 = 0.77 ) and Fig. 8d is for a 
dense specimen ( e0 = 0.60 ). Figure 8f is the response of e 
for them. For comparison, the monotonous shear at different 
initial densities is also illustrated. The phenomena observed 
in laboratory cyclic shear tests [31] are also found in DEM 
simulations such as the different response of specimens with 
different initial void ratios, the large compressive trend when 
shear direction is reversed, etc.

From Eq. 30, the stress ratio �∕p is only related to the 
deviatoric tensors. Because these tensors are reasonably 
modelled and predicted by Eqs. C1, C3 and C5 as shown 
in the companion paper, the prediction of the stress ratio 
is also good in both monotonous shear tests (Figs. 4, 5, 6) 
and cyclic shear tests (Fig. 8).

The mean stress p under isotropic deformations is 
correctly predicted (Fig. 7) except for a relatively larger 

Fig. 4   CV tests (solid lines are 
DEM results, dashed lines are 
SFF results and dotted lines 
are model predictions). a, b 
e = 0.724 , c, d e = 0.670 , e, f 
e = 0.606
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discrepancy for the compression test of a very dense spec-
imen and the dilation test of a very loose specimen. In 
the stress-controlled tests (CR and CP tests in Figs. 5, 6), 
the specimen is predicted to contract or dilate correctly 

to the critical state void ratio, but the predicted void ratio 
does not fit the DEM results very well. This is even worse 
in cyclic tests. Although the model can predict the con-
traction of a loose specimen and the dilation of a dense 

Fig. 5   CR tests (solid lines are 
DEM results, dashed lines are 
SFF results and dotted lines 
are model predictions). a, b 
�r = 0.5MPa , c, d �r = 1MPa
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Fig. 6   CP tests (solid lines are 
DEM results, dashed lines are 
SFF results and dotted lines 
are model predictions). a, b 
p = 0.5MPa , c, d p = 1MPa
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specimen under cyclic loading, the predicted void ratio 
deviates the DEM results considerably. The reason could 
be that when there is accompanying shear deformations, 
the variation of Z and Λ under volumetric deformation 
does not follow exactly the observations found in ISOC 
and ISOD tests.

An important feature of granular material is the dila-
tancy. Although dilatancy does not appear in the pre-
sent constituve eqautions, from the simulations above, 
the model is able to reproduce some effects related to it. 
For example, the hook-type response in CV tests. This 
is because, for the averge terms (e.g. Z and Λ ), their 
response to volumetric and deviatoric deformations is 
modelled seperatelly.

5.3 � Implications and limitations

It can be shown that, to some extend, this model is able 
to show the different response of specimens with initial 

contact structure anisotropy. For example, an initial fab-
ric anisotropy with a triaxial structure can be denoted as 
�
0 = a1n1 ⊗ n1 − (a1∕2)n2 ⊗ n2 − (a1∕2)n2 ⊗ n2 , where 

a0
1
 is not zero and it measures the magnitude of the initial 

anisotropy. n1 , n2 and n3 are the eigenvectors. Specimens are 
consolidated to an isotropic stress condition before shearing. 
�
t is initially zero. From Eq. C0, the normal contact forces 

must initially be �0 = −�
0[� +

4

7
�
0]−1 to have an isotropic 

stress tensor for the specimen. Considering a specimen with 
�
0 and a1 = 0.3 but different loading directions are applied. 

Denote the angle between n1 and z axis as � ( cos� = n1 ⋅ nz ). 
Figure 9 gives some model simulations with variable � for a 
loose specimen. The simulations show that when the axial 
loading direction is along the major principal direction of 
�|0 ( � = 0◦ ), the response is predicted to the stiffest, which 
also agrees with experimental observations [8, 9]. How-
ever, the predicted influence of fabric is less profound than 
that observed in real sands. For example, it is shown in CR 
tests [8] that, the specimen can behave like very dense sand 
when � = 0◦ , but like very loose sand when � = 90◦ . Also, 
in Yoshimine et al. [14]’s undrained experiments of the same 
specimen, liquefaction may be observed when sheared in 
some direction, but in other directions, the effective stress 
ends up with a very big value. As mentioned several times 
in the manuscript, the DEM model is highly idealised and it 
is still far from capturing the true response of real sands. For 
the case of fabric anisotropy, the real sand grains are irregu-
lar and the orientation of grains is a major source of fabric 
anisotropy in influence the response, but is not considered in 
either DEM model or the constitutive model. Another prob-
lem is with the constitutive equation of � . In the analysis in 
the companion paper, we conclude that the contacts forces 
are important in modelling � , but only a isotropic term Λ 
is included. However, in contact creation, disintegration or 
rotation, the local contacts forces may not be fully charac-
terised by the average Λ . Therefore, � may be the missing 
element and the extension of the present model to account 
for the fabric anisotropy requires further investigation.

One interesting thing to note is that even for initially iso-
tropic specimens ( �0 = � , �0 = � , �t0 = � ), the state is not 
completely known by defining only the confining pressure 
and the void ratio in our model. In other words, different 
specimens can be made by varying the combination of Z and 
Λ to have the same confining pressure and void ratio. Fig-
ure 10 shows some results, where different Z0 is chosen and 
Λ0 is changed accordingly to have specimens at the the same 
initial confining pressure and void ratio. The range of Z0 is 
between 4.2 and 6, which is well in the reasonable range. 
The difference is negligible, but also noticeable. Therefore, 
in geotechnical application, where only the shear deforma-
tion is important, it is not necessary to know the coordina-
tion number due to its limited influence. However, in terms 

Initial state
ISOC or ISOD path

Initial state
ISOC or ISOD path

(a)

(b)

Fig. 7   ISOC and ISOD tests (solid lines are DEM results, dashed 
lines are SFF results and dotted lines are model predictions). a 
e
0
= 0.724 , b e

0
= 0.606
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Fig. 8   CP cyclic test (solid 
lines are DEM results, dashed 
lines are SFF results and dotted 
lines are model predictions). 
p = 0.5MPa . a, b e

0
= 0.77 , c, 

d e
0
= 0.60 , e, f evolution of e 
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Fig. 9   CR tests ( �r = 0.5MPa ) 
in different loading directions 
with respect to the inherent 
contact structure anisotropy. a, 
b Loose specimen, e
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of the grain-scale mechanism, it suggests a method to test 
the hypothesis whether the evolution of Z and Λ follows dif-
ferent equations by observe the response of specimen at the 
same confining pressure and void ratio, but with varying Z0.

5.4 � Towards experimental validation

The present evolution equations for all the “force” and “fab-
ric” terms are summarised from observations of DEM simu-
lations and parameters are also calibrated from DEM data. 
With the development of laboratory technique, the data may 
be directly obtained on real granular materials in the future 
and the models maybe be verified thereafter. The “fabric” 
terms are relatively easier to measure. For example, as early 
as 1970s, Oda [8] was able to measure the fabric by freezing 
the soil specimen and examine it under microscopes. Recent 
advancement includes the X-ray � computed tomography 
(CT) technology [32]. In terms of the “force” terms, pho-
toelastic techniques [33] are used to make measurements of 
the forces within idealised granular materials.

In terms of parameter calibration, in addition to the tradi-
tional measurement of stress and void ratio in experiments, 
the minimum additional requirement is the “fabric” terms 
such as Z and � . Then, an equivalent“force” term can be 
inverted from the SFF equation and the model parameters 
are calibrated.

6 � Conclusions

The primary aim of this paper and the companion paper 
is to build a constitutive model for granular materials with 
evolving contact structure and contact forces, where the con-
tact structure and contact forces are characterised by some 
statistics of contact normals and contact forces. And these 
statistics are actually the “fabric” or “force” terms in a modi-
fied SFF equation.

The verification of the modified SFF equation and the 
acquire of data regarding the evolving of these statistics 
under various loading conditions are through DEM simula-
tions. In the present DEM model, the granular material is 
modelled as assemblies of spherical grains, and a rolling 
resistance linear contact model is adopted. The DEM simu-
lations are conducted under quasi-static condition which is 
checked by the inertia number. Also, the simulations are 
all in a stress level where the small overlap assumption of 
contacts is not violated. The axisymmetric loading paths 
considered in the present study include constant volume tri-
axial compression, constant radial stress triaxial compres-
sion, constant mean stress triaxial compression, isotropic 
compression and isotropic dilation.

In the analysis of the SFF equation, we have addressed 
that it is more appropriate to use a normalised contact force 
for polydisperse granular assemblies. As been demonstrated, 
in a randomly-mixed polydisperse granular assembly sus-
taining an external load, coarse grains have greater average 
contacts forces than fine grains. But their average normal-
ised contact forces are similar. Because both coarse and fine 
grains are equally sustaining the external deviatoric stress, 
this average normalised contact force is a better indicator of 
the contact forces of the whole assembly. Also, in deriving 
the SFF equation, this normalised contact force should be 
used.

This paper has demonstrated that the modified SFF equa-
tion is able to predict the stress accurately in various tests. 
The constitutive equations regarding the response of the 
contact structure and contact forces are explained in detail 
in the companion paper. They along with the SFF equation 
compose a constitutive model, which is found capable of 
capturing the observed phenomena correctly and predicting 
the mechanical response in various loading conditions. In 
the discussion, the model is found to be an extension to the 
hypoplastic models but with more state variables.

Fig. 10   CR tests ( �r = 0.5MPa ) 
of specimens at the same 
initial confining pressure and 
void ratio, a loose specimen, 
e
0
= 0.77 , b dense specimen, 

e
0
= 0.67

(a) (b)
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