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Abstract

Modern machine learning is migrating to the era of complex models (i.e.,
deep neural networks), which requires a plethora of well-annotated data.
Crowdsourcing is a promising tool to achieve this goal, since a plethora of
labels that can be efficiently collected from crowdsourcing services at very
low cost. However, existing crowdsourcing approaches barely acquire a
sufficient amount of high-quality labels. This brings the first question:
How to design the robust mechanism to improve the label quality?

Without such robust mechanism, labels annotated by crowdsourced work-
ers are often noisy, which inevitably degrades the performance of large-
scale optimizations, including the prevalent stochastic gradient descent
(SGD). Specifically, these noisy labels adversely affect updates of the
primal variable in conventional SGD. This bring the second question: How
to optimize the training model robustly under noisy labels?

Without such robust optimization, it is challenging to train deep neural
networks robustly with noisy labels, as the learning capacity of deep neural
networks is so high that they can totally memorize and over-fit on these
noisy labels. This brings the third question: How to acquire the robust
model with good generalization under noisy labels? Therefore, in this
thesis, we aim to develop a series of robust machine learning approaches,
so that they can perfectly handle the difficult from noisy supervision. Our
works are summarized as follows:

Chapter 2 answers the first question. Motivated by the “Guess-with-Hints”
answer strategy from the Millionaire game show, we introduce the hint-
guided approach into crowdsourcing to deal with this challenge. Our
approach encourages workers to get help from hints when they are unsure
of questions. Specifically, we propose a hybrid-stage setting, consisting
of the main stage and the hint stage. When workers face any uncertain
question on the main stage, they are allowed to enter the hint stage and
look up hints before making any answer. A unique payment mechanism
that meets two important design principles is developed. Besides, the
proposed mechanism further encourages high-quality workers less using
hints, which helps identify and assigns larger possible payment to them.



Experiments are performed on Amazon Mechanical Turk, which show that
our approach ensures a sufficient number of high-quality labels with low
expenditure and detects high-quality workers.

Chapter 3 answers the second question. We propose a robust SGD
mechanism called PrOgressive STochAstic Learning (POSTAL), which
naturally integrates the learning regime of curriculum learning (CL) with
the update process of vanilla SGD. Our inspiration comes from the
progressive learning process of CL, namely learning from “easy” tasks
to “complex” tasks. Through the robust learning process of CL, POSTAL
aims to yield robust updates of the primal variable on an ordered label
sequence, namely from “reliable” labels to “noisy” labels. To realize
POSTAL mechanism, we design a cluster of “screening losses”, which
sorts all labels from the reliable region to the noisy region. We derive the
convergence rate of POSTAL realized by screening losses. Meanwhile,
we provide the robustness analysis of representative screening losses.
Experiments on benchmark datasets show that POSTAL using screening
losses is more effective and robust than several existing baselines.

Chapter 4 answers the third question. Motivated by the memorization
effects of deep networks, which shows networks fit clean instances first
and then noisy ones, we present a new paradigm called “Co-teaching”
combating with noisy labels. We train two networks simultaneously. First,
in each mini-batch data, each network filters noisy instances based on
memorization effects. Then, it teaches the remained instances as the useful
knowledge to its peer network for updating the parameters. Empirical
results on three benchmark datasets demonstrate that, the robustness of
deep learning models trained by Co-teaching approach is much superior
than that of state-of-the-art methods.
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Chapter 1

Introduction

In this chapter, we clearly depict our motivations, which naturally bring three
key questions in robust machine learning. Before addressing these questions, we
introduce the background of machine learning, including mechanism, optimization
and generalization. Meanwhile, we thoroughly review the related literatures. Lastly,
we clearly elaborate our contributions, namely how to address three key questions, and
present the organization of the entire thesis.

1.1 Motivations
Huge and complex models (i.e., deep neural networks) are popularly used in today’s
machine learning applications, since they can take advantage of big data to get better
performance. Indeed, they have significantly boosted performance of many important
tasks, such as image classification [Russakovsky et al., 2015], speech recognition
[Hinton et al., 2012], dialogue systems [Sordoni et al., 2015] and autonomous driving
[Bojarski et al., 2016]. More recently, they even beat a human champion by a large
margin in the game Go [Silver et al., 2016]. However, a primary question arises: how
can we provide a plethora of annotated data to propel complex models? The most
appealing way may be the crowdsourcing technology [Russakovsky et al., 2015; Wang
and Zhou, 2016; Wang et al., 2017; Zhong et al., 2015], since the process of annotations
is convenient and the cost of annotations is very cheap.

While crowdsourcing techniques [Li et al., 2016a, 2017a,b] have been commonly
used in many commercial platforms, such as Amazon Mechanical Turk (AMT), the
quality of crowdsourced labels is not satisfactory [Ipeirotis et al., 2010]. The reasons
are that workers may not be domain experts [Rodrigues et al., 2014; Vuurens et al.,
2011; Yan et al., 2014]. For example, it is hard for an average person to distinguish
some professional tasks, such as labeling bird images or medical data [Wais et al.,
2010a]. Besides, some workers can just be spammers, who response questions with

1



arbitrary answers [Difallah et al., 2012; Raykar and Yu, 2012]. Such low-quality labels
inevitably degenerates the performance of subsequent learning models [Han et al.,
2016; Natarajan et al., 2013; Sukhbaatar et al., 2015b]. For instance, noisy labels
degrade the accuracy of deep neural networks by 20% to 40% [Patrini et al., 2017; Yu
et al., 2017, 2018b]. This brings the first question: how to design the robust mechanism
to improve the label quality?

Without such robust mechanism, due to the very low reward, most crowdsourcing
tasks are normally labeled by amateur workers instead of domain experts , and
labels from amateur workers are often noisy [Vuurens et al., 2011; Wais et al.,
2010b]. Essentially, noisy labels are corrupted from ground-truth labels, thus, they
inevitably degenerate the robustness of learning models, especially for deep neural
networks [Arpit et al., 2017; Zhang et al., 2017]. Unfortunately, noisy labels are
ubiquitous in the real world. For instance, both online queries [Blum et al., 2003]
and crowdsourcing [Yan et al., 2014; Yu et al., 2018c] yield a large amount of noisy
labels across the world everyday. This issue inevitably degenerates the performance of
large-scale optimizations including stochastic gradient descent (SGD).

SGD has recently become the most prevalent large-scale optimization due to its
two merits. Firstly, SGD does not require to calculate the full gradient in per iteration.
This merit reduces time costs greatly. Secondly, SGD processes either single point
[Mitliagkas et al., 2013] or a tiny batch of points [Cotter et al., 2011] in each iteration.
This merit contributes to lower storage costs vastly. As a result, many researchers
are working on the area of SGD optimization [Agarwal et al., 2013; Nesterov, 2012].
Given that noisy labels degrade the performance of conventional SGD, by adversely
affecting updates of the primal variable, this brings the second question: how to design
the robust optimization under noisy labels?

Without such robust optimization, as deep neural networks have the high capacity
to fit noisy labels [Zhang et al., 2017], it is challenging to train deep networks robustly
with noisy labels. Current methods focus on estimating the noise transition matrix. For
example, on the top of the softmax layer, Goldberger and Ben-Reuven [2017] added
an additional softmax layer to model the noise transition matrix. Patrini et al. [2017]
leveraged a two-step solution to estimate the noise transition matrix heuristically.
However, the noise transition matrix is not easy to be estimated accurately, especially
when the noise ratio is high and the number of classes is large.

To be free of estimating the noise transition matrix, a promising direction focuses
on training on selected samples [Jiang et al., 2018; Malach and Shalev-Shwartz, 2017;
Ren et al., 2018]. These works try to select clean instances out of the noisy ones, and
then use them to update the network. Intuitively, as the training data becomes less
noisy, better performance can be obtained. Among those works, the representative
methods are MentorNet [Jiang et al., 2018] and Decoupling [Malach and Shalev-
Shwartz, 2017]. Specifically, MentorNet pre-trains an extra network, and then uses
the extra network selecting clean instances to guide the training. However, the idea
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of MentorNet is similar to the self-training approach [Chapelle et al., 2009], thus
inherited the same inferiority of accumulated error caused by the sample-selection
bias. Decoupling trains two networks simultaneously, and then update the model
only using the instances that have the different predictions from these two networks.
However, noisy labels are evenly spread across the whole space of examples. Thus,
the disagreement area still includes a number of noisy labels, where the decoupling
approach can not handle noisy labels explicitly.

Meanwhile, one interesting observation for deep learning models is that they can
learn easy instances first, then gradually adapt to hard instances as training epochs
become large [Arpit et al., 2017]. When noisy labels exist, deep learning models will
eventually memorize these wrongly given labels [Zhang et al., 2017], which leads to
the poor generalization performance. This brings the third question: how to train the
robust model under noisy labels?

To sum up, this thesis will aim to solve three key questions in robust machine
learning from mechanism, optimization to generalization:

• How to design the robust mechanism to improve the label quality?

• How to optimize the training model robustly under noisy labels?

• How to acquire the robust model with good generalization under noisy labels ?

1.2 Background
Before delving into our contributions, we introduce the background of machine
learning, from the perspectives of mechanism, optimization and generalization.

1.2.1 Mechanism
For the background of mechanism, the baseline approach consists of single-stage
setting and additive payment mechanism. The single-stage setting is a special case
of the hybrid-stage setting (Section 2.1.1.1), where ε is set to 0. Specifically, assume
that each worker answers N binary-valued questions, and each question has precisely
one correct answer, either “A” or “B”. For every question i ∈ {1, . . . , N}, the worker
should be incentivized to choose answers matching his/her own belief.

• The single stage: he/she should be incentivized to select the option that he/she
feels more confident, namely,

select
{

“A” PA,i ∈ [1
2
, 1)

“B” PA,i ∈ (0, 1
2
).
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Under the single-stage setting, the current state space is {D+,D−}. “D+” and “D−”
denote correct answer and incorrect answer, respectively. The state evaluations of
his/her responses to G questions are denoted by a1, . . . , aG ∈ {D+,D−}. Assume that
any values d− and d+ such that 0 ≤ d− ≤ d+, a function fa : {D+,D−} → R+, where
fa(D+) = d+, fa(D−) = d−. The additive payment mechanism f is:

f ([a1, · · · , aG]) =
G∑
i=1

fa(ai). (1.1)

Remark 1. Additive payment mechanism, i.e., Eq. (1.1) is not only additive but also
incentive-compatible 1. However, due to additive form, if half of the attempts in G
questions are correct, the workers still acquire (d−+d+)G

2
payments. This payment

mechanism may not effectively prevent spammers who select options randomly. Here,
we prove the additive payment mechanism is incentive-compatible as follows.

In the single-stage setting, for each question, the expected payment is “d+P (D+)+
d−P (D−)”, where P (D+) and P (D−) are the probability of correct answer and
incorrect answer, respectively. For binary-value questions, PB = 1 − PA, if the
worker chooses “A”, which means that PA > 1

2
> PB in his/her belief, then the

expected payment for this question is equal to “Payment(A)”. To verify the incentive
compatibility, we compare “Payment(A)” with “Payment(B)”. Due to “d+ ≥ d−”, we
have Payment(A) = d+PA + d−PB > d+PB + d−PA= Payment(B). Therefore, if the
worker chooses “A” by his/her belief, the “Payment(A)” is larger than “Payment(B)”,
and vice versa.

1.2.2 Optimization
For the background of optimization, let D = {xi, yi}ni=1 be the training data, where
xi ∈ Rd represents the ith instance, and yi ∈ {−1,+1} represents its binary label. A
typical classification model is denoted by:

min
w

G(w) = min
w

1

n

n∑
i=1

gi(w), (1.2)

where w ∈ Rd is the primal variable. To be specific, gi(w) = ρλ(w) + r(w; {xi, yi}),
where ρλ(w) is the regularizer and r(w; {xi, yi}) is the loss function.

We introduce two foundational definitions: restricted strong convexity (RSC)
and restricted smoothness (RSM) [Agarwal et al., 2012; Li et al., 2016b; Loh and
Wainwright, 2015]. Based on them, we provide two augmented definitions, namely

1A payment mechanism is incentive-compatible if it incentivizes the worker to choose the answers
to all questions by his/her own belief and his/her expected payment is strictly maximized.
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ARSC and ARSM [Han et al., 2016]. Note that, ‖·‖ denotes the Euclidean norm, and
Bd(w

∗, γ) represents the d dimensional Euclidean ball of constant radius γ centered at
the optimal point w∗.

Definition 1.1. (Augmented Restricted Strong Convexity (ARSC)) If there exists a
constant α > 0 such that for any w, w̃ ∈ Bd(w

∗, γ), we have

G(w)−G(w̃)− 〈∇G(w̃),w − w̃〉 ≥ α

2
‖w − w̃‖2, (1.3)

then a differentiable function G satisfies Augmented Restricted Strong Convexity.

Definition 1.2. (Augmented Restricted Smoothness (ARSM)) If there exists a constant
β > 0 such that for any i ∈ {1, · · · , n} and w, w̃ ∈ Bd(w

∗, γ), we have

gi(w)− gi(w̃)− 〈∇gi(w̃),w − w̃〉 ≤ β

2
‖w − w̃‖2, (1.4)

then a differentiable function gi satisfies Augmented Restricted Smoothness.

1.2.3 Generalization
For the background of generalization, we consider complex models (i.e., deep neural
networks) and use memorization effects of deep neural networks [Arpit et al., 2017].
Namely, deep learning models can learn easy instances first, then gradually adapt
to hard instances as training epochs become large. When noisy labels exist, deep
learning models will eventually memorize these wrongly given labels [Zhang et al.,
2017], which leads to the poor generalization performance. Besides, this phenomenon
does not change with choice of regularization (e.g., dropout and batch-normalization),
type of training optimizations (e.g., Resprop, adagrad and adam) or design of network
architecture (e.g., MLP, Alexnet and Inception) [Jiang et al., 2018; Zhang et al., 2017].

1.2.4 Real-world Applications
Learning from noisy supervision has a lot of real-world applications, such as crowd-
sourcing [Yi et al., 2012], Internet analysis [Niu et al., 2015] and healthcare analy-
sis [Xiao et al., 2018]. Therefore, robust machine learning can be utilized for solving
various practical problems such as:

• Crowdsourcing. Crowdsourcing has become the top choice for AI companies
to acquire annotated data. The reason is that, to achieve better performance,
complex models (i.e., deep neural networks) used by AI companies are very
hungry for a plethora of annotated data, while such data can be efficiently
acquired by crowdsourcing service with the cheap price. However, annotated
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data from crowdsourcing are often noisy. This motivates us to leverage
game theory to design robust learning algorithms, which can be deployed on
crowdsourcing platforms and improve the label quality at the stage of collection.

• Internet analysis. Recent years have witnessed the hyper development of
the industry of Internet. There is a lot of multimedia data, such as image,
text, and video data on the Internet everyday. However, annotations of such
multimedia data are normally noisy. For example, in web search, if you input
“Jaguar” in Google Images, the feedbacks consist of animal Jaguar and car with
Jaguar brand. In implicit feedback, you may want to skip an advertisement of
youtube, but mis-click a “like” tag. Therefore, robust learning algorithms can be
employed to overcome the negative effects of noisy annotated data.

• Healthcare analysis. Healthcare domain has entered the AI-driven era. For
example, deep learning has been widely used for analyzing electronic health
records (EHR) data. However, the quality of EHR data may be not satisfactory,
and even extremely noisy. The reason mainly comes from two causes. First, the
sensor used for data collection owns some device deviations physically; second,
the people involving in annotations have their subjective biases. Therefore,
when healthcare data is extremely noisy, our robust learning algorithms can be
leveraged to train models robustly under these noisy data.

1.3 Related Work
Due to the extensive applications and solid mathematical foundations, learning from
noisy labels has been investigated by many researchers and various robust method-
ologies have been developed as a result. The existing robust methodologies can be
divided into three orthogonal directions: mechanism, optimization and generalization.
This section will review the related literatures according to this taxonomy.

1.3.1 Robust Mechanism
Robust mechanism mainly focuses on pre-processed approach to improve label quality,
which is very related to post-processed approach and worker quality control as follows.

Post-Processed Approach: The statistical inference (post-processed) approach is
popularly used to improve the quality of labels [Jin et al., 2018; Zhang et al., 2016;
Zheng et al., 2015a, 2016, 2017]. Such approach tries to find the correct label for each
question only after noisy labels being collected from the platform. Many methods have
been developed under this approach. Specifically, the statistical inference consists of
discriminative and generative approaches.
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Among discriminative approaches, Majority Voting is widely used in practice,
since it is not only simple to operate, but also scalable to large-scale crowdsourced
labels. Specifically, Majority Voting identifies true labels by simple aggregation
rules, without considering worker expertise and sample difficulty. Due to simple
aggregations, Majority Voting hardly ensures the aggregation quality of heavily noisy
labels. To improve the quality of labels, Li and Yu [2014] proposed weighted Majority
Voting , which considers worker expertise by assigning different weights to define
worker importance. Tian and Zhu [2015] extended weighted Majority Voting by the
max-margin principle, which provides a geometric interpretation of crowdsourcing
margin. However, with both methods, inferring weights from heavily noisy labels
is non-trivial and time-consuming.

Among generative approaches, the classical Dawid-Skene model works well
[Dawid and Skene, 1979]. Each worker is linked to a probabilistic confusion matrix
that generates his labels. Raykar et al. [2010a] presented a two-coin probabilistic
model, which assumes that each worker’s labels are generated by flipping the ground-
truth labels according to a certain probability. Yan et al. [2010] extended this two-
coin model by setting the dynamic flipping probability associated with samples.
Kajino et al. [2012] formulated a probabilistic multi-task model, where each worker
is considered as a task. Liu et al. [2012] first introduced variational inference as a
way to solve crowdsourcing problems. This method is similar to the message-passing
approach [Karger et al., 2011]. Zhou et al. [2012a] proposed a minimax entropy model
and extended it to aggregate crowdsourced ordinal labels [Zhou et al., 2014]. Bi et al.
[2014] employed a mixture probabilistic model for worker annotations, which learns a
prediction model directly. However, as labels are intrinsically noisy, it is hard to obtain
a sufficient among of correct labels using statistical inference.

Pre-Processed Approach: While previous efforts have extensively focused on
several statistical inferences, pre-processing approach has been recently developed
as an alternative way to improve label quality. Namely, the crowdsourced setting is
coupled with the payment mechanism, which incentivizes workers to provide more
reliable labels at the stage of label collection. Thus, unlike post-processed approach,
pre-processed approach can directly reduce the noise in obtained labels. Moreover,
post-processed approach can be used to further reduce the noise in labels after they are
obtained by the pre-processed approach.

In this thesis, we target the pre-processed approach from the perspective of machine
learning [Buhrmester et al., 2011; Ding and Zhou, 2017; Goel et al., 2014; Ho et al.,
2015; Lambert et al., 2015; Shah and Zhou, 2015; Singla and Krause, 2013]. The
most related works are the skip-based [Ding and Zhou, 2017; Shah and Zhou, 2015]
and self-corrected approaches [Shah and Zhou, 2016]. In the skip-based approach,
workers are allowed to select a skip option based on their confidence for each question.
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However, this in turn leads to insufficient label quantity. A two-stage setting is used in
the self-corrected approach. Workers firstly answer all questions in the first stage, and
then they are allowed to correct their first-stage answers after looking at a reference
in the second stage. However, references consisting of responses from other workers
are noisy, which may mislead workers to providing incorrect labels. Besides, as a
reference needs to be set for each task, such a setting is not supported by the AMT
platform and only simulation results are reported in Shah and Zhou [2016]. Finally,
neither the skip-based nor self-corrected approaches can identify worker quality as our
approach.

The pre-processed approach was also considered in the database area, but the focus
is different. Normally, their research is to dynamically assign the optimal K (≤ N )
problems to each worker by his/her work quality, where N is the total number of
problems to be annotated [Fan et al., 2015; Hu et al., 2016; Zheng et al., 2015b]. Thus,
worker quality control plays an fundamental role in the quality of crowdsourcing from
the viewpoint of database.

Worker Quality Control: As workers’ quality has huge impact on the obtained
labels, many researchers tried to improve label quality by offering better control over
workers’ quality. For example, Raykar and Yu [2012] considered detecting spammers
or adversarial behavior, and tried to eliminate them in the following iterations or
phases. However, this method does not consider how to detect high-quality workers.
Then, Joglekar et al. [2013] devised techniques to generate confidence intervals for
worker error rate estimates, thereby enabling a better evaluation of worker quality.
However, this method is too complex to be deployed in practice. For our hybrid-stage
setting, the less number of times workers enter the hint stage, the higher quality they
are estimated to be.

1.3.2 Robust Optimization
Robust optimization can optimize the training model robustly under noisy labels. Ro-
bust optimization focuses on the optimization level (e.g., changing update mechanism
in SGD). This topic is often related to stochastic optimization, due to the large data
volume in the real world. This direction is also related to a robust learning policy
called curriculum learning, robust losses and noisy labels as follows.

Stochastic Optimization: The research of this direction is mainly related to SGD
optimization [Tao et al., 2014]. For example, Bottou [2010] leveraged the vanilla SGD
to optimize complex models such as deep neural networks [Le et al., 2011]. Xu [2011]
proposed the averaged SGD (ASGD) to reduce the error rate of vanilla SGD [Bottou,
2010]. Ghadimi and Lan [2013] introduced a randomized stochastic method for non-
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convex problems. Meanwhile, they generalized the accelerated gradient method to
improve the convergence rate of stochastic optimization for non-convex problems
[Ghadimi and Lan, 2016]. Shalev-Shwartz et al. [2011] developed a variant of SGD
called PEGASOS for scalable text classification. Nevertheless, all their works have
a strong assumption that the data is free of noise. This assumption restricts their
applicabilities to the problem of noisy labels. Our POSTAL focuses on learning with
noisy labels.

Curriculum Learning: This direction is also related to curriculum learning (CL)
and self-paced learning [Gong et al., 2016a; Jiang et al., 2014]. Bengio et al. [2009]
proposed a learning framework named curriculum learning , and Kumar et al. [2010]
presented the similar learning regime named self-paced learning. The idea shared by
these two studies is to learn easier tasks first, and gradually learn more difficult tasks
to result in a robust model. However, their mechanisms have not been applied into the
update process of SGD for noisy labels. To the best of our knowledge, our POSTAL is
the first attempt to integrate the learning regime of CL with the update process of SGD
for noisy labels.

Robust Losses: Bounded non-convex losses [Rakotomamonjy et al., 2016] for
robust classification are related to our study. For instance, Collobert et al. [2006]
developed a kind of bounded loss named “ramp loss” to deal with support vector
machine (SVM) classification problems . Wang et al. [2008] smoothed the turning
points of ramp loss to suppress outliers . Their non-convex losses are designed for
robust SVMs, while our screening losses are tailor-made for POSTAL to provide an
ordered label sequence and alleviate adverse effects led by noisy labels.

Noisy Labels: Lastly, this direction deals with noisy labels [Li and Fu, 2016; Liu and
Tao, 2016a]. Natarajan et al. [2013] proposed the methods of unbiased estimators and
weighted loss functions for noisy labels . However, their work has not been applied
to reduce the performance degeneration of SGD caused by noisy labels. Patrini et al.
[2016] adapted SGD to deal with asymmetric label noise, but their work has not been
verified on real-world noisy datasets. Although Raykar et al. [2010b] described a
probabilistic approach to handle noisy labels, their model cannot be scalable to large
datasets due to the high cost of computations. It is worth noting that the 0-1 loss
function is also designed for suppressing noisy labels. However, the 0-1 loss is non-
convex and non-differentiable, which may not be tractable easily in practical situations.
Although the surrogates of 0-1 loss are convex [Bartlett et al., 2006], they are still
sensitive to noisy labels [Natarajan et al., 2017].
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1.3.3 Robust Generalization
Robust generalization is to acquire the robust model with good generalization under
noisy labels. robust generalization focuses on the model level (e.g., providing robust
training policy). Robust generalization is mainly related to statistical learning, when
the training model is linear and simple. However, then the training model becomes very
complex, such as deep neural networks, this direction will be highly related to deep
learning. Meanwhile, the recent topic in Learning-to-teach will boost the robustness
further.

Statistical Learning: Statistical learning contributed a lot to the problem of noisy
labels, especially in theoretical aspects. The approach can be categorized into three
strands: surrogate loss, noise rate estimation and probabilistic modeling. For example,
in the surrogate losses, Natarajan et al. [2013] proposed an unbiased estimator to
provide the noise corrected loss approach. Masnadi-Shirazi and Vasconcelos [2009]
presented a robust non-convex loss, which is the special case in a family of robust
losses Han et al. [2016]. In noise rate estimation, both Menon et al. [2015] and Liu and
Tao [2016b] proposed a class-probability estimator using order statistics on the range
of scores. Sanderson and Scott [2014] presented the same estimator using the slope of
the ROC curve. In probabilistic modeling, Raykar et al. [2010b] proposed a two-coin
model to handle noisy labels from multiple annotators. Yan et al. [2014] extended this
two-coin model by setting the dynamic flipping probability associated with instances.

Deep Learning: Let us take a close look at how deep learning deals with the label
noise problem. In the early stage, Reed et al. [2015] augmented the prediction
objective with a notion of consistency. Based on the consistency principle, they
developed “reconstruction error” and “hard/soft bootstrapping” approaches. Azadi
et al. [2016] proposed an auxiliary image regularization technique, which exploits
the mutual information among training samples to select reliable samples for further
training.

In the recent stage, state-of-the-art methodologies mainly focus on estimating the
noise transition matrix in an end-to-end framework. For instance, Sukhbaatar et al.
[2015a] proposed to add a constrained linear layer on the top of the softmax layer,
which explicitly matches the noise transition. Goldberger and Ben-Reuven [2017]
presented to add an additional softmax layer to model the noise transition. Patrini et al.
[2017] leveraged a two-step solution to estimate the transition matrix heuristically,
and proposed the strategy of forward/backward loss correction given such estimated
matrix. However, when the number of classes becomes very large, the transition matrix
is not easy to be estimated exactly.

Free of estimating the transition matrix, Jiang et al. [2018] presented a MentorNet
to regularize deep networks in the data dimension inspired by curriculum learning.
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However, the idea of MentorNet is similar to the self-training approach, which may
introduce the accumulated error due to the biased selection. Besides, Malach and
Shalev-Shwartz [2017] proposed a decoupling approach to decouple “when to update”
from “how to update” in training deep networks. Specifically, they maintain two
networks, and update parameters of two networks only when the predictions of them
disagree. However, the decoupling approach may not combat with massive noisy
labels, since the disagreement area still overlap with the noise area.

In addition, there are some other solutions to deal with noisy labels from computer
vision community. For example, Li et al. [2017c] proposed a unified framework to
distill the knowledge from clean labels and knowledge graph, which can be exploited
to learn a better model from noisy labels. Veit et al. [2017] trained a label cleaning
network by a small set of clean labels, and used this network to reduce the noise in
large-scale noisy labels. Tanaka et al. [2018] presented a joint optimization framework
to learn parameters and estimate true labels simultaneously. Ren et al. [2018] leveraged
an additional validation set to adaptively assign weights to training examples in every
iteration. Rodrigues and Pereira [2018] added a crowd layer after the output layer for
noisy labels from multiple annotators. However, all their methods require either extra
resources or more complex networks.

Learn to Teach: Learning-to-teach is also a hot topic. Inspired by [Hinton et al.,
2015], these methods is made up by one teacher and student networks. The duty of
teacher network is to select more informative instances for better training of student
networks. Recently, such idea is applied for learning a proper curriculum for the
training data [Fan et al., 2018] and deal with multi-labels [Gong et al., 2016b].
However, these works does not consider noisy labels, and MentorNet [Jiang et al.,
2018] introduced this idea into such area.

1.4 Contributions
To address three key questions in robust machine learning, we proposed three robust
methodologies in this thesis, which are “Guess-with-Hints” (robust mechanism), “PrO-
gressive STochAstic Learning (POSTAL)” (robust optimization), and “Co-teaching”
(robust generalization), respectively.

In Guess-with-Hints, we are inspired by the “Guess-with-Hints” answer strategy
from the Millionaire game show 1, where a challenger has opportunities to request
hints from the show host when he/she feels unsure of the questions. By this strategy,
we introduce a hint-guided approach to improve the quality of crowdsourced labels.

1https://en.wikipedia.org/wiki/Who_Wants_to_Be_a_Millionaire_(U.S.
_game_show)
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This approach encourages workers to get help from auxiliary hints when they answer
questions that they are unsure of. To be specific, we introduce a hybrid-stage setting,
which consists of the main stage and the hint stage. In the main stage, for each
question, workers answer it directly when they feel confident or jump into the hint
stage when they feel uncertain. Once they enter the hint stage, they are allowed to look
up hints before making any answer to this unsure question. The less number of times
workers enter the hint stage, the higher quality they are estimated to be. To realize this
setting, we provide an explicit “? & Hints” button (the bottom panel in Figure 1.1) for
each question. For example, when the worker is unsure of the question in Figure 1.1,
he/she can click this button and answer the question under the help of hints (the gray
sentence).

Nevertheless, only hybrid-stage setting is not enough to address all issues. For
example, if hints are freely available in the hint stage, even high-quality workers
may abuse free hints for higher accuracy and rewards. This issue causes failure in
the detection of high-quality workers. Under the hybrid-stage setting, we develop a
hint-guided payment mechanism, which aims to incentivize workers to use the hints
properly. Specifically, our mechanism penalizes workers who use the hints. Therefore,
high-quality workers will answer most of the questions directly (without hints) for
higher rewards. Then, our mechanism assists our setting to detect the high-quality
workers effectively. Moreover, we prove that our mechanism is unique under the
hybrid-stage setting. Since our mechanism has a multiplicative form, it prevents
spammers as well.

In POSTAL, we introduce a robust SGD mechanism that integrates the progressive
learning regime - curriculum learning (CL) with the update process of vanilla SGD.
Our inspiration springs from the learning process of CL, namely learning from “easy”
tasks to “complex” tasks, which is often used for training robust models [Bengio et al.,
2009; Kumar et al., 2010]. Through this type of learning process, POSTAL aims
to yield robust updates of the primal variable on an ordered label sequence, namely
from “reliable” labels to “noisy” labels. To provide this ordered label sequence, we
design a cluster of screening losses, which serves as a guidance to sort all labels from
the reliable region to the noisy region. Moreover, screening losses assist POSTAL to
reduce the performance degeneration of SGD yielded by noisy labels. To sum up, in the
first epoch, POSTAL using screening losses ensures the update of the primal variable
on reliable labels, which creates a robust model from the outset. In subsequent epochs,
updates of the primal variable occur on noisy labels gradually until convergence.

In Co-teaching, we present a simple but effective learning paradigm, which allows
us to train deep networks robustly even with extremely noisy labels (e.g., 45% of noisy
labels occur in the fine-grained classification with multiple classes [Deng et al., 2013]).
Our idea stems from the Co-training approach [Blum and Mitchell, 1998]. Similarly to
Decoupling, our Co-teaching also maintains two networks simultaneously. However,
it is worth noting that, in each mini-batch data, each network views its small-loss
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Which one is the Sydney Harbour Bridge ? 

A                            B 

(a) Main stage. 

Which one is the Sydney Harbour Bridge ?

A                            B 

(b) Hint stage. 

The Sydney Harbour Bridge is fixed with a pair of

concrete pylons at each end of the arch. 

Figure 1.1: A task that requires workers to answer the question “Which one is the 

Sydney Harbour Bridge?”. Top panel: the proposed interface under the hybrid-stage 

setting, consists of two options (“A” and “B”) and a “? & Hints” button. Bottom 

panel: when workers feel unsure of this question and click the button, the content of 

hints (gray) is visible, which guides workers to make a choice.
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Figure 1.2: Comparison of error flow among MentorNet (M-Net) [Jiang et al., 2018],
Decoupling [Malach and Shalev-Shwartz, 2017] and Co-teaching. Assume that the
error flow comes from the biased selection of training instances, and error flow from
network A or network B network is denoted by red arrows or blue arrows, respectively.
Left panel: M-Net maintains only one network (A). Middle panel: Decoupling
maintains two networks (A & B). The parameters of two networks are updated, when
the predictions of them disagree (!=). Right panel: Co-teaching maintains two
networks (A & B) simultaneously. In each mini-batch data, each network samples
its small-loss instances as the useful knowledge, and teaches such useful instances to
its peer network for the further training. Thus, the error flow in Co-teaching displays
the zigzag shape.

instances as the useful knowledge, and teaches such useful instances to its peer network
for updating the parameters. The intuition why Co-teaching is more robust can be
briefly explained in Figure 1.2.

Assume that the error flow comes from the biased selection of training instances in
the first mini-batch data. In MentorNet or Decoupling, the error from one network will
be directly transferred back itself in the second mini-batch data, and the error should be
increasingly accumulated. However, in Co-teaching, since two networks have different
learning abilities, they can filter different types of error introduced by noisy labels. In
this exchange procedure, the error flows can be reduced by peer networks mutually.
Moreover, we train deep networks using stochastic optimization with momentum, and
nonlinear deep networks can memorize clean data first to become robust [Arpit et al.,
2017]. When the error from noisy data flows into the peer network, it will attenuate
this error due to its robustness.

We conduct experiments on simulated noisy MNIST, CIFAR10, and CIFAR100
datasets. Empirical results demonstrate that, under extremely noisy labels, the
robustness of deep learning models trained by Co-teaching approach is much superior
than that of all state-of-the-art baselines. Under low-level noisy labels (i.e., 20% of
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noisy labels), the robustness of deep learning models trained by Co-teaching approach
is still superior than that of most baselines.

In summary, the main contributions of this thesis lie in the following three aspects:

1. We propose to improve the quality of labels by auxiliary hints. We introduce
a hybrid-stage setting. Under this setting, we propose a hint-guided payment
mechanism, which incentivizes workers to use hints properly instead of abusing
them. Moreover, we prove the uniqueness of our mechanism under the proposed
setting.

2. We introduce a robust SGD mechanism called PrOgressive STochAstic Learning
(POSTAL) to handle noisy labels. For the label noise problem, POSTAL is
the first attempt to leverage the learning regime of CL to ensure robust updates
of the primal variable in vanilla SGD. We design a cluster of screening losses,
which serves as a guidance to provide an ordered label sequence for POSTAL.
Moreover, it assists POSTAL to reduce the performance degeneration of SGD
yield by noisy labels.

3. We present a new paradigm called Co-teaching combating with noisy labels.
We train two networks simultaneously. First, in each mini-batch data, each
network filters noisy instances based on memorization effects. Then, it teaches
the remained instances to its peer network for updating the parameters.

1.5 Thesis Structure
To achieve robust methodologies, this thesis proposes three orthogonal methods Guess-
with-Hints, POSTAL and Co-teaching based on different motivations. The remaining
parts of this thesis are organized as follows:

Chapter 2 introduces the robust mechanism for achieving the high-quality labels.
Chapter 3 introduces the robust optimization under noisy labels.
Chapter 4 introduces the robust generalization under extremely noisy labels.
The structure of the entire thesis is illustrate in Fig. 1.3.
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Figure 1.3: The structure of this thesis.
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Chapter 2

Millionaire: Towards Robust
Mechanism

This chapter answers the first question, namely “how to design the robust mechanism
to improve the label quality?”. From the high level, we want to design the robust
mechanism based on the fundamental assumptions from game theory [Nisan et al.,
2007]. Namely, our robust mechanism is provably effective.

Table 2.1: Comparison of related approaches and our hint-guided approach
(Chapter 2). Baseline is the approach explained above. The skip-based approach
comes from [Ding and Zhou, 2017; Shah and Zhou, 2015]. Note that, the self-corrected
approach [Shah and Zhou, 2016] is designed theoretically, but barely realized for real
tasks (denoted as “×”), so its metrics of “label quality” and “money cost” cannot be
evaluated (denoted as “-”). However, since its payment mechanism has a multiplicative
form, it prevents spammers theoretically.

Perspective Metric Baseline Skip-based Self-corrected Hint-guided (ours)
requester large label quantity X × X X

high label quality × X - X
worker quality detection × × × X

spammer prevention × X X X
platform low money cost × X - X

realization X X × X

Specifically, there are some problems in improving the label quality (Table 2.1).
For example, skip-based approach allows workers to select a skip option when they
feel unsure of the questions. However, high-quality labels are at the expense of the
insufficient label quantity, and this issue is very critical to the complex models training.
Self-correct approach allows workers to correct their first-stage answer after looking
at a reference in the second stage. However, references consisting of responses from
other workers are noisy, which may mislead workers to providing incorrect labels.
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Besides, this approach is designed theoretically, but barely realized in the real-world
platform.

Motivated by the “Guess-with-Hints” answer strategy from the Millionaire game
show, we introduce the hint-guided approach into crowdsourcing to deal with this
challenge. Our approach encourages workers to get help from hints when they are
unsure of questions. Specifically, we propose a hybrid-stage setting, consisting of
the main stage and the hint stage. When workers face any uncertain question on the
main stage, they are allowed to enter the hint stage and look up hints before making
any answer. Following this thought, we design a physical interface (Figure 1.1).
More importantly, a unique payment mechanism that meets two important design
principles is developed. Besides, the proposed mechanism further encourages high-
quality workers less using hints, which helps identify and assigns larger possible
payment to them. Experiments are performed on Amazon Mechanical Turk, which
show that our approach ensures a sufficient number of high-quality labels with low
expenditure and detects high-quality workers.

The remainder of this chapter is organized as follows. Section 2.1 introduces the
novel setup in crowdsourcing, namely the hybrid-stage setting. In Section 2.2, we
propose a hint-guided payment mechanism under this setting. In Section 2.3, we
provide the experiment setup and empirical results related to three real-world tasks.
The conclusions are given in Section 2.4.

2.1 Problem Setup
Inspired by the “Guess-with-Hints” answer strategy, we introduce the hint-guided
approach to improve the quality of crowdsourced labels and detect the high-quality
workers at the same time. This approach encourages workers to get help from the
useful hints when they answer uncertain questions (Figure 1.1). Specifically, we realize
this approach in Section 2.1.1, including the hybrid-stage setting and the payment
mechanism. Then, easy usage of hints is discussed in Section 2.1.2. Finally, the
rationality of our design is discussed in Section 2.1.3.

2.1.1 Hint-guided Approach
Here, we describe our hint-guided approach from the following four aspects.

2.1.1.1 Hybrid-stage Setting

We first set up definitions for the hybrid-stage setting that consists of the main stage and
the hint stage. To model our setting, let us consider a simple example: each worker
answers N binary-valued (objective) questions, and each question has precisely one
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correct answer, either “A” or “B”. Therefore, for every question i ∈ {1, . . . , N}, a
worker chooses an answer matching his/her own belief under the following hybrid-
stage setting.

• The main stage (Figure 1.1(a)): For question i, he/she should be incentivized to
select the option that he/she feels confident. When he/she feels unsure and clicks
the “? & Hints” button, he/she jumps into the hint stage formalized by the “H”
option, namely,

select


“A” if PA,i ∈ [1

2
+ ε, 1),

“B” if PA,i ∈ (0, 1
2
− ε],

“H” otherwise,

where ε ∈ [0, 1
2
) models the worker’s uncertainty degree in this stage, PA,i is

the probability of the worker’s belief that the answer to the ith question is “A”
(i.e., the probability that the worker believes “A” is the correct answer for the ith
question).

• The hint stage (Figure 1.1(b)): When he/she feels unsure of the question, the
worker clicks the “? & Hints” button. This means that he/she enters the hint
stage. Then, the worker picks up “A” or “B” according to

select

{
“A” if PA|H,i ∈ [T, 1),

“B” if PB|H,i ∈ [T, 1),

where T ∈ (1
2
, 1) is the predefined threshold value of the worker’s belief in the

hint stage, PA|H,i is the probability of the worker’s belief that the answer to the
ith question is “A” given hints, and PB|H,i is the probability of the worker’s belief
that the answer to the ith question is “B” given hints (PB|H,i = 1− PA|H,i).

The above modeling of the decision process is also summarized in Figure 2.1. As
we can see, ε controls the decision in the main stage and the hint stage depends on
T . When ε is large, i.e., ε → 1

2
, more workers need hints to make their decision for

each question. When ε is smaller, i.e., ε → 0, fewer workers need hints to make their
decision for each question. Once the worker enters the hint stage, when T is set to
a large value, i.e., T → 1, he/she will become more confident to make his/her final
decision for each question. When T is set to a small value, i.e., T → 1

2
, he/she will be

less confident to make his/her final decision for each question.

20



Figure 2.1: Mathematical model of the decision process under our hybrid-stage setting.

Note that, ε is decided by T according to Proposition 2 in Section 2.2.2, and T is
controlled by a mechanism designer. The choice of T is based on different applications
and given to us. In the experiments, we empirically choose T = 0.75 due to the
qualitative psychology [Smith, 2007].

2.1.1.2 Model Assumption

Based on the hybrid-stage setting, we will introduce the corresponding payment
mechanism, where it is rooted in the following assumption.

Assumption 1. (A). There are G “gold standard” questions (1 ≤ G ≤ N ), of which
answers are known to the requester, uniformly distributed at random positions
among all N questions;

(B). Each worker aims to maximize his/her expected payment for N questions;

Assumption 1 is a standard one in analyzing pre-processed approaches for crowd-
sourcing [Shah and Zhou, 2015, 2016; Zhang et al., 2016]. Specifically, as answers
to the “gold standard” questions are known to the requester in advanced, workers’
responses to them can be used to evaluate workers’ performance and decide payment
for workers. This is the functionality of Assumption 1 (A). Then, Assumption 1 (B) is
a must for analyzing workers’ performance. It originates from game theory [Nisan
et al., 2007], and means that each work wants to maximize its revenue. Besides,
Assumption 1 (B) would not allow for malicious or adversarial workers.

Next, we make the following Assumption 2, which specifies our usage of hints
here. It is motivated by the educational psychology [Koedinger and Aleven, 2007],
and means that the hints are useful enough to guide workers to making final decisions.
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Assumption 2. Workers have enough confidence to make a final decision after
acquiring useful hints, i.e., T ∈ (5

8
, 1) in the hint state.

Note that the confidence of a random guess is T = 1
2
, thus T > 5

8
means that the

worker’s confidence to pick up an answer is high after looking at the hint. This value
(5/8) is related to the proof of Corollary 1. As an illustration, let us see Figure 1.1(a).
Workers outside Australia may not know which one is the Sydney Harbour Bridge.
However, after reading the hints (grey) in Figure 1.1(b), workers should have enough
confidence to make a final decision “A” as the pylons structure is very obvious. When
T approaches to 1, the beliefs from the hint are maximal, or equivalently, the hint
provides the worker with a certain answer.

2.1.1.3 Payment Mechanism

According to the model assumption, we are ready to introduce our payment mechanism
based on the hybrid-stage setting. Specifically, after the worker answers all N
questions in the hybrid-stage setting, his/her performance is evaluated by his/her
responses to G (≤ N ) questions. Namely, his/her choice for each question in the
gold standard gets evaluated to one of four states, denoted by {D+,D−,H+,H−}. We
define the four states as follows.

• D+: answer in the main stage and correct;

• D−: answer in the main stage and incorrect;

• H+: answer in the hint stage and correct;

• H−: answer in the hint stage and incorrect.

Note that “answer in the main stage” means that he/she feels confident in the main
stage and answers directly; “answer in the hint stage” means that he/she feels unsure in
the main stage and answers with hints in the hint stage. “correct” or “incorrect” denotes
whether the worker’s selection matched with the standard answer inG questions or not.

Therefore, under the hybrid-stage setting, we can formulate any payment mecha-
nism as function

f : {D+,D−,H+,H−}G → [µmin, µmax], (2.1)

where min f(·) = µmin and max f(·) = µmax. We reserve the rights to set µmin and
µmax, where 0 ≤ µmin ≤ µmax. In this chapter, the goal is to design f such that its
expected payment for each worker is strictly maximized under the above setting.
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2.1.1.4 Difference from Previous Approaches

The most related approach to ours is the self-corrected approach [Shah and Zhou,
2016], since both of us have two phases in the setting. However, they are totally
different in probabilistic modeling. The self-corrected approach builds up the two-
stage setting, and workers are necessarily required to enter the second stage to check
the reference answer of every question, whereas, our approach builds up the hybrid-
stage setting, and workers are not necessary to enter the hint stage related to confident
questions. Besides, since each payment mechanism is customized based on some
designed goals (examples are in Section 2.2.1) under its corresponding setting, our
hint-guided payment mechanism is also different from the one used in the self-
corrected approach.

It would be also interesting to discuss the advantages of the proposed approach
over active learning [Yan et al., 2011] for crowdsourcing. There are two points to be
highlighted. First, compared with active learning, hints in our approach may not be
as strong as querying the ground-truth label; the hint only guides the worker to make
a choice. Second, active learning is constrained to query which data sample should
be labeled next and which annotator should be queried to benefit the learning model.
However, our approach is free of these restrictions.

2.1.2 General Rules of Hints
Motivated by instructional hints in the educational psychology [Koedinger and Aleven,
2007], to make the hints useful and reduce interface designers’ workloads, we offer
three general rules here:

(A). The hints should be easily accessible to interface designers;

(B). The hints should be discriminative and concise for workers; and

(C). The hints should be irrelevant to the number of annotated samples in each task.

We adopt the three rules in designing our hints in experiments. We take three
practical datasets in our experimental setup (Section 2.3.1) to justify that these
requirements are reasonable in the real world. First, for Sydney Bridge, as an interface
designer, we easily acquire the content of hints from Wikipedia, which includes
discriminative and concise phrases, such as “concrete pylons” and “around Sydney
Opera House”. Second, for Stanford Dogs, we build a lookup table as hints, which
includes the characteristics of four breeds of dogs, such as “prick ears” for Norwich
Terrier. It means that, the hints in this dataset should be irrelevant to the number of
annotated samples, but relevant to the number of classes. Third, for Speech Clips,
the tool is freely available online to roughly recognize each speech clip and save the
concise keywords (≤ 4) as the hints.
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2.1.3 Needs of Hybrid-stage Setting
It is also noted that, in designing the pre-processing mechanism, the high-quality
worker detection is very important for collecting a sufficient number of high-quality
labels. If the tasks can be assigned to each worker by his/her work quality, the
annotation quality will be increased accordingly. Also, if we can detect the high-
quality workers and give more weights on his/her annotations, we can acquire the better
label aggregation. Here, we show that it may not be achieved by a single-stage setting
with hints (i.e., only Figure 1.1(b) and no Figure 1.1(a)). Later, we also empirically
demonstrate this point in Section 2.3.3.3.

Specifically, by our Assumption 2, if we want to collect more correct labels,
it is more naturally to directly assign visible hints for every single question. This
removes the necessity to have a hybird-stage setting as we design here. However, high-
quality workers are always preferred by crowdsourcing platforms, thus they should be
identified and more paid. Such a fundamental goal may not be achieved by a simple
single-stage setting with visible hints. The reason is explained as follows. Under
the single-stage setting, both high-quality and low-quality workers can easily read the
visible hints to answer questions. Thus, we cannot make a difference between them.
However, under the hybrid-stage setting, high-quality workers may not read the hints
frequently. Namely, the less number of times workers enter the hint stage, the higher
quality they are estimated to be. Thus, we can track the high-quality workers by our
setting.

Note that, only this setting may encounter a problem: if the hints are freely
available in the hint stage, by Assumption 1 (B), even high-quality workers may abuse
free hints for higher accuracy and rewards. This issue causes failure in the detection
of high-quality workers by the hybrid-stage setting. Therefore, under the hybrid-stage
setting, we hope to develop a payment mechanism (Section 2.2), which incentivizes
workers to use the hints properly. Specifically, this mechanism penalizes workers who
use the hints. Then, high-quality workers will answer most of the questions directly for
higher rewards. As a result, this mechanism helps our setting to detect the high-quality
workers effectively.

2.2 Hint-guided Payment Mechanism
In Section 2.2.1, we first give two important definitions which help us to design a
payment function. Then, the designed payment function is given in Section 2.2.2.
Furthermore, we prove that our incentive-compatible payment mechanism is also
unique under the hybrid-stage setting. Finally, in Section 2.2.3, we clarify that more
restrictive designing goals cannot be realized here.
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2.2.1 Design Principles
Incentive compatibility (Definition 2.1) and mild no-free-lunch axiom (Definition 2.2)
are important to design a payment mechanism for pre-processed approaches, which
are also popularly used by previous works [Shah and Zhou, 2015, 2016].

Definition 2.1 (Incentive Compatibility). A payment mechanism f is incentive-
compatible only if the following two conditions are satisfied: (i) f gives an incentive
to a worker to choose all answers by his/her belief; (ii) The expected payment, from
the worker’s belief, is strictly maximized in both the main stage and the hint stage.

Definition 2.1, which is adapted from the standard game theoretical assumption
[Nisan et al., 2007], describes incentive compatibility. Basically, it means that f should
encourage a worker to select the option he/she believes most likely to be correct.

Definition 2.2 (Mild No-free-lunch Axiom). If all answers attempted by a worker in
“gold standard” questions are either wrong or based on hints, then the payment for the
worker should be zero, unless all answers attempted by the worker are correct. More
formally, f(a) = 0, ∀a ∈ {D−,H+,H−}G\{H+}G.

Definition 2.2 is a variant of the no-free-lunch axioms for our hybrid-stage setting.
It requires that f should not pay a worker who has bad performance on “gold standard”
questions. This helps to reject spammers and keep high-quality workers, since answers
to these questions are known to the platform and spammers are likely to give wrong
answers while high-quality workers are not.

Our aim is to design the payment mechanism f , which is defined in Eq. (2.1),
simultaneously satisfies the above definitions.

2.2.2 Proposed Payment Mechanism
In order to design a payment mechanism, we first consider the easiest case, i.e., for a
single question, how the worker should get paid under our hybrid-stage setting. This
helps us to find specific rules under Definition 2.1 for our setting under Assumption 1,
such rules are given in Proposition 1 below with its proof.

Proposition 1. Let f : {D+,D−,H+,H−} → [0, µmax], d+ = f (D+), d− = f (D−),
h+ = f (H+) and h− = f(H−). When N = G = 1, f satisfies Definition 2.1 if it
meets the following pricing constraints:

(A). d+ > d−, h+ > h−, d+ > h+.

(B). d+−d−
1−2ε

≥ h+−h−
2ε

.

(C). d+ − d− ≤ 2T−1
1/2−ε (h+ − h−).
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Proof. The justification of the first pricing constraint: under the hybrid-stage
setting, the reasonable payment mechanism should consider two facts: 1) the payment
for correct answer should be much higher than the payment for incorrect answer.
Namely, d+ > d−, h+ > h−. 2) If the answer is correct, the payment to the worker
who answers directly should be higher than the payment to the worker who answers
using hints. Namely, d+ > h+. Why this condition penalizes workers who use the
hints? The reason is that: d+ > h+ ensures that high-quality workers will answer most
of questions directly for higher rewards. Under the proposed setting, whether using
hints can be taken as a criterion to detect the high-quality workers. Thus, d+ > h+

assists the hybrid-stage setting to detect the high-quality workers.
The justification of the second pricing constraint: for each question, d+ − d−

is the income gap for a worker who answers directly, and h+ − h− is the income
gap for a worker who answers with hints. In order to encourage the worker to use
the hints properly, we consider bridge the per unit of income gap d+−d−

1−2ε
in the main

stage and h+−h−
2ε

in the hint stage together. Namely, we impose the condition d+−d−
1−2ε

≥
h+−h−

2ε
into the incentive-compatible payment mechanism, which encourages his/her to

directly answer questions that he/she feels confident about. In other words, the worker
should not abuse the hints.

The justification of the third pricing constraint: the third condition is the
complementary condition for the second one. It should incentivize the worker to
leverage the hints before answering questions that he/she feels unsure of. When
PA > 1

2
− ε while PA|H > T , we prefer to choose “A”. If the worker selects “A”

by his/her own belief, then his/her expected payment is

Payment(A) = (
1

2
− ε)(d+PA + d−PB) + 2ε(h+PA|H + h−PB|H).

When PA < 1
2

+ ε while PB|H > T , we prefer to choose “B”. If the worker selects
“B” by his/her own belief, then his/her expected payment is

Payment(B) = (
1

2
− ε)(d+PB + d−PA) + 2ε(h+PB|H + h−PA|H).

If a payment mechanism is incentive-compatible, the worker is incentivized to
choose the answer by his/her own belief while the according payment is strictly
maximized. In this case, when PA > 1

2
− ε while PA|H > T , Payment(A) >

Payment(B). When PA < 1
2

+ ε while PB|H > T , Payment(A) < Payment(B).
Let us infer the case of Payment(A) > Payment(B), the other case gives the same
result by symmetry.

(
1

2
− ε)(d+PA + d−PB) + 2ε(h+PA|H + h−PB|H)

> (
1

2
− ε)(d+PB + d−PA) + 2ε(h+PB|H + h−PA|H).
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Due to the facts that PA = 1− PB and PA|H = 1− PB|H ,

(
1

2
− ε)(d+(2PA − 1) + d−(1− 2PA)) + 2ε(h+(2PA|H − 1) + h−(1− 2PA|H)) > 0.

(
1

2
− ε)(2PA − 1)(d+ − d−) + 2ε(2PA|H − 1)(h+ − h−) > 0.

(2.2)

Due to PA > 1
2
− ε and PA|H > T , then we have 2PA− 1 > −2ε and 2PA|H − 1 >

2T − 1. According to Eq. (2.2), we have,

(
1

2
− ε)(2PA − 1)(d+ − d−) > −2ε(2PA|H − 1)(h+ − h−). (2.3)

For Eq. (2.3), the term in the left hand side should always be larger than the term
in the right hand side for the same ε. Hence, the “Infimum” value of the left hand side
should be always larger than the “Supremum” value of the right hand side.

inf
PA
{(1

2
− ε)(2PA − 1)(d+ − d−)} ≥ sup

PA|H

{−2ε(2PA|H − 1)(h+ − h−)}.

Therefore, we have

(
1

2
− ε)(−2ε)(d+ − d−) ≥ −2ε(2T − 1)(h+ − h−). (2.4)

Due to −2ε < 0, therefore, we eliminate the same negative parameter in both ends
of the Eq. (2.4), then we have,

(
1

2
− ε)(d+ − d−) ≤ (2T − 1)(h+ − h−).

Finally, due to ε ∈ [0, 1
2
), we have the condition as follows,

(d+ − d−) ≤ 2T − 1

1/2− ε
(h+ − h−).

Condition (A) highlights that, for each question, the payment h+ from an indirect
correct answer (after reading hints) should be less than d+ from a direct correct answer.
Condition (B) bridges the per unit income gap d+−d−

1−2ε
in the main stage and h+−h−

2ε
in the

hint stage together, and the inequality encourages a worker to directly answer questions
that he/she feels confident about in the main-stage. Condition (C) incentivizes his/her
to leverage the hints before answering questions that he/she is unsure of. Thus,
conditions (A) and (B) encourage workers to directly answer questions without hints
if they are confident enough; and when a worker has really low confidence, condition
(C) encourages him/her to use hints.
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Remark 2. In condition (A), we cannot set d+ = h+. If d+ = h+, even high-
quality workers may abuse hints for higher accuracy and rewards. This issue fails
the detection of high-quality workers by the hybrid-stage setting. Therefore, d+ > h+

ensures that high-quality workers will answer most of the questions directly for higher
rewards. Under the hybrid-stage setting, whether hints are used can be taken as a
criterion to detect the high-quality workers. Then, d+ > h+ assists our setting to detect
the high-quality workers, which has been verified in experiments in Section 2.3.3.3.

From Proposition 1, we can see that f relies on workers’ uncertainty degree ε in the
main stage and their confidence T in the hint stage. When ε is set to a large value, more
workers need hints to make their decision for each question. The disadvantage of large
ε is that the overall payments for workers may be low due to leveraging too many hints.
When ε is set to a small value, fewer workers need hints to make their decision for each
question. The disadvantage of small ε is that the quality of crowdsourced labels may
be poor since more workers avoid hints for higher payments. Thus, we need to find ε
to achieve a good tradeoff such that most workers are balanced, neither too cautious
nor too careless.

However, Proposition 1 only makes use of Assumption 1 to find rules for f and
does not specify the relationship between ε and T . Below Proposition 2 helps to
connect ε and T , and shows a lower-bound of ε.

Proposition 2. Under Assumption 1, f satisfies both Definitions 2.1 and 2.2 if ε ∈
[εmin, 1/2) where εmin = T −

√
T 2 − 1/4.

Proof. When we consider the last two pricing constraints in Proposition 1 under the
“mild no-free-lunch Axiom” in Definition 2.2, we can see that N = G = 1 and
d− = h− = 0. Therefore, we have,

1− 2ε

2ε
≤ d+

h+

≤ 2T − 1
1
2
− ε

.

as ε ∈ [0, 1
2
), then we have

2(
1

2
− ε) ≤ (2T − 1)2ε.

ε2−2Tε+
1

4
≤ 0.(

ε− 2T +
√

4T 2 − 1

2

)(
ε− 2T −

√
4T 2 − 1

2

)
≤ 0.

Thus the feasible region for ε is

[0,
1

2
) ∩

[
T −

√
T 2 − 1

4
, T +

√
T 2 − 1

4

]
.
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In addition, due to T ∈ (1
2
, 1) and T +

√
T 2 − 1

4
increases monotonically with T ,

then

min
T

(
T +

√
T 2 − 1

4

)
>

(
T +

√
T 2 − 1

4

)
|T= 1

2
=

1

2
.

Similarly, T −
√
T 2 − 1

4
=

1
4

T+
√
T 2− 1

4

decreases monotonically with T , then

max
T

(
T −

√
T 2 − 1

4

)
<

(
T −

√
T 2 − 1

4

)
|T= 1

2
=

1

2
.

and

min
T

(
T −

√
T 2 − 1

4

)
>

(
T −

√
T 2 − 1

4

)
|T=1= 1−

√
3

2
> 0.

To sum up, ε satisfies

ε ∈

[
T −

√
T 2 − 1

4
,

1

2

)
.

Therefore, for a fixed T ∈ (1
2
, 1), the minimum ε for a incentive-compatible payment

mechanism should be εmin = T −
√
T 2 − 1

4
. For the case of 1 ≤ G ≤ N , we have the

same result because, for a random question to be a gold standard question, we get the
minimum value εmin, which is the lower bound of ε. Due to previous assumptions that
each question is independent and all questions share the same ε in system design, εmin

will be the most suitable value to cover all cases. This completes the proof.

Moreover, based on above Proposition, we can derived following Corollary which
is based on Assumption 2.

Corollary 1. Under Assumption 2, (1/2− εmin) < (2T − 1).

Proof. Under Assumption 2, we have T ∈ (5/8, 1). Therefore, we can build up the
above inequality,

(8T − 5)(T − 2/4) > 0.

Namely,
8T 2 − 9T + 10/4 > 0.

Then we have,
(T − 1/2)(T + 1/2) < (3T − 3/2)2,

which equals to
3/2 +

√
T 2 − 1/4 < 3T.
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Therefore, we have

1/2− T +
√
T 2 − 1/4 < 2T − 1.

According to Proposition 2 (εmin = T −
√
T 2 − 1/4), we have (1/2 − εmin) <

(2T − 1).

Finally, we show when ε = εmin, i.e., the boundary condition in Proposition 2 is
achieved, a hint-guided payment mechanism f can be designed (Algorithm 1). The
function g, which sets how a single question should be paid, is defined at step 1
in Algorithm 1. Note that g(H+) < g(D+) = 1 due to Corollary 1, which is
also in consistent with condition (a) in Proposition 1. Responses from workers on
“gold standard” questions are collected in step 2, and the budget is set in step 3. A
multiplicative form of g is adopted in step 4, which is inspired by Shah and Zhou
[2015]. It incentivizes workers to use hints properly and also helps to make the smallest
payment to spammers. The reasons are highlighted in Remark 3.

Algorithm 1 Hint-guided Payment Mechanism
Inputs:

1. Define a function g : {D+,D−,H+,H−} → R+, which sets how a single
question should be paid, and , where g(D+) = 1, g(D−) = 0, g(H+) = 1/2−εmin

(2T−1)

and g(H−) = 0;

2. a1, . . . , aG ∈ {D+,D−,H+,H−} are the state evaluations of the answers to the
G gold standard questions;

3. Set the minimum payment µmin and maximum payment µmax properly;

The payment is:

4. f ([a1, . . . , aG]) = β
∏G

i=1 g(ai) + µmin where β = µmax − µmin.

Remark 3. The benefits of using the multiplicative form is detailed as follows. For
example, a spammer will respond to a question with an arbitrary answer, thus he/she
will get the minimum payment once any answers in “gold standard” are wrong. Then,
for a normal worker, if he/she tries to get the highest payment, he/she is encouraged to
use hints as less as possible. The reason is that the payment for a correct answer after
using hints is g(H+) which is smaller than 1, i.e., g(D+) (Corollary 1). Thus, more
hints are used, the maximum payment for a worker will get smaller. Besides, such a
multiplicative form also helps us to identify and pay more for high-quality workers, as
those workers will naturally user less hints.
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The design of Algorithm 1 is further supported by the following Theorem 2.3.
Thus, our algorithm is the unique one to satisfy both Definitions 2.1 and 2.2, and
ε = εmin is also a must choice here. Note that, in practice, the algorithm makes
the minimum payment µmin instead of 0 in Definition 2.2, if one or more attempted
answers in the gold standard are wrong. This operation is without any loss of
generality.

Theorem 2.3. Under Assumption 1 and 2, f in Algorithm 1 satisfies both Defini-
tions 2.1 and 2.2 if and only if ε = εmin.

Proof. To prove “if and only if”, the standard way is to prove the existence first, and
then prove the uniqueness.
Existence: To consider the case of N = G = 1, when ε = εmin, the proposed
payment mechanism meets three pricing constraints, therefore, the proposed payment
mechanism is incentive-compatible. For the case of 1 ≤ G ≤ N , a1, · · · , aG ∈
{D+,D−,H+,H−} are the evaluations of the answers to theG gold standard questions.
The final payment is β

∏G
i=1 f(ai) + µmin. Due to the assumption that each ai, i ∈

{1, · · · , G} is independent, the overall expected payment Payment(a1, · · · , aG)
equals to the product (scaled by β; shifted by µmin) of the expected values f(ai)
for each ai, i ∈ {1, · · · , G}. As f(ai) is maximized when the worker answers the
question by his/her own belief, the overall expected payment is then maximized when
all workers answer the questions by their own beliefs. This proves the existence.
Uniqueness: To consider the case of N = G = 1, according to the “mild no-
free-lunch” axiom, both d− and h− are equal to 0. Furthermore, according to three
pricing constraints, when ε = εmin, we get an equality case of 2.2.2, namely, 1−2ε

2ε
=

d+
h+

= 2T−1
1
2
−ε , hence, the relation between d+ and h+ is fixed. The derived mechanism

is identical to the hint-guided payment mechanism. Therefore, we further consider
whether the derived mechanism is identical to the hint-guided payment mechanism for
the general case of 1 ≤ G ≤ N .

The base case of the induction hypothesis is that the derived mechanism is identical
to the hint-guided payment mechanism whenever y ∈ {H+,H−}G\{H+}G. For G
gold standard questions, we assume that the worker answers at leastG−r−1 questions
with hints, namely,

∑G
i=1 1{yi ∈ {H+,H−}} ≥ G − r − 1 1. We suppose that the

induction hypothesis is true whenever y ∈ {D+,D−,H+,H−}G\{D+,H+}G. Now we
prove the induction hypothesis keeps true whenever y ∈ {D+,D−,H+,H−}G\{D+,H+}G
and

∑G
i=1 1{yi ∈ {H+,H−}} = G− r.

Let yi denote the state evaluation of his/her answer to the question i ∈ {1, · · · , G}.
Assume that y1, · · · , yr−1 ∈ {D+,D−} and yr+1, · · · , yG ∈ {H+,H−}. For N
questions, suppose for i ∈ {1, · · · , r−1}, we have PA > 1

2
+ε; for i ∈ {r+1, · · · , N},

we have 1
2
− ε < PA < 1

2
+ ε while PA|H > T . Thus, he/she will select “A” for

11{x} is an indicator function, and 1{x = true} = 1 while 1{x = false} = 0.
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all questions {1, · · · , N}\{r}. Moreover, the worker holds a belief that questions
1, · · · , r − 1 can be selected directly; while questions r + 1, · · · , G will be answered
with hints.

Assume that q : {D+,D−,H+,H−} → [0, µmax] be a function defined as follows.
q(yr) is an expected payment conditioned on the rth question, which is composed of a
convex combination of two parts. The first part is the payment that rth question is in
the gold standard question; the second part is the payment that rth question is not in the
gold standard question. Hence, q(yr) = φq∗(yr) + (1 − φ)c, where φ ∈ (0, 1), c ≥ 0.
q∗ denote the first part payment, which is dependent on q(yr).

Assume that the function q∗ is a convex combination of the payment function f
evaluated at various points. Due to “mild no-free-lunch” axiom, we have q∗(yr) = 0
when yr ∈ {H−}. Let PB = 1− PA; PB|H = 1− PA|H be the worker’s confidence for
the question r, if the payment mechanism incentivizes the worker to select the answer
for question r properly, then the result should be:

If PA > 1
2
− ε and PA|H > T , then the answer to question r is A, hence, the

expected payment by A should be larger than the expected payment by B.

(
1

2
− ε)(PAq∗(D+) + PBq

∗(D−)) + 2ε(PA|Hq
∗(H+) + PB|Hq

∗(H−)) >

(
1

2
− ε)(PBq∗(D+) + PAq

∗(D−)) + 2ε(PB|Hq
∗(H+) + PA|Hq

∗(H−)).

In turn, if PA < 1
2

+ ε and PB|H > T , then the answer to question r is B, hence, the
expected payment by B should be larger than the expected payment by A.

(
1

2
− ε)(PAq∗(D+) + PBq

∗(D−)) + 2ε(PA|Hq
∗(H+) + PB|Hq

∗(H−)) <

(
1

2
− ε)(PBq∗(D+) + PAq

∗(D−)) + 2ε(PB|Hq
∗(H+) + PA|Hq

∗(H−)).

Let PA = 1
2

+ ε and PB|H = T , then we have,

(
1

2
− ε)(1

2
+ ε)q∗(D+) + (

1

2
− ε)2q∗(D−) + 2ε(1− T )q∗(H+) + 2εTq∗(H−) ≤

(
1

2
− ε)2q∗(D+) + (

1

2
− ε)(1

2
+ ε)q∗(D−) + 2εTq∗(H+) + 2ε(1− T )q∗(H−).

Due to q∗(H−) = 0, we have,

(
1

2
− ε)(1

2
+ ε)q∗(D+) + (

1

2
− ε)2q∗(D−) + 2ε(1− T )q∗(H+) ≤

(
1

2
− ε)2q∗(D+) + (

1

2
− ε)(1

2
+ ε)q∗(D−) + 2εTq∗(H+).
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After simplifying, we have,

(
1

2
− ε)2εq∗(D+)− (

1

2
− ε)2εq∗(D−) ≤ 2ε(2T − 1)q∗(H+).

q∗(D+)− q∗(D−) ≤ 2T − 1
1
2
− ε

q∗(H+).

When designing a payment mechanism, we assume that q∗(D+) is fixed, and
q∗(H+) can be derived by the relation with q∗(D+). We hope to set q∗(H+) to the
boundary value. Specifically, as we want to penalize the use of hints, we set q∗(H+) as
small as possible while meeting the inequality. Therefore, we set q∗(D+) to the lower
bound. Namely, q∗(H+) =

1
2
−ε

2T−1
(q∗(D+) − q∗(D−)). Due to “mild no-free-lunch”

axiom, q∗(H+) =
1
2
−ε

2T−1
q∗(D+).

Since q∗ is a convex combination of the payment function f evaluated at various
points. Therefore, we have,

(2T − 1)f(H+, y2, · · · , yG) = (
1

2
− ε)f(D+, y2, · · · , yG),

where the augments above hold for any permutation of the G gold standard questions.

(2T − 1)f(y1, y2, · · · ,Hi
+, · · · , yG) = (

1

2
− ε)f(y1, y2, · · · ,Di

+, · · · , yG),

where the notation Hi
+ denotes the state evaluation of yi is H+. The same is true for

Di
+. Then, according to the recursive induction, we have

f(

G︷ ︸︸ ︷
D+, · · · ,D+) =

(
2T − 1

1
2
− ε

)G
f(

G︷ ︸︸ ︷
H+, · · · ,H+). (2.5)

Based on Eq. (2.5) and using the fact that all arguments apply to any permutation of
the G gold standard questions, we can see that f should be identical to the hint-guided
payment mechanism. This proves the uniqueness.

2.2.3 No Other Compatible Mechanism
Definition 2.1 is a must to design a payment mechanism. However, under our hybird-
setting here, there exists another popular “harsh no-free-lunch” axiom (Definition 2.4),
which is adapted from Definition 2 in Shah and Zhou [2016].

Definition 2.4 (Harsh No-free-lunch Axiom). If all answers attempted by the worker
in “gold standard” questions are either wrong or based on hints, then the payment for
the worker should be zero. More formally, f(a) = 0, a ∈ {D−,H+,H−}G.

33



Compared to the “mild no-free-lunch” axiom, Definition 2.4 encourages the worker
to answer without hints no matter whether he/she is unsure. Thus, it is stronger than
the “mild no-free-lunch” axiom and can be used to replace Definition 2.2. We wonder
whether we can find another payment function which satisfies this more restrictive
condition. However, below Theorem 2.5 shows a contradiction to Definition 2.4.

Theorem 2.5. Under Assumption 1 and 2, there is no mechanism that satisfies both
Definitions 2.1 and 2.4.

Proof. Under the hybrid-stage setting, the incentive-compatible mechanism encour-
ages the worker to use hints when he/she is unsure of the questions. Since Definition
2.1 is contradictory to Definition 2.4, the “Harsh No-Free-Lunch Axiom” is too strong
for the existence of any incentive-compatible payment mechanism.

Therefore, the “harsh no-free-lunch” axiom is too strong for the existence of any
incentive-compatible payment mechanism here. This further illustrates the uniqueness
of the proposed payment mechanism.

2.3 Numerical Experiments
We conduct real-world experiments on Amazon Mechanical Turk 1, which is the
leading platform to collect crowdsourced labels. We compare our hint-guided approach
with: (1) Baseline approach : a single-stage setting with an additive payment
mechanism. (2) Skip-based approach [Ding and Zhou, 2017; Shah and Zhou, 2015]:
a skip-stage setting with a skip-based payment mechanism. Note that the skip-based
payment mechanism is multiplicative. For the self-corrected approach [Shah and Zhou,
2016], it has not been verified on AMT tasks, since there is no criteria how to set
references. Therefore, we do not include it in our comparison. Note that additive
and multiplicative payment mechanisms are respectively denoted as “+” and “×” for
subsequent use in Section 2.3.3.4.

2.3.1 Experimental Setup
All these datasets are collected by us on Amazon MTurk, where hints are easily
designed according to the criteria in Section 2.1.2. We conducted three real tasks as
follows.

• Sydney Bridge (binary-choice questions): we collect 30 images of various
bridges. Each image contains one bridge. The task is to identify whether
the bridge in each image is the Sydney Bridge. The content of hints includes

1https://www.mturk.com/mturk/welcome
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discriminative phrases, such as “concrete pylons” and “around Sydney Opera
House”.

• Stanford Dogs (multiple-choice questions): we collect 100 images of four breeds
of dogs. The task is to identify the breed of dogs in each image. We build a
lookup table as hints, which includes the characteristics of four breeds of dogs,
such as “prick ears” for Norwich Terrier.

• Speech Clips (subjective questions): we collect 10 speech clips. Each speech
clip consists of 1 or 2 short sentences (15 words). The task is to recognize each
speech clip and write down the corresponding sentence. We leverage the open
tool 1 to roughly recognize each speech clip and save the key words (≤ 4) as the
hints.

We verify the effectiveness of our hint-guided approach from three perspectives
(Table 2.1), and each perspective includes one to two metrics in brackets: requester
(“label quantity” and “label quality”), worker (“worker quality detection” and “spam-
mer prevention”) and platform (“money cost”). Except “worker quality detection”,
other metrics have been popularly used by previous works [Shah and Zhou, 2015,
2016]. They are detailed as follows.

• Label quantity: we evaluate the label quantity by the percentage of the
completion of three tasks. In the skip-stage setting, worker yields unlabeled
(uncompleted) data by skipping unsure questions. In the single-stage and the
hybrid-stage settings, for objective questions, worker yields (few) unlabeled
data because he/she forgets or ignores few questions. For subjective questions,
worker yields (more) unlabeled data by inputting invalid answers. For example,
they write sentences, such as “I do not know” in the answer box.

• Label quality: we evaluate the label quality from two aspects: (i) the percentage
of correct answers and incorrect answers on three tasks; and (ii) the error
of aggregated labels [Shah and Zhou, 2015]. For the ith question where
i ∈ {1, . . . , n}, if there are mi options after majority voting (the tie situation),
and the ground-truth label is one of mi options, then we consider that 1

mi
of the ith question is correct. Therefore, the error of aggregated labels is
1 − (

∑n
i=1 1/mi)/n. Since text answers cannot be majority voted on Speech

Clips, we do not report the error of aggregated labels on Speech Clips.

• Worker quality detection: we evaluate the worker quality detection of the hint-
guided approach implicitly, by the error rate (in %) of aggregating original and
rescaled crowdsourced labels. For example, Sydney Bridge (origin) means the

1https://speech-to-text-demo.mybluemix.net/
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original labels collected by our approach. For Sydney Bridge (rescale), we rank
the worker quality from high to low by the usage frequency of the hints in
the collection of original labels. Then, we rescale original labels by adaptive
weights. Labels from top 20% (bottom 20%) workers have been empirically
rescaled by 1.8 (0.2). The remaining labels keep unchanged. If the error rate
on rescaled dataset decreases, then we speculate that our hint-guided approach
indeed detects the worker quality. Namely, the less usage of hints indicates the
higher quality of the worker.

• Spammer prevention and money cost: we evaluate the spammer prevention and
the money cost by the average payment to each worker. Note that the payment
consists of two parts: fixed payment and reward payment. Reward payment
is based on a worker’s responses to G gold standard questions. All payment
parameters are in Appendix.

2.3.2 Payment Parameters
Here, we provide the details of parameter setting for different payment mechanisms.
The payment is often composed of two parts: a fixed (minimum) payment and a reward
(bonus) payment. The fixed payment is paid for each worker who undertakes all
tasks, which avoids all multiplicative payment mechanisms too harsh for workers. The
reward payment is based on his/her responses to G gold standard questions. For each
task, the fixed payment and reward payment are denoted as FP and RP , respectively.

For additive mechanism, k1 denotes the unit reward for each correct answer. For
skip-based mechanism, RP starts from k2, increasing by Ps for each correct answer.
Note that the RP remains the same for skip option, but becomes zero for any incorrect
answer. For hint-guided mechanism, RP starts from k3, increasing by Pd and Ph for
each correct answer in the main stage and the hint stage, respectively. However, RP
will become zero for any incorrect answer. All payment parameters of this chapter are
in Table 2.2. Here, we will explain how we set these parameters as follows.

Table 2.2: The payment parameters. The total payment is composed of FP and
RP . RP is based on worker’s responses to G questions. Ph =

1
2
−ε

2T−1
Pd according

to Algorithm 1, where we set T = 0.75 and ε = 0.191 due to the Proposition 2.

Data set FP G
Baseline Skip-based Hint-guided
k1 k2 Ps k3 Pd Ph

Sydney Bridge 5 3 8.5 9.15 50% 9.15 50% 30%
Stanford Dogs 7 10 9 1.02 60% 1.02 60% 37%
Speech Clips 5 2 20 12.25 100% 12.25 100% 62%

According to the suggestion on Amazon MTurk, the reward per question(denotes
as ra) should be set according to the minimum wage, e.g., a 30 seconds question that
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pays 5 cents is a 6 dollars hourly wage. Therefore, ra are set to 1 cent for each image
annotation question and 4.5 cents for each speech recognition question. Moreover, the
fixed payment FP are set to 5 cents, 7 cents, 5 cents for Sydney Bridge, Stanford
Dogs, and Speech Clips respectively. For different payment mechanisms, the other
parameters can be decided as follows:

• Additive payment mechanism: the payment for a strong worker who answers all
the G gold questions correctly should be the same as the total payment, thus k1

satisfies the constrain FP +G ∗ k1 = N ∗ ra.

• Skip-based payment mechanism (multiplicative): To incentive the worker to
provide high-quality labels, the reward per question with the multiplicative
payment mechanism (denotes as rm) should be higher than ra. Therefore, in our
experiments, rm are set to 1.2 cents for each image annotation question and 5.4
cents for each speech recognition question. Furthermore, the amount payment
for a strong worker who answers all the G gold questions correctly under the
Skip-based payment mechanism should be the same as the total payment, thus
k2 satisfies the constrain FP + k2 ∗ (1 + Ps)

G = N ∗ pm, where Ps are set
to 50%, 60% and 100% for Sydney Bridge, Stanford Dogs, and Speech Clips
respectively.

• Hints-guided payment mechanism (multiplicative): For a strong worker who
answers all the G gold questions correctly in the main stage, the reward should
be the same as that under the Skip-based payment mechanism, thus parameters
k3 and Pd satisfy k3 = k2 and Pd = Ps for each task specifically. Moreover, for
the reward in the hint stage, we decide Ph according to Ph =

1
2
−ε

2T−1
Pd in Hint-

guided payment mechanism, where we set T = 0.75 and ε = 0.191 according to

the equation εmin = T −
√
T 2 − 1

4
.

2.3.3 Experimental Results
We demonstrate the effectiveness of our hint-guided approach from the following five
aspects. Specifically, Section 2.3.3.1 verifies whether our approach provides a suffi-
cient number of labels. Section 2.3.3.2 displays whether our approach provides high-
quality labels. Section 2.3.3.3 denotes whether our approach can detect worker quality.
Section 2.3.3.4 indicates whether our approach prevents spammers. Section 2.3.3.5
demonstrates whether our approach saves money.

2.3.3.1 Label Quantity

Table 3.2 denotes the percentage of the completion of three tasks. The first two tasks
(Sydney Bridge and Stanford Dogs) belong to objective questions, while the last task
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(Speech Clips) belongs to subjective questions. Objective questions can be answered
by the random guess. Therefore, the percentage of the completion for objective
questions is much higher than that for subjective questions. In addition, the hint-guided
approach has a high percentage of the completion of both objective and subjective
questions. Our approach inspires workers to finish the questions, ensuring the quantity
of crowdsourced labels.

Table 2.3: Evaluation of the label quantity. We provide the percentage of the
completion on three tasks.

Data set Baseline Skip-based Hint-guided
Sydney Bridge 100.00% 74.00% 99.11%
Stanford Dogs 99.72% 58.18% 99.91%
Speech Clips 58.33% 30.00% 75.00%

2.3.3.2 Label Quality

Figure 2.2 plots the percentage of correct answers and incorrect answers on three tasks.
First, on all tasks, the percentage of correct answers in the hint-guided approach is
higher than that in the baseline and skip-based approaches. Second, on Speech Clips,
the percentage of incorrect answers is extremely low in the skip-based approach. The
reason is that most people skip difficult speech clips, and answer several easy ones.
Third, compared with other approaches, our hint-guided approach ensures a sufficient
number of high-quality labels.

Figures 2.3(a) and 2.3(b) plot the error of aggregated labels on the Sydney Bridge
and Standford Dogs tasks. The number of workers (abbreviated as n workers) is
set to {5, 6, 7, 8, 9, 10}, since the error of aggregated labels comes from majority
voting among multiple workers [Shah and Zhou, 2015], and the number of multiple
workers depends on varying situations. For each of combinations between tasks and
n workers, we perform the following actions 200 times repeatedly. In each time, for all
questions, we randomly select n workers workers and perform the majority voting on
their responses to yield the aggregated labels. The plotted error of aggregated labels is
averaged across 200 results. We observe that the hint-guided approach consistently
outperforms the baseline and the skip-based approaches, and the performance gap
between the baseline and the hint-guided approaches is extremely obvious on Stanford
Dogs.

2.3.3.3 Worker Quality Dectection

Table 2.4 denotes the error of aggregating original and rescaled crowdsourced labels.
For rescaled crowdsourced labels, labels from estimated high-quality workers are
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adaptively given more weights, and vice versa. From Table 2.4, we can see the error
of aggregating rescaled labels is lower than the error of aggregating original labels.
It demonstrates that our hint-guided approach can detect the high-quality workers
effectively. Then, the error decreases significantly on Sydney Bridge, since the size
of Sydney Bridge is relatively small (30 questions) compared to Stanford Dogs (100
questions). We believe that, the informative hints for Stanford Dogs may guide the
low-quality workers to make more accurate decisions. Then, the performance gap
between high-quality and low-quality workers is insignificant. Therefore, the effect of
label rescaling is marginal on this dataset.

Table 2.4: Evaluation of the worker quality detection of the hint-guided approach.
Error rate (in %) is provided for aggregating original and rescaled crowdsourced labels.

Number of Workers 5 10
Sydney Bridge origin 38.33% 16.67%

rescale 30.00% 11.67%
Stanford Dogs origin 12.50% 4.50%

rescale 12.00% 4.00%

2.3.3.4 Spammer Prevention

The baseline and hint-guided approaches are represented as Single(+) and Hybrid(×),
respectively. We provide one extra interaction: the single-stage setting with the “×”
mechanism (Single(×)), and all parameters are consistent. Figure 2.4(a) explores how
our approach prevents spammers. It plots the average payment to each worker under
three approaches. We have one observation: the payments of Single(×) and Hybrid(×)
are lower than that of Single(+), since an answer in G questions is incorrect, and
thus the reward of the “×” mechanism becomes zero. Since spammers answer each
question randomly, the “×” mechanism used by our approach makes the smallest
payment to them. Thus, our approach prevents spammers.

2.3.3.5 Money Cost

Figure 2.4(b) plots the average payment to each worker under the three approaches.
The higher the payment is, the worse the economy of the approach. The payment
is calculated as the average of the payments across 200 random selections of G
questions. This process mitigates the distortion of results caused by the randomness
in the choice of G questions. We can see that, the payments of the skip-based and
hint-guided approaches are comparable but less than the payment of the baseline
approach, especially in the Stanford Dogs task, since both the skip-based and hint-
guided approaches use the multiplicative mechanism but the baseline approach use
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the additive mechanism. Thus, from the perspective of saving money, we should not
employ the baseline approach. Note that, on the Sydney Bridge and Stanford Dogs
tasks, although the payment in the skip-based approach is slightly lower than that
in the hint-guided approach, the number of high-quality labels from the hint-guided
approach is obviously higher than that from the skip-based approach (Figure 2.3).

2.4 Summary of This Chapter
This chapter has proposed a hint-guided approach that encourages workers to use hints
when they answer unsure questions. Our approach consists of the hybrid-stage setting
and the hint-guided payment mechanism. We proved the incentive compatibility and
uniqueness of our mechanism. Besides, our approach can detect the high-quality
workers for more accurate result aggregation. Comprehensive experiments conducted
on Amazon MTurk revealed the effectiveness of our approach and validated the simple
and practical deployment of our approach.

To sum up, our hints-guided approach provides practitioners an effective way
to obtain adequate quantity of high-quality labels within limited budgets, which are
critical for the success of many machine learning applications in practice.
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(c) Speech Clips.

Figure 2.2: Evaluation of label quality. Percentage (in %) of correct answers and
incorrect answers on three tasks are provided. Note that, we do not plot the percentage
of unlabeled questions.
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(b)

Figure 2.4: Evaluation of the spammer prevention. Average payment to each worker
on all three tasks are provided. Evaluation of the money cost.
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(b) Stanford Dogs.

Figure 2.3: Evaluation of the label quality. Results on Speech Clips are not reported,
as text answers cannot be majority voted.
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Chapter 3

POSTAL: Towards Robust
Optimization

This chapter answers the second question, namely “how to design the robust optimiza-

tion under noisy labels?”. From the high level, we hope to bridge curriculum learning

and stochastic optimization, in order to progressively learn from clean labels to noisy

labels.

As mentioned in the Chapter 1, all state-of-the-art stochastic optimizations have

a strong assumption that the data is free of noise. This assumption may simplify the

theoretical analysis (i.e., convergence rate). However, this assumption restricts their

applicabilities to the real-world problem, since the industrial-level datasets are not

always perfect. Therefore, how to consider the robustness in stochastic optimization?

This question motivates our below research.

We propose a robust SGD mechanism called PrOgressive STochAstic Learning

(POSTAL), which naturally integrates the learning regime of curriculum learning (CL)

with the update process of vanilla SGD. Our inspiration comes from the progressive

learning process of CL, namely learning from “easy” tasks to “complex” tasks.

Through the robust learning process of CL, POSTAL aims to yield robust updates

of the primal variable on an ordered label sequence, namely from “reliable” labels

to “noisy” labels. To realize POSTAL mechanism, we design a cluster of “screening

losses”, which sorts all labels from the reliable region to the noisy region. We derive

the convergence rate of POSTAL realized by screening losses. Meanwhile, we provide

the robustness analysis of representative screening losses. Experiments on benchmark

datasets show that POSTAL using screening losses is more effective and robust than

several existing baselines.

The remainder of this chapter is organized as follows. We first present our proposed

progressive stochastic learning (POSTAL) from the mechanism (Section 3.1), the

realization by screening losses (Section 3.2), and the theoretical analysis (Section 3.3).

Then, in Section 3.4, we conduct sufficient experiments on six UCI simulated datasets
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Table 3.1: Comparison of different learning approaches. POSTAL integrates benefits

(emphasized by color) of CL and SGD.

Methods CL SGD POSTAL

Learning Process “Easy” to “Complex” Random “Reliable” to “Noisy”

Iterative Training Heuristic Gradient-based Gradient-based

and one AMT crowdsourcing dataset. The conclusive remarks are given in Section 3.5.

3.1 Mechanism of Progressive Stochastic Learning
Real-world applications, such as crowdsourced data, are full of noisy labels. This issue

inevitably degenerates the performance of conventional SGD, by adversely affecting

updates of the primal variable w in SGD. Therefore, we hope to explore a mechanism

to ensure robust updates of the primal variable w under noisy settings. Our idea is

motivated by curriculum learning (CL), which learns easier tasks first, and learns more

difficult tasks gradually to ensure a robust model. This learning strategy is similar to

training an infant through to adulthood. In human learning, knowledge is ordered to

allow for gradual learning. Infants are provided with easy knowledge first. As they

grow and are able to handle more complex concepts, more difficult knowledge will be

provided.

Based on the above inspiration, we introduce a robust mechanism called progres-

sive stochastic learning (POSTAL) for noisy labels, which incorporates the mechanism

of CL with the update process of vanilla SGD. Since CL provides the ordered learning

to learn from easy tasks first then to hard tasks until convergence. Through such a

learning paradigm, POSTAL aims to yield robust updates of the primal variable in SGD

on an ordered label sequence, namely from “reliable” labels to “noisy” labels. Table

3.1 shows a key comparison of different learning approaches, and POSTAL integrates

benefits of CL and SGD together. The following example explains the central idea of

POSTAL.

From the left panel of Figure 3.1, we observe that xA (point “A”) is correctly labeled

with yA = +1, which corresponds to its predicted label value (+1) (predicted label

value =

{
+1 fw(x) ≥ 0
−1 fw(x) < 0

, where fw denotes the current classifier). Therefore, label

yA of instance xA can be regarded as a reliable label. Conversely, instances xB and xC

(i.e., data points “B” and “C”) are incorrectly annotated with label yB = +1, yC = +1.

These labels are the opposite of their predicted label value (-1). Therefore, label yB

44



Figure 3.1: Left Panel: Circles denote real positive instances such as “A”. Squares

represent real negative instances such as “B” and “C”; however, both “B” and “C” are

erroneously annotated as positive class, which creates two noisy labels. According to

their distance to the positive hyperplane, the label of “A” is reliable; while the labels of

“B” and “C” are noisy. Right Panel: “A” (zA) is located in the reliable region defined

by z ≥ 0; while “B” (zB) and “C” (zC) are located in the noisy region defined by z ≤ 0.

In Definition 3.1, z = yfw(x) is formally defined as the curriculum in POSTAL. There

are two points to be noted that: 1) Ramp Loss is parameterized by s∗ directly; and 2)

Logistic, Hinge and Ramp Losses are drawn as the baselines of two screening losses.
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Algorithm 2 PrOgressive STochAstic Learning (POSTAL)

Input: λ ≥ 0, b, the max number of epochs Tmax, the initial learning rate η0, the step

size μ, the loss function r(w; {xi, yi}), the regularizer ρλ(w) = λ
2
‖w‖2, and

the training set D = {xi, yi}ni=1

1 Initialize: t = 0, w̃(0) randomly, the dynamic threshold Dth = 1 by the max-margin

principle

2 for T = 1, 2, . . . , Tmax do
3 Preprocess: w(tmp) = w̃(epoch−1) and shuffle n data points in D stochastically

4 for k = 1, . . . , n do
5 Select: {xit, yit} from D , it ∈ {1, ..., n}
6 Curriculum: zit(w(tmp)) = (〈w(tmp),xit〉+ b)yit
7 If zit(w(tmp)) ≥ Dth:

8 Update: t = t+ 1 and η = η0(1 + λη0t)
−1

9 Compute: Q = ∂wr(w
(tmp); {xit, yit})

10 Update: w(new) = w(tmp) − η(λw(tmp) +Q)

11 Assign: w(tmp) = w(new)

12 end
13 Assign: w̃(epoch) = w(tmp)

14 Update: Dth = Dth − μ
√
T

15 end
Output: w̃(Tmax)

of instance xB and label yC of instance xC can be regarded as noisy labels. Among

them, “B” is closer than “C” to the positive hyperplane, which means that “C” is more

unreliable. More importantly, both labels yB and yC would negatively affect the update

of the primal variable. To remedy this negative effect, POSTAL attempts to leverage

the robust learning regime of CL. First, we define “the curriculum” in POSTAL as

follows.

Definition 3.1. (The Curriculum in POSTAL) Given training data D = {xi, yi}ni=1, if
fw denotes the current classifier, then the curriculum z in POSTAL can be calculated as
the product of the annotated label y and the predicted label of x, namely z = yfw(x).

Remark 4. In POSTAL, zi > zj represents that xi is more reliable than xj , which
further means that xi should be learned earlier than xj . In conclusion, POSTAL learns
from “reliable” labels to “noisy” labels.

According to Definition 3.1, given reliable data {xA, yA}, the noisy data {xB, yB}
and {xC , yC} in the left panel of Figure 3.1, we have the curriculum zA = yAfw(xA) >
0, the curriculums zC = yCfw(xC) < zB = yBfw(xB) < 0. Therefore, in the right
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panel of Figure 3.1, the curriculum z = 0 can be employed to separate the x-axis into

the reliable region (z ≥ 0) and the noisy region (z ≤ 0) respectively. Furthermore, the

update region for POSTAL (z ≥ Dth) is controlled by a dynamic threshold Dth, and

Dth is initialized to 1 on the x-axis by the max-margin principle. Through the robust

learning process of CL, in the initial epoch, the update of the primal variable w is

limited to “reliable” labels (z ≥ Dth = 1) to establish a robust model. In the following

epochs, we gradually reduce the dynamic threshold Dth. Correspondingly, updates

occur on “noisy” labels incrementally until convergence. In conclusion, POSTAL

learns from “reliable” label regions to “noisy” label regions, and details are shown

in Algorithm 2.

Remark 5. In Algorithm 2, POSTAL consists of two key components: curriculum
calculation (line 6) and variable update (line 10). Specifically,

1. POSTAL computes the curriculum zit(w
(tmp)) for any stochastic sample {xit, yit}

in line 6. If the corresponding curriculum locates within the current update
region controlled by Dth (line 7), then POSTAL updates its primal variable
w(tmp) on this random sample in line 10, and vice versa.

2. With the decrease of Dth (line 14), POSTAL updates its primal variable from
“reliable” samples to “noisy” samples; while vanilla SGD updates its primal
variable on a stochastic sample sequence.

3. For simplicity, the curriculum zit(w
(tmp)) is realized by the linear mapping

function fw, namely fw(tmp)(xit) = 〈w(tmp),xit〉 + b in line 6. It means that
we apply POSTAL to SVM classification model.

4. Since both SVM and Deep Learning are under the same empirical risk mini-
mization (ERM) principle (1.2), the POSTAL mechanism can be leveraged by
Deep Learning model if we represent fw by deep neural networks. Namely, if we
realize fw using the nonlinear mapping function (deep neural networks) in line
6, then POSTAL could be applied to Deep Learning model.

5. Our theoretical analysis (Theorems 3.3 and 3.4) is based on ERM principle,
therefore, this analysis may also hold for Deep Learning model with additional
efforts (e.g., considering model capacity and optimization landscape).

3.2 Realization of Progressive Stochastic Learning
To realize the POSTAL mechanism, we design a cluster of bounded losses called

“screening losses”. The screening losses are desirable for two reasons. First, screening

losses sort all the labels from the reliable region (z ≥ 0) to the noisy region (z ≤ 0),
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where z = yfw(x) (the right panel of Figure 3.1). In other words, a cluster of screening

losses serves as a guidance to provide an ordered label sequence for updates of the

primal variable in POSTAL. Second, since screening losses are bounded, if the update

of POSTAL enters the noisy region (i.e., around zB and zC), the stochastic gradients

of non-convex screening losses are approximately zero in this region. Therefore,

screening losses assist POSTAL in minimizing the adverse effects caused by noisy

labels. Based on Definitions 1.1 and 1.2, we propose a cluster of screening losses r(z)
for POSTAL, where z is the curriculum variable of loss function (x-axis) in the left

panel of Figure 3.1.

Definition 3.2. (Definition 3 in [Han et al., 2016]) For POSTAL, a loss function r(z)
belongs to screening losses if it meets the following conditions simultaneously:

(a). Upper bound condition - it should be bounded such that lim
z→−∞

dr(z)
dz

= 0.

(b). Locally λ-strongly convex condition - it should be locally λ-strongly convex
if there exists a constant λ > 0 such that r(z) − λ

2
‖z‖2 is convex when

z ∈ B1(z
∗, γ), where B1(z

∗, γ) denotes the 1 dimensional Euclidean ball of
radius γ > 0 centered at a local minimum z∗.

(c). Smoothly decreasing condition - it should be decreasing monotonically and
differentiable continuously.

Remark 6. Here, we illustrate above conditions in details.

1. The upper bound is regarded as the threshold to suppress the adverse effects led
by noisy labels.

2. The loss function should be locally λ-strongly convex. If r(w; {xi, yi}) is locally
λ-strongly convex and ρλ(w) is globally λ-strongly convex (e.g., λ

2
‖w‖2), the

G(w) is locally strongly-convex. Then, G(w) meets the ARSC.

3. If r(w; {xi, yi}) is decreasing monotonically, we assume that G(w) is non-
increasing around some local minima. If r(w; {xi, yi}) is differentiable at every
point, gi(w) meets the ARSM when λ

2
‖w‖2 is used as the regularizer.

In this chapter, we present two screening losses that satisfy the three conditions

in Definition 3.2. One case is the screening ramp loss (3.1), which can be viewed as

a smooth version of ramp loss (smoothing around s∗ and 1). Here, we represent the

screening ramp loss by a reversed sigmoid function:

r(s∗, z) =
1− s∗

1 + eαs∗ (z+βs∗ )
. (3.1)

When parameter s∗ of ramp loss is set, parameters αs∗ and βs∗ of screening ramp loss

are decided by minimizing the difference between ramp loss and screening ramp loss.
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The other case is the screening Gompertz loss. We represent the screening

Gompertz loss by a reversed Gompertz function:

r(c∗, z) = e−ec
∗·z
, (3.2)

where parameter c∗ controls the curve of this loss. In summary, the screening losses

not only serve as a guidance to provide an ordered label sequence for updates of w in

POSTAL, but also reduce the adverse effects caused by noisy labels on updates of w.

Moreover, screening losses are tailor-made to make POSTAL converge fast (Theorem

3.3 and Section 3.4.2.2). The realization of POSTAL (Algorithm 2) by screening losses

is shown in Algorithm 3.

Algorithm 3 PrOgressive STochAstic Learning using Screening Losses

Input: λ ≥ 0, b, the max number of epochs Tmax, the initial learning rate η0, the

step size μ, the parameters s∗ and c∗ in loss function, the regularizer ρλ(w) =
λ
2
‖w‖2, and the training set D = {xi, yi}ni=1

16 Initialize: t = 0, w̃(0) randomly, the dynamic threshold Dth = 1 by the max-margin

principle

17 Set:

{
I : f(αs∗ , βs∗ , z) = eαs∗ (z+βs∗ )

II : f(c∗, z) = c∗z − ec
∗z

18 for T = 1, 2, . . . , Tmax do
19 Preprocess: w(tmp) = w̃(epoch−1) and shuffle n data points in D stochastically

20 for k = 1, . . . , n do
21 Select: {xit, yit} from D , it ∈ {1, ..., n}
22 Curriculum: zit(w(tmp)) = (〈w(tmp),xit〉+ b)yit
23 If zit(w(tmp)) ≥ Dth:

24 Update: t = t+ 1 and η = η0(1 + λη0t)
−1

25 Compute:

⎧⎪⎨
⎪⎩

Q(I) : (1− s∗)αs∗xityit
f(αs∗ , βs∗ , zit(w

(tmp)))

(1 + f(αs∗ , βs∗ , zit(w(tmp))))2

Q(II) : c∗xityite
f(c∗,zit(w(tmp)))

26 Update: w(new) =

{
I : w(tmp) − η(tmp)

[
λw(tmp) −Q(I)

]
II : w(tmp) − η(tmp)

[
λw(tmp) −Q(II)

]
27 Assign: w(tmp) = w(new)

28 end
29 Assign: w̃(epoch) = w(tmp)

30 Update: Dth = Dth − μ
√
T

31 end
Output: w̃(Tmax)
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3.3 Analysis of Progressive Stochastic Learning

3.3.1 Convergence Analysis
If we apply POSTAL to the classification model (1.2) with screening losses, it

converges to a local minimum. According to the conditions in Section 3.2, G(w) meets

ARSC and gi(w) meets ARSM, respectively. Then, we derive the convergence rate of

POSTAL realized by screening losses. The details of convergence rate are shown in

Theorem 3.3. Note that, E
[ · ] denotes the expectation.

Theorem 3.3. For POSTAL using screening losses, consider that G(w) and gi(w)
satisfy Augmented Restricted Strong Convexity (ARSC) and Augmented Restricted
Smoothness (ARSM), respectively. Let w∗ be the local minimum and β be the
parameter of ARSM. Assume that the learning rate η is sufficient to let G(w(t)) be
a non-increasing update. After T actual updates, we have

G(w(T ))−G(w∗) ≤ E
[‖w(0) −w∗‖2]

(2η − 12η2β) · T .

Remark 7. When T = d
η·ε and d =

E

[
‖w(0)−w∗‖2

]
(2−12ηβ)

, POSTAL realized by screening
losses has ε-solution 1 and the convergence rate is O(1/T ). To reach a ε-solution, the
complexity of Algorithm 2 realized by screening losses, namely Algorithm 3, is O(n·d

η·ε ).

Proof. According to the update rule of POSTAL, w(t) = w(t−1) − η∇git(w
(t−1)),

where t is the current number of actual updates and varies from 1 · · ·T . The random

number it belongs to the set {1, ..., n} while zit(w
(t−1)) ≥ Dth. Assume the number

of training sample n is very large, due to (1.2), |E[∇git(w
(t−1))

]−∇G(w(t−1))| ≤ ε.

With the increase of actual updates, the decrease of dynamic threshold Dth makes ε
monotonically decrease towards 0. Therefore, we have the following inequality:

E
[‖w(t) −w∗‖2]

= E
[‖w(t−1) −w∗‖2]+ η2E

[‖∇git(w
(t−1))‖2]

− 2η〈∇G(w(t−1)),w(t−1) −w∗〉
≤ E

[‖w(t−1) −w∗‖2]+ η2E
[‖∇git(w

(t−1))‖2]
− 2η

[
G(w(t−1))−G(w∗)

]
,

(3.3)

where the inequality employs the ARSC. Specifically,

〈∇G(w(t−1)),w∗ −w(t−1)〉 ≤ G(w∗)−G(w(t−1)). (3.4)

1Please refer to the page 47/315 in KDD15 tutorial: https://homepage.cs.uiowa.edu/

˜tyng/kdd15-tutorial.pdf for a good visualization of ε.
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If we extract minus sign and then multiply 2η at the LHS and the RHS of (3.4)

simultaneously, we have:

−2η〈∇G(w(t−1)),w(t−1) −w∗〉 ≤ −2η
[
G(w(t−1))−G(w∗)

]
. (3.5)

Therefore, (3.3) has been guaranteed. Then we construct the Bregman divergence

generator ϕi(w) as an auxiliary function:

ϕi(w) = gi(w)− gi(w
∗)− 〈∇gi(w

∗),w −w∗〉. (3.6)

And it is obvious that:

ϕi(w
∗) = gi(w

∗)− gi(w
∗) = 0, (3.7a)

∇ϕi(w) = ∇gi(w)−∇gi(w
∗), (3.7b)

∇ϕi(w
∗) = ∇gi(w

∗)−∇gi(w
∗) = 0. (3.7c)

Thus, w∗ is a local minimum of ϕi(w) by (3.7c) and we construct the following

inequality from (3.6):

0 = ϕi(w
∗) ≤ minϕi(w − γ∇ϕi(w))

≤ minϕi(w) +
βγ2

2
‖∇ϕi(w))‖2 − γ‖∇ϕi(w))‖2

= ϕi(w)− 1

2β
‖∇ϕi(w)‖2, (3.8)

where the last inequality satisfies the ARSM and the function is minimized at the

parameter γ = 1
β

. We construct the following inequality based on (3.6), (3.7b) and

(3.8):

‖∇gi(w)−∇gi(w
∗)‖2

≤ 2β
[
gi(w)− gi(w

∗)− 〈∇gi(w
∗),w −w∗〉]. (3.9)

Therefore, we have:

E
[‖∇gi(w)−∇gi(w

∗)‖2]
≤ 2β

[
G(w)−G(w∗)− 〈∇G(w∗),w −w∗〉]

≤ 4β
[
G(w)−G(w∗)

]
,

(3.10)

where the second last inequality satisfies the ARSC. Since ‖A+B +C‖2 ≤ 3‖A‖2 +
3‖B‖2 + 3‖C‖2 and w∗ is a local minimum, we have the following inequality with

∇G(w∗) = 0 and (3.10):

E
[‖∇git(w

(t−1))‖2]
≤ 3E

[‖∇git(w
(t−1))−∇git(w

∗)‖2]
+ 3E

[‖∇git(w
∗)−∇G(w∗)‖2]+ 3E

[‖∇G(w∗)‖2]
≤ 12β

[
G(w(t−1))−G(w∗)

]
. (3.11)
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Therefore, (3.3) equals the following inequality:

E
[‖w(t) −w∗‖2]

≤ E
[‖w(t−1) −w∗‖2]+ η2E

[‖∇git(w
(t−1))‖2]

− 2η
[
G(w(t−1))−G(w∗)

]
≤ E

[‖w(t−1) −w∗‖2]
+ (12η2β − 2η)

[
G(w(t−1))−G(w∗)

]
.

(3.12)

Based on (3.12), when t varies from 1 · · ·T , we get T inequalities respectively, and

then simultaneously add the LHS and RHS of T inequalities to get:

E
[‖w(T ) −w∗‖2] ≤ E

[‖w(0) −w∗‖2]
+ (12η2β − 2η)

[ T∑
t=1

G(w(t−1))− T ·G(w∗)
]
.

(3.13)

On the assumption of a non-increasing update, we have the following inequality:

(2η − 12η2β)
[
T ·G(w(T ))− T ·G(w∗)

]
≤ (2η − 12η2β)

[ T∑
t=1

G(w(t−1))− T ·G(w∗)
]

≤ E
[‖w(0) −w∗‖2]− E

[‖w(T ) −w∗‖2].
(3.14)

We thus obtain:

G(w(T ))−G(w∗) ≤ E
[‖w(0) −w∗‖2]− E

[‖w(T ) −w∗‖2]
(2η − 12η2β) · T

≤ E
[‖w(0) −w∗‖2]

(2η − 12η2β) · T =
d

η · T = ε, (3.15)

where d =
E

[
‖w(0)−w∗‖2

]
(2−12ηβ)

. Therefore we conclude that when T = d
η·ε , POSTAL

realized by screening losses has ε-solution and its convergence rate is O(1/T ). To

reach a ε-solution, the complexity of POSTAL algorithm realized by screening losses,

namely Algorithm 3, is O(n·d
η·ε ).

3.3.2 Robustness Analysis
For the POSTAL mechanism, in the initial epoch, the update is limited to the reliable

labels to establish a robust model. In following epochs, the updates gradually occur

on noisy labels. Therefore, this mechanism is empirically robust due to the nature of
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curriculum learning [Bengio et al., 2009]. Here, we explore the robustness of screening

losses, which assist POSTAL to reduce adverse effects led by noisy labels. The details

of the robustness analysis are shown in Theorem 3.4.

Theorem 3.4. (Theorem 2 in [Han et al., 2016]) Assume that xi is annotated with a
noisy label yi, namely yi(K

T
i α + b) < 0, where Ki is the i-th component of mercer

kernel. Then its corresponding weighted coefficient φi for screening ramp loss with
(s∗, αs∗ , βs∗) is

φi =
(1− s∗)αs∗δe

αs∗ (yiKT
i α+yib)

(1− (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2
;

and the coefficient φi for screening Gompertz loss with c∗ is

φi =
c∗ec

∗(yiKT
i α+yib)−ec

∗(yiKT
i α+yib)

1− (yiKT
i α + yib)

.

When |fw(xi)| = |(KT
i α + b)| increases, it means that xi with the noisy label yi

becomes more unreliable, then φi will decrease. This phenomenon demonstrates that
screening losses do suppress the adverse effects caused by noisy labels.

Remark 8. If {xi, yi} is an instance with a noisy label, then the mislabeled instance
becomes more unreliable when |fw(xi)| = |(KT

i α + b)| increases. This means that
the mislabeled instance is far away from the hyperplane. The coefficient φi for both
screening losses will then decrease because 1 − (yiK

T
i α + yib) will increase, while

eαs∗ (yiK
T
i α+yib)

(1+δeαs∗ (yiK
T
i
α+yib))2

and ec
∗(yiKT

i α+yib)−ec
∗(yiKT

i α+yib) will decrease. This denotes that φi

will decrease with the increase of |fw(xi)| for unreliable instance xi and does not
play an important role in the update of dual variable. Thus, screening ramp loss and
screening Gompertz loss can suppress adverse effects led by noisy labels.

Proof. Assume that {xi, yi}ki=1 is a random subset of the training data D and fw
is the decision function, according to the representer theorem, zi = yifw(xi) =
yi(

∑k
j=1 K(xj,xi)αj + b) = yiK

T
i α + yib, where α = (α1, α2, ..., αk)

′, K =
(K1,K2, ...,Kk)

′ and Ki = (K(x1,xi),K(x2,xi), ...,K(xk,xi))
′. λ > 0 is a

regularizer parameter, K is a mercer kernel and HK is a reproducing kernel hilbert

space (RKHS). For a cluster of screening losses r(z), we define two functions q(z)

and �(z) such that r(z) = q(1 − z) and �(z) = q′(z)
z

. Therefore, our robust model is
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presented as:

f ∗
w = argmin

fw

1

k

k∑
i=1

r(zi) +
λ

2
‖fw‖2

= argmin
fw

1

k

k∑
i=1

r(fw(xi) · yi) + λ

2
fT
wfw

= argmin
α,b

1

k

k∑
i=1

q(1− yiK
T
i α− yib) +

λ

2
αTKα.

(3.16)

The last equation satisfies the second condition of screening losses r(z) = q(1−z).

Due to �(z) = q′(z)
z

, we define coefficient φi = �(1− yiK
T
i α− yib), then

q′(1− yiK
T
i α− yib) = (1− yiK

T
i α− yib)φi. (3.17)

Because our proposed loss is non-convex, we assume that (α̂, b̂) is one of

the critical points for above minimization problem (3.16). Let us set Q(α, b) =
1
k

∑k
i=1 q(1− yiK

T
i α − yib) +

λ
2
αTKα, therefore:

∂Q(α̂,b̂)
∂α

= 0 and
∂Q(α̂,b̂)

∂b
= 0. Then,

we have two equations below:

1

k

k∑
i=1

(1− yiK
T
i α̂− yib̂)(yiKi)φi − λKT α̂ = 0. (3.18)

1

k

k∑
i=1

(1− yiK
T
i α̂− yib̂)yiφi = 0. (3.19)

The solution (α̂, b̂) of (3.18) and (3.19) can be achieved by solving the following

L2-SVM

min
α,b

1

k

k∑
i=1

(yi −KT
i α− b)2φi +

λ

2
αTKα. (3.20)

When k = 1, (3.20) is solved by streaming SGD. If k > 1, (3.20) can be solved by

mini-batch SGD. Currently, we consider φi as an important coefficient that affects the

update of the stochastic dual variable α, and therefore, we analyze the robust statistics

briefly from coefficient φi view.

If an instance xi is annotated with a noisy label yi, it means that yifw(xi) < 0.

By the representer theorem, we can easily find yi(K
T
i α + b) < 0 for this instance. We

consider |(KT
i α+b)| as the degree where this instance is far away from the hyperplane.
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So we define φi = �(1− yiK
T
i α− yib). To analyze the robustness of r(z), we employ

two concrete cases: screening ramp loss and screening Gompertz loss.

First, we analyze the robustness of screening ramp loss. We define δ = eαs∗βs∗ .

According to our inference

φi = �(1− yiK
T
i α− yib)

=
(1− s∗)αs∗δe

αs∗ (yiKT
i α+yib)

(1− (yiKT
i α + yib))(1 + δeαs∗ (yiKT

i α+yib))2
.

(3.21)

If {xi, yi} is an instance with a noisy label (yi(K
T
i α+ b) < 0), then the mislabeled

instance becomes more unreliable when |fw(xi)| = |(KT
i α + b)| increases. This

means that the mislabeled instance is far away from the hyperplane. The coefficient φi

will then decrease because 1− (yiK
T
i α+ yib) will increase, while eαs∗ (yiK

T
i α+yib)

(1+δeαs∗ (yiK
T
i
α+yib))2

will decrease. This indicates that the parameter φi will decrease with the increase of

|fw(xi)| for instance xi and does not play a significant role in the update of the dual

variable. Thus, screening ramp loss can suppress the adverse effects introduced by

noisy labels.

Second, we analyze the robustness of screening Gompertz loss (c∗ > 0). According

to our inference:

φi = �(1− yiK
T
i α− yib)

=
c∗ec

∗(yiKT
i α+yib)−ec

∗(yiKT
i α+yib)

1− (yiKT
i α + yib)

.
(3.22)

If {xi, yi} is an instance with a noisy label (yi(K
T
i α+ b) < 0), then the mislabeled

instance becomes more unreliable when |fw(xi)| = |(KT
i α+b)| increases. This means

that the mislabeled instance is far away from the hyperplane. The parameter φi will

then decrease because 1− (yiK
T
i α+ yib) will increase and ec

∗(yiKT
i α+yib)−ec

∗(yiKT
i α+yib)

will decrease. This indicates that the coefficient φi will decrease with the increase

of |fw(xi)| for instance xi and play a trivial role in the update of the dual variable.

Thus, screening Gompertz loss can suppress the adverse effects introduced by noisy

labels.

3.4 Experiments
In this section, on noisy datasets, we conduct experiments to verify the effectiveness

of POSTAL mechanism first, then verify the effectiveness and robustness of POSTAL

using (two devised) screening losses. The datasets include UCI simulated and AMT

crowdsourcing datasets. For convenience, we abbreviate POSTAL using screening
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Table 3.2: Datasets used in the UCI simulated study. Representative datasets are

emphasized by color.

DATA SET TRAINING PTS. TESTING PTS. FEATURES.
A7A 16,100 16,461 123

IJCNN1 49,990 91,701 22

REAL-SIM 57,847 14,462 20,985

COVTYPE 464,810 116,202 54

MNIST38 450,000 97,570 784

SUSY 4,000,000 1,000,000 18

ramp loss to POSTAL(SRamp) and POSTAL using screening Gompertz loss to

POSTAL(SGomp).

3.4.1 Experimental Setup
3.4.1.1 Baselines

There are three categories of baselines. The first category consists of vanilla SGD

using proposed screening losses (e.g., screening ramp and screening Gompertz losses).

When we compare them with POSTAL using screening losses, we can verify the

effectiveness of POSTAL mechanism under noisy settings. The second category

consists of vanilla SGD using basic losses (e.g., logistic, hinge and ramp losses),

ASGD [Xu, 2011] using logistic loss, PEGASOS [Shalev-Shwartz et al., 2011] and

“Library for Large Linear Classification” (LIBLINEAR) [Fan et al., 2008], which can

verify the effectiveness and robustness of POSTAL using screening losses under noisy

settings. The third category consists of μSGD with different noise rates [Patrini et al.,

2016], which can verify the robustness of POSTAL using screening losses in real-world

situations.

There are three points to be noted that: (1) We use LIBLINEAR because it has

become popular for handling large-scale datasets. We abbreviate L2-regularized L2-

loss primal solver as “LIBPrimal” and dual solver as “LIBDual”. (2) We do not

compare the variance-reduction techniques such as SVRG and SAGA for the following

reason. In this chapter, the aim of POSTAL is to improve the robustness of vanilla SGD

against noisy labels. According to the idea of control variable, the fair comparison

should be between SGD and the curriculum version of SGD, i.e., POSTAL and SGD

instead of POSTAL and SVRG or SAGA. (3) Experiments are implemented on a laptop

with a 3.20GHz CPU and 8GB memory.
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3.4.1.2 Parameters

The parameter λ is selected using 10-fold cross validation (CV) in the range of

{10−6, 10−5, · · · , 10} for all methods. For all stochastic learning methods, the

maximum number of epochs Tmax is set to 15, and the primal variable w is initialized

randomly. It is noted that, for the convergence of PEGASOS, Tmax is set to 10
λ

by

default. For LIBLINEAR, we set the bias b to 1 and the stopping tolerance ε to

10−2 for primal solver and 10−1 for dual solver by default. For μSGD, we set the

noise rates (p+, p−) = (0.1, 0.1) and (0.2, 0.1) followed by [Patrini et al., 2016], and

other parameters by default. For convenience, we abbreviate μSGD with noise rates

(0.1, 0.1) and (0.2, 0.1) as μSGD(0.1, 0.1) and μSGD(0.2, 0.1), respectively. By 10-

fold CV, for POSTAL(SRamp), the parameter s∗ is chosen in the range of [−2, 0].
For POSTAL(SGomp), the parameter c∗ is set to 2. For both of them, we set η0 by

the standard method [Bottou, 2010] and step size μ to 1. We repeat all experiments 20
times. Then each plot is averaged across 20 results. Methods not reported in Figure 3.4

and Figure 3.5 are because they either run out of memory or take very long time in

training phase.

3.4.2 Empirical Study on UCI Simulated Datasets
UCI simulated datasets are from [Chang and Lin, 2011]. The statistics for six

datasets are summarized in Table 3.2. From the above datasets, we denote A7A,

SUSY and REAL-SIM as representative datasets, where SUSY and REAL-SIM represent

the large-scale dataset and the high-dimensional dataset, respectively. To yield the

noisy datasets, we follow the settings from [Natarajan et al., 2013], and flip the

data labels proportionally. For instance, we randomly flip 20% of data labels from

−1 to 1 or 1 to −1, and assume that the data owns 20% of noisy labels. We repeat the

same procedure to yield 40% of noisy labels. In this chapter, we believe both 20%

and 40% of noisy labels are reasonable. Specifically, 20% of noisy labels are very

normal in real applications [Zhao et al., 2011]. We select 40% of noisy labels for two

reasons. First, it displays the superiority of POSTAL in extreme conditions. Second,

40% of noisy labels has been leveraged by previous researchers [Yang et al., 2012].

Moreover, spammers annotate binary-value tasks randomly and 50% of noisy labels

are even introduced [Shah and Zhou, 2015], which is beyond 40% of noisy labels.

3.4.2.1 Effectiveness of POSTAL Mechanism

To verify the effectiveness of POSTAL mechanism, in Figure 3.2, we provide the

performance (the testing error rate (in %, TER) with the number of epochs) comparison

between POSTAL and vanilla SGD on representative UCI noisy datasets: small-

scale A7A, large-scale SUSY and high-dimensional REAL-SIM with 20% and 40%
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(b) TER(%) with the number of epochs on A7A, SUSY and REAL-SIM with 40% noisy labels.

Figure 3.2: To verify the effectiveness of POSTAL mechanism, we compare POSTAL

with vanilla SGD under the same screening losses. We provide the testing error rate (in

%, TER) with the number of epochs on representative UCI noisy datasets: small-scale

A7A, large-scale SUSY and high-dimensional REAL-SIM with 20% and 40% of noisy

labels.

Table 3.3: To verify the robustness of POSTAL using screening losses, we also

provide the comparison of “testing error rate (in %) with standard deviation” among

all methods on UCI clean datasets. Methods indicated by “-”run out of memory.

METHODS A7A IJCNN1 REAL-SIM COVTYPE MNIST38 SUSY
LIBPRIMAL 14.99 8.25 2.57 24.35 5.71 21.34

LIBDUAL 15.02 8.20 2.67 24.25 6.09 35.32

PEGASOS 17.62±1.56 8.50±0.19 3.32±0.06 26.36±1.99 - -

SGD(Log) 15.16±0.06 9.08±0.48 2.62±0.03 25.07±0.28 5.73±0.09 20.93±0.01

ASGD(Log) 14.99±0.14 8.04±0.04 2.54±0.01 24.38±0.01 5.54±0.01 20.83±0.09

SGD(Hinge) 15.45±0.09 8.40±0.22 2.69±0.13 24.62±0.54 5.77±0.16 20.89±0.08

SGD(Ramp) 15.54±0.54 8.50±0.03 4.02±0.02 24.22±0.10 6.04±0.08 21.36±0.05

POSTAL(SRamp) 15.08±0.02 6.04±0.05 2.54±0.01 23.63±0.01 5.73±0.01 20.7±0.01
POSTAL(SGomp) 15.03±0.02 6.30±0.02 2.38±0.01 23.18±0.01 5.49±0.01 20.72±0.01
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(b) TER(%) with the number of epochs on A7A, SUSY and REAL-SIM with 40% of noisy labels.

Figure 3.3: To verify the effectiveness of POSTAL using screening losses, we

compare POSTAL(SRamp) and POSTAL(SGomp) with stochastic methods in the

second category of baselines (paragraph 1 in Section 3.4.1). We provide the testing

error rate (in %, TER) with the number of epochs on representative UCI noisy datasets:

small-scale A7A, large-scale SUSY and high-dimensional REAL-SIM with 20% and

40% of noisy labels. For PEGASOS, the number of epochs for convergence is set to
10
λ
(
 15) by default. Thus, its result is not reported.
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(f) SUSY

Figure 3.4: To verify the robustness of POSTAL using screening losses, we compare

POSTAL(SRamp) and POSTAL(SGomp) with all baselines on all UCI noisy datasets.

We provide the testing error rate (in %, TER) with varying percentages (0% to 40%)

of noisy labels. Note that the color of each method is uniform.
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(f) SUSY

Figure 3.5: To verify the robustness of POSTAL using screening losses, we compare

POSTAL(SRamp) and POSTAL(SGomp) with all baselines on all UCI noisy datasets.

We provide the variance with varying percentages (0% to 40%) of noisy labels. Note

that the color of each method is uniform.
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of noisy labels. Inspired by the idea of control variable, we leverage the same

screening losses to realize POSTAL and SGD. We observe, using the same screening

losses, POSTAL converges faster than vanilla SGD. Meanwhile, using fewer number

of epochs, POSTAL achieves the lower TERs than vanilla SGD, which verifies the

effectiveness of POSTAL mechanism.

3.4.2.2 Effectiveness of POSTAL using Screening Losses

We further verify the effectiveness of POSTAL using screening losses on representative

UCI noisy datasets. We provide the TER with the number of epochs on small-scale

A7A, large-scale SUSY and high-dimensional REAL-SIM with 20% and 40% of noisy

labels. We observe that in Figure 3.3, with an increase in the number of epochs, the

TERs of POSTAL(SRamp) and POSTAL(SGomp) not only decrease faster than those

of other baseline methods but also stay relative stable in most cases. Our methods takes

within 5 epochs to reach their lowest TERs, whereas SGD(Hinge) spends around 15

epochs to reach its lowest TER in presence of 20% and 40% of noisy labels. Even

worse, in presence of A7A with 40% of noisy labels, SGD(Log) diverges with an

increase in the number of epochs.

3.4.2.3 Robustness Improvement

We verify the robustness of POSTAL using screening losses on all UCI noisy datasets.

Figure 3.4 and Figure 3.5 respectively present the testing error rate (TER) and the

variance with varying percentages of noisy labels on six datasets (e.g., from small to

large-scale and high-dimensional datasets). According to the results, we derive the

following conclusions. (a) For all datasets, POSTAL(SRamp) outperforms another

baseline methods in TER beyond 20% of noisy labels. From 0% to 20%, both

POSTAL(SRamp) and POSTAL(SGomp) still have comparative advantages. It is

noted that, for high-dimensional REAL-SIM, the advantage of POSTAL(SRamp)

and POSTAL(SGomp) is significantly obvious along the entire x-axis. (b) We

observe that the variance of TER for baseline methods (e.g., PEGASOS) gradually

increases with the growing percentage of noisy labels, while the variance of TER for

POSTAL(SRamp) and POSTAL(SGomp) keeps at the lowest level in most cases. By

our analysis, the good results of POSTAL on very high percentage of noisy labels

(40%) may be due to two reasons. First, the mechanism of curriculum learning (CL)

learns a reliable model from the ordered label sequence. Second, the upper bound of

screening losses suppresses the adverse effects led by highly noisy labels.

Given the above observations, POSTAL(SRamp) and POSTAL(SGomp) outper-

form other baselines on noisy datasets. Furthermore, both of them outperform other

baselines on clean datasets. For instance, Table 3.3 showcases that according to the

TER with the standard deviation, POSTAL(SRamp) and POSTAL(SGomp) surpass
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Figure 3.6: Sample images of four categories of dogs from the Stanford Dogs dataset.

other baselines on IJCNN1, REAL-SIM, COVTYPE, MNIST38 and SUSY without noisy

labels.

3.4.3 Real-World Application on AMT Crowdsourced Data
Since crowdsourced data is often noisy, it can be leveraged to test whether an algorithm

is robust in real-world situations. Here, we employ one crowdsourcing dataset [Zhou

et al., 2012b] from Amazon Mechanical Turk (AMT) 1 to verify the robustness of

POSTAL using screening losses. The selected dataset includes annotated images

of four categories of dogs from the Stanford Dogs dataset. This image dataset

contains 7354 labels provided by 52 actual workers on the AMT platform. The four

categories of dogs consist of Norwich Terrier (NWT), Norfolk Terrier (NFT), Scottish

Deerhound (SDH) and Irish Wolfhound (IWH) (Figure 3.6). Based on this dataset, we

construct four crowdsourcing subsets for binary classification denoted by Dog(NWT),
Dog(NFT), Dog(SDH) and Dog(IWH). The positive category in each subset is listed in

the parentheses, images sampled from the other three categories are considered to be

negative. The ratio between the positive and negative samples is around 1 : 1. For each

subset, we aggregate multiple crowdsourced labels of each image to yield single noise

label by the simplest majority voting, then we verify the robustness of POSTAL using

screening losses and other baseline methods on these noisy labels.

3.4.3.1 Robustness Improvement

Table 3.4 represents that according to the TER with standard deviation, POSTAL(SRamp)

and POSTAL(SGomp) surpass other baselines around 2% on Dog(NWT), Dog(NFT),
Dog(SDH) and Dog(IWH) datasets. One underlying reason is that, in the AMT

1https://www.mturk.com/mturk/welcome
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Table 3.4: To verify the robustness of POSTAL using screening losses in real-world

situations, we provide the comparison of “testing error rate (in %, TER) with standard

deviation” on four crowdsourcing subsets. In each subset, the ratio between positive

samples and negative samples is around 1 : 1. For LIBLINEAR, the left TER is from

LIBPrimal while the right TER is from LIBDual.

METHODS LIBLINEAR PEGASOS SGD(Log) ASGD(Log) SGD(Hinge)
Dog(NWT) 22.22 / 23.23 22.81±1.29 23.51±0.57 22.90±0.36 22.94±0.86

Dog(NFT) 19.70 / 16.65 14.85±1.49 14.90±0.27 13.70±0.18 15.41±0.81

Dog(SDH) 18.18 / 19.70 19.02±1.05 20.46±1.18 19.70±1.01 20.58±1.26

Dog(IWH) 23.74 / 24.24 23.61±1.04 24.12±0.50 22.07±0.24 27.28±1.53

METHODS SGD(Ramp) μSGD(0.1,0.1) μSGD(0.2,0.1) POSTAL(SRamp) POSTAL(SGomp)
Dog(NWT) 22.05±0.69 22.72±0.26 23.50±0.29 21.58±0.24 21.89±0.36

Dog(NFT) 15.15±0.41 14.50±0.31 16.35±0.43 13.23±0.23 13.89±0.29

Dog(SDH) 18.47±0.77 18.50±0.25 19.20±0.61 16.85±0.62 16.79±0.31
Dog(IWH) 22.10±0.86 23.35±0.72 23.50±0.52 19.92±0.40 20.88±0.25

crowdsourcing dataset, the average and best accuracy of workers is 70.60% and

88.24% respectively, which introduces low percentage of noisy labels. In other words,

the quality of labels is good enough for updates of the primal variable in SGD.

However, we conjecture that, if four breeds of dogs are too similar to be distinguished

easily (e.g., Norfolk Terrier, Norwich Terrier, Irish Terrier and Silky Terrier), and

non-professional workers are hired to annotate these dogs, POSTAL(SRamp) and

POSTAL(SGomp) may outperform other baseline methods higher than 2% since both

of them perform well with high percentage of noisy labels.

3.5 Summary of This Chapter
This chapter studies a robust SGD mechanism called progressive stochastic learning

(POSTAL) for the label noise problem. POSTAL incorporates the progressive learning

paradigm of curriculum learning (CL) with the update process of vanilla SGD.

Through the learning process of CL, POSTAL yields robust updates of the primal

variable on an ordered label sequence, namely from “reliable” labels to “noisy” labels.

To provide this ordered label sequence, we design a cluster of screening losses, where

all labels are sorted from the reliable region to the noisy region. Our analysis derives

the convergence rate of POSTAL realized by screening losses, while demonstrates

the robustness of screening losses. Comprehensive experiments on UCI simulated

and AMT real-world datasets show that, proposed method is sufficiently effective and

robust to reduce adverse effects caused by noisy labels.
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Chapter 4

Co-teaching: Towards Robust
Generalization

This chapter answers the third question, namely “how to train the robust model under
noisy labels?”. From the high level, we hope to introduce the insights from “peer
review” to robustly training deep neural networks with extremely noisy labels.

As mentioned in the Chapter 1, a promising direction focuses on training on
selected samples. These works try to select clean instances out of the noisy ones,
and then use them to update the network. Intuitively, as the training data becomes less
noisy, better performance can be obtained. Among these works, the representative
methods are MentorNet [Jiang et al., 2018] and Decoupling [Malach and Shalev-
Shwartz, 2017].

Specifically, MentorNet pre-trains an extra network, and then uses the extra
network for selecting clean instances to guide the training. When the clean validation
data is not available, MentorNet has to use a predefined curriculum (e.g., self-
paced curriculum). Nevertheless, the idea of self-paced MentorNet is similar to
the self-training approach, which may introduce the accumulated error due to the
biased selection. Besides, Malach and Shalev-Shwartz [2017] proposed a decoupling
approach to decouple “when to update” from “how to update” in training deep
networks. Specifically, they maintain two networks, and update parameters of two
networks only when the predictions of them disagree. However, the decoupling
approach may not combat with massive noisy labels, since the disagreement area still
overlap with the noise area. Although MentorNet and Decoupling are representative
approaches in this promising direction, there still exist the above discussed issues,
which naturally motivates us to improve them in our research.

Recent studies on the memorization effects of deep neural networks show that they
would first memorize training data of clean labels and then those of noisy labels.
Therefore in this chapter, we propose a new deep learning paradigm called “Co-
teaching” for combating with noisy labels. Namely, we train two deep neural networks
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simultaneously, and let them teach each other given every mini-batch: firstly, each
network feeds forward all data and selects some data of possibly clean labels; secondly,
two networks communicate with each other what data in this mini-batch should be
used for training; finally, each network back propagates the data selected by its peer
network and updates itself. Empirical results on noisy versions of MNIST, CIFAR-10
and CIFAR-100 demonstrate that Co-teaching is much superior to the state-of-the-art
methods in the robustness of trained deep models.

The remainder of this chapter is organized as follows. Section 4.1.1 discusses two
important questions related to our Co-teaching algorithm. Section 4.1.2 claims the
key difference between our work and Co-training. Then, we prepare the experimental
setup in Section 4.2, and conduct sufficient experiments on noisy MNIST, CIFAR-10
and CIFAR-100. We analyze empirical results in Section 4.3. Besides, we display full
Y-axis figures in Section 4.4. The conclusive remarks are given in Section 4.5.

4.1 Co-teaching Meets Noisy Supervision
Our idea is to train two deep networks simultaneously. As in Figure 1.2, in each mini-
batch data, each network samples its small-loss instances as the useful knowledge, and
teaches such useful instances to its peer network for the further training. Therefore, the
proposed algorithm is named Co-teaching (Algorithm 4). As all deep learning training
methods are based on stochastic gradient descent, our Co-teaching works in a mini-
batch manner. Specifically, we maintain two networks f (with parameter wf ) and g
(with parameter wg). When a mini-batch D̄ is formed (step 3), we first let f (resp. g)
select a small proportion of instances in this mini-batch D̄f (resp. D̄g) that have small
training loss (steps 4 and 5). The number of instances is controlled by R(T ), and f
(resp. g) only samples R(T ) percentage of instances out of the mini-batch. Then, the
selected instances are fed into its peer network as the useful knowledge for parameter
updates (steps 6 and 7).

4.1.1 Two Important Questions
There are two important points for designing above Algorithm 4:

Q1. Why can sampling small-loss instances based on dynamic R(T ) help us find
clean instances?

Q2. Why do we need two networks and cross-update the parameters?

To answer the first question, we need first clarify the connect between small losses
and clean instances. Intuitively, when labels are correct, small-loss instances are more
likely to be the ones which are correctly classified. Thus, when the classifier has the
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Algorithm 4 Co-teaching Algorithm.
1: Input wf and wg, learning rate η, fixed τ , epoch Tk and Tmax, iteration Nmax;
for T = 1, 2, . . . , Tmax do

2: Shuffle training set D; //noisy dataset
for N = 1, . . . , Nmax do

3: Fetch mini-batch D̄ from D;
4: Obtain D̄f = arg minD′:|D′|≥R(T )|D̄| `(f,D

′); //sample R(T )% small-loss
instances
5: Obtain D̄g = arg minD′:|D′|≥R(T )|D̄| `(g,D

′); //sample R(T )% small-loss
instances
6: Update wf = wf − η∇`(f, D̄g); //update wf by D̄g;
7: Update wg = wg − η∇`(g, D̄f ); //update wg by D̄f ;

end
8: Update R(T ) = 1−min

{
T
Tk
τ, τ
}

;

end
9: Output wf and wg.

ability to predict, if we drop large-loss instances in each mini-batch data, and only
sample small-loss instances to train a single network, this single network should be
resistant to the light noise.

However, the above requires us have a good classifier in advance. The “mem-
orization” effect of deep networks [Arpit et al., 2017] can exactly help us address
this problem. Namely, on noisy data sets, even with the existence of noisy labels,
deep networks will learn clean and easy pattern first [Arpit et al., 2017; Zhang et al.,
2017]. So, they have the ability to predict at the beginning, and the problem is that
when the number of epochs goes large, they will eventually overfit on noisy labels.
Thus, we want to keep more instances in the mini-batch at the start, i.e., R(T ) is large.
Then, we gradually increase the drop rate, i.e., R(T ) becomes smaller, so that we can
keep clean instances and drop those noisy ones (details of R(T ) will be discussed in
Section 4.3.4).

Based on this idea, we can just use one network in Algorithm 4, and let the classifier
evolves by itself. This process is similar to boosting [Freund and Schapire, 1995] and
active learning [Cohn et al., 1996]. However, it is commonly known that boosting and
active learning are sensitive to outliers and noise, a few wrongly selected instances can
deteriorate the learning performance of the whole model [Balcan et al., 2009; Freund
et al., 1999]. This connects with our second question, where two classifiers can help.

Intuitively, different classifiers can generate different decision boundaries and then
have different abilities to learn. Thus, when training on noisy labels, we also hope
that they can have different abilities to filter out the label noise. This motivates us to

67



exchange the selected instances, i.e., update parameters in f (resp. g) using mini-batch
instances selected from g (resp. f ). This process is similar to Co-training [Blum and
Mitchell, 1998], and these two networks will adaptively correct the training error by
the peer network if the selected instances are not fully clean. Take “peer-review” as
a supportive example. When students checks their own exam papers, it is hard for
them to find any errors or bugs because they have some personal bias for the answers.
Luckily, they can ask peer classmates to review their papers, then it becomes much
easier for them to find their potential faults. To sum up, as the error from one network
will not be directly transferred back itself, we can expect that our Co-teaching method
can deal with heavier noise compared with the self-evolving one.

4.1.2 Relations to Co-training
Although Co-teaching is motivated by Co-training, the only similarity is that two
classifiers are trained. There are fundamental differences between them. (i). Co-
training needs two views (two independent sets of features), while Co-teaching needs
a single view. (ii) Co-training does not exploit the memorization of deep neural
networks, while Co-teaching does. (iii) Co-training is designed for semi-supervised
learning (SSL), and Co-teaching is for learning with noisy labels (LNL); as LNL is
not a special case of SSL, we cannot simply translate Co-training for one problem
setting to another problem setting.

4.2 Experimental Setup

4.2.1 Datasets
We verify the effectiveness of our approach on three benchmark datasets. MNIST,
CIFAR10 and CIFAR100 are used here (Table 4.1), because these data sets are
popularly used for evaluation of noisy labels in the literature [Goldberger and Ben-
Reuven, 2017; Patrini et al., 2017; Reed et al., 2015].

Table 4.1: Summary of data sets used in the experiments.
# of training # of testing # of class image size

MNIST 60,000 10,000 10 28×28
CIFAR10 50,000 10,000 10 32×32
CIFAR100 50,000 10,000 100 32×32

Since all datasets are clean, following [Patrini et al., 2017; Reed et al., 2015], we
need to corrupt these datasets manually by the noise transition matrix Q, where Qij =
Pr(ỹ = j|y = i) given that noisy ỹ is flipped from clean y. Assume that the matrix
Q has two representative structures (Figure 4.1): (1) Symmetry flipping [van Rooyen
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et al., 2015]; (2) Pair flipping: a real-world application is the fine-grained classification,
where you may make mistake only within very similar classes in the adjunct positions.

(a) pair (ε = 45%). (b) symmetry
(ε = 50%).

Figure 4.1: Transition matrices of different noise types (using 5 classes as an example).

Since this chapter mainly verifies the robustness of our Co-teaching on extremely
noisy supervision, the noise rate ε is chosen from {0.45, 0.5}. Intuitively, this means
almost half of the instances have noisy labels. Note that, the noise rate > 50% for pair
flipping means over half of the training data have wrong labels that cannot be learned
without additional assumptions. As a side product, we also verify the robustness of
Co-teaching on low-level noisy supervision, where ε is set to 0.2. Note that pair case is
much harder than symmetry case. In Figure 4.1(a), the true class only has 10% more
correct instances over wrong ones. However, the true has 37.5% more correct instances
in Figure 4.1(b).

The definition of transition matrix Q is as follow. n is number of the class.

Pair flipping: Q =


1− ε ε 0 . . . 0

0 1− ε ε 0
... . . . . . . ...
0 1− ε ε
ε 0 . . . 0 1− ε

 ,

Symmetry flipping: Q =


1− ε ε

n−1
. . . ε

n−1
ε

n−1
ε

n−1
1− ε ε

n−1
. . . ε

n−1
... . . . ...
ε

n−1
. . . ε

n−1
1− ε ε

n−1
ε

n−1
ε

n−1
. . . ε

n−1
1− ε

 .
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4.2.2 Baselines

Table 4.2: Comparison of state-of-the-art techniques with our Co-teaching approach.
In the first column, “large noise”: can deal with a large number of class; “heavy noise”:
can combat the heavy noise, i.e., high noise ratio; “flexibility”: need not combine with
specific network architecture; “no pre-train”: can be train from scratch.

Bootstrap S-model F-correction Decoupling MentorNet Co-teaching
large class × × × X X X

heavy noise × × × × X X
flexibility × × X X X X

no pre-train X × × × X X

We compare the Co-teaching (Algorithm 4) with following state-of-art approaches:
(i). Bootstrap [Reed et al., 2015]. It uses weighted combination of predicted and
original labels as the correct labels, and then do back-propagate, hard labels are
used as they yield better performance; (ii). S-model [Goldberger and Ben-Reuven,
2017]. It uses an additional softmax layer to model the noise transition matrix; (iii).
F-correction [Patrini et al., 2017]. It corrects the prediction by the noise transition
matrix. As suggested by the authors, we first train a normal network to estimate the
transition matrix; (iv). Decoupling [Malach and Shalev-Shwartz, 2017]. It updates
the parameters only using the samples of which have different prediction from two
classifiers; and (v). MentorNet [Jiang et al., 2018]. An extra teacher network is
pre-train, which is used to help sample clean instances during the training of the
student network. Then, student network is used for classification. We used self-
paced MentorNet in this chapter. (vi). As a baseline, we compare Co-teaching with
the normal deep networks (abbreviated as Normal). As can be seen, our Co-teaching
method does not rely on any specific network architectures, which can also deal with
a large number of classes and is more robust to noise. Besides, it can be trained
from scratch. These make our Co-teaching more appealing for practical usage. The
availability of codes for compared approaches are as follows:

• Bootstrap [Reed et al., 2015].

- https://github.com/emalach/UpdateByDisagreement

• S-model [Goldberger and Ben-Reuven, 2017].

- https://github.com/udibr/noisy_labels

• F-correction [Patrini et al., 2017].

- https://github.com/giorgiop/loss-correction
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• Decoupling [Malach and Shalev-Shwartz, 2017].

- https://github.com/emalach/UpdateByDisagreement

• MentorNet [Jiang et al., 2018]

As the code is not available, we implement the code based on authors’
description.

Note that all methods are not implemented in PyTorch and the network structure
in all methods are not the same as our 9-layer CNN here, we change implementations
based on authors’ give codes.

4.2.3 Network Structure
For the fair comparison, we implement all methods with default parameters by
PyTorch, and conduct all the experiments on a NIVIDIA K80 GPU. Standard CNN
is used with LReLU active function, the detailed architecture is in Table 4.3. Namely,
the 9-layer CNN architecture in this chapter follows “Temporal Ensembling” [Laine
and Aila, 2017] and “Virtual Adversarial Training” [Miyato et al., 2016], since the
network structure we used here are standard test bed for weakly-supervised learning.

Table 4.3: CNN and MLP models used in our experiments on MNIST, CIFAR10, and
CIFAR100. The slopes of all LReLU functions in the networks are set to 0.01.

CNN on MNIST CNN on CIFAR10 CNN on CIFAR100
28×28 Gray Image 32×32 RGB Image 32×32 RGB Image

3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
3×3 conv, 128 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
3×3 conv, 256 LReLU
2×2 max-pool, stride 2

dropout, p = 0.25
3×3 conv, 512 LReLU
3×3 conv, 256 LReLU
3×3 conv, 128 LReLU

avg-pool
dense 128→10 dense 128→10 dense 128→100

For all datasets, Adam optimizer (momentum=0.9) with an initial learning rate of
0.001, the batch size is set to 128 and runs for 200 epoch. Besides, dropout and batch-
normalization are also used. As deep networks are highly nonconvex, even with the
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same network and optimization method, different initializations can lead to different
local optimal. Thus, following [Malach and Shalev-Shwartz, 2017], we also take two
networks with the same architecture but different initializations as two classifiers.

4.2.4 Noise Rates
Here, we assume the noise level ε is known and set R(T ) = 1− τ ·min (T/Tk, 1) with
Tk = 10 and τ = ε. If ε is not known in advanced, ε can be inferred using validation
sets [Liu and Tao, 2016b; Yu et al., 2018a]. The choices of R(T ) and τ are analyzed
in Section 4.3.4. Note that R(T ) only depends on the memorization effect of deep
networks but not any specific datasets.

4.2.5 Measurements
As for performance measurements, first, we use the test accuracy, i.e., test Accuracy =
(# of correct predictions) / (# of test dataset). Besides, we also use the label precision
in each mini-batch, i.e., label Precision = (# of clean labels) / (# of all selected
labels). Specifically, we sample R(T ) of small-loss instances in each mini-batch, and
then calculate the ratio of clean labels in the small-loss instances. Intuitively, higher
label precision means less noisy instances in the mini-batch after sample selection;
and the algorithm with higher label precision is also more robust to the label noise.
All experiments are repeated five times. The error bar for STD in each figure has
been highlighted as a shade. Besides, the full Y-axis versions for all figures are in
Section 4.4.

4.3 Empirical Results

4.3.1 Results on MNIST
Table 4.4 report the accuracy on the testing set. As can be seen, on the symmetry
case with 20% noisy rate, which is also the easiest case. All methods works well,
even Normal can achieve 94.05% test set accuracy. Then, when noisy rate raises to
50%, Normal, Bootstrap, S-model and F-correction fail, their accuracy decrease lower
than 80%. Methods based on “selected instances”, i.e., Decoupling, MentorNet and
Co-teaching, are better. Among them, Co-teaching is the best. Finally, in the hardest
case, i.e., pair case with 45% noisy rate, Normal, Bootstrap and S-Model cannot learn
anything, their testing accuracy keep the same as the percentage of clean instances in
the training dataset. F-correct fails totally, it heavily relies on the correct estimation of
the underneath transition matrix. Thus, when Normal works, it can worker better than
Normal; then, when Normal fails, it works much worse than Normal. In this case, our
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Co-teaching is again the best, which is also much better than the second method, i.e.
87.53% for Co-teaching vs 80.88% for MentorNet.

Table 4.4: Average test accuracy on MNIST over the last ten epoch.
Flipping-Rate Normal Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 56.52% 57.23% 56.88% 0.24% 58.03% 80.88% 87.63%
±0.55% ±0.73% ±0.32% ±0.03% ±0.07% ±4.45% ±0.21%

Symmetry-50% 66.05% 67.55% 62.29% 79.61% 81.15% 90.05% 91.32%
±0.61% ±0.53% ±0.46% ±1.96% ±0.03% ±0.30% ±0.06%

Symmetry-20% 94.05% 94.40% 98.31% 98.80% 95.70% 96.70% 97.25%
±0.16% ±0.26% ±0.11% ±0.12% ±0.02% ±0.22% ±0.03%

In Figure 4.2 , we show test accuracy vs number of epochs. In all three plots, we
can clearly see the memorization effects of networks, i.e., test accuracy of Normal
first reaches a very high level and then gradually decreases. Thus, a good robust
training method should stop or alleviate the decreasing processing. On this point,
all method except Bootstrap works well in the easiest Symmetry-20% case. However,
only MentorNet and our Co-teaching can combat with the other two harder cases, i.e.,
Pair-45% and Symmetry-50%. Besides, our Co-teaching consistently achieves higher
accuracy MentorNet, and is the best method in these two cases.

(c) Symmetry-20%.

Figure 4.2: Test accuracy vs number of epochs on MNIST dataset.

To explain such good performance, we plot label precision vs number of epochs
in Figure 4.3. Only, MentorNet, Decoupling and Co-teaching are considered here, as
they are methods do instance selecting during training. First, we can see Decoupling
fails to pick up clean instances, its label precision is the same as Normal which does
not compact with noisy label at all. The reason is that Decoupling does not utilize
the memorization effects during the training. Then, we can see Co-teaching and
MentorNet can successfully pick clean instances out. These two methods ties on
the easier Symmetry-50% and Symmetry-20%, and our Co-teaching achieve higher
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precision on the hardest Pair-45% case. This shows our approach is better at finding
clean instances.

(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure 4.3: Label precision vs number of epochs on MNIST dataset.

Finally, note that while in Figure 4.3(b) and (c), MentorNet and Co-teaching
tie together. Co-teaching still gets higher testing accuracy (Table 4.4). Recall that
MentorNet is a self-evolving method, which only uses one classifier, while Co-
Teaching use two. The better accuracy comes from the fact Co-Teaching further takes
the advantage of different learning abilities from two classifiers.

4.3.2 Results on CIFAR10
Test accuracy is shown in Table 4.5. As we can see, the observations here are
consistently the same as these for MNIST dataset. In the easiest Symmetry-20% case,
all methods works well. F-correction is the best, and our Co-teaching is comparable
with F-correction. Then, all methods, except MentorNet and Co-teaching, fail on
harder, i.e., Pair-45% and Symmetry-50% cases. Among these two, Co-teaching is
the best. In the extreme Pair-45% case, Co-teaching is more than 14% higher than
MentorNet in test accuracy.

Table 4.5: Average test accuracy on CIFAR10 over the last ten epoch.
Flipping,Rate Normal Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 49.50% 50.05% 48.21% 6.61% 48.80% 58.14% 72.62%
±0.42% ±0.30% ±0.55% ±1.12% ±0.04% ±0.38% ±0.15%

Symmetry-50% 48.87% 50.66% 46.15% 59.83% 51.49% 71.10% 74.02%
±0.52% ±0.56% ±0.76% ±0.17% ±0.08% ±0.48% ±0.04%

Symmetry-20% 76.25% 77.01% 76.84% 84.55% 80.44% 80.76% 82.32%
±0.28% ±0.29% ±0.66% ±0.16% ±0.05% ±0.36% ±0.07%

Figure 4.4 shows test accuracy and label precision vs number of epochs. Again,
on test accuracy, we can see Co-teaching strongly stops the memorization effects
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of networks. Thus, it works much better on the harder Pair-45% and Symmetry-
50% cases. On label precision, while Decoupling fails to find clean instances, both
MentorNet and Co-teaching can do this. However, due to the usage of two classifiers,
Co-teaching is stronger.

(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure 4.4: Results on CIFAR10 dataset. Top: test accuracy vs number of epochs;
bottom: label precision vs number of epochs.

4.3.3 Results on CIFAR100
Finally, we show our results on CIFAR100. The test accuracy is in Table 4.6, test
accuracy and label precision vs number of epochs are in Figure 4.5. Note that, there
are only 10 classes in MNIST and CIFAR10 datasets. Thus, overall the accuracy is
much lower than previous ones in Table 4.4 and 4.5. However, the observations are the
same as previous datasets. We can clearly see our Co-teaching is the best on harder
and noisy cases.

4.3.4 Choices of R(T )

Since deep networks initially fit clean (easy) instances, and then fit noisy (hard)
instances progressively. Thus, intuitively R(T ) should meet following requirements:
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Table 4.6: Average test accuracy on CIFAR100 over the last ten epoch.
Flipping,Rate Normal Bootstrap S-model F-correction Decoupling MentorNet Co-teaching

Pair-45% 31.99% 32.07% 21.79% 1.60% 26.05% 31.60% 34.81%
±0.64% ±0.30% ±0.86% ±0.04% ±0.03% ±0.51% ±0.07%

Symmetry-50% 25.21% 21.98% 18.93% 41.04% 25.80% 39.00% 41.37%
±0.64% ±6.36% ±0.39% ±0.07% ±0.04% ±1.00% ±0.08%

Symmetry-20% 47.55% 47.00% 41.51% 61.87% 44.52% 52.13% 54.23%
±0.47% ±0.54% ±0.60% ±0.21% ±0.04% ±0.40% ±0.08%

(i). R(T ) ∈ [τ, 1], where τ depends on the noise rate ε; (ii). R(1) = 1, which means
we do not need to drop any instances at the beginning. At the initial learning epochs,
we can safely update the parameters of deep neural networks using entire noisy data,
because the networks will not memorize the noisy data at the early stage [Arpit et al.,
2017]; (iii). R(T ) should be a non-increasing function on T , which means that we
need to drop more instances when the number of epochs gets large. This is because as
the learning proceeds, the networks will eventually try to fit noisy data (which tends
to have large losses compared to clean data). Thus, we need to ignore them by not
updating the networks parameters using large loss instances [Arpit et al., 2017]. The
MNIST dataset is used in the sequel.

Based on above principles, to show how the decay of R(T ) affects Co-teaching,
first, we let R(T ) = 1 − τ · min{T c/Tk, 1} with τ = ε, where three choices of c
should be considered, i.e., c = {0.5, 1, 2}. Then, three values of Tk are considered,
i.e., Tk = {5, 10, 15}. Results are in Table 4.7. As can be seen, the test accuracy is
stable on the choices of Tk and c here. The previous setup (c = 1 and Tk = 10) works
well but does not lead to the best performance.

Table 4.7: Average test accuracy on MNIST over the last ten epoch.
c = 0.5 c = 1 c = 2

Pair-45% Tk = 5 75.56%±0.33% 87.59%±0.26% 87.54%±0.23%
Tk = 10 88.43%±0.25% 87.56%±0.12% 87.93%±0.21%
Tk = 15 88.37%±0.09% 87.29%±0.15% 88.09%±0.17%

Symmetry-50% Tk = 5 91.75%±0.13% 91.75%±0.12% 92.20%±0.14%
Tk = 10 91.70%±0.21% 91.55%±0.08% 91.27%±0.13%
Tk = 15 91.74%±0.14% 91.20%±0.11% 91.38%±0.08%

Symmetry-20% Tk = 5 97.05%±0.06% 97.10%±0.06% 97.41%±0.08%
Tk = 10 97.33%±0.05% 96.97%±0.07% 97.48%±0.08%
Tk = 15 97.41%±0.06% 97.25%±0.09% 97.51%±0.05%

4.3.5 Choices of τ
Finally, to show the impact of τ , we vary τ = {0.5, 0.75, 1, 1.25, 1.5}ε. Note that, τ
cannot be zero. In this case, no gradient will be back-propagated and the optimization
will stop. Test accuracy is in Table 4.8. We can see, with more dropped instances, the
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(a) Pair-45%. (b) Symmetry-50%. (c) Symmetry-20%.

Figure 4.5: Results on CIFAR100 dataset. Top: test accuracy vs number of epochs;
bottom: label precision vs number of epochs.

performance can be improved. However, if too many instances are dropped, networks
may not get sufficiently trained and the performance can deteriorate. We set τ = ε in
Section 4.3.1, it works well but not necessarily leads to the best performance.

Table 4.8: Average test accuracy of Co-teaching with different τ on MNIST over the
last ten epoch.

Flipping,Rate 0.5ε 0.75ε ε 1.25ε 1.5ε
Pair-45% 66.74%±0.28% 77.86%±0.47% 87.63%±0.21% 97.89%±0.06% 69.47%±0.02%

Symmetry-50% 75.89%±0.21% 82.00%±0.28% 91.32%±0.06% 98.62%±0.05% 79.43%±0.02%
Symmetry-20% 94.94%±0.09% 96.25%±0.06% 97.25%±0.03% 98.90%±0.03% 99.39%±0.02%

4.4 Full Figures
Since Decoupling and Co-teaching are related to training two networks, we display the
performance of both networks in this section (e.g., Co-teaching-1 and Co-teaching-2).
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4.4.1 MNIST

(a) Pair-45%. (b) Symmetirc-50%. (c) Symmetirc-20%.

Figure 4.6: Results on MNIST dataset. Top: test accuracy vs number of epochs;
bottom: label precision vs number of epochs.
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4.4.2 CIFAR10

(a) Pair-45%. (b) Symmetirc-50%. (c) Symmetirc-20%.

Figure 4.7: Results on CIFAR10 dataset. Top: test accuracy vs number of epochs;
bottom: label precision vs number of epochs.
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4.4.3 CIFAR100

(a) Pair-45%. (b) Symmetirc-50%. (c) Symmetirc-20%.

Figure 4.8: Results on CIFAR100 dataset. Top: test accuracy vs number of epochs;
bottom: label precision vs number of epochs.

4.5 Summary of This Chapter
This chapter presentd a simple but effective learning paradigm called Co-teaching,
which trains deep neural networks robustly. Our key idea is to maintain two networks
simultaneously, and cross-trains on instances screened by the “small loss” criteria. We
conduct simulated experiments to demonstrate that, our proposed Co-teaching can train
deep models robustly with the extremely noisy supervision.
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Chapter 5

Conclusion and Future Work

In this section, we first conclude the entire thesis, and then elaborate the possible trends
for future research.

5.1 Thesis Summarization
This thesis addresses the problem of learning from noisy supervision. Real-world
data is often noisy, which inevitably degrades the performance of learning models.
Therefore, we designed various robust machine learning methodologies, which can
reduce the negative effects of the noisy data from three orthogonal aspects. Namely,
robust mechanism, optimization and generalization were proposed.

In robust mechanism (Chapter 2), to improve the label quality, we proposed a
hint-guided approach that encourages workers to use hints when they answer unsure
questions. Our approach consists of the hybrid-stage setting and the hint-guided
payment mechanism. We proved the incentive compatibility and uniqueness of our
mechanism. Besides, our approach can detect the high-quality workers for more
accurate result aggregation. These merits are critical for the success of many machine
learning applications in practice.

In robust optimization (Chapter 3), we studied a robust SGD mechanism called
progressive stochastic learning (POSTAL) for the label noise problem. POSTAL
incorporates the progressive learning paradigm of curriculum learning (CL) with the
update process of vanilla SGD. Through the learning process of CL, POSTAL yields
robust updates of the primal variable on an ordered label sequence, namely from
“reliable” labels to “noisy” labels. To provide this ordered label sequence, we design
a cluster of screening losses, where all labels are sorted from the reliable region to
the noisy region. Our analysis derives the convergence rate of POSTAL realized by
screening losses, while demonstrates the robustness of screening losses.
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In robust generalization (Chapter 4), we presented a simple but effective learning
paradigm called Co-teaching, which trains deep neural networks robustly. Our key idea
is to maintain two networks simultaneously, and cross-trains on instances screened by
the “small loss” criteria.

5.2 Future Work
Although the algorithms proposed in this thesis have achieved encouraging results to
some extent, some issues still remain open and should be further investigated.

For robust mechanism, we summarize two potential research as follows.

• Coarse-to-fine hints. We consider to provide hints from different levels for all
questions. Specifically, we will provide the hints from coarse to fine, which
corresponds the different expected payments. When the worker is a little bit
unsure of some questions, she is encouraged to select the coarse hints, which
corresponds to the higher payment. When the worker is moderately unsure of
some questions, she is encouraged to select the fine hints, which corresponds to
the lower payment.

• Mixture of hints and unsure options. Moreover, some workers may still be
very confused even with hints, we may mix up the unsure option in the hint
stage to further improve the label quality further. For each question, when the
worker is unsure of some questions, she is encouraged to select the hints; when
the worker is extremely unsure of some questions, she is encouraged to skip these
questions. The payment of the mixture situation is consistent with the payment
of coarse to fine hints.

For robust optimization, we summarize two potential research as follows.

• Extending POSTAL to deep learning models. Since both SVM and Deep
Learning are under the same empirical risk minimization (ERM) principle (1.2),
the POSTAL mechanism can be leveraged by Deep Learning model if we
represent fw by deep neural networks. Namely, if we realize fw using the
nonlinear mapping function (deep neural networks) in line 6, then POSTAL
could be applied to Deep Learning model.

• Faster convergence of POSTAL. Another key problem in POSTAL mechanism
is how to speed up the convergence rate. We can leverage the classical Nesterov’s
accelerated strategy [Nesterov, 2007], or the strategy of iterative machine
teaching [Liu et al., 2017, 2018]. Empirical results will help us decide which
strategy can balance both the convergence rate and the generalization most.
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For robust generalization, we summarize two potential research as follows.

• Adapting Co-teaching to another weakly-supervised settings. We can adapt
Co-teaching paradigm to train deep models under another weak supervision, e.g.,
positive and unlabeled data [Kiryo et al., 2017].

• Theoretical guarantee for Co-teaching. We would investigate the theoretical
guarantees for Co-teaching. Previous theories for Co-training are very hard to
transfer into Co-teaching, since our setting is fundamentally different. Besides,
there is no analysis for generalization performance on deep learning with noisy
labels. Thus, we leave the generalization analysis as a future work.

All developed methods in this thesis focus on handling noisy single-label data.
However, in many real-world scenario, each data can simultaneously own multiple
labels, i.e., one scene image with multiple annotations. Consequently, our algorithms
should be adapted to handle noisy multi-label data by considering the structure among
multiple labels. Moreover, the next challenge in label-noise learning should be how to
handle instance-dependent label noise without strong assumptions. Thus, we should
adapt our algorithms to handle such practical noise. Last but not least, the target of
our research is to apply our fundamental algorithms into practical applications. For
example, the quality of electronic health records (EHR) data is often not satisfactory,
and even extremely noisy. Therefore, we can adapt our Co-teaching algorithms for
EHR data, which can train robust prediction models.
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