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Abstract

Modern machine learning is migrating to the era of complex models (i.e.,
deep neural networks), which requires a plethora of well-annotated data.
Crowdsourcing is a promising tool to achieve this goal, since a plethora of
labels that can be efficiently collected from crowdsourcing services at very
low cost. However, existing crowdsourcing approaches barely acquire a
sufficient amount of high-quality labels. This brings the first question:
How to design the robust mechanism to improve the label quality?

Without such robust mechanism, labels annotated by crowdsourced work-
ers are often noisy, which inevitably degrades the performance of large-
scale optimizations, including the prevalent stochastic gradient descent
(SGD). Specifically, these noisy labels adversely affect updates of the
primal variable in conventional SGD. This bring the second question: How
to optimize the training model robustly under noisy labels?

Without such robust optimization, it is challenging to train deep neural
networks robustly with noisy labels, as the learning capacity of deep neural
networks is so high that they can totally memorize and over-fit on these
noisy labels. This brings the third question: How to acquire the robust
model with good generalization under noisy labels? Therefore, in this
thesis, we aim to develop a series of robust machine learning approaches,
so that they can perfectly handle the difficult from noisy supervision. Our
works are summarized as follows:

Chapter 2 answers the first question. Motivated by the “Guess-with-Hints”
answer strategy from the Millionaire game show, we introduce the hint-
guided approach into crowdsourcing to deal with this challenge. Our
approach encourages workers to get help from hints when they are unsure
of questions. Specifically, we propose a hybrid-stage setting, consisting
of the main stage and the hint stage. When workers face any uncertain
question on the main stage, they are allowed to enter the hint stage and
look up hints before making any answer. A unique payment mechanism
that meets two important design principles is developed. Besides, the
proposed mechanism further encourages high-quality workers less using
hints, which helps identify and assigns larger possible payment to them.



Experiments are performed on Amazon Mechanical Turk, which show that
our approach ensures a sufficient number of high-quality labels with low
expenditure and detects high-quality workers.

Chapter 3 answers the second question. We propose a robust SGD
mechanism called PrOgressive STochAstic Learning (POSTAL), which
naturally integrates the learning regime of curriculum learning (CL) with
the update process of vanilla SGD. Our inspiration comes from the
progressive learning process of CL, namely learning from “easy” tasks
to “complex” tasks. Through the robust learning process of CL, POSTAL
aims to yield robust updates of the primal variable on an ordered label
sequence, namely from “reliable” labels to “noisy” labels. To realize
POSTAL mechanism, we design a cluster of “screening losses”, which
sorts all labels from the reliable region to the noisy region. We derive the
convergence rate of POSTAL realized by screening losses. Meanwhile,
we provide the robustness analysis of representative screening losses.
Experiments on benchmark datasets show that POSTAL using screening
losses is more effective and robust than several existing baselines.

Chapter 4 answers the third question. Motivated by the memorization
effects of deep networks, which shows networks fit clean instances first
and then noisy ones, we present a new paradigm called “Co-teaching”
combating with noisy labels. We train two networks simultaneously. First,
in each mini-batch data, each network filters noisy instances based on
memorization effects. Then, it teaches the remained instances as the useful
knowledge to its peer network for updating the parameters. Empirical
results on three benchmark datasets demonstrate that, the robustness of
deep learning models trained by Co-teaching approach is much superior
than that of state-of-the-art methods.
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