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Abstract

This thesis contributes towards the development of a fast optimal control algorithm, relying
on the Alternating-Direction of Multipliers (ADMM), for solving large-scale linear convex
multi-period optimization problems as well as the design of investment strategies aiming at
stabilizing portfolio performance over time.

The first part of the thesis focuses on a statistical risk-budgeting method to improve naive
diversification strategies. We extend the so-called minimum-torsion approach and use ad-
vanced modern techniques for covariance estimation and shrinkage purposes. We propose
a novel factor investing approach, which dynamically identifies statistical risk factors over
time. We device dynamic investment strategies aiming at diversifying idiosyncratic risk left
unexplained by the factors.

We develop in the second part of this thesis a fast algorithm for solving scenario-based model
predictive control (MPC) arising in multi-period portfolio optimization problems efficiently.
We derive an alteration of the termination criterion, using the probabilities assigned to the
scenarios and provide a convergence analysis. We show that the proposed criterion outper-
forms the standard approach and highlight our results with a numerical comparison with a
state-of-the-art algorithm. We also enhance the standard two-set splitting algorithm of the
ADMM method, by including inequality constraints through a so-called embedded splitting,
without recourse to an additional (costly) splitting set.

We present a real-world large-scale multi-period portfolio application, where we combine the
different concepts derived in this thesis. We propose an approach to generate scenarios relying
on a Hidden Markov Model (HMM) and solve the constrained multi-period MPC problem
with the ADMM algorithm developed. We also suggest an innovative concept to steer the
risk-aversion used in the objective function dynamically, building on the probability assigned
to each scenario. We back-test the strategy and show that the results obtained do provide the
expected risk-adjusted outperformance and stability, without deviating significantly from the
strategic asset allocation.

Key words: Risk-Budgeting, Diversification, Convex Optimization, Model Predictive Control,
Alternative-Direction Method of Multipliers, Optimal Control.
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