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Abstract

Three essays of this thesis combine research projects devoted to markets,

prices, and expectations. The first chapter provides results on an experi-

mental test of a model with interacting boundedly rational agents. Adap-

tive switching between forecasting heuristics by heterogeneous agents brings

instability to the price dynamics and generates bubbles and crashes. In the

second chapter of this thesis, behavioural models of channelling attention to

adaptive choice are empirically tested on data generated from laboratory ex-

periments. According to the identified self-tuning model, subjects scale their

attention to the task given the stakes. Computational analysis and simu-

lations demonstrate the importance of this self-tuning model for generating

price dynamics that balances on the edge of stability. The third chapter

is an experimental investigation of the role of forecasting horizon length in

generating excess price volatility. In markets with initially unstable prices

with an increase in horizon length price dynamics stabilises. This finding

can be partly explained by dis-coordination of subject on non-fundamental

expectations in markets with longer horizons.
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Chapter 1

Introduction

1.1 Overview

Three chapters of this thesis combine research on the intersection of the

economics and finance disciplines and are focused on markets, prices, and

expectations. Markets are important mechanisms of allocations, where ef-

ficiency of the distribution critically depends on the prices. Understanding

the price dynamics and origins of possible deviations of the price from the

fundamental values, known as bubbles and crashes, is especially important

for public finance in terms of developing appropriate stabilisation policies

and tailoring tax systems. To investigate the interplay between prices and

price expectations, this thesis uses experimental and behavioural economics

tools. Computational methods and simulations are utilised to study possible

effects of behavioural expectation formation on the market prices.
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1.2 Market Prices and Price Expectations

Economists study different kinds of markets including those for labour,

goods, and services. However, the 2008 Financial Crisis demonstrated both

the importance of financial markets to a global economy and our limited

understanding of these markets. All major economies were harmed, growth

rates dropped to negative values, and the global markets’ capitalisation was

reduced by half, yet only a few economists were able to identify that the

financial markets were in disequilibrium before the fall. Our incomplete

knowledge about financial markets is not surprising given the complexities

of the system: millions of transactions are made daily within and between

markets, reflecting changes in various observed and non-observed funda-

mental indicators, such as changes in the composition of traders and their

beliefs, and changes in policy, structure, and technology. To address the is-

sue of complexity, the research presented in this thesis breaks down the task

of understanding the market forces into more tractable components and, in

particular, focuses attention on the interplay between prices and price ex-

pectations in a stylised version of a market populated by agents who behave

adaptively rather than rationally.

Expectations about future prices are essential drivers of markets. Prices

reflect expectations of the participants of the market, and expectations are

often formed based on observed prices. These mutual feedback effects be-

tween prices and price expectations play an important role in the presented

analysis since agents do not always behave fully rationally and their ex-

pectations are often boundedly rational. Once the assumption about the

full rationality is dropped, agents no longer have a “perfect foresight” and

alternative models of forecasting become available.
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1.3 Bounded Rationality

Rational Expectation Hypothesis (REH)–introduced and advocated by [78]–

remains a corner stone of modern economics and, in particular, macroeco-

nomics. Economic agents are modelled to rationally analyse the available

information to form expectations, and act optimally based on these expecta-

tions, which in the end become self-fulfilling. This perfect foresight is a result

of a combination of individual rationality and mutual consistency in the be-

haviour of agents. But the underlying assumptions of REH with regard to

computational ability and informational availability to the agents appears

to be very restrictive, as discussed in [98]. In fact, expectations that are

observed in reality are shown to be non-rational in [77]. Models of bounded

rationality, where perfect foresight is replaced by adaptive expectations and

learning, are discussed in [91], and applied in a macroeconomic dynamics

setup in [43]. In order to compromise the tendency of economic agents to

optimise their behaviour with the inability to perfectly predict the future

dynamic, agents are modelled to be sophisticated econometricians studying

the data in order to form a prediction, following [99]. This approach of

modelling agents to be “fundamental” analysers is extended by introduc-

ing a cost for information and computation. This informational cost, which

may motivate agents to be less rational, can explain boundedly rational be-

haviour, and plays an important role in the model introduced in the second

chapter of this thesis. For the complex investigation of the presented issues,

instruments from the two relatively young fields—behavioural finance and

experimental economics—are employed.
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1.4 Experimental and Behavioural Approaches

Experimental and behavioural economics approaches are often used in con-

junction. Lab-based experiments with human subjects are a natural and con-

venient way to test possible behavioural models of economic agent. Equally,

any behaviour observed in the lab that is not consistent with the “standard”

economic theory serves as empirical evidence for building behavioural mod-

els. Both fields have already attracted many followers and the importance

of the developments was acknowledged in recent years by awarding Nobel

Prizes to the most prominent researchers in these fields.

Behavioural economics and finance are typically said to date back to

the works of Amos Tversky and Daniel Kahneman, where integration of

psychological insights on decision-making into standard economic context

was performed. The work of Tversky and Kahneman sheds light on the

existence of “bounded rationality” and heuristics, which are simple rules

used by people to make decisions in complex environments. In the presented

thesis, heuristics are applied in the context of the price forecasting task:

agents are modelled to be “boundedly rational” and use simple rules of

thumb to predict future price movements. Robert Schiller attracted great

attention to behavioural finance contributing with his empirical analysis

of asset prices with a focus on the possible behavioural origins of market

inefficiencies. The excess volatility phenomena, identified by Robert Schiller,

serves as a motivation for the third chapter of the thesis, where the potential

importance of forecasting horizons for market price stability is investigated.

Richard H. Thaler contributed to the development of behavioural economics

by advancing the study of behavioural biases and, in particular, developing
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policy recommendations that account for existing biases in decision-making.

The policy implications are discussed in all chapters of the thesis.

Experimental economics offers a number of tools for detailed examination

of both the individual and group behaviour of participants in the controlled

laboratory environment. One of the earliest contributions was made by

[100], who ran a canonical asset market experiment that generated bubbles

and crashes. Lab experiments were designed and conducted as a part of

the first and the third chapters of the thesis: individual binary choice task

with the limited information experiment, and stylised financial market ex-

periment, respectively. Analysis of the clean experimental data gives us a

better understanding of both individual behaviour and market institutions.

1.5 Heterogeneous Agent Models

Three main chapters of the thesis all have close connections to the litera-

ture of Heterogeneous Agent Modelling (HAM), and, in particular, Heuristic

Switching Models (HSM). There are several features in the setup of these

models that are important for the analysis and generated predictions of HAM

papers. First, the assumption about the fully rational representative “neo-

classical” economic agent is dropped. Instead, heterogeneous “boundedly

rational” agents, interacting in the market, are introduced. Second, the

mutual feedback effects between prices and price expectations materialise

through demand and supply forces and play a crucial role in the price dis-

covery process. Prices reflect expectations of the participants of the market,

and expectations are formed based on the observed prices using forecasting

heuristics. Agents’ adaptive switching between different heuristics can bring
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instability to the price dynamics and generate “stylised facts” of financial

markets: bubbles and crashes, fat tails, and volatility clustering. Seminal

papers by Brock and Hommes laid a theoretical foundation that sparked

numerous HSM-based papers with computational analysis, empirical stud-

ies of the financial data, and experimental investigations. A simple setup

that can generate complicated dynamics became an ideal instrument for

both modelling and explaining the turbulence of financial markets.

Theoretical development of the HAMs dates back to two seminal papers

by [17, 18]. These papers introduce a model with markets that are populated

by boundedly rational agents. Instead of having “neoclassical” rational ex-

pectations, agents form expectations by using one of the two archetypical

rules: sophisticated fundamental analysis and näıve trend following. This

simplifying assumption rests on evidence from numerous studies that identify

these two forces to be the main powers driving the “moods” of the markets

(see [35], [1], and [48], among many others). Agents’ adaptive choice be-

tween forecasting rules is a key ingredient of the model. In the second and

third chapters of the thesis, I closely scrutinize different behavioural mod-

els of adaptive choice. Adaptive choice between forecasting rules is usually

modelled with the logit response function: agents choose probabilistically

based on the observed previous payoffs generated by the rules. The logit

parameter of the model, which represents the Intensity of Choice (IoC), and

the cost of fundamental prediction, which represents informational rent, are

responsible for generating price instability. As the value of either of two pa-

rameters increases, the model predicts the price to diverge from the steady

state and fluctuate chaotically. The second chapter provides experimental

tests regarding the role of information cost in generating price instability,
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and the third chapter investigates how price instability may affect the IoC

parameter values.

Ability of the HSMs to generate various stylised facts of financial

markets–including excess volatility, fat tails, and volatility cluster-

ing—attracts attention from finance researchers. Several HSM modifications

receives empirical support based on the data from different sources. The

S&P500 data is used to estimate a model of switching between fundamen-

talist and chartist strategy in [31]. Annual US stock price data is used in

[13], where adaptive switching between fundamentalists and trend-followers

was shown to play a significant role. Survey data of expectations for foreign

exchange markets is used in [53] to estimate a model of switching between

heterogeneous expectations. Data from the Survey of Consumer Attitudes

and Behaviour is used in [15], where a model of switching between three pre-

dictors—naive, adaptive, and sophisticated—was estimated. Overall, this

branch of the HSM literature provides extensive evidence of the empirical

validity of HSMs and the variety of estimates of the IoC parameter.

What remains a main challenge in the literature is a high level of het-

erogeneity in the IoC parameter estimates. The IoC plays a crucial role in

the model mechanics because different values of the parameter model gen-

erate qualitatively different predictions over the price dynamics: from the

steady state to deterministic chaos. Diversity of estimates, which were ob-

tained from the financial markets data, imposes serious calibration issues,

and raises questions concerning the validity of the assumption that the IoC

parameter is constant. The second chapter provides additional experimental

evidence on variability of the parameter, and the third chapter proposes a

behavioural model that endogenises the changes in the IoC parameter values.
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1.6 Learning-to-Forecast Experiments

In addition to empirical tests of HSMs based on the existing data sets,

several economic experiments with human subjects were run to study the

interplay between prices and price expectations in a controlled laboratory

environment. In these experiments, most of the real market components, in-

cluding trading, were isolated from the experimental setup to avoid mixing

confounding factors. The only task for the participants was to predict the

future price given the observed price patterns, while the price discovery pro-

cess depended on the given forecasts. This experimental design is different

from experiments in [92], [59], and [73], where prices are pre-generated, and

is instead based on the setup introduced in [79]. A series of experiments,

which are referred to as Learning to Forecast (LtF) experiments, provided

an important insight on both individual forecasting behaviour and market

price equilibration processes. The main contributions include those from

[69] and [70]. In these LtF experiments, participants generated substantial

price bubbles and subsequent crashes by forecasting price one or two peri-

ods ahead. Observed phenomena, to a large extent, can be explained by

the tendency of subjects to extrapolate a price pattern and reinforce price

deviations rather than calculate fundamental values and stabilise the mar-

ket. An important side product of indirect comparisons of these experiments

suggests that markets, where participants had to predict two periods ahead

instead of one period ahead, exhibited higher levels of price volatility. This

observation motivates the fourth chapter of the thesis, where a new exper-

iment is explicitly designed to study the effects of increasing the length of

the forecasting horizon on price volatility.
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1.7 Research Questions

This thesis utilises approaches of behavioural and experimental economics

and combines it with more standard theoretical, empirical, and computa-

tional analysis to answer a number of questions related to both economics

and finance disciplines. Can some stylised facts of financial markets, such

as the excess volatility or bubbles and crashes, be explained by behavioural

models of expectation formation? In particular, can stylised facts of finan-

cial markets be explained by models with agents switching between simple

forecasting strategies or heuristics, such as fundamentalists versus chartists?

Can a parsimonious model of switching between profitable alternatives ex-

plain subjects’ behaviour in both stable and unstable environments? Does

the forecasting horizon of agents in the market affect price volatility, for ex-

ample, through more aggressive trend-extrapolating behaviour? In a broad

sense, all three chapters are devoted to the issues related to the mutual feed-

back loops that exist in the real markets between prices and price expecta-

tions, and between agents’ adaptive behaviour and environmental changes

in response to this adaptation.

1.8 Thesis Structure

This thesis is organised as follows. The second chapter is an experimental

paper that tests the predictions of the stylised version of the seminal work by

Brock and Hommes.1 In that seminal paper, HSM agents adaptively switch

between two forecasting heuristics: one is näıve but free and the other is

1This chapter is a joint work with Professor Mikhail Anufriev and Jan Tuinstra. The
paper is published in the Journal of Economic Dynamics & Control in 2018.
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rational but costly. If the cost of rational expectation is high and prices are

stable, agents prefer to be näıve and use a previously observed price as their

best predictor. The popularity of a näıve prediction destabilises the market

and makes rational forecasting more attractive despite the cost to be paid.

Experimental findings support the model predictions regarding the impor-

tance of the information cost that is paid by the rational market participants

for acquiring information about market fundamentals–as the cost increases,

the price dynamics become less stable. This intuitive result rests on the

individual decisions of experiment participants, which the simple adaptive

choice model explains well. But there is an important caveat: the parameter

of the “attention” or “focus” of participants is estimated to be different in

different experimental sessions. The third chapter of this thesis studies the

attention adjustment processes and their importance for adaptive behaviour.

The paper collects “stylised facts” of previously identified differences in at-

tention and builds a number of behavioural models to capture these effects.

The study utilises data from several laboratory experiments on adaptive

choice and applies econometric techniques of running contests between dif-

ferent models using the data from the meta-experiment. Results show that

participants adjust their attention to the choice task given the stakes: if

payoffs are of a similar value, participants place less emphasis on the choice

task. This finding explains why attention is different in different experi-

mental sessions and offers new insight into HSM dynamics where adaptive

switching plays a crucial role. The fourth chapter experimentally investi-

gates one of the possible sources of the excess volatility of the price: the

length of the forecasting horizon.2 Theoretically, an increase in the forecast-

ing horizon leads to stability due to weakening arbitrage motives. Results

2This chapter is a joint work with Professor Mikhail Anufriev and Jan Tuinstra.
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show that predictions do not always hold because of behavioural effects that

are absent in the standard model—participants tend to extrapolate the price

trends in medium-long horizons, which destabilises the market price.
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Chapter 2

An experiment on the

Heuristic Switching Model

2.1 Introduction

In the last couple of decades heterogeneous agents models have become in-

creasingly popular as a description of turbulence and volatility on financial

markets. In these models different types of traders coexist on financial mar-

kets, as motivated by early empirical and theoretical studies. [48], for exam-

ple, distinguish between fundamentalists, who use in-depth analysis of firms

and their market environment to determine the fundamental value of an as-

set and believe that prices tend to revert back to this fundamental value,

and chartists, who use technical analysis to identify patterns in prices and

extrapolate those when predicting future prices (also see [1]). [35] and [25]

show that the interaction between these different types of traders may lead

to the emergence of endogenous fluctuations in asset prices in an otherwise

stationary and deterministic environment.
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An important class of heterogeneous agents models assumes that there is

a large population of traders that adaptively switch between some archety-

pal types of behavior, or heuristics, on the basis of the relative performance

of these heuristics, see, e.g., [17, 18], [28, 29] and [4, 5]. These models,

often referred to as heuristic switching models, have been successful in de-

scribing stylized facts of financial markets, such as bubbles and crashes in

asset prices, excess volatility, volatility clustering, and fat tails, and have

become quite popular as a result. The most common approach of modeling

switching between heuristics in this literature is through the so-called dis-

crete choice model. A crucial role in that model is played by the Intensity

of Choice (IoC) parameter, which measures how sensitive traders are with

respect to differences in performance. [17, 18] showed, and follow-up re-

search confirmed, that heuristic switching models generate excess volatility

and many other stylized facts of financial markets when the IoC parame-

ter is sufficiently large. The IoC parameter is thus pivotal for the dynamic

properties of the heuristic switching models, and hence for their success in

explaining financial market data and for the validity of policy implications.

In this chapter we present the results of a laboratory experiment that

is designed to test the predictions of the heuristic switching model and to

estimate the IoC parameter from aggregate decisions of the experimental

subjects. In particular, we construct a decision environment which is a

stylized version of the framework laid down in the seminal work by [17, 18].

This framework has served as a benchmark heuristic switching model in the
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literature1 but thus far its basic assumptions and implications have never

been tested in a controlled laboratory experiment.

In our experiment we let subjects choose between a costly stabilizing

heuristic and a cheap destabilizing heuristic. Payoffs associated with the

choices depend upon the distribution of subjects over the heuristics. An

important prediction of the heuristic switching model is that if costs for the

stabilizing heuristic increase (relative to the costs for the destabilizing heuris-

tic), the dynamics of the state variable (e.g., the price) and the distribution

of agents over heuristics become unstable and complicated endogenous fluc-

tuations may emerge. In our experiment we indeed find that an increase in

costs for the stabilizing heuristic initially leads to the type of bubbles and

crashes that are typical for the standard heuristic switching model. How-

ever, for the case of high costs we also find that, over time, the subjects

adapt their behavior such that the dynamics becomes more stable and is

consistent with a steady state of the model (although the dynamics are still

much more volatile than in the low cost case). In particular, the estimated

values of the intensity of choice parameter are much smaller for high costs

than for low costs, which suggests that the characteristics of the economic

environment are an important determinant of the value of this parameter.

This finding is important because in the standard heuristic switching model

the intensity of choice parameter is assumed to be exogenously given.

this chapter contributes to a growing empirical literature that tries to

estimate the heuristic switching model from market or survey data. [52],

1According to Google Scholar [17] and [18] together have been cited more than 3100
times as of December 5, 2017. Examples of theoretical contributions that build upon
their framework can be found in [50], [26], [19], [16], [27] and [88], among many others.
A number of papers use the framework to study the effect of various financial market
policies, such as the imposition of Tobin transaction taxes [112], increasing the number
of financial derivatives [20] and restricting short selling [9].
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for example, estimate the IoC parameter on mutual fund allocations deci-

sions, whereas [15] uses survey data to estimate a discrete choice model with

switching between three heuristics. [13] and [31] use U.S. stock price data

to estimate a heuristic switching model with a fundamentalist heuristic and

a trend-following or a chartist heuristic, respectively. Survey data of expec-

tations in foreign exchange markets are used in [53]. Finally, [34] estimate a

discrete choice model with switching between fundamentalists and random

walk believers, using U.S. macroeconomic data. Although these contribu-

tions provide compelling evidence that the heuristic switching model per-

forms well as a description of market behavior for different types of data,

the drawback is that the IoC parameter in these models typically needs to

be jointly estimated with other behavioral parameters (e.g., the heuristics

are often parametrized as well). Several studies, including [13], find that the

estimated value of the IoC parameter is not significant. Studies that pro-

duce significant estimates of the IoC report very different values, depending

on the specification of the heuristics.2 Finally, there is a large variation in

the estimated value of the IoC parameter between studies.3 This uncer-

tainty regarding the relevant range of values for this parameter, which plays

such a crucial role in the dynamics of heuristic switching models, may deter

policy-makers from using those models.

2For instance, [52] use the risk adjusted payoffs of investors and estimate the IoC
parameter as 0.9, 1.9, and 6.53 for three different values of the risk aversion parameter.
[34] report values of the IoC parameter ranging from 1.99 to 9.26, depending on the
forecasting rules used by fundamentalists.

3Because the IoC parameter is not a scale-free parameter the variation in the estimated
values of this parameter may be partly due to the differences in (average) performance
levels. This conjecture is, however, difficult to verify in empirical studies as performance
levels of the different heuristics are rarely reported. Recently, [103] proposed a model
where switching is based on relative, instead of absolute, profit differences. This opens
up the possibility to compare the estimated IoC for various asset classes, such as metals,
real estate prices, and foreign exchange markets, directly. The estimates of the IoC in
[103] still differ across markets, however.
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Laboratory experiments have the advantage that the experimenters can

control both the market environment in which the subjects operate as well as

the information these subjects have about that market environment. There-

fore laboratory experiments can be used to obtain relatively clean data con-

cerning the relationships under study. So-called ‘Learning to Forecast’ ex-

periments (see, e.g., [69], [70] and [57], and [64] for an overview) have been

used to estimate different forecasting heuristics that subjects typically use.

An important feature of these Learning to Forecast experiments is that they

take into account the self-referential characteristics of dynamic market en-

vironments. That is, expectations about the future value of an economic

variable feed back into the actual realization of that variable, and thereby

in part determine the behavior of that variable. This is in contrast to earlier

experiments on expectation formation where participants have to predict an

exogenously generated time series (see e.g., [92], [59] and [73]).

Experiments can also be used to better understand how people exactly

switch between different heuristics. A first step in that direction, which can

be seen as complementary to the Learning to Forecast experiments where the

heuristics themselves are estimated, is taken in the experiment conducted

in [2]. In that experiment subjects have to choose between different alter-

natives, where the payoffs associated with the alternatives are exogenously

generated. The aggregate choice data are used to estimate different versions

of the discrete choice model. The experiment presented in this chapter dif-

fers from the one in [2] in that payoffs are endogenously generated in this new

experiment, and determined by the aggregate choices of the subjects. This

setting therefore represents the typical heuristic switching model better.
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The remainder of the chapter is organized as follows. We start by intro-

ducing a stylized version of the heuristic switching model in Section 2.2. This

model is a simplified version of the original Brock-Hommes model and we

use it as a basis for our experimental environment. In Section 2.3 we discuss

the experimental design and in Section 2.4 we formulate the hypotheses to

be tested. In Section 2.5 we present the experimental results. We fit a sim-

ple discrete choice model to subjects’ aggregate choices and argue that the

IoC parameter changes over time in response to the decision environment.

In addition, we show that our results are robust to increasing the number of

subjects in the experimental groups and to increasing the number of decision

periods. Concluding remarks are given in Section 2.6.

2.2 A stylized heuristic switching model

This section introduces the stylized heuristic switching model that will be

used in the laboratory experiment presented in this chapter. Some more

background on the heuristic switching model and a description of the main

mechanism that leads to complicated dynamics in that model are given in

Section 2.2.1. We subsequently describe the stylized heuristic switching

model that we use in this chapter and which consists of two parts: the

dynamics of the state variable, which we discuss in Section 2.2.2, and the

discrete choice model that describes switching between heuristics, which we

discuss in Section 2.2.3.
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2.2.1 Complex dynamics from the interaction of

heuristics

The heuristic switching model was introduced in [17]. They consider a cob-

web market where a large number of producers have to decide how much to

supply of a (non-storable) commodity that takes one period to produce. The

realized market price for the commodity will be the price for which consumer

demand equals the aggregate supply of the producers, where the latter is de-

termined by the individual price expectations of the producers. In [17] it is

assumed that there are two forecasting heuristics available to the suppliers:

either naive expectations – where a producer uses the last observed price as

his prediction for the next price, or rational expectations – where a producer

knows the underlying market equilibrium condition, as well as the distribu-

tion of producers over the different heuristics, and uses this information to

compute the market clearing price in the current period. Whereas the naive

expectations heuristic uses very little (and publicly available) information,

applying the rational expectations heuristic is more demanding. It requires

substantially more information as well as the cognitive effort to process this

information correctly. It therefore seems reasonable to assume that using the

rational expectations heuristic comes at strictly higher (information) costs

than using the naive expectations heuristic.

Every period producers decide which forecasting heuristic to use on the

basis of relative past performance (after information costs have been de-

ducted). It turns out that complicated dynamics may emerge if the sensitiv-

ity of producers with respect to the profit difference (i.e., producers’ intensity

of choice) of the heuristics is sufficiently high. The mechanism underlying

these complicated dynamics can be described as follows. When the price
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is close to its steady state level, the forecasting heuristics give comparable

predictions and, given their relative cost, producers have the incentive to

choose the naive expectations heuristic. However, when almost all produc-

ers use naive expectations, the cobweb dynamics are unstable and market

prices start to oscillate (see, e.g., [44]). As a consequence, forecasting errors

under naive expectations increase and producers tend to switch to the more

profitable rational expectations heuristic. When enough producers use the

rational expectations heuristic, prices converge to their steady state value

and forecasting errors of both heuristics are similar again. As the rational

expectations heuristic still comes with a cost, producers switch back to the

naive expectations heuristic and the whole cycle repeats.

This type of mechanism, inducing complicated dynamics, works in many

other market environments as well. Competition between fundamentalists

and chartists in financial markets provides the most celebrated application,

see, e.g., [18], [29] and [30] for early examples and [66] for an overview. It

is important to note that the mechanism is qualitatively robust to changes

in the set of heuristics, to the type of market institution (e.g., Walrasian

equilibrium clearing, a market maker that adjusts prices, or continuous dou-

ble auctions) and to the direction of the expectations feedback.4 Generally,

if the IoC parameter and/or the costs for the stabilizing heuristic are high

enough, the fraction of agents using the stabilizing heuristic at the steady

state is going to be low and will not be sufficient to stabilize the dynamics.

The steady state will then be unstable and prices as well as the distribu-

tion of traders over the heuristics will fluctuate endogenously. The precise

4See [51], [8], and [63], respectively. Positive expectations feedback, where actual prices
respond positively to an increase in the average expected price, is typical for financial
markets, whereas negative expectations feedback, with a negative price response to an
increase in price expectations, is common for supply-side driven markets, such as the
cobweb market discussed above.
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characteristics of the dynamics as well as the threshold values of the IoC pa-

rameter and the costs for the stabilizing heuristic will depend on the features

of the underlying market environment.

2.2.2 Dynamics of the state variable and performance

of heuristics

Our aim is to test the key assumptions and implications of the heuristic

switching model described above in a laboratory experiment with paid hu-

man subjects. Laboratory experiments have the advantage that they gen-

erate clean data on choice behavior, that information given to the subjects,

as well as the underlying model, are under control of the experimenters, and

that subjects have well-defined monetary incentives. In addition, laboratory

experiments can be replicated. At the same time, it is important to use

decision environments that are not too complicated, in order to ensure that

subjects have a good understanding of the task they are asked to perform.

For this reason we want to use a stylized heuristic switching model that still

exhibits the main mechanism of the models described above, but which is

straightforward to implement in a laboratory experiment.

To that end, consider an economy where agents repeatedly choose be-

tween two profitable alternatives (‘heuristics’), A and B. The profits gen-

erated by these alternatives are determined by an underlying state variable

xt. More specifically, profits of choosing A and B in period t are given by

πA,t = WA + γAx
2
t , and πB,t = WB − γBx

2
t , (2.1)
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respectively, where WA, WB, γA and γB are nonnegative parameters, with

γA + γB = 1. Note that profits for alternative A depend positively on the

deviation of the state variable from zero, and the other way around for

alternative B.5

The evolution of the state variable xt depends upon the distribution of

agents over the alternatives A and B. In particular, we consider

xt = λnB,txt−1 + εt , (2.2)

where nB,t ∈ [0, 1] is the fraction of the population of agents that chooses

alternative B in period t, λ is the feedback coefficient and εt is a small

idiosyncratic random shock. The sign of λ determines whether the feedback

in the market is negative or positive, with λ < 0 representing the cobweb

model of [17] and λ > 0 representing the asset pricing model of [18]. In both

cases, the state variable x can be interpreted as the deviation of the price

from its fundamental value.

The mechanism leading to endogenous fluctuations, discussed in Sec-

tion 2.2.1 for the case of the cobweb model, but also relevant for financial

markets, is preserved in the system consisting of equations (2.1) and (2.2),

provided that WB > WA and |λ| > 1. To see this, note that when the state

variable xt equals its steady state value of x∗ = 0, alternative B is more

profitable than alternative A (at this point πB = WB > WA = πA) and

5In the standard model only the difference between profits matters for agents,
cf. Eq. (2.4) in Section 2.2.3. In our setup this difference is πA,t− πB,t = WA−WB + x2

t ,
which, due to γA + γB = 1, does not depend on the exact values of γA and γB . For the
experiment we choose the values of WB and γB such that profits of alternative B remain
positive for a relatively large range of values of xt. This is done in order to minimize the
number of periods in the experiment where payoffs for alternative B become negative.
If in some period t the state variable xt is so large that πB,t < 0, we assign payoff 0 to
alternative B for that period. This approach, which ensures that participating subjects
have positive earnings, is common for laboratory experiments.
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therefore attracts agents. Thus for low absolute values of the state variable,

fraction nB,t will increase over time. However, when nB,t becomes large

enough (in particular, when |λnB,t| > 1), the dynamics of the state variable

become unstable and xt will diverge away from its steady state value. When

the deviation of xt from zero becomes sufficiently large (to be specific, when

|xt| >
√
WB −WA) alternative A becomes more profitable and agents will

tend to switch to that alternative again, which stabilizes the dynamics, and

so on.

The model presented here, therefore, corresponds to a stylized version of

the heuristic switching model described above, with alternative A playing

the role of the costly stabilizing heuristic and alternative B playing the role

of the cheap destabilizing heuristic. In addition, we can think of WB−WA as

the costs for heuristic A, because it corresponds to the difference in profits

between the cheap heuristic B and the costly heuristic A, when xt = 0, that

is, at the steady state. In the remainder of this chapter we will therefore

denote costs for using heuristic A (relative to the costs for using heuristic

B) by C = WB −WA, which we will assume to be strictly positive.6

2.2.3 The discrete choice model

The model given by equations (2.1)–(2.2) still lacks a description of how

agents choose between alternatives A and B when they know the past per-

formance of alternatives (i.e., profits πA,t and πB,t) but not the underlying

6It is worthwhile to stress one difference with the models from [17, 18]. In our stylized
version the value of the state variable in period t depends upon nB,t. This allows us
to write the model as a simpler one-dimensional dynamical system, see Eq. (2.5), as
opposed to the two-dimensional dynamical systems in [17, 18]. The dynamics, as well as
the mechanism driving them, is qualitatively equivalent between the two settings. See
Appendix A.1 for a formal analysis.
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profit generating mechanism. The experiment presented in this chapter is

designed specifically to investigate that decision, using human subjects. The

most common approach to this choice problem in the literature on heuristic

switching models is the so-called discrete choice model, which – in one of

its most basic forms – looks as follows. Let PA,t and PB,t be the probabil-

ities that an agent chooses alternative A and B in period t, respectively.

Probability PB,t is specified as

PB,t =
exp[βπB,t−1]

exp[α + βπA,t−1] + exp[βπB,t−1]
=

1

1 + exp[α + β(πA,t−1 − πB,t−1)]
,

(2.3)

with PA,t = 1−PB,t. Here β ≥ 0 is the Intensity of Choice (IoC) parameter

and α is a parameter that measures the so-called predisposition effect. The

intuition behind the discrete choice model is that an increase in the per-

formance of one alternative, relative to the other alternative, increases the

probability that an individual agent chooses the former. The IoC parameter

β measures how sensitive this probability is with respect to the performance

difference. The predisposition effect measures a possible bias that agents

have towards one of the alternatives: a positive value of α implies that al-

ternative A is chosen with a higher probability than alternative B when

their performance is the same. Similarly, a negative value of α implies that

agents are biased towards alternative B.

Assuming that there are many agents, with all of them choosing between

alternatives A and B according to (2.3), the Law of Large Numbers implies

that the fraction of agents choosing alternative B is given by

nB,t =
1

1 + exp[α + β(πA,t−1 − πB,t−1)]
, (2.4)
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with nA,t = 1− nB,t.

The canonical discrete choice model, as used in [17, 18] and in the vast

majority of subsequent contributions, is given by (2.4) with α = 0. However,

estimated discrete choice models on survey data [15] and experimental data

[2] suggest that the predisposition effect plays an important role in explaining

human behavior and therefore we add it here as well.7

We can now complete the model presented in Section 2.2.2 by assuming

that (2.4) describes how the population of agents chooses between alter-

natives. Substituting (2.1) and (2.4) in (2.2) and using γA + γB = 1 and

C = WB −WA, we find that the state variable xt evolves according to

xt = f (xt−1) + εt =
λxt−1

1 + exp[α + β(x2
t−1 − C)]

+ εt . (2.5)

Appendix A.1 analyzes the dynamics of this non-linear model and shows that

the key properties of the heuristic switching framework outlined in [17, 18]

are preserved. It turns out that the dynamics of the state variable, given by

the first order difference equation (2.5), may give rise to complicated dynam-

ics, even in absence of random shocks (i.e., setting εt = 0). This depends

in particular upon the structural parameters λ and C and the behavioral

parameters α and β.

7There exist alternative formulations of the discrete choice model, for example where
performance is measured by a weighted average of past profits (instead of only the profits
from the previous period) or where updating is asynchronous (that is, agents do not have
the opportunity to change between alternatives every period), see [4]. As an alternative to
the discrete choice model, the evolution of the fraction choosing one particular alternative
can be modelled by the (exponential) replicator dynamics, see, e.g., [38], [108] and [94].
Derived from a process of imitation, this evolutionary model leads to a more sluggish
adaptation of fractions, which is similar to the effect of asynchronous updating.
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Note that when the dynamics of the state variable are given by (2.5),

the fraction of choices for alternative B evolves as

nB,t =
1

1 + exp[α + β(x2
t−1 − C)]

. (2.6)

When the state variable equals x∗ = 0, the fraction of B-choices is given by

n∗B = [1+ exp(α− βC)]−1. The following finding (which focuses on the case

λ > 0) follows from the more general result proven in Appendix A.1.

Proposition 2.2.1. Consider the first order difference equation (2.5) with

εt = 0. For 0 < λ < 1 there is a unique globally stable zero steady state,

x∗ = 0. For λ > 1 the zero steady state is unique and locally stable as long

as λn∗B < 1 and unstable when λn∗B > 1. Moreover, when λn∗B > 1, two

non-zero steady states x+ and x− exist, with x+ =
√

C + (ln(λ− 1)− α)/β

and x− = −x+. The associated steady state fractions are n+
B = n−B = λ−1.

The non-zero steady states are locally stable if β
(
1− n+

B

)
(x+)

2
< 1.

Clearly, an increase in the fraction of agents using alternative B in-

hibits stability of the zero steady state (recall that alternative B corresponds

to the cheap but destabilizing heuristic). Also note that we assume that

C = WB −WA, the costs for using the more sophisticated and stabilizing

rule A, is positive. Clearly, an increase in C increases n∗B and destabilizes

the zero steady state, because – at the steady state – more agents use the

destabilizing rule. Likewise, an increase in the IoC parameter β will desta-

bilize the dynamics, since this also increases the fraction of agents using

alternative B (since they will do better at the steady state). An increase

in α, on the other hand, will promote stability. If the zero steady state

loses stability, for example because β increases, this occurs through a so-

called pitchfork bifurcation. In this bifurcation two new, non-zero, steady

25



0.0 0.2 0.4 0.6 0.8 1.0

-0.4
-0.2
0.0

0.2

0.4

High Cost

0 5 10 15 20

-0.4
-0.2
0.0

0.2

0.4

Low Cost

Figure 2.1: Bifurcation diagrams in (β, α)-coordinates for the stylized heuris-
tic switching model, showing the regions of stability for the zero steady state
(dark filled region), and non-zero steady states (light filled region). Left: Pa-
rameters corresponding to the High blocks in the experiment. Right : Param-
eters corresponding to the Low blocks in the experiment. Black points show
the values of (β, α) estimated on subjects’ choice data (see Section 2.5.2).
The two black disks on the left panel show the estimated values from the
High Long treatment (see Section 2.5.3).

states are created that are locally stable. The absolute deviation of these

two steady states from zero is the same and depends upon the behavioral

parameters of the model. With a further increase of β or C, these non-zero

steady states become unstable as well.8

Fig. 2.1 shows the stability regions of the different steady states for the

case of high costs, C = 8 (left panel) and low costs, C = 0.1 (right panel).

The value of the parameter λ is 2.1, which is the value that will be used in

the experiment. Note that for high costs the stability regions (both of the

zero and of the non-zero steady states) are much smaller than for low costs

(also note that the scale on the horizontal axis is very different).

8Note that for the case of λ < 0 we get a similar stability condition. However, in
this case, instead of two non-zero steady states, a period two cycle {x−, x+}, with x− =
f (x+) and x+ = f (x−), is created when the zero steady state x∗ loses stability, see
Appendix A.1.
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The aim of the experiment in this chapter, outlined below, is to verify

that the aggregate dynamics in our experiment will reproduce the patterns

that are predicted by the heuristic switching model. In addition, we want to

fit the discrete choice model on the aggregate choice data, and in particular

estimate the relevant values of the intensity of choice parameter β and the

predisposition parameter α.

2.3 Experimental Design

The experiment took place in June 2016 and October 2017 at the Univer-

sity of Technology Sydney Behavioral Laboratory. In total 80 subjects were

recruited for four sessions, with 20 subjects participating in each session.9

Most subjects are undergraduate students in economics and finance, and

no subject participated in more than one session. Each session lasted ap-

proximately 90 minutes and subjects earned 25 Australian dollars (AUD)

on average.

The task of the subjects in the experiment is to make a choice between

two investment alternatives, labeled A and B. In the beginning of each

session the 20 subjects that participate in the session are randomly divided

in two groups of 10. Then, for 40 consecutive periods subjects make their

binary choices, with their payoffs dependent on the distribution of choices

of the 10 subjects in their group. After the first block of 40 decision periods

is finished, subjects in the session are randomly rematched to form two new

9The Online Recruitment System for Economic Experiments (ORSEE), see [54], was
used for recruiting participants. The experiment was conducted using the z-Tree software,
see [46]. Two sessions of an additional treatment, with more periods and larger groups,
took place in September 2017. We will discuss the results for this additional treatment
in Section 2.5.3.
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Figure 2.2: An example of the computer screen with interface elements. The
upper part of the screen is used to submit a decision by clicking on one of
two radio buttons, A or B. The lower part represents the history of profits
for alternatives A and B in two formats: a graph on the left and a table on
the right. The last column in the table shows the past choices of the subject.

fixed groups of 10 subjects. During the second block, the subjects have

to make their binary decisions for another 40 periods, with their payofs

depending on the choices of the subjects in their new group of 10 subjects.

At the beginning of every period subjects are provided with information

about the past profits of the two alternatives, both in the form of a table and

a graph, see Fig. 4.2. In addition they are informed about their own previous

choices. As soon as all subjects in the group have made their decision for

period t, the actual profits for the two alternatives are generated by (2.1),

where the value xt of the state variable
10 is determined by (2.2). The profits

of both alternatives are then shown to the subjects together with their choice

in period t. Subsequently they are asked to make their choice for period t+1.

10As explained in Section 2.2.2, this state variable can be thought of as the deviation
of the price from the fundamental value. We do not ask subjects to predict the values
of this variable (as they would do in the Learning to Forecast experiments). In fact, we
do not even show the evolution of this variable to the subjects. This design has been
chosen to focus exclusively on testing the discrete choice model, which assumes subjects
only respond to the performance of the heuristics.
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For both blocks in each session we choose λ = 2.1 (implying that the

dynamics are unstable if, at equilibrium, at least half of the participants

chooses alternative B, see Proposition 2.2.1), γA = 0.6 and γB = 0.4. The

random shocks are IID distributed according to εt ∼ N(0, 0.02). We use

the same realization of random shocks for each block, and for each session.

The only difference between blocks are the values of WA and WB, that are

chosen in order to generate blocks with different costs, C = WB − WA,

for the stabilizing heuristic. For the High blocks we choose WA = 1 and

WB = 9 (i.e., high cost is given by C = 8) and for the Low blocks we choose

WA = 4.95 and WB = 5.05 (i.e., low cost is given by C = 0.1).

The two treatments in our experiment, with two sessions each, only differ

in the order of the blocks: treatment High-Low starts with a block with

C = 8, followed by a block with C = 0.1, whereas the order is reversed for

treatment Low-High.11 We therefore have eight groups that make decisions

in a High block and eight groups that make decisions in a Low block. Each of

these sixteen groups consists of 10 subjects, with each subject participating

in exactly one High and one Low block. In the remainder we will identify

groups by block, session and group number (e.g., “High: session 1, group 2”

refers to the second group in the first block of the first session).

By the end of the experiment, subjects are paid for their decisions ac-

cording to the following procedure. For every subject we randomly choose

two periods from the first block and two periods from the second block. The

sum of the payoffs corresponding to the decision of the subject in these four

periods is divided by two. This constitutes the subject’s earnings in Aus-

tralian dollars. In addition, each subject receives a 10 AUD participation

11Treatment High-Low was implemented in sessions 1 and 3, treatment Low-High was
implemented in sessions 2 and 4.
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fee. The procedure ensures that subjects have the financial incentive to make

the best possible decision in every period of the experiment. Experimental

instructions are provided in Appendix A.2.12

2.4 Hypotheses

If the discrete choice model (2.4) gives a good description of the aggregate

behavior of subjects, then (2.5) and (2.6) should provide a good approx-

imation13 of the dynamics of the fraction nB,t and the state variable xt.

The dynamics will depend upon the specific characteristics of the economic

decision problem (λ, γA, γB, WA and WB), which are chosen by the ex-

perimenters, and upon the behavioral parameters α and β, which describe

the subjects’ decision making. Since C = WB − WA > 0 in both blocks,

in equilibrium we will have n∗B > 1/2 (assuming α is not very high and

β > 0). Given that λ = 2.1, we therefore expect the zero steady state,

(x∗, n∗B) = (0, [1 + exp(α− βC)]−1), to be locally unstable in both the High

and the Low blocks, see Proposition 2.2.1. Moreover, the values of WA and

WB in the two blocks are such that for a large range of values of α and β

the steady states (x+, n+) and (x−, n−) will be stable for the Low blocks,

but unstable for the High blocks, see Fig. 2.1.

12Before the experiment starts subjects are required to solve a short quiz which is
designed to check their understanding of the feedback effects and remuneration procedure.
After the experiment, subjects are given a questionnaire that focuses on background
information, such as demographic characteristics and field of study. The quiz and the
questionnaire are available from the authors upon request.

13In the model fraction nB,t can take on any real value in the interval [0, 1]. In the
experiment, however, there are 10 subjects in a group, and, therefore, this fraction can
only take on 11 values (0, 0.1, 0.2, . . . , 1). Hence, (2.5) and (2.6) can only provide an
approximation to the model dynamics.
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Figure 2.3: Simulations of the stylized heuristic switching model with
λ = 2.1. Left: High blocks parametrization, C = 8. Right: Low blocks
parametrization, C = 0.1. Upper panels : Dynamics of state variable, x.
Lower panels: Dynamics of fractions of B-choices, nB.

Fig. 2.3 illustrates the simulated dynamics of the stylized heuristic

switching model (2.5)–(2.6) for the values of the structural parameters that

we use in the experiment, and with the same realization of the random

shocks εt that is used in the experiment. For these simulations we set

the behavioral parameters to α = 0 and β = 5. The left panels show the

dynamics of x and nB in the High blocks. We observe a pattern familiar

from the original model of [18] with endogenous bubbles and crashes of

the state variable (corresponding to the deviation of the price from the

fundamental asset value in their framework). Note that due to the small

random shocks, the realized state variable may become negative when it

approaches zero. The right panels show the same dynamics for the Low

blocks. Due to positive values of ε in the first couple of periods, the

state variable becomes positive and stays close to the steady state value

x+ =
√

ln (1.1) /5 + 0.1 ≈ 0.345 thereafter, although it may occasionally
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‘escape’ from that steady state when a sufficiently low value of the noise

term ε is realized (which happens in period t = 35).

The specific time series shown in Fig. 2.3 depend on the specific values of

α and β, but the main properties of the model, i.e., instability of all steady

states with endogenous bubbles and crashes for the High blocks and stability

of the non-zero steady state for the Low blocks, hold for a large range of

values of these behavioral parameters. Thus, if choice behavior is governed

by the same heuristic switching model in both environments we expect less

stability and more volatile dynamics in the High blocks than in the Low

blocks, both in terms of the fraction of subjects choosing B, and in the state

variable xt. This leads to our first hypothesis on the dynamics of nB,t and

xt.

Hypothesis 1. There is a substantial difference in the volatility of both nB,t

and xt between the High blocks and the Low blocks.

If Hypothesis 1 is not rejected, it implies that the qualitative predictions

of the heuristic switching model are confirmed. The next step is to investi-

gate whether the discrete choice model (2.4) also gives a good quantitative

description of the data. To that end, we fit the discrete choice model on the

aggregate data. This gives our next hypothesis.

Hypothesis 2. The endogenous variable nB,t can be described by a discrete

choice model with one lag and a predisposition effect.

If this hypothesis is confirmed, it provides experimental evidence for the

relevance of the discrete choice model (2.4) as a description of aggregate

decision making, and would thereby lend support to the use of heuristic

switching models. Note that in [2] it was established that a discrete choice
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model with one lag and a predisposition effect is relatively successful in

describing experimental data in a setting where payoffs for the different

alternatives are exogenously generated. Hypothesis 2 checks whether this is

also the case when there is feedback from subjects’ decisions to the payoffs.

Ideally, the estimated discrete choice model – if it provides a good de-

scription of the data – is similar for the High and the Low blocks. Compara-

ble values of the model’s behavioral parameters would suggest that human

decision making is independent of the specifics of the economic environment

and governed by the same underlying laws. Indeed, Hypothesis 1 implicitly

assumes that the decision process is the same for the High and Low blocks

and so the variation in the dynamics occurs because of the difference in the

other characteristics of the High and Low blocks (i.e., the difference in costs

C = WB−WA). Our third and final hypothesis deals with investigating this

issue.

Hypothesis 3. There is no significant difference between the discrete choice

models estimated on data from the High blocks, and the discrete choice models

estimated on data from the Low blocks.

In the next section we present the experimental data and test these three

hypotheses.

2.5 Experimental results on switching

In this section we will discuss the experimental results. We start out with

presenting the experimental data in Section 2.5.1. We will also provide some

descriptive statistics and test Hypothesis 1 in that section. In Section 2.5.1
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we estimate the discrete choice model on the experimental data and discuss

Hypotheses 2 and 3. Finally, Section 2.5.3 is devoted to the analysis of an

additional treatment with high costs, which features larger groups and more

periods.

2.5.1 The experimental data

First, we depict the evolution over time of the fraction nB,t of subjects

choosing alternative B. Figs. 2.4 and 2.5 show this fraction in the High and

Low blocks, respectively. A quick visual inspection of these figures suggests

that the time series of nB,t may indeed be slightly more volatile in the High

blocks. For example, out of 8 × 40 observations the boundary values of 0

and 1 are reached 23 times (7.2%) in the High blocks, whereas they are only

reached 10 times (3.1%) in the Low blocks. However, the standard deviations

of nB,t in the different groups, reported in Table 2.1, appear to be roughly

similar for the High and the Low blocks. Indeed, the difference in standard

deviations between High and Low blocks is not statistically significant at

the 5% level.14

To further investigate possible differences in the fractions, the top panels

of Fig. 2.6 show the histograms of the fraction nB,t of subjects choosing

alternative B in the High and Low blocks, pooled over all eight groups.

These histograms also show a small, but distinct, difference between the

two types of blocks. The distribution of choices in the Low blocks has a

14The Ansari-Bradley test, which is suitable for distributions with similar means and
shapes, gives a p-value of 0.143, implying that we cannot reject the hypothesis of equal
standard deviations of the two distributions. Note that, in order to preserve independence
of the observations, we only used the first block in each session for this test (i.e., the four
High blocks from Sessions 1 and 3 and the four Low blocks from Sessions 2 and 4). For all
other test statistics (unless noted otherwise) we pool the data from the first and second
High (respectively Low) blocks.
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Figure 2.4: Fraction of choices of alternative B in High blocks.
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Figure 2.5: Fraction of choices of alternative B in Low blocks.
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Fraction of B-choices, nB State variable, x
Data Mean Std. Dev. Mean Std. Dev.

High

Session 1. Group 1 0.58 0.27 2.43 1.52
Session 1. Group 2 0.61 0.25 2.26 1.52
Session 2. Group 1 0.60 0.27 2.51 1.47
Session 2. Group 2 0.58 0.28 2.39 1.27
Session 3. Group 1 0.55 0.22 2.33 1.27
Session 3. Group 2 0.55 0.21 2.35 1.11
Session 4. Group 1 0.60 0.26 2.02 1.45
Session 4. Group 2 0.64 0.29 2.15 1.42

All High groups 0.59 0.26 2.43 1.52

High Long
Session 5. Group 1 0.53 0.18 2.62 0.92
Session 6. Group 1 0.55 0.21 2.48 1.06

Low

Session 1. Group 1 0.56 0.23 0.26 0.22
Session 1. Group 2 0.51 0.23 0.26 0.24
Session 2. Group 1 0.55 0.24 0.17 0.21
Session 2. Group 2 0.56 0.24 0.13 0.28
Session 3. Group 1 0.55 0.24 0.32 0.22
Session 3. Group 2 0.50 0.23 0.12 0.25
Session 4. Group 1 0.51 0.24 0.31 0.18
Session 4. Group 2 0.54 0.27 0.16 0.32

All Low groups 0.53 0.24 0.26 0.22

Table 2.1: Descriptive statistics of the fraction nB and the state variable x.

clear peak around 0.5 − 0.7 (containing around half of the observations),

whereas the distribution of fractions in the High blocks is much more evenly

spread with substantially more observations of fractions nB,t close to 1. In

fact, the hypothesis of equality of the two distributions is rejected at the 5%

level.15

It is clear from the histograms of the fraction of B-choices that, although

there is a difference between the High and Low blocks in our experiment,

this difference is smaller than we would expect in case of stable and unstable

dynamics in the heuristic switching model. Consider, for example, the time

series of fractions given in the lower panels of Fig. 2.3 that are generated with

α = 0 and β = 5. The histogram of fractions corresponding to the lower left

panel of Fig. 2.3 (High cost parametrization) will be bimodal, with many

observations close to 0 or close to 1, whereas the histogram of fractions

15The Kolmogorov-Smirnov test for equality of distributions gives a p-value of 0.012.
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Figure 2.6: Histogram of fraction of B-choices (Upper panels). Density
histogram of state variable, x (Lower panels). Left: High blocks. Right:
Low blocks. The vertical dashed lines in the lower panels indicate the zero
steady state of x.

corresponding to the lower right panel (Low cost parametrization) will be

single-peaked. Whereas the latter is indeed consistent with the histogram

for our Low block groups in Fig. 2.6, the histogram for the High block groups

can hardly be described as bimodal.

Because the fraction of subjects choosing alternative B is high in many

periods, deviations of xt from zero should be quite persistent, at least in

those periods, see Eq. (2.2). This is confirmed by inspection of Fig. 2.7

which shows the time series of xt in all blocks of each session. Clearly, the

mean and variance of xt are much higher for the High blocks than for the Low
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Figure 2.7: Time series of the state variable xt in all 16 groups.
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blocks, as can also be seen from the last two columns of Table 2.1. Both the

difference in means and the difference in standard deviations is statistically

significant at the 5% level.16 Moreover, the mean values of xt, both in the

High and in the Low blocks, are significantly different from zero as well, and

the standard deviation of these time series is significantly higher than they

would be in a steady state of the model (where the standard deviation of xt

is equal to that of εt which, by construction, is approximately 0.14).17

Summarizing our results thus far, we conclude that, when looking at the

dynamics of both nB,t and xt, Hypothesis 1 cannot be rejected, although,

particularly for nB,t, the difference between blocks is smaller than expected.

A more detailed look at the time series of xt leads to some interesting

observations. First, the dynamics in the first half of the block are qualita-

tively similar for each of the eight High block groups. In each group the

variable xt increases in several consecutive periods after which it ‘crashes’ in

one period, sometimes by a considerable extent.18 After this crash xt starts

to increase again. This cycle is repeated two or three times in each of the

eight groups. Interestingly, this type of dynamics is characteristic for the

type of heuristic switching model studied in the literature on heterogeneous

16The Ansari-Bradley test of equal standard deviations (applied to the first blocks
of each session again) gives a p-value of 0.003. Since the data looks closer to a normal
distribution now, see the lower panels of Fig. 2.6, we also use an F -test for equal variances,
which returns a p-value of 0.000. Similarly, the p-value of the t-test of equal means is
0.000. Finally, the Kolmogorov-Smirnov test for equality of distributions gives a p-value
of 0.000.

17We can reject the hypothesis of zero mean for xt, both for the High and for the Low
blocks at the 1% significance level, using the t-test (p-values of 0.000 for both High and
Low blocks). We can also reject the hypothesis that the variance of xt is equal to the
variance of εt, i.e., 0.02, in favor of the alternative hypothesis that the variance is higher,
both for the High and for the Low blocks at a 1% significance level, using the Chi-Square
test (p-values of 0.000 for both the High and Low blocks).

18Note that the initial value of x was chosen to be x0 = 0. It follows that in the first
period of the experiment x1 = ε1 = 0.0538 (independent of the subjects’ choices). If the
first realization of the random variable εt would have been negative, it is likely that xt < 0
for all t.
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agents, see the upper left panel of Fig. 2.3 (also see Fig. 2 in [18]). How-

ever, in the second halves of the High blocks this structure in the dynamics

disappears in each of the eight groups and the behavior of xt becomes more

irregular with no apparent structure. Second, the dynamics of xt in the

Low blocks are quite different and seem to be consistent with small irregular

fluctuations around a fixed positive value, with a decrease in xt in the last

couple of periods.19 Note that, since the non-zero steady state value x+

from Proposition 2.2.1 depends upon the behavioral parameters α and β, it

is difficult to test directly whether the mean of xt equals x
+.20

2.5.2 Estimated discrete choice models

Our next step is to fit the discrete choice model (2.4) to the experimental

data. That is, we estimate the discrete choice model separately for the

aggregate choices in each group. Table 2.2 shows the results. Columns 3

and 4 give the estimated values and the standard deviations for the intensity

of choice parameter β, and columns 5 and 6 give the estimated values and the

standard deviations for the predisposition parameter α. We also estimated

the model on the pooled data for all High block groups and all Low block

groups.

The data for each of the sixteen groups can be described quite well by

the discrete choice model, which confirms Hypothesis 2. In particular, the

19This decrease in the last couple of periods seems to be due, at least partially, to a
large negative shock in period t = 35 of ε35 = −0.2944.

20Since subjects do not observe the realized values of the state variable xt, and because
xt only enters the profit functions (2.1) quadratically, its sign does not matter for the
dynamics of fractions. Choosing λ = −2.1, instead of λ = 2.1 would therefore lead to the
same experimental results (abstracting from the effect of random shocks), but with the
state variable alternating between positive and negative values. For the Low blocks the
dynamics of the state variable will then resemble a noisy period-two cycle, instead of a
noisy non-zero steady state.
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IoC Predisposition Zero SS Non-Zero SS

Data Beta S.E. Alpha S.E. (x∗, n∗) f ′(x∗) (x+, n+) f ′(x+)

High

Session 1. Group 1 0.08 0.01 0.31 0.11 (0,0.58) 1.22 (2.30,0.48) 0.57
Session 1. Group 2 0.12 0.02 0.38 0.11 (0,0.64) 1.34 (2.36,0.48) 0.31
Session 2. Group 1 0.12 0.02 0.35 0.11 (0,0.64) 1.35 (2.42,0.48) 0.28
Session 2. Group 2 0.17 0.02 0.28 0.11 (0,0.74) 1.56 (2.63,0.48) -0.22
Session 3. Group 1 0.09 0.02 0.13 0.11 (0,0.64) 1.35 (2.76,0.48) 0.29
Session 3. Group 2 0.13 0.02 0.04 0.11 (0,0.72) 1.52 (2.90,0.48) -0.11
Session 4. Group 1 0.13 0.02 0.19 0.12 (0,0.69) 1.46 (2.69,0.48) 0.05
Session 4. Group 2 0.16 0.02 0.38 0.12 (0,0.71) 1.49 (2.49,0.48) -0.03

All High groups 0.12 0.01 0.25 0.04

High Long
Session 5. Group 1 0.15 0.02 0.08 0.09 (0,0.75) 1.58 (2.85,0.48) -0.27
Session 6. Group 2 0.16 0.02 0.10 0.09 (0,0.76) 1.60 (2.82,0.48) -0.32

Low

Session 1. Group 1 3.35 0.84 0.26 0.11 (0,0.52) 1.09 (2.23,0.48) 0.82
Session 1. Group 2 5.24 0.93 0.09 0.11 (0,0.61) 1.27 (2.32,0.48) 0.45
Session 2. Group 1 11.35 1.66 -0.17 0.13 (0,0.79) 1.65 (2.35,0.48) -0.46
Session 2. Group 2 8.67 1.47 0.10 0.11 (0,0.68) 1.43 (2.32,0.48) 0.10
Session 3. Group 1 2.36 0.67 0.26 0.10 (0,0.49) 1.04 (2.18,0.48) 0.92
Session 3. Group 2 10.47 1.72 -0.38 0.13 (0,0.81) 1.69 (2.38,0.48) -0.60
Session 4. Group 1 5.04 1.04 0.16 0.11 (0,0.58) 1.23 (2.29,0.48) 0.54
Session 4. Group 2 8.06 1.31 0.21 0.11 (0,0.65) 1.36 (2.29,0.48) 0.27

All Low groups 5.71 0.42 0.11 0.04

Table 2.2: Estimation of discrete choice model with two parameters, the
intensity of choice parameter, β, and the predisposition parameter, α.

intensity of choice parameter β is positive and significantly different from

0 for all groups. The predisposition parameter α is positive (implying a

predisposition towards alternative A) and significantly different from 0 in

five of the eight High block groups, but only significantly different from 0 in

three of the eight Low blocks (and positive for only two of those).21

One remarkable feature of the parameter estimates stands out from Ta-

ble 2.2. Although the estimated intensity of choice coefficients for the same

type of blocks have roughly the same order of magnitude, these coefficients

are radically different between different types of blocks, with the estimates

for the Low block groups about 50 times as high as those for the High block

groups. The subjects therefore seem to be much less sensitive to profit differ-

ences in the ‘unstable’ High blocks than in the ‘stable’ Low blocks. Clearly,

this means that we have to reject Hypothesis 3. This is broadly consistent

21Estimating the discrete choice model with the restriction α = 0 leads to new estimates
for β, which are quite close to the estimates in Table 2.2.
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with the results of [2] who show that the estimated values of the intensity

of choice increase when there is more structure in the time series of payoffs,

and indeed the time series of payoffs in the Low blocks are less volatile and

more predictable than those in the High blocks.22

For each group we superimposed the estimated values of α and β in the

stability graphs of Fig. 2.1. First consider the eight data points correspond-

ing to the Low blocks (the right panel). As we expected, all of them are

in the region of the parameter space where the zero steady state (x∗, n∗)

is unstable, but where the non-zero steady state (x+, n+) is locally stable.

This is confirmed by the last four columns in Table 2.2, which show the zero

and non-zero steady state and the slope of the dynamical system, at those

steady states, respectively, that are implied by the estimated values of α and

β. Comparing x+ with the mean value in the experiment, given in column

4 of Table 2.1, suggests that the dynamics indeed converges to the non-zero

(positive) steady state in each of those groups, although there is some excess

volatility around that steady state.

Now consider the estimated discrete choice models for the High block

groups, which are depicted in the left panel of Fig. 2.1. When designing the

experiment we expected the dynamics in these High blocks to be unstable,

and indeed the variations in xt and, to a weaker extent, nB,t, are higher in

those blocks – see the discussion in Section 2.5.1. However, it turns out that

the estimated parameters for these blocks are located in the region of local

stability of the non-zero steady state, even if it requires very low levels of

22Another reason may be that the discrete choice model is not invariant with respect
to changes in profit levels. That is, an increase in β is equivalent with exactly the same
increase in profits, see Eq. (2.4). However, in our experiment average profits, as well as
average profit differences, are roughly the same for both types of blocks (although the
standard deviation of profits is higher in the High blocks).
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the intensity of choice parameter β. Moreover, the non-zero steady state

values of x+ shown in Table 2.2, implied by the estimated values of α and

β, are very close to the mean value of xt in each of these eight High block

groups. Although there is substantial volatility around the steady state,

it seems that also in this case there is convergence to the non-zero steady

state. Apparently, after experiencing the dynamics that is typical for the

heuristic switching model in the first half of the block, subjects become more

cautious and are able – at least to a certain extent – to stabilize the dynamics

in this highly volatile and unstable environment, by behaving according to

a discrete choice model with a low value of the intensity of choice parameter

β.

2.5.3 Further evidence on the endogeneity of the IoC

parameter

The analysis in Sections 2.5.1 and 2.5.2 suggests that subjects in our ex-

periment on the heuristic switching model have a tendency to adapt their

choice behavior to their environment. Partly due to the time and space con-

straints imposed by using laboratory experiments, the number of subjects

and periods in our experiment are limited to 10 subjects per group, and 40

periods per block, respectively. A relevant question is whether our results

are robust to increases in the group size and time horizon. To investigate

this, we run an additional treatment that differs from the two treatments

described and analyzed above in three ways: (i) the parametrization of the

underlying model is fixed over the course of the treatment, and equal to that

of the High blocks in the other two treatments; (ii) the experiment runs for

60 periods; and (iii) we increase the group size to 33 participants. Note
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that the increase in the number of periods allows us to better study the

adaptation of the intensity of choice parameter to the decision environment

over time, and the increase in the number of participants gives us a less

coarse approximation of the fraction nB,t of the original model. We ran two

sessions of this treatment, with one group in each session.

The upper panels of Fig. 2.8 show the evolution of the fraction nB,t in the

two groups. The larger group size hardly smooths out the dynamics: The

fractions are still quite volatile over the full 60 periods of the experiment.

In fact, in quite some periods at least around half of the subjects switch to

another heuristic. However, the larger group size contributes to the fact that

the fraction nB,t rarely approaches its boundary values of 0 and 1 closely –

only in one period in session 2 all 33 participants choose the same heuristic.

The middle panels of Fig. 2.8 show the dynamics of the state variable xt for

the two groups. Again, both groups start out with the familiar pattern of a

slowly increasing bubble which crashes after a couple of periods, after which

the state variable increases again. Eventually – as with the shorter High

blocks studied above – the dynamics fluctuate in an erratic manner around

some positive fixed value of the state variable (note that the amplitude of the

fluctuations in the state variable is less than that in the High blocks, again

due to the increased group size). These results suggest that our earlier

findings for the High cost blocks are robust to increasing the number of

periods and the group size. This is confirmed by the descriptive statistics

for this High Long treatment in Table 2.1 and the estimation of the discrete

choice model for this treatment presented in Table 2.2 and in Fig. 2.1, which

are consistent with those for the High blocks.
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The larger number of periods in the High Long treatment allows us to

investigate in more depth how subjects adapt their behavior to the dynamics

of payoffs. To that end, we split our sample into six subsamples of increas-

ing length, with the first subsample consisting of the first 10 time periods,

the second subsample consisting of the first 20 time periods, and the last

‘subsample’ corresponding to the full time series of 60 periods. The discrete

choice model is estimated on each of these six subsamples, and the estimated

value of the intensity of choice parameter β is presented in the bottom panel

of Fig. 2.8. We see that the estimated intensity of choice parameter indeed

decreases over time. This parameter lies above the stability threshold (as-

suming α = 0) of the non-zero steady state for the first subsample, but below

it from the second subsample onwards. Moreover, the estimated values show

very similar patterns for the two different groups.

Why do subjects become less sensitive to past performance over time

in the High cost environment? This may be because in that environment

payoffs are very erratic and volatile, and may not predict future payoffs very

well. Subjects may realize this after the first ten to fifteen periods, and

then start to rely to a lesser extent upon past performance when choosing

their heuristic. This in turn brings down volatility. Indeed, the standard

deviation of profit differences is equal to 4.76 and 5.21 in the first 20 periods

in the two High Long groups, but for periods 21–40 the standard deviation

is down to 4.25 and 4.13, respectively, and it decreases to 3.01 and 2.95 for

the last 20 periods.
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2.6 Conclusion

After its introduction in [17, 18], the heuristic switching model has become a

workhorse model in the field of heterogeneous agents and agent-based mod-

eling. The standard discrete choice framework, according to which agents

choose between heuristics – typically corresponding to different forecasting

rules – on the basis of their past performance, is a central element of this

model. The resulting changes in the distribution of agents over heuristics

influence the evolution of the state variable (typically, the asset price), which

feeds back into the performance of the heuristics. This interaction between

the dynamics of the state variable, and the dynamics of the distribution of

heuristics, is capable of generating endogenous bubbles and crashes, excess

volatility, and other stylized facts of financial markets. It therefore presents

a natural extension to the work on the dynamics arising from the coexistence

of fundamental and trend-following rules that started with [35] and [25].

In this chapter we present a laboratory experiment to test the heuristic

switching model. Similar to the experiment described in [2], the only task

of the subjects is to choose one of two heuristics, and subjects are paid

according to the performance of the heuristic they choose. Contrary to

the previous experiment, however, in the experiment presented here the

subjects’ aggregate choices determine, through a hidden state variable, the

payoffs generated by the heuristics – an important feature of the standard

heuristic switching model as well. In particular, our experiment reproduces,

in a stylized form, the interaction between a costly sophisticated and a simple

cheap heuristic, where the latter is destabilizing when used by many subjects,

and the former is stabilizing.
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We vary the (implicit) cost of using the stabilizing heuristic between dif-

ferent blocks in the experiment. Theoretically, the heuristic switching model

will generate dynamics that are relatively stable when costs are low (in the

Low blocks) and give rise to endogenous bubbles and crashes when costs are

high (in the High blocks). Although the theoretical prediction is confirmed

in the Low blocks, the results from the High blocks are ambiguous. In par-

ticular, we do observe endogenous bubbles and crashes in the first half of the

High blocks. However, this characteristic pattern disappears in the second

half of the High blocks, and the dynamics become more stable. We estimate

the discrete choice model on the experimental data and find that the inten-

sity of choice parameter is much lower for the High blocks, suggesting that

subjects adapt their behavior and become less sensitive to payoff differences

in a less stable environment – this is consistent with the findings in [2]. The

reason that subjects adapt their behavior might be driven by the fact that,

in the high cost environment, payoff differences tend to be highly volatile

and unpredictable, and therefore may not perform well as a predictor of fu-

ture success. Upon realizing this, subjects’ response to past payoffs becomes

weaker, which brings down this volatility in payoff differences endogenously.

This is confirmed in the High Long treatment, which features more decision

periods. Here the estimated values of the intensity of choice parameter in-

deed decrease over time, inducing a reduction in volatility. An interesting

extension for future research would be a treatment with a fixed group of

subjects, each of whom has to choose between the two alternatives again,

but where – without informing the subjects directly – the costs associated

with alternative A change at several instances during the experiment. Such a

change in costs will effect the volatility of payoff differences, which may lead
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subjects to adapt their behavior.23 A practical difficulty of running such a

treatment is that it requires many decision periods and will therefore take a

long time, with the risk that boredom or lack of concentration on the part of

the subjects will effect the results. Nevertheless, based upon our High-Low

and Low-High treatments, where such a change in costs was implemented,

but accompanied by a reshuffling of the groups and a restart of the time se-

ries of payoffs, we conjecture that subjects will respond to volatility of profit

differences and the estimated intensity of choice parameter will change over

time.

Our results have important implications for the way choice behavior is

modeled in heuristic switching models. They suggest that a model in which

the intensity of choice parameter is endogenous, and depends positively upon

some measure of volatility of payoff differences, potentially provides a bet-

ter description of choice behavior. Adapting the benchmark model in this

way may turn out to be quite relevant since the assumption that the in-

tensity of choice parameter is exogenously given can impose a bias in the

conclusions derived from theoretical heuristic switching models. Consider,

for example, a volatile financial market that is described well by a particular

heuristic switching model. On the basis of that model the financial regulator

may want to implement a policy that – based upon numerical simulations –

stabilizes market dynamics. However, if traders react to the increased sta-

bility and predictability of profits in this market by starting to respond more

strongly to profit differences – as suggested by our experimental results –

this may strongly mitigate the effect of the policy.

23Recall that in our experiment subjects do not observe the costs for the stabilizing
heuristic directly, nor do they observe the evolution of the state variable xt. That is, their
choice has to be solely based on past payoffs.
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Chapter 3

A Self-Tuning Model of

Adaptive Choice

3.1 Introduction

Models of adaptive discrete choice are used to describe the behaviour of eco-

nomic agents in situations where agents do not have full knowledge of the

environment. The logit model is often used as a building block of adaptive

choice modelling. That is, a probabilistic prediction of the next choice be-

tween several options is modelled as a logistic map from past performances.

Different papers fitted the model to both experimental and real world data

and reported good explanatory power. The problem, which motivates this

research, lies in the fact that estimates of the logit parameter in the model

exhibit high unexplained heterogeneity. Particular values play a pivotal

role and generate qualitatively different model predictions and associated

dynamics, and related calibration difficulties—for instance, which value to

use for analysis—motivates a search of more robust logit model of adaptive
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choice. This chapter proposes a self-tuning modification of the logit model

in the form of a scaling, where a maximum recently observed payoff differ-

ence serves as a scaling factor and allows the model to “self-tune” to the

environment. This chapter uses data from two binary choice experiments,

where participants were not aware of the payoff-generating processes and be-

haved adaptively. The data on their choices allows running a model contest

between different model specifications using a Model Confidence Set (MCS)

approach. Results indicate significantly stronger explanatory power of the

proposed self-tuning model. The estimates of a single logit parameter in this

model no longer exhibit high heterogeneity across different environments in-

dicating that the chosen scaling solves calibration issues.

The logit specification is widely used in modelling adaptive choice due

to its simple closed-form expression, micro-foundations, and good fit to the

data. A good fit is generally achieved at the expense of a high heterogeneity

in the estimated values of the logit parameter, both within and between

the studies. This observation may not only suggest that the simple logit

model suffers from misspecification, but more importantly that it challenges

the external validity of the results. The question about which value of the

logit parameter should be chosen for calibration or whether an interval for

estimates can fit different data sets remains open. The natural research

question motivated by these observations involves identification of a logit

model specification that could account for the main drivers of differences

in the logit parameter and stabilise the estimates around the value that is

suggested for calibration.

I use data from laboratory experiments on adaptive binary choice with

a design which allows to control for several possible compounding sources
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of heterogeneity in the logit parameter. The first possible feature of the

data, which may drive differences in estimates, is different magnitudes of

payoffs in different data sets. This explanation does not apply to the chosen

data where payoffs in all experimental sessions are of a comparable scale.

The second possible source of heterogeneity lies in the interplay between

adaptive and strategic behaviour. It is often hard to distinguish those two

features of behaviours, but this is not an issue in the experiments consid-

ered here. No information about the payoff-generating process was revealed

to the participants. Strategic interaction was presented in a fashion not

clear to the participants, making their task adaptive. The third explana-

tion attributes heterogeneity to a possible misspecification of constructed

beliefs over counter-factual payoffs—payoffs that participants could poten-

tially receive in case of alternative choices. In the experiments considered,

participants were informed about counter-factual payoffs, and therefore no

risk of misspecification of payoffs is involved.

Despite the absence of the effects identified above, heterogeneity is still

present in the estimates of the logit parameter based on the experimental

data. This motivates construction of models which can effectively endo-

genise identified differences. I consider several modifications of the logit

that satisfy three criteria: (i) the model is simple, (ii) the model is moti-

vated by “stylised facts” of observed heterogeneity, and (iii) the model has

a behavioural interpretation. All the models are fitted to the data using

Maximum Likelihood Estimation, and both the Akaike and Bayesian infor-

mation criteria are used for model selection. Still, discriminating models by

their performance is challenging. First, as the number of models becomes

large, a tractable way of evaluating relative performances using pair-wise

comparisons becomes infeasible. Second, many models fit the data very well
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as they are built to capture the main features of the data. For these reasons

I use the MCS approach that successfully solves both issues: it iteratively

narrows the initial set of models by excluding models that are significantly

worse in explanatory performance.

The results suggest that scaling the logit parameter with the largest pay-

off difference recently observed by an agent fits the data best. This model

has a clear behavioural interpretation: agents channel less attention to the

choice task if stakes are low compared to previously observed. Additionally,

estimated values of the logit parameter in the self-tuning model turn out to

have close values across experimental sessions, suggesting the external valid-

ity of the model and to a large extent solving the problem of heterogeneity.

This finding can have important policy implications once the self-tuning

model is incorporated into existing Heterogeneous Agent Models (HAM),

which study price stabilisation government interventions.

The chapter is organised as follows. Section 3.2 introduces related lit-

erature that supplies “stylised facts” about the heterogeneity. Section 3.3

discusses the laboratory experiments that generated the data used in this

study. Section 3.4 introduces the logit model of adaptive choice and several

behavioural modifications. Section 3.5 discusses the estimation strategy, the

MCS approach, and the results. Section 3.6 provides illustrative simulations

and a discussion of the effects of the self-tuning feature of the model on the

stability of the dynamics. Section 4.6 provides concluding remarks..
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3.2 Related literature

Evidence of the heterogeneity of the logit parameter estimates is spread

across different branches of the economics literature. There is no previous

research that systematically collects, reports, and discusses the heterogeneity

of within-studies estimates and indirect between-studies indicators of the

heterogeneity. This chapter does not aim to perform such a meta-analysis

either, but instead focuses on several influential models that incorporate

logit choice to capture adaptive behaviour. Those models were estimated

on the clean experimental data that controls for a number of the possible

sources of heterogeneity and allows for the comparison between estimates.

The logit model of probabilistic choice can be derived from different as-

sumptions and hence there are several interpretations of the logit parameter.

The classical Random Utility Model (RUM) is built on the assumption that

payoffs associated with possible choices have a publicly observed component

and a privately unobserved stochastic component.1 A choice has a logistic

value distribution if an agent has the private component distributed as Type

I extreme value.2 In this interpretation, the logit parameter stands for the

inverse of the variance of the private component distribution. Large values

of the logit parameter are associated with small private shocks. From the

perspective of the observer, who only knows the public component of payoffs,

the large logit parameter makes the choices less noisy.

Alternatively, the logit model can be motivated by introducing inat-

tention to the choice task. If the cost associated with attention—careful

1Main contributions include [106], [80] and [82].
2This distribution is also referred to as the Gumbel or the log-Weibull distribution.

It is defined as a distribution of the maximum values of a sample of a random value
realisation. Details of the logit choice derivation can be found for example in [107].
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consideration of all available choices—is high, it is optimal for an agent to

make choices probabilistically.3 A large value of the logit parameter relates

to a small cost of attention. In a similar spirit of the “rational inattention”

model, the logit choice model is derived to be an optimal choice when infor-

mation4 about the payoffs or processing5 this information is costly. Large

values of the logit parameter are interpreted as cheap information acquiring

or processing.

Flexibility in the logit choice interpretation contributes to the popularity

of the model. I consider the following strands of economic literature that

utilise the logit specification to model adaptive choice: learning (in games)

models, quantal response models, and heuristic switching models. A number

of studies fitted these models to experimental data and provided various

estimates of the logit parameter. Figure 3.1 depicts collection of estimates

for a number of models discussed further in the text.

Learning models describe well non-equilibrium behaviour observed in

games that are played in experimental laboratories. These models specify

how behaviour is adjusted as participants accumulate experience in the game

and they often allow players to eventually “learn” equilibrium play. One of

the most prominent examples—the Experience Weighted Attraction (EWA)

model of [22] —accommodates both payoff-based reinforcement learning and

belief-based learning. In EWA, both learning approaches contribute to up-

dating the “attractors” of strategies:their fitness measures. Based on the

values of the attractors, the agent makes a probabilistic choice following to

the logit model. Camerer and Ho found that the logit model better fits the

3For more details see [109] and [110].
4For static version see [81], and for dynamic – [101]. Experimental evidence is discussed

in [24].
5See [115] for details.
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Figure 3.1: Examples of the logit parameter estimates for different models: Experience

Weighted Attraction (EWA), Reinforcement Learning (LR), Belief-based Learning (BL),

Self-Tuning Experience Weighted Attraction (STEWA), Quantal Response Equilibrium

(QRE), and Heterogeneous Agent Model (HAM). Source: [22], [61], [34], [15] and [52].

data than alternative specifications. However, their estimates of the logit

parameter, which here measures “sensitivity of players to attractions”, vary

significantly across games. Differences in the logit parameter generally affect

the speed of learning process convergence6, therefore different values predict

qualitatively different convergence patterns. A large number of parameters

in the original model motivated a self-tuning version of the EWA introduced

in [61], where most parameters were replaced with functions of experience.

In this version of the model, the logit parameter is the only “game specific”

non-tuned parameter and the estimates exhibit high heterogeneity. Seem-

ingly, the logit parameter is the most challenging parameter to be fitted to

the data.

6In [11] an importance of flexibility in the logit parameter values for the convergence
to the equilibrium and its speed in the EWA was demonstrated.
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Quantal Response Equilibrium (QRE), introduced by [83], does not ac-

commodate learning but offers a static version of the “noisy” Nash equi-

librium.7 Players calculate expected payoffs and choose actions probabilis-

tically following the logit model. To calculate expected payoffs, players

incorporate “noisiness” in the choices of other players, assuming they share

the same logit parameter value. This model generally fits the experimental

data well, however, that comes at the expense of an unexplained variation in

the logit parameter between games. To capture learning effects, the model

incorporates a gradual increase in the logit parameter over time. For ex-

ample, in [83], estimates of the logit parameter increase from 0.17 to 0.59

based on the data from the [75] experiment, and from 1.95 to 4.64 for [86]’

game. Different values of the logit parameter define how far from the Nash

equilibrium the QRE predictions are.

In Heuristic Switching Models (HSM), agents make a choice between a

fixed number of forecasting strategies framed as “heuristics”, which differ

in generated payoffs.8 The setup of these models and associated dynamics

is the closest to this chapter, and the logit parameter is referred in this lit-

erature as the Intensity of Choice (IoC) parameter. The interpretation is

similar to the RUM: as the IoC parameter increases, choices get closer to

best response. HSMs were fitted to a number of laboratory experiments that

study forecasting strategies.9 In [5] and [7], the IoC parameter varies signif-

icantly between different sessions. Heterogeneity of the logit parameter is

high both within and between these studies. In HSM, an increase in the IoC

7For more details please see [87].
8For early theoretical contributions see [17] and [18]. The logit parameter plays a

central role in this framework: the model dynamics vary from stability to chaos depending
on the particular value of the logit parameter.

9Estimations of HAM with the use of financial market data, surveys on inflation expec-
tations and mutual fund allocation decisions indicate heterogeneity in the IoC parameter
estimates.
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parameter leads to qualitatively different predictions about the stability of

the dynamics; more detailed discussion is provided in Section 3.6. Heuristic

switching models have a complicated interplay between the IoC parameter

and other model components, which makes identification of regularities in

differences of estimates infeasible. To address this issue, several laboratory

experiments were explicitly designed to study adaptive choice, or “switching

mechanism”, and the data from these experiments are used in this study.

3.3 Data

I use data from two laboratory experiments designed to study adaptive

choice behaviour: [2] and [3], which I refer to as the ABT16 and the ACT18

respectively. The data collected in these experiments are ideal for studying

the adaptive choice behaviour, including the estimation of the logit param-

eter.

The two experiments share a number of features in their design that ef-

fectively make the combined data set a meta-experiment on adaptive binary

choice.10 Both ABT16 and ACT18 experiments were organised as individual

task experiments where participants were asked to choose between two op-

tions over 40 periods.11 Participants were not informed of the exact process

10There are several close in spirit experiments, which were designed to study adaptive
choice behaviour in a limited information environments, for example, [42], [49], and [84].
The data from the binary choice experiments were not included in this study because at
least one of the two important requirements were not presented in the experiments. The
first requirement is a non-disclosure to participants and information regarding payoff-
generating rules. This requirement ensures adaptivity of the choice, which is based only
on payoffs. The second requirement is non-convergence of the payoffs to fixed values
during the experiment. This requirement guarantees sufficient variation in the choice
task and attention of participants to payoffs during the experiment.

11There are several variations in the basic setup. For two groups of the ACT18 exper-
iment, a number of periods was extended to 60. In the ABT16 experiment, participants
had access to the initial 10 periods of payoffs’ history.
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Figure 3.2: An example of the screen used in experiments. Participants make their

decision by clicking on one of two options: A or B. In order to make their choice,

participants observe information on profits of A and B from all previous periods in two

formats: a graph and a table.

that generates payoffs for the two options. These processes were exogenous

and endogenous in these two experiments, respectively, as explained below.

Participants were told to choose between two neutrally labelled options,
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“A” and “B”, based on the history of payoffs from the earlier periods. In-

formation was provided on past payoffs of both options. This experimental

design feature distinguishes this setting from other similar experiments on

repetitive binary choice and substantially simplifies analysis of the choice,

releasing from the necessity to model beliefs over counter-factual payoffs.

The final monetary payments for participation in both experiments were

calculated based on the realised payoffs of the options that had been chosen

during the experiment. Payoffs were denominated in experimental points

with a fixed exchange rate that determined monetary payment in local cur-

rency. In the ABT16 experiment, the final payment consisted of a cumulative

sum of payoffs, while participants in the ACT18 experiment were paid for

two randomly chosen periods for the option they chose.

The available options were described to participants as “investment

funds” in the ABT16 experiment instructions, and as “investment alter-

natives” in ACT18.12 Information on payoffs from previous periods was

provided to participants in the form of a table and a graph – the example

of the screen layout is provided in Figure 4.2. Each experiment included

several treatments, which differed in the payoff generating process, and were

designed to study adaptive choice of participants facing different series of

payoffs.

I use data from three treatments of the ABT16 experiment.13 In these

treatments, participants chose between two options for which payoffs were

pregenerated, and three treatments differed in the payoff generating rules:

white noise, Brock-Hommes model simulation, and stock indexes. I refer to

12For the details of qualitative description of the tasks, please, refer to experiment
instructions available in the appendixes of corresponding papers.

13Other treatments had participants choose between three and more options.
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Figure 3.3: Examples of payoffs series in different treatments. Left panels depict treat-

ments from ABT16 experiment: White Noise (WN), the Brock-Hommes model simula-

tions (BH) and Stock Indexes (SI). Right panels depict treatments from ACT18 experi-

ment: dynamics of stylized version of the Brock-Hommes model parametrised to generate

stable payoffs (SP), unstable payoffs (UP), and unstable payoffs in long session (UPL).

At each period of time only realised history of payoffs was available to participants.
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them as WN, BH, and SI, respectively. See Figure 3.3 for illustration, where,

for the ABT16 experiments, I excluded the first 10 periods when participants

did not have to make the choices. In WN treatment, every payoff was a sum

of a fixed value of 5 and a noise term distributed as independently and

identically distributed standard normal. In the BH treatment, payoffs fol-

lowed quasi-cyclical patterns that were generated by numerical simulations

of the [17] model, which generates chaotic fluctuations of payoffs due to non-

linearity in the system dynamics. In the SI treatment, two payoff streams

were generated by adding 5 to the normalised average yearly returns for each

month from 2008 to 2012 of two stock indexes: the Austrian Trade Index

(ATX) and the Belgium 20 Stock Index (BFX). All three treatments were

designed to have similar average payoffs but have different structure of payoff

dynamics, ranging from no autocorrelation in WN to strong autocorrelation

in SI. Examples of payoffs series used in the experiment are presented in the

left panels in Figure 3.3.

I use all the data from the ACT18 experiment. The design of this exper-

iment is very similar to the ABT16 experiment; the primary difference lies

in the payoff generating rules. In the ACT18 experiment, payoffs were not

pregenerated but evolved during the experiment depending on the choices

of participants. The rules that determined payoffs were based on a stylised

version of the Brock-Hommes model, which effectively combined the main

features of [17] and [18] versions of the model. The mechanics of this model

can be summarised as follows. Agents choose between two options to form

their expectations over future price. One option is “free” to use, but is a

destabilising naive prediction under which the price deviates from the “fun-

damental price” benchmark. Another option is “costly”, but a stabilising

rational expectation under which the price quickly returns to the “funda-
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Table 3.1: Descriptive statistics of payoffs of two options in the ABT16 and AC18

experiments.

Block Option Mean Median Min Max Range Variance

WN A 5.33 5.12 0.60 10.25 9.65 5.04

B 5.94 5.47 3.26 9.37 6.11 2.92

BH A 5.96 7.36 0.47 7.75 7.28 6.08

B 5.20 4.60 4.50 9.42 4.92 1.46

SI A 4.65 4.68 0.93 7.89 6.96 5.73

B 4.68 4.89 0.36 8.55 8.19 6.92

SP A 5.02 4.98 4.95 5.60 0.65 0.02

B 5.00 5.03 4.61 5.05 0.44 0.01

A 5.02 4.99 4.95 5.27 0.31 0.01

B 5.00 5.03 4.84 5.05 0.21 0.00

A 4.99 4.98 4.95 5.15 0.20 0.00

B 5.02 5.03 4.91 5.05 0.14 0.00

A 5.01 4.98 4.95 5.35 0.39 0.01

B 5.01 5.03 4.79 5.05 0.26 0.00

A 5.04 5.00 4.95 5.84 0.89 0.02

B 4.99 5.02 4.46 5.05 0.59 0.01

A 4.99 4.98 4.95 5.15 0.20 0.00

B 5.02 5.03 4.92 5.05 0.13 0.00

A 5.03 5.01 4.95 5.36 0.41 0.01

B 5.00 5.01 4.78 5.05 0.27 0.00

A 5.02 5.00 4.95 5.46 0.51 0.01

B 5.00 5.02 4.71 5.05 0.34 0.00

UP A 5.89 3.92 1.00 32.96 31.96 38.40

B 6.18 7.05 0.00 9.00 9.00 7.30

A 5.41 4.28 1.00 19.44 18.44 20.47

B 6.14 6.81 0.00 9.00 9.00 7.75

A 6.05 4.79 1.00 41.90 40.89 45.57

B 6.13 6.47 0.00 9.00 9.00 5.65

A 5.36 4.41 1.00 16.06 15.06 14.20

B 6.12 6.73 0.00 9.00 9.00 5.96

A 5.20 4.32 1.00 16.80 15.79 14.97

B 6.26 6.79 0.00 9.00 9.00 5.72

A 5.03 4.45 1.00 16.34 15.34 10.15

B 6.34 6.70 0.00 9.00 9.00 4.07

A 4.68 3.39 1.00 18.31 17.31 18.41

B 6.61 7.41 0.00 9.00 9.00 7.16

A 4.96 3.34 1.00 16.17 15.17 16.29

B 6.39 7.44 0.00 9.00 9.00 6.84

UPL A 5.61 5.58 1.00 13.76 12.76 6.26

B 5.93 5.95 0.49 9.00 8.50 2.78

A 5.39 5.40 1.00 10.45 9.45 7.59

B 6.07 6.07 2.70 9.00 6.30 3.37

mental” value. The dynamics of the payoffs and their stability depend on

the cost of rational expectations: the dynamics are stable with similar pay-

offs of two strategies for low cost, and they is unstable with large differences
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in payoffs for high cost. The ACT18 experiments were run with two treat-

ments: sessions with a low cost of rational expectation option and resulting

stable payoffs, denoted by SP, and a high cost of rational expectation option

and resulting unstable payoffs, denoted by UP and UPL. The sessions of

UPL differ in two dimensions: larger number of participants in the session

and longer sessions. In the standard SP and UP sessions, there were 40

periods and 10 participants in each of 8 groups per treatment, while in two

sessions of UPL there were 60 periods and 33 participants in each group.

Participants of the same group observed the same payoffs, and decisions of

all group participants affected the dynamics of payoffs in the following way:

as an option became more popular, it generated smaller payoffs, while a less

popular option tended to have increasing payoffs. Just as in the ABT16

experiment, participants were neither informed about the payoff generating

rules, nor about the effects of their decisions on subsequent payoffs. The

right panels in Figure 3.3 demonstrate examples of the payoffs series in the

ACT18 experimental sessions.

Table 3.1 contains descriptive statistics of payoffs observed by partici-

pants in different treatments. To avoid possible effects of the payoffs scale

on the choice task, all treatments were designed to have similar values of pay-

offs: the mean and median values of both options were approximately equal

to 5 experimental currency units. At the same time, the treatments exhibit

variation in stability and predictability of payoffs: from a small variance in

SP sessions to a high variance in UP. In the next section, I discuss the stan-

dard model of adaptive choice which demonstrates a good fit within each of

the treatments. However, this good fit is achieved using treatment-specific

values of the logit parameter. Therefore, the main challenge of building a

portable version of the model of adaptive choice is to find an extension of
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the model which effectively endogenises identified between-treatments dif-

ferences in subjects’ behaviour.14

3.4 The Model

Presented research utilises the logit to model binary choice for several rea-

sons. First, the logit specification is commonly used in various models from

different strands of literature, and therefore a modified version of the logit

can be easily incorporated into existing studies.15 Additionally, the logit

specification, as opposed to the probit, has a simple closed form expres-

sion for choice probabilities, which substantially simplifies the analysis of

logit-based models. Finally, comparisons of the previously estimated mod-

els suggest that the logit form outperforms its alternatives of probit and

power distributions at various instances, see [22] for discussion and further

references.

3.4.1 The Logit model

In the basic logit discrete choice model, the probability to pick option k

out of N alternatives, Pk, is a function of expected payoffs for all available

options:

14The idea of portability of the model was inspired by the notion of Portable Extension
of Existing Models (PEEM) introduced in [90]. In the course of presented research, psy-
chological realism is introduced in the model by specifying the laws of the logit parameter
adjustments.

15All structural models of HAM literature use logit specification, see for example [14].
It is also true for QRE and EWA models.
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Pk =
exp(βπk)∑N
n=1 exp(βπn)

, (3.1)

where πk is the payoff of the option k, and β is the logit parameter.

The logit model has intuitive interpretations which relate to the adap-

tive choice: the probability to choose an option is positively affected by an

increase in payoff of that option and negatively affected by an increase in

payoffs of the alternative options. Additionally, while agents are modelled

as making their choices imperfectly, by choosing an inferior option with a

positive probability, agents make better choices with a higher probability if

the differences between payoffs are more apparent. The value of the logit

parameter determines the accuracy of the decisions: for β = 0, an agent

makes choices at random and equally likely picks each of the options; for

β > 0, an agent tends to pick an option with a larger payoff; for β → ∞,

an agent makes best-response choice and picks the option with the largest

payoff.

Payoffs are modelled differently depending on the context. In QRE mod-

els, payoffs are calculated using equilibrium noisy best responses of other

players in the game, and the variance of errors is proportional to the inverse

of the logit parameter. In EWA models, payoffs are modelled as “attrac-

tors”, which are based on both reinforcement and belief-based learning, and

agents in the model “logistically” respond to the values of attractors. In

HAMs, large markets are considered, and participants do not have strategic

power, with only negligible effect of individual actions on the aggregate dis-

tribution of payoffs. Agents also do not have a knowledge of the environment

and behave adaptively in the model. Additionally, payoffs not only from the

chosen option, but from all options, are assumed to become common knowl-
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edge once realised. In this chapter, I follow the HAM literature approach,

which utilises adaptive choice modelling: expected payoffs are replaced by

performance measures Uk,t, which are calculated based on payoffs from pre-

vious periods. This adaptive version of the logit choice model defines the

probability to pick option k in period t, Pk,t, as a function of performance

measures for all options 1, .., N from period 1 to t− 1 as follows:

Pk,t =
exp(Uk,t)∑N
n=1 exp(Un,t)

, (3.2)

where Uk,t is the performance measure of option k at period t.

Performance measures, which are used to define choice probability in

equation (3.2), are generally constructed using realised payoffs of the options

(e.g., past profits of strategies). Updating performance measures over time

allows incorporating all the history of previously observed payoffs, but in

practice, this option is rarely used and agents are modelled as having limited

memory.16 This approach is consistent with the so-called “recency effect”,

which captures the observed tendency of people to discount past information

and make decisions based on the recently observed outcomes (see [41] for

an example). Consider the following performance measure that incorporates

information on L lags of observed payoffs:

Uk,t = αk + βk,1πk,t−1 + ...+ βk,Lπk,t−L, (3.3)

where αk is the predisposition effect towards option k, βk,l is the intensity

of choice with respect to payoff πk,t−l.

16Standard way to incorporate history of previous payoffs on choices is using geometri-
cally declining weights of past payoffs. This approach was used for theoretical modelling,
for example in [67], but the empirical evidence is mixed, see [2] for discussion.
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The predisposition effect was estimated to be a significant determinant

of the choice in [2]. The choices observed in all sessions of the ABT16 experi-

ment can be explained by model (3.2)-(3.3), if performance measures include

the predisposition effect17 and up to three lags of payoffs with symmetric for

different options and identical across agents’ intensities of choices.18 Follow-

ing the existing results, I set logit parameters to be equal for the same lag

of payoffs, that is βk,l = βn,l for every option k and n for a fixed lag l.

To model choice of participants in the ABT16 and ACT18 experiments,

I combine the logit choice defined by equation (3.2), and performance mea-

sure defined by equation (3.3), and apply to the experimental setting where

choices are binary and are made between options A and B. A probability to

pick option A at time t is then defined as follows:

PA,t =
exp(β1πA,t−1 + ...+ βLπA,t−L)

exp(β1πA,t−1 + ...+ βLπA,t−L) + exp(α + β1πB,t−1 + ...+ βLπB,t−L)
,

(3.4)

17The logit model in its canonical specification does not accommodate any behavioural
bias towards any option. At the same time, only slight modification by adding a constant
to performance measures introduces predisposition effect, which has also been found to
be a significant determinant of choice in [15].

18In this chapter I also assume identical logit parameters for all participants, since the
prime interest lies in time-variation of the parameter. In [114] importance of possible
heterogeneity in logit parameter across participants is demonstrated with the use of sim-
ulations, and possible biases in estimation of weighting parameter, which shows relative
importance of actual and simulated effects. Indeed, some evidence of heterogeneity of
the logit parameter was identified in [62], where individual estimations were clustered in
two distinct groups. On the contrary, individual estimations on the data utilised in this
chapter are close to aggregate estimation of the logit parameter. I attribute this result to
more accurate estimation of the choice function parameter since both factual and counter
factual payoffs were available to participants, see Section 3.3 for details.
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where L is a maximum lag form, the history of payoffs included in perfor-

mance measurement, α > 0 reflects predisposition effect towards option B19,

and α < 0 reflects predisposition effect towards option A.

Equation (3.4) defines a very simple–yet very powerful in terms of ex-

planatory power–model of adaptive binary choice. The simplest version of

the model, which includes only one lag of payoffs in the choice decision,

outperforms in explaining experimental data and more sophisticated models

with larger number of parameters, for example, and those with weighted av-

eraged histories of payoffs or asymmetric intensities of choice. Similarly to

previously discussed empirical studies, the good fit in different experimental

sessions is achieved at significantly different values of the logit parameters

β. To address this issue, I consider several modifications that allow the logit

parameter in the model to self-tune to existing conditions, meaning that the

logit parameter varies given observed payoffs.

3.4.2 Self-tuning models

Estimated logit parameter values in the model appear to depend on the en-

vironment experienced by participants. Figure 3.4 illustrates the estimates

which are clustered together for different treatments. Treatments are or-

dered in accordance with stability of the payoff dynamics measured by the

number of significant lags in the autocorrelation function, which increases

from the side of the graph to the right side. This observation suggests

that the differences in the dynamics of payoffs in different treatments of the

19Intuition of the predisposition effect can be demonstrated via dividing both numerator
and denominator of equation (3.4) by the numerator. Obtained expression clearly shows
that increase in α reduces the probability to pick option A, and vice versa. Because of the
issue of jointly unidentifiable constants, predisposition towards option A in corresponding
performance measure is set to zero.
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Figure 3.4: Examples of the logit parameter estimates for the model with previous

period payoff as a performance measure on data from six treatments of ABT16 and

ACT18 experiments.

ABT16 and ACT18 experiments affects the parameter estimates. Allowing

agents in the model to adjust the logit parameter was previously acknowl-

edged as an important factor of dynamics convergence, for example, in [11].

A model with changing sensitivity to reinforcing, introduced in [40], can

serve as an example of the self-tuning mechanism. Self-tuning mechanisms

of the logit parameter adjustment in this study are specified in the form of

a scaling: performances are divided by the normalisation factor, similarly

to the approach introduced in [105]. Because of linearity in transformation,

one might treat scaling as the logit parameter adjustment.

Normalisation in the form of a scaling has a number of advantages. First,

normalisation unifies the data by making estimates unit-free. It increases

the portability of the model since empirical studies combine data from dif-

ferent markets, such as commodity, equity, or foreign exchange. Second,

normalisation reduces sensitivity of the estimations to the extreme values,
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which are often presented in the data. Finally, scaling factors that are con-

sidered in this study have clear economic interpretations, such as accounting

for predictability of time-series or relative intensity of financial stimulus. In

such a manner, the self-tuning version of the model captures behavioural

aspects of adaptive choice.

Construction of the self-tuning model that fits different experimental

treatments requires specification of the scaling factor. This factor will re-

flect the main features of payoffs dynamics that potentially drive observed

differences in the intensity of choices. To specify different models of scal-

ing, I use the following “stylised fact” based on existing estimates: in the

experimental sessions, where a higher level of instability in the dynamics of

payoffs was observed, the lower estimated values of the logit parameter were

obtained.20

Consider a simple version of the model (3.4) with no predisposition effects

and one lag from payoff history for the sake of simplicity. The expression

for choice probability in this case can be simplified in the following way:

PA,t =
exp(βπA,t−1)

exp(β1πA,t−1) + exp(βπB,t−1)
=

1

1 + exp(β(πB,t−1 − πA,t−1))
.

This version of the model illustrates the importance of differences in

payoffs rather than absolute values of payoffs for the choice. The self-tuning

20This relation was pointed out in [2] and supported by the analysis in [3]. Additionally,
in [23], a footnote to Table 2 indicates a gradual adjustment of the logit parameter, and in
particular, an increase over time, which can be associated with stabilisation of the payoffs
due to convergence towards the equilibrium. One might expect that in a highly volatile
environment subjects do not pay attention to payofss and do not try to chase them. On
the contrary, in stable environment it is easier for subjects to focus attention and make
more accurate choices based on the observed payoffs.
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model can be constructed by introducing the scaling to payoff difference,

that is, dividing by normalisation factor, in the following way:

PA,t =
1

1 + exp (
β(πB,t−1−πA,t−1)

Ft−1
)
, (3.5)

where Ft−1 is a scaling factor, which is updated over time depending on

recently experienced conditions.

Equation (3.5) applies a linear transformation to the payoff difference.

It allows for an interpretation of the self-tuning mechanism not only as a

payoff scaling procedure, but also as the logit parameter adjustment. When

the scaling factor Ft−1 is high, the “effective” value of the logit parameter

becomes smaller, indicating that agents would pay less attention to the past

payoff differences. Different scaling factors are considered below. All factors

have behavioural interpretation and appear to capture important charac-

teristics of the payoff series in different treatments. Scaling brings context

dependency to the choice, while different scaling factors capture different as-

pects of the contexts, which can be important for the choice. In this sense,

all the following specifications satisfy three criteria outlined in the introduc-

tory section: simplicity, behavioural interpretation, and empirical support.

For several particular functional forms of the scaling factor, we use “recent

history” of observations, which is the number of lags k of previous payoffs.21

Four different factors are considered. Two factors capture possible effects

of predictability of payoffs on “intensity” of choice, and two factors capture

effects of relativity of payoffs.

21In Section 3.5, which describes estimation procedure, the length of the recent history
of observations is fixed to 10. This length appears to be a reasonable compromise between
adaptivity of the choice function and memory constraints of the agents. Robustness of
the results and importance of particular length fixing are discussed in Section 3.5.4.
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Standard Error Factor. The mean value and the standard error are

often used for normalisation in econometrics and statistics.22 Consider the

following factor to scale the profit difference:

Ft−1 =

√√√√ 1

k − 1

k∑
l=1

(
(πB,t−l − πA,t−l)− (πB − πA)

)2

, (3.6)

where k is a number of lags in the history payoffs, (πB − πA) is an average

difference in payoffs for the last k observations.

The standard errors serve as a measure of (in)predictability of the payoff

difference observed by the agent. Thus, this normalisation procedure can

be interpreted as the process of attention adjustment: as standard errors

increase, the logit parameter is adjusted down, and time-series of past payoff

differences become less important for the future choices.

Range Factor. An alternative statistical measure, which can reflect the

dispersion of the past payoffs, is the range of payoff differences. The range

is calculated as a difference between the largest and the smallest observed

values. The range factor for scaling the profit difference takes the following

form:

Ft−1 = max
1≤l≤k

(πB,t−l − πA,t−l)− min
1≤l≤k

(πB,t−l − πA,t−l). (3.7)

The behavioural interpretation of this normalisation factor is similar to

standard error factor: agents tend to channel less attention to payoffs if the

22Using standard error as a scaling factor is similar to standardisation and subtraction
of the mean is dropped since the differences are considered.
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observed dynamics are unstable, which is reflected in the large value of the

range.

Maximum Absolute Value Factor. To capture the possible effects of

relativity of payoffs, the maximum of the absolute values of past payoff

differences is used as a factor. This scaling factor is defined as:

Ft−1 = max
1≤l≤k

|πB,t−l − πA,t−l|. (3.8)

The interpretation of this self-tuning model is the following. Agents pay

less attention to the observed difference in payoffs, which is captured by

lower values of the logit parameter, if this difference is relatively small in

comparison to the largest difference recently observed. The largest differ-

ence serves as a proxy for the importance of the current choice: the logit

parameter is scaled down for large values of this factor.

Relative Performance Factor. Using the sum of payoffs for scaling was

previously applied in [105] and [104]. This specification is motivated by the

attempt to combine data from different sources and use unified data in the

range of [−1; 1] for estimation. The scaling factor is defined as follows:

Ft−1 = πA,t−1 + πB,t−1. (3.9)

This normalisation suggests using a relative profit difference rather than

absolute value. A behavioural interpretation is that agents make more ac-

curate choices if the level of payoffs is smaller. This self-tuning model serves
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as a natural benchmark, as it has been used in the literature already. Alter-

native specifications introduced above will be compared to this benchmark.

All self-tuning models of choice combine different specifications of perfor-

mance measures with different scaling factors. In the next section, devoted

to estimation, attention is focused on performance measures that include

predisposition and up to 3 lags of payoffs, and combines it with 5 scaling

factors, including a non-scaled model. The set of competing models consists

of 31 different models.23 Building a competitive set of models insures that

the model, which survives the model competition, has superior explanatory

power in both absolute and relatively terms.

3.5 Estimation

Models are estimated using Maximum Likelihood. As one might expect,

models fit to the data and significant parameter estimates are obtained for

most specifications. The main challenge is to identify the model which ex-

plains the data better than the others. A general approach for how to choose

from competing models would be to select the best model in terms of value

of log-likelihood function.24 The problem with this approach lies in the fact

that generally, behavioural models are built to accurately capture observed

stylised facts, and therefore all models fit to data soundly. In this case, an

23This number is obtained as follows. Modification with solely predisposition effect is
not affected by the scaling procedures. There are six different models which accommodate
different combinations of predisposition effect and payoff lags inclusion. Initial model and
four scaling rules allow to estimate 1 + 6× (1 + 4) = 31 distinct models.

24In fact, this approach is popular tool for competitions between learning models,
see [22] or [6] for examples. Compared models are usually non-nested, and therefore,
likelihood-ratio tests are not applicable. Alternative approaches include: non-parametric
tests for mean squared distances as in [96] and [21], tests with the use of posterior odds
criterion as in [45] and [56], and comparisons of the simulated dynamics as in [32].
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additional selection procedure is required to identify the model which fits

significantly better than the others.

3.5.1 Model contest

In order to obtain insight into whether some models perform significantly

better than others, I follow the Model Confidence Set (MCS) approach pro-

posed in [55]. This process of iterative elimination of poorly performing

models generally allows for a reduction of the number of models under con-

sideration.25 There are several advantages that make the MCS an ideal

instrument to use in the model contest.26 First, the MCS approach allows

for testing of the relative predictive power of a large number of models at

once. To test the relative performance of a particular model by using stan-

dard techniques such as the Likelihood Ratio test, every model must be

evaluated against every other available model. In a situation with 31 com-

peting models27, this approach will lead to results from 465 tests28, which is

infeasible to systematically interpret afterwards. On the contrary, the MCS

approach identifies a subset of models from the initial set, which contains

models of equally good preformance, and generates a list of excluded models,

which are ranked in accordance with diminishing performance. Second, the

MCS approach is suitable for testing the relative performance of non-nested

25Model contest is a usual approach in situations where estimations of different models
give mixed results. For example, in [47] seven competing specifications estimated with
the method of simulated moments are compared for several separate criteria.

26The MCS approach was mainly motivated by the applicaion in macroeconomics,
which was provided in [55], and finance context, for example, competition between models
of different copula specification for forecasts presented in [37]. To my best knowledge,
this chapter is the first application of the MCS approach to selecting between behavioural
models.

27This number is not large in comparison with other empirical papers employing the
MCS approach, for instance, 600 models are compared in [76].

28C(31, 2) = 31!
29!2! = 465.
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models, which is the case in the presented research. Finally, the robustness

check–which is provided by the MCS–prevents picking a wrong model and

appears to be the best performing approach due to some unfortunate coin-

cidence in the noisy data, which is usually the case for data for behavioural

models.

3.5.2 Maximum Likelihood Estimation

I apply the MCS approach to model selection according to two information

criteria based on log-likelihood measure. Parameters of the model are ob-

tained by maximisation of the value of the log-likelihood function, which is

calculated based on one-period ahead forecasts on probability to choose a

particular option by every participant of the experiment. Hereafter, I restrict

the attention to the probability to choose option “B” since the probability

to choose option “A” is always uniquely determined as a complimentary

probability. The number of participants in each session is denoted by N

and the number of periods by T . For each experimental session block, I use

the data on choices yi,t, where yi,t = 1 if option “B” is chosen, and yi,t = 0

otherwise. The information on choices is available for all participants with

i = 1, .., N and all time periods t = 1, .., T . The joint likelihood function is

defined in the following way:

L =
N∏
i=1

T∏
t=1

(
P (yi,t = 1)yi,tP (yi,t = 0)(1−yi,t)

)
.

I illustrate the mechanics of this approach by considering the simple

model without scaling defined by equation (3.2). The corresponding log-

likelihood function, as a function of parameter β, is:
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LL(β) =
N∑
i=1

T∑
t=1

(yi,tln(
1

1 + eβ(πA,t−1−πB,t−1)
)

+ (1− yi,t)ln(1− 1

1 + eβ(πA,t−1−πB,t−1)
)).

I use an unconstrained numerical minimisation procedure fminunc im-

plemented in Matlab to estimate β, which minimises the value of the nega-

tive log-likelihood function.29 I use the Fisher Information matrix to obtain

standard errors for the estimated values. The estimation procedure will be

analogous for all models considered further in the text.

Table 3.3 contains results of the estimation of the model defined by equa-

tion (3.2). Estimated values of the logit parameter β for each experimental

session, as well as for the pooled data, are reported under the “Standard

Model” title. Estimates are significant in all sessions. Reported standard

errors indicate that the logit parameter estimates are similar within treat-

ments but have statistically significant differences across treatments. This

observation relates to the calibration issues raised earlier, and it motivates

the search of the model which endogenises identified differences and gives a

close estimate.

3.5.3 The Model Confidence Set

The basic intuition of the MCS approach can be described as follows.30 For

each model in the initial set, an explanatory power is measured, for example,

29Switching to dual problem does not affect the procedure and in fact is rather technical
as there is no unconstrained numerical maximisation procedure available.

30The procedure is described in details in Appendix B.2.
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Table 3.2: Results of the MCS procedure for AIC and BIC. For each model the order

of elimination from the set and corresponding probability of false rejection are reported.

AIC BIC

Scaling model and Order of Probability of Order of Probability of

� performance measure model exclusion a false exclusion exclusion a false exclusion

No scaling

1 Predisposition 2 0.000 2 0.000

2 Predisposition and one lag 18 0.000 18 0.000

3 Predisposition and two lags 17 0.004 17 0.000

4 Predisposition and three lags 16 0.001 14 0.001

5 One lag 14 0.000 15 0.000

6 Two lags 13 0.005 13 0.001

7 Three lags 12 0.003 12 0.000

Standard error scaling

8 Predisposition and one lag 4 0.000 4 0.000

9 Predisposition and two lags 5 0.000 5 0.000

10 Predisposition and three lags 7 0.000 7 0.000

11 One lag 1 0.000 1 0.000

12 Two lags 3 0.000 3 0.000

13 Three lags 6 0.000 6 0.000

Range scaling

14 Predisposition and one lag 9 0.002 9 0.000

15 Predisposition and two lags 15 0.001 16 0.000

16 Predisposition and three lags 19 0.000 19 0.000

17 One lag 8 0.001 8 0.000

18 Two lags 10 0.005 10 0.002

19 Three lags 11 0.002 11 0.000

Maximum absolute value scaling

20 Predisposition and one lag MCS 0.243 MCS 0.116

21 Predisposition and two lags MCS 0.243 MCS 0.116

22 Predisposition and three lags MCS 0.243 MCS 0.116

23 One lag MCS 0.243 MCS 0.116

24 Two lags MCS 0.243 MCS 0.116

25 Three lags MCS 0.243 MCS 0.116

Relative performance scaling

26 Predisposition and one lag 25 0.000 24 0.000

27 Predisposition and two lags 24 0.000 23 0.000

28 Predisposition and three lags 22 0.000 20 0.000

29 One lag 23 0.000 25 0.000

30 Two lags 21 0.000 22 0.000

31 Three lags 20 0.000 21 0.000

MSC denotes the final model confidence set with 95% level of significance

by the value of the log-likelikood function, denoted by LL. For each model,

a confidence interval for relative performance is constructed with the use

of the bootstrap method, which means that the values of the log-likelihood

function are randomly subsampled. Iterative search for the worst model in

terms of relative differences in LL value is then performed. For the worst

model, the test for significant differences with other models in terms of

performance is run. If the hypothesis of equality in LL can be rejected
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at an initially fixed confidence level, then the worst model is excluded and

the process continues with the new, reduced initial set. The process stops

once the worst model can not be excluded, and the current set of models is

selected as the model confidence set, which contains the true model with a

fixed level of confidence.

In this chapter, I follow the bootstrap implementation with a fixed block

length, which is used for subsampling. I generate B = 5000 different re-

samples of the original data set for different values of the blocks’ length

parameter b, with b = {2, 4, 8}. I restrict the attention to the case of b = 4

and consider the results obtained for the remaining values as the robustness

check.31 As a measure of performance, I use both the Bayesian Information

Criterion (BIC) and the Akaike Information Criterion (AIC), which penalise

increasing the number of parameters in the model.

3.5.4 Results

The results are presented in Table 3.2. For each of the 31 models, which

combine scaling with performance measures, order of exclusion from the ini-

tial set and corresponding probability of false rejection are reported. These

values should not necessarily coincide for different information criteria. Re-

sults suggest that the final set of models, which contain true model with

5% confidence level, consist only of different modifications of performance

measures with absolute value scaling. Two conclusions can be made based

on this observation. The first result relates to the fact that only the fam-

ily of models with absolute value scaling performs substantially better than

31Results are confirmed for other parameter values which I attribute to the persistence
in relative performance of the models.
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Table 3.3: Estimates of the logit parameter in the Standard model and Self-Tuning

model with maximum absolute value factor scaling.

Standard Model Self-tuning Model

Block β S.E. β S.E.

WN 0.19∗∗∗ (0.03) 0.87∗∗∗ (0.15)

0.30∗∗∗ (0.04) 1.37∗∗∗ (0.18)

BH 0.41∗∗∗ (0.04) 2.33∗∗∗ (0.21)

0.48∗∗∗ (0.04) 2.90∗∗∗ (0.24)

SI 3.33∗∗∗ (0.27) 3.19∗∗∗ (0.26)

4.04∗∗∗ (0.32) 3.83∗∗∗ (0.31)

SP 3.57∗∗∗ (0.95) 1.39∗∗∗ (0.21)

4.91∗∗∗ (0.93) 1.31∗∗∗ (0.23)

11.00∗∗∗ (1.46) 1.44∗∗∗ (0.19)

9.90∗∗∗ (1.50) 1.93∗∗∗ (0.28)

2.06∗∗∗ (0.66) 1.53∗∗∗ (0.24)

8.28∗∗∗ (1.40) 0.93∗∗∗ (0.18)

4.53∗∗∗ (1.03) 0.92∗∗∗ (0.21)

8.59∗∗∗ (1.40) 1.77∗∗∗ (0.26)

UP 0.09∗∗∗ (0.02) 1.54∗∗∗ (0.22)

0.13∗∗∗ (0.02) 1.72∗∗∗ (0.23)

0.11∗∗∗ (0.02) 1.86∗∗∗ (0.25)

0.17∗∗∗ (0.02) 1.90∗∗∗ (0.24)

0.10∗∗∗ (0.02) 1.05∗∗∗ (0.20)

0.14∗∗∗ (0.02) 1.23∗∗∗ (0.21)

0.14∗∗∗ (0.02) 1.58∗∗∗ (0.21)

0.17∗∗∗ (0.02) 1.86∗∗∗ (0.21)

UPL 0.15∗∗∗ (0.01) 1.04∗∗∗ (0.09)

0.17∗∗∗ (0.01) 1.28∗∗∗ (0.09)

Pooled 0.17∗∗∗ (0.01) 1.53∗∗∗ (0.09)

Standard errors are reported in the column S.E.

*, **, *** indicates significance at the 90%, 95% and 99% level, respectively.

all other models. This result suggests that the process of tuning of the

logit parameter to the environment, which is introduced in this chapter, is

a statistically significant driver of subjects’ adaptive behaviour.

The second important finding is that no model with an absolute value

scaling can be excluded from the model confidence set. This finding suggests
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Figure 3.5: Fraction of subjects choosing B, denoted as Data, and two model predic-

tions: the standard logit model, denoted as Standard, and the self-tuning model with

absolute value scaling, denoted as Self-tuning. Both models are parametrised with value

of the logit parameter which was obtained as best-fit for the pooled data: β = 0.17 for

the standard model and β = 1.53 for the self-tuning model.
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using additional steps to determine a preferable model of adaptive choice.

I use uniformity of the estimated values across different sessions as an ad-

ditional eligibility criteria. With this extra step, the simple discrete choice

model with one lag of payoffs as performance measures and absolute value

scaling is favoured (model number 23 in Table 3.2). Estimated values of pa-

rameters for this model are presented in Table 3.3.32 Obtained values of the

logit parameter are close to each other and often lie in confidence intervals

of estimates from other sessions. Stability of estimates across sessions can

be compared to, for example, estimates of the model discussed in Section

, which are reported in Table B.1. Self-tuning model values for the logit

parameter vary from 0.87 to 3.83 and are centred around the estimate of

1.53 obtained for the pooled data, and reported in the last line of Table 3.3.

3.5.5 Robustness

To illustrate the predictive power of the model, I provide a comparison be-

tween experimental data and the model predictions on choices in each of the

six sessions presented as an example in Section 3.3. To stress the impor-

tance of normalisation, I also add predictions of the simple discrete choice

model without normalisation. The corresponding graphs are presented in

Figure 3.5. It can be observed that the model with absolute value scaling

predicts experimental data the best and performs substantially better. This

is especially true in SI and SP treatments, as the scaling is able to capture

such features of the data as small magnitude in differences in payoffs.33

32Estimations for five other models are available in Appendix B.3.
33This is also captured by close values of RMSE of the simple model and model with

scaling in WN (0.21 vs 0.22), BH (0.32 vs 0.3), UP (0.17 vs 0.17) and UPL (0.13 vs 0.13).
But in the SI (0.34 vs 0.19) and SP (0.22 vs 0.16) RMSE is much larger for the model
without normalisation.
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Table 3.4: Values of RMSE for predictions of a fraction of subjects choosing B. Spec-

ifications of the self-tuning model differ with respect to the memory length k, which is

used for scaling.

Length of scaling factor memory k

Block 7 8 9 10 11 12 13

WN 0.22 0.22 0.22 0.22 0.22 0.22 0.22

BH 0.29 0.29 0.29 0.30 0.30 0.30 0.30

SI 0.17 0.18 0.18 0.19 0.19 0.19 0.19

SP 0.16 0.16 0.16 0.16 0.16 0.16 0.16

UP 0.17 0.17 0.16 0.17 0.17 0.17 0.17

UPL 0.14 0.14 0.14 0.14 0.14 0.14 0.14

As an additional robustness check, consider the importance of the mem-

ory length, which reflects how many lags of payoffs are used to construct

scaling factors. For estimation and model contest, the length of the “recent

history” was fixed as 10 periods. Consider the explanatory power of the

model for different values of k = 7, .., 13. Table 3.4 contains RMSE values

for alternative specifications34. It can be observed that the model has almost

the same explanatory power for the values which are close to 10, and falls

as k becomes more distant from 10. This observation suggests that results

are not an artefact of particular memory length parameter fixing.

3.6 Applications

To understand the policy implications of the scaling in the self-tuning model,

the effects of incorporating the new model of adaptive choice into existing

studies are investigated. I refer to the logit parameter as the IoC parameter

to be consistent with the HAM literature, which was discussed in Section

34Root Mean Square Error is computed for one period ahead predictions for the frac-
tions of choices for each model.
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3.2. I start by recalling the seminal model35 from [17], which utilises a simple

model of adaptive choice without scaling. In that model, the IoC parameter

is constant and the sensitivity of the dynamics, with respect to variation

in the value of the IoC, is studied. The paper demonstrates that the IoC

parameter plays a pivotal role in the dynamics, and the importance of par-

ticular values of IoC for ensuring convergence is established. Several papers

that study policy implications of price stabilising interventions, for example,

[111] and [113], were built upon the framework of the Brock-Hommes model.

To illustrate the importance of the self-tuning model for the dynamics, the

Brock-Hommes model will be augmented with the absolute value scaling.

3.6.1 The Brock-Hommes Model

Consider a “cobweb” model of economy, where a continuum of firms oper-

ates, each optimising production volume given its price expectations. Two

prediction rules are available to form expectations over the next period price:

rational expectations (or fundamental), which provide costly perfect fore-

sight, and free naive prediction, which uses the current price as a best

predictor for the future price. The cost of rational prediction is denoted

by C > 0. The demand for goods produced and supplied to the markets is

A−Bpt, where pt is the market clearing price of the good at time t. The sup-

ply curve is derived from the quadratic cost function c(qt) = q2t /2b, where qt

denotes the production volume of a firm. Firms are assumed to adaptively

switch between prediction rules–rational and naive–based on their perfor-

mances. These monetary performances include the cost and the accuracy

35This paper effectively laid the foundations for HSM literature, utilising simple model
to generate complicated dynamics. Therefore, it is an ideal candidate for micro-based
modifications.
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of price prediction, which is measured as the squared forecasting error of

the previous period prediction. Fraction of firms, which uses naive predic-

tion, ft is then defined by the logit choice model, analogously to previously

introduced equation (3.2):

fn,t =
exp(βπn,t−1)

exp(βπr,t−1) + exp(βπn,t−1)
, (3.10)

where πn,t and πr,t are performance of naive and rational prediction rules

respectively, which are calculated as squared forecasting error minus cost,

and β is the IoC parameter, which is assumed to be constant.

Combining this price predictor choice rule with optimal production deci-

sions and market clearing conditions results in an Adaptive Rational Equi-

librium Dynamics (ARED) (see Appendix B.4 for details of the derivation).

The ARED is described by the following system of non-linear equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
pt =

A− pt−1bfn,t−1
B + b(1− fn,t−1)

,

fn,t =
1

1 + exp (β( b
2
( A−pt−1(B+b)
B+b(1−fn,t−1)

)2 − C))
,

(3.11)

Complicated dynamics for high values of the IoC parameter may arise

in this model due to increasing attractiveness of free naive price prediction

when the price converges towards its fundamental value. Prediction errors

become smaller and the naive predictor attracts “free riding” firms, which

prefer to save on costly rational prediction. This drives the price away from

the fundamental value, which in the end forces firms to switch back to the

rational prediction, as errors of naive predictors are too large. That stabilises

the price and reinforces the story to repeat itself.
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The IoC parameter plays a crucial role in generating these complicated

dynamics, and the original [17] paper shows that, as the IoC parameter value

increases, the dynamics of the model change from convergence to the stable

rational expectation equilibrium, to cycles of different periods, to topological

chaos. Intuitively, complicated dynamics arise in this framework due to non-

linearity of the dynamical system, where initially small deviations can lead

to qualitatively different predictions over a long horizon.

3.6.2 Simulations

Note that the model (3.11) describes non-linear dynamics that substantially

complicate its stability analysis. In this section, two instruments to study

the dynamics–which are commonly used in the literature–are applied: simu-

lations and bifurcation diagrams. Once the model (3.11) is augmented with

scaling (3.8), the following system of non-linear equations defines dynamics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pt =
−pt−1bfn,t−1

B + b(1− fn,t−1)
,

fn,t =
1

1 + exp ( β
Ft−1

( b
2
( A−(B+b)pt−1

B+b(1−fn,t−1)
)2 − C))

,

Ft−1 = max
1≤l≤10

[|( b
2
( A−(B+b)pt−l

B+b(1−fn,t−l)
)2 − C)|].

(3.12)

The IoC parameter, which was constant in (3.11) is now scaled by the

factor Ft. Equation (3.12) defines Ft as a function of two state variables:

previously realised fractions fn,t and prices pt.

By means of simulations, I address two major questions regarding the

robustness of the original model (3.11):
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1. How does the introduction of the new self-tuning switching mechanism,

with the IoC parameter adjusting over time, affect model dynamics?

2. Is the augmented model robust to different IoC parametrisations of

the switching mechanism?

I address these questions by comparing simulated dynamics in the original

and modified models. Throughout the analysis, I fix the parameters of the

model in the following way: A = 4, B = 0.5, b = 1.35, and C = 1. Similar

parametrisation was used for illustrative numerical examples in [17]. For

three different values of the IoC parameter β, the original model predicts

qualitatively different price dynamics: stable fundamental zero-price for β =

0.75, two-period cycle for β = 3.8, and unstable for β = 5. Indeed, the left

panels of Figure 3.6 replicate predictions of the model (3.11). The right

panels of Figure 3.6 present dynamics of the modified model (3.12) with

self-tuning switching mechanism for the same value of β. It can be observed

that the modified model qualitatively replicates predictions while making

the dynamics more noisy, for instance, by breaking two-period cycles in the

middle row panels.36

I further investigate if this result of similarity between the models’ dy-

namics is valid for a wider range of parameter values. I build a bifurca-

tion diagram that illustrates changes in long-term dynamics with respect to

changes in the IoC parameter. Bifurcation is a qualitative change in the

dynamics and will be reflected on the diagram with transitions, for exam-

ple, from the steady state to the two-period cycle. Consider bifurcation

36More simulations and bifurcation diagrams available in Appendix B.6 for different
parametrisations.
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Figure 3.6: Simulations of the price dynamics for different values of the logit parameter.
Model parameters are fixed to A = 0, B = 0.5, b = 1.35 and C = 1. Top row : β = 0.75.
Middle row : β = 3.8. Bottom row : β = 5. Left panels: Dynamics of the standard model.
Right panels: Dynamics of the self-tuning model.
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Figure 3.7: Bifurcation diagrams for the long-run behaviour of prices as a function of
IoC parameter. Top panel : standard model. Bottom panel : self-tuning model. Other
parameters are fixed at A = 0, B = 0.5, b = 1.35 and C = 1.

diagram37 for the price dynamics of the original model (3.11) as a function

of the IoC parameter depicted on the upper panel of Figure 3.7. For each

IoC parameter value on the x-axis, 2000 price points–defined by the system

(3.11)–are depicted on the y-axis, while the first 2000 periods are dropped

to ensure that long-term convergence is captured on the diagram. The fol-

lowing results can be observed: stability of the steady state for low values of

the IoC parameter up to 1, 2-period cycle for larger IoC values, and, in the

end, unstable dynamics for values larger than 4 (which can be theoretically

37All bifurcation diagrams were generated in E&F Chaos program for non-linear sys-
tems analysis, see [36] for the software details.
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proven to be deterministic chaos). We can compare these results with the

bifurcation diagram for the augmented model (3.12), depicted in the lower

panel of Figure 3.7. For the augmented model, we observe the same point

of bifurcation at IoC equal to 1, after which the dynamics lose stability with

a transition straight to unstable dynamics and not to a 2-period cycle.38

The numerical analysis suggests that the introduction of the new self-

tuning mechanism eliminates a large part of the original model predictions

in parts of the cycles with different lengths. In the modified model, only

two regimes of the dynamics can be observed: steady state convergence

and instability. Moreover, for the logit parameter estimate of 1.53, which

was based on the pool data, the modified model predicts non-convergence.

In a broad sense, it is consistent with the results of the ACT18 experiment,

where different parametrisations of the stylised version of the Brock-Hommes

model fluctuations of the price were observed.

3.7 Conclusion

This chapter addresses the issue of heterogeneity of the logit parameter,

which is a behavioural parameter reflecting intensity or subjects’ attentive-

ness. In different strands of the literature, the logit parameter in models

of adaptive choice plays a crucial role and generates qualitatively different

predictions for different values of the parameter. The new self-tuning model

of adaptive choice endogenises identified differences in the logit parameter

estimates by using a scaling mechanism. In this model, agents make their

38Indeed, these chaotic dynamics can be traced by computing the Lyapunov exponent,
which is available in Appendix B.6. Positive values of the Lyapunov exponent, which
indicates chaos, can be observed for the values of the IoC parameter larger than 1.
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choice based on the observed payoffs, but they scale their attention if the

current stakes are relatively small in comparison to the previously observed

magnitude of fluctuations. The self-tuning model of choice performs well in

explaining experimental data from different studies, and the MCS approach

supports robustness of this result in the model contest with other tuning

mechanisms.

The estimates of the logit parameter in the self-tuning model do not

exhibit high heterogeneity, which solves the calibration issue. I incorporate

the self-tuning model into the setup of the seminal Brock-Hommes model to

investigate the effects of the logit parameter scaling on the price dynamics.

In the Brock-Hommes model, large values of the logit parameter generate

instability of the price dynamics. Computational analysis suggests that the

self-tuning model replicates existing results and generates transition from the

steady state to instability, but moves away knife-edge prediction regarding

the cycles of different length. The new self-tuning model of agents’ adaptive

choice could potentially enrich understanding of the dynamics after the price

stabilisation policies, introduced in a number of studies based on the Brock-

Hommes model framework, and presented in [95].

There are several more directions of potential application for the self-

tuning model. First, incorporating the new model of adaptive choice into

existing empirical studies could improve the fitness of the learning and agent-

based model. Previously, these models did not allow the logit parameter to

adjust over time; the scaling mechanism of adjustment can bring flexibility

to the model. Second, the self-tuning model can be used to introduce a

dynamical aspect to the static concepts that fix the logit parameter at an

exogenously given value. The scaling mechanism specifies the evolution of
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the logit parameter, which can be applied to the logit quantal response

equilibrium.
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Chapter 4

Price volatility and forecasting

horizons: An experimental

investigation

4.1 Introduction

Phenomena of the excess volatility, which is one of the most renowned styl-

ized facts of financial markets, remains an open issue of finance literature.1

Models of excessive instability of price dynamics, which can not be explained

by fluctuation of fundamental values, are presented in both theoretical and

empirical studies. We contribute to the literature by running a controlled

laboratory experiment, which is designed to study the effects of increasing

the forecasting horizon on volatility of the market price. We demonstrate

that an increase in the forecasting horizon may have different effects de-

1One of the earliest contributions was made by the Nobel Prize laureate Robert J.
Shiller, see [97].
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pending on the stability of price history. In stable markets, increasing the

forecasting horizon does not affect the stability of the price discovery pro-

cess. In unstable markets, the following effect is observed: an increase in

the forecasting horizon destabilizes the price and increases volatility, but the

effect is diminishing. The latter finding might be attributed to the lack of

coordination on non-fundamental expectations.

The Efficient Market Hypothesis (EMH) is a cornerstone of modern fi-

nancial economics and stipulates that the market price effectively aggregates

available information and reflects the value of the traded good. Nonethe-

less, various stylized facts of financial markets, including excess volatility, fat

tails, or volatility clustering, suggest that the EMH may not hold, whereas a

number of behavioural models successfully explained different market phe-

nomena. In fact, the currently observed prosperity of behavioural economics,

and in particular behavioural finance, illustrate the potential of this ap-

proach.2 One of the crucial assumptions that is used to derive the EMH

is the “rationality” of the market participants’ expectations. We utilize a

behavioural approach to modelling expectations and examine the effects of

changes in the forecasting horizon on the volatility in the asset markets pop-

ulated by agents with boundedly rational expectations. In the absence of

perfect foresight, agents, induced by rational expectation, have only a lim-

ited understanding about future price movements. With the increase in the

horizon length the precision of forecasts falls, which could potentially lead

to an increase in price volatility and long periods of an asset mispricing.

At the same time, theoretically, an increase in the forecasting horizon may

smooth short-term deviations of the price from the fundamentals due to a

2Awarding Richard H. Thaler with the Nobel Prize in 2017 for his contributions to
behavioural economics stresses the current importance of behavioural economic models.
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weakened short-term speculative motive.3 The relative strength of these two

divergent effects determines the price (in)stability. Dedicated experimental

investigation is required since intensities of both effects are unknown.4

Two described effects, which affect market price (in)stability, rely on

important features of real markets: mutual feedback effects. Expectations

affect current prices through corresponding trading decisions, and realized

prices affect the expectation through corresponding observational learning

and adaptation. In the case of speculative asset markets, this positive feed-

back can be responsible for driving prices away from the fundamental values.

If investors expect prices to grow in the future, they increase current demand

for the asset by speculative buying. This increase in demand today drives

prices up, therefore reinforcing expectations of further price increases in

the future. On the contrary, if the market is stable and price expectations

coincide with price observations, trader behaviour does not destabilize the

market, therefore securing its stability. Consequently, the importance of mu-

tual feedback effects depends on observed price fluctuations. This observa-

tion motivates two separate experimental studies of the forecasting horizons

length in two different environments: unstable, where current mispricing re-

inforces fluctuations, and stable, where price dynamics do not diverge from

the fundamental value.

3Intuitively, it follows that the speculative part of an excess return is smaller in the
case of a longer investing period, which relates to a larger forecasting horizon. More
details are given in Section 4.2, where a formal asset-pricing model is provided.

4Currently, only an indirect comparison of effects is available based on data from pre-
viously run experiments. Possible positive relation between the length of the forecasting
horizon and price volatility is suggested by the results of two experiments: [68] and [58].
Experimental markets in these papers differ only in the dimension of the forecasting hori-
zon: one-period ahead prediction markets versus two-periods ahead prediction markets.
Significantly higher volatility is observed in markets with longer horizons (see Table C.11
for numerical values).
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Laboratory experiments on expectation formation have proven to be a

powerful instrument to study forecasting strategies (see [93], [39], [60]). At

the same time, these studies on individual behaviour were run in the ab-

sence of the mutual feedback effects–forecasting was performed based on

the pregenerated price sequences. Alternative studies, which explicitly in-

troduced feedback effects in group experiments on expectations formation

are referred to as Learning-to-Forecast (LtF) experiments (see [65] for a sum-

mary of existing experimental results). In these experiments, participants

repetitively provide forecasts for the price, and their predictions are used to

compute an optimal trading decision for the firm that they are “advising”.

Two types of experiments were run: (i) negative feedback markets, where

the underlying model is “supply-driven” by the decisions of producers on

the market, and (ii) positive feedback markets, where the speculative as-

set market model is used. The LtF asset-pricing experiments with positive

feedback performed in the laboratory have been quite successful in replicat-

ing bubbles and crashes–prolonged deviations of the market price from the

fundamental value. Participants in the experimental markets coordinated

their expectations on non-fundamental predictions (see [68], [71], and [58]

for details). We study the effects of the forecasting horizon length by ex-

tending the framework of the LtF asset-pricing experiments.5 To do this, we

modify the model to allow for investors with different forecasting horizons,

and formulate testable predictions based on simulations with previously es-

timated behavioural forecasting rules. We program experimental markets,

which differ in forecasting horizon lengths by one- , two-, or three-periods

ahead. Each market has six participants, whose only task is to predict the

5Experiments with forecasting horizons of different lengths were previously run (see
[33]), but these experiments lack important feedback effects. Long-run forecasts were
elicited but they did not play a role in the dynamics.
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price for 50 consecutive periods. To induce stable and unstable markets, we

show price sequences from previous experiments, which differ in their level

of stability. We fix the initial price history that is available to participants

to be stable in one group of treatments, and unstable in the other. Resulting

price series from different experimental markets suggest that initially stable

markets irrespective of forecasting horizon length do not exhibit volatility,

whilst initially unstable markets demonstrate bubbles and crashes patterns

less often as the forecasting horizon increases.

The chapter is organized as follows. Section 4.2 introduces the asset-

pricing model that is used to run experimental markets. Section 4.3 provides

numerical simulations of the market dynamics and details of parametrisa-

tion. Section 4.4 presents the experimental design and hypotheses.. Section

4.5 contains results and discussion. Section 4.6 concludes.

4.2 Model

Existing studies of LtF experiments with positive feedback use a standard

asset-pricing model, which is referred to as a Present Discounted Value

(PDV) model in [18]. In this model, a higher expected future price increases

a speculative demand for this asset, which increases the current price. This

relationship between expectations and the price reproduces a main feature

of a positive feedback system. This model can generate bubbles and crashes

if a market is populated by boundedly rational agents with potentially het-

erogeneous expectations. Our main interest is whether a larger forecasting

horizon can bring volatility to the price sequence.
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Consider a market that is populated by many investors, such as pension

funds. These institutional investors maximize the wealth by investing in two

available assets: risky and risk-free. The risk-free asset guarantees a return

of r per period. The risky asset pays stochastic dividend yt at every period

t. The difference in horizons translates to the period for which the final

wealth is subject to maximization.

Let us denote the wealth of investor i in period t as Wt,i. Then an

investor with horizon h will maximize Wt+x,i whose evolution is given by

Wt+h,i = (1− xt,i)Wt,iR
h +

xt,iWt,i

pt

(
pt+h +

h∑
s=1

Rh−syt+s

)
=

= Wt,iR
h +

(
pt+h +

h∑
s=1

Rh−syt+s −Rhpt

)
zt,i ,

(4.1)

where xt,i is the share of wealth invested to the risky asset so that zt,i =

xt,iWt,i/pt are the holdings of the risky asset bought at time t, and R =

1+r. In expression (4.1), we assume that all the dividends are automatically

reinvested into the riskless asset.

Assume that all investors are myopic mean-variance maximizers with risk

aversion parameter a and shared beliefs about the conditional variance of

excess returns to be equal to σ2
h. The optimal amount of the risky asset to be

purchased by any investor with horizon h is calculated, given expectations

over the returns as follows:

z∗h,t,i =
Eh,t,i

(
pt+h +

∑h
s=1 R

h−syt+s −Rhpt

)
aσ2

h

,

where we keep individual index i to account for possibly heterogeneous ex-

pectations of investors with the same horizon. Let Nh be the number of
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investors with horizon h. The total demand for the risky asset is a sum of

individual demands by all investors in the market:

zD,t =
∑
h

1

aσ2
h

∑
i

(
Eh,t,i[pt+h] +

h∑
s=1

Rh−s
Eh,t,i[yt+s]−Rhpt

)
. (4.2)

Assume that supply of the risky asset is exogenously fixed to the constant

value of zS. We can set zS = 0 so that the market clearing condition zD,t = zS

reads as

∑
h

1

aσ2
h

(∑
i

Eh,t,i[pt+h] +Nh

h∑
s=1

Rh−s
Eh,t,i[yt+s]−NhR

hpt

)
= 0 ,

where Nh stands for the number of investors with horizon h. Dividing this

equation by the total number of investors N and denoting the “adjusted”

fraction of investors with horizon h, fh = Nh/(aσ
2
hN), we obtain

1

N

∑
h

1

aσ2
h

∑
i

Eh,t,i[pt+h] +
∑
h

fh

h∑
s=1

Rh−s
Eh,t,i[yt+s]−

∑
h

fhR
hpt = 0 .

We then can derive the price dynamics equation:

pt =
1∑

h fhR
h

(∑
h

fh

∑
i Eh,t,i[pt+h]

Nh

+
∑
h

fh

h∑
s=1

Rh−s
Eh,t,i[yt+s]

)
. (4.3)

Independently and Identically Distributed (IID) Dividends. Let

us now assume that the dividend process is IID with the mean value ȳ and

that this is known to all investors. Then we can calculate the stream of

expected dividend payments as follows:

h∑
s=1

Rh−s
Eh,t,i[yt+s] = ȳ

Rh − 1

R− 1
.
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To derive the fundamental price, let us assume that all investors have

rational expectations Eh,t,i[pt+h] = pt+h. Then the price equation (4.3) be-

comes

pt =
1∑

h fhR
h

(∑
h

fhpt+h +
∑
h

fh
ȳ

r
(Rh − 1)

)
.

Let us look for the constant price solution, pt = pt+h = p∗. Then we have

p∗ =
ȳ

r

∑
h fh(R

h − 1)∑
h fhR

h

/(
1−

∑
h fh∑

h fhR
h

)
=

ȳ

r
.

Thus, the mean dividend divided by the risk-free rate is the only constant

fundamental price independent of the horizon length.

If all investors in the market have the same horizon h, then the “adjusted”

fraction boils down to fh ≡ 1/(aσ2) and the pricing equation (4.3) simplifies

to

pt =
1

Rh

(
1

N

∑
i

Et,i[pt+h] + ȳ
Rh − 1

R− 1

)
. (4.4)

For the simplest case, when investing and forecasting horizons are equal to

one, h = 1, we obtain the standard equation which governs price dynamics

in the majority of LtF experiments:

pt =
1

R

(
1

N

∑
i

Et,i[pt+1] + ȳ

)
.

As we increase the horizon of holding and forecasting to two periods, h = 2,

we have the pricing equation as follows:

pt =
1

R2

(
1

N

∑
i

Et,i[pt+2] + ȳ(1 +R)

)
.
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Finally, for three-periods ahead forecasting markets, h = 3, the pricing

equation is defined as follows:

pt =
1

R3

(
1

N

∑
i

Et,i[pt+3] + ȳ(1 +R +R2)

)
.

The following conclusion can be made based on comparison of these three

equations: as the horizon length increases, the feedback strength of the

forecasts falls. This observation relates to the previously given theoretical

prediction regarding the role of horizon length–with an increase in length,

the effect of potentially non-fundamental forecasts falls.

4.3 Simulations

We run simulations to gain insight to how the price behaves in the exper-

imental markets defined by the equation (4.4), depending on the horizons

length and forecasting rule. Our experimental design is a “2 x 3 design”:

treatments differ in initial price history (stable versus unstable) and forecast-

ing horizon length (one-, two- or three-periods ahead prediction). We run

a simulation for a particular parametrisation of market fundamentals (divi-

dend and interest rate), and initiate dynamics on the price histories that are

demonstrated to participants in experimental markets. Forecasting strate-

gies are either textbook benchmarks or behavioural strategies estimated on

individual data from previous LtF experiments.

Parametrisation. We fix parameters of the model at the following values:

R = 1.05 and ȳ = 3. Following the LtF literature, we add a small noise
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εt ∼ N(0, 0.25) to the equation (4.4). This noise represents some small

idiosyncratic shocks on the supply side of the market. We set number of

investors to be equal to 6 in each market. Let us denote the average expected

price by pt+H
e. Three different forecasting horizons’ lengths, denoted by H,

give three pricing equations:

For H = 1 : pt � 0.95
(
pet+1 + 3

)
+ εt,

For H = 2 : pt � 0.9
(
pet+2 + 6.15

)
+ εt,

For H = 3 : pt � 0.86
(
pet+3 + 9.46

)
+ εt.

It is easy to check that the fundamental price is the same for every horizon

length and is equal to 60.6 What may drive the differences between markets

is difference in forecasting rules and associated average forecast pt+H
e, which

determines the market price.

Initial price history. From the previous LtF experiments, it is known

that the initial sequence of observed prices in the experiment plays an im-

portant role in the resulting price dynamics in the experimental market.

Moreover, the recent Overlapping Generations (OLG) experiment in [10] uti-

lizes a training phase on a two-period cycle, which induces the coordination

of subjects’ forecasts on observed “learned” cyclical pattern. We acknowl-

6Equations are presented in approximated forms. Discounting factor and dividend
were rounded up to two decimal points for the sake of tractability. To solve for the
fundamental price of 60, non-rounded values are required.
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edge the importance of the initial conditions and fix initial prices to control

the sequence of initially observed price histories. Initial prices help to avoid

the spontaneous rise of irregular price patterns, which would inevitably cre-

ate obstacles in the comparison of different experimental sessions. In order

to initialize experimental markets with the same price series for the first 10

periods, we use the price sequences from two previous experimental sessions

for the LtF experiments. In order to initiate markets with different price his-

tories, we use the data from two experimental markets from the experiment

studied in [68]. We utilize the data from the first 10 periods from the group

6 of this experiment for stable initial price markets, and the data from the

group 7 for unstable markets. We simulate subsequent dynamics for these

two initial histories using a different expectation formation process available

for market participants. We consider the general form forecasting rules and

the behavioural rules estimated on the data from previous experiments.

General form rules. We start computational analysis of the dynamics by

considering archetypical prediction rules: rational, naive, and sophisticated.

For the simulated dynamics in each treatment, we study the mean price and

variance of the price on the market. Deviation of the mean price from the

fundamental value of 60 indicates mispricing. Variance of price, in case it

is higher than the variance of the noise added, indicates excess volatility of

the price discovery process.

Denote the price expected for the period t +H at the period t as pet+H ,

where H is the forecasting horizon length. Prediction rules are then defined

as follows:
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� Rational expectation:

pet+H = 60.

This rule corresponds to the standard rational expectations prediction

of the fundamental price value. Such behaviour of the market partici-

pants generates a price sequence, which fluctuates around 60 due only

to the small noise added to the price generating process.

� Naive prediction:

pet+H = pt−1.

Naive prediction, which uses the last observed price as a price forecast,

converges to small fluctuations around the fundamental value of 60.

� Sample average learning:

pet+H =
1

t− 1
(
t−1∑
s=1

ps).

This sophisticated forecasting rule allocates equal weights for all the

past observations of the price. Although this rule utilises more infor-

mation and intuitively produces more efficient markets price, some-

times the dynamics converge to the fundamental value slower than

with a very simple naive prediction.

There are two important observations that can be made with respect to

the benchmark forecasting rules. First, price on markets, which are popu-

lated by agents with benchmark forecasting rules, quickly converges to the

fundamental value and stays there. This prediction contradicts the experi-

mental evidence from the previous LtF experiments. Second, all benchmark

predicting rules generate forecasts, which do not depend on the forecasting
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Figure 4.1: Simulated price dynamics for market with different combinations of the

initial price history (stable and unstable) and different forecasting horizon length(H =

1, 2, 3). Simulated market participants have one of the four forecasting rules: Rational

Expectation (RE), Naive Expectation (NE), Sample Average Learning (SAL) and be-

havioural AR(2). Resulting prices are displayed in different colours. For each rule, the

resulting mean and variance of the price after 50 periods of simulations are reported. Left

panels: stable initial price history. Right panels : unstable initial price history. Top row :

one-period ahead forecasting. Middle row : two-periods ahead forecasting. Bottom row :

three-periods ahead forecasting.

horizon length. For these reasons, both the observed price fluctuations and

the differences in time series of price between experimental markets with

different horizons would suggest that participants have trend-extrapolative

expectations.
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AR(2) rules. We refer to the trend extrapolation predictions with two

lags as AR(2) rules. This behavioural rule utilizes the information in the

last two prices observed and has a number of parameters: the parameter of

anchoring α, the weight of the last observation β, and the trend extrapolation

parameter δ. Prediction of the price in H periods from period t is calculated

as follows:

pet+H = α + βpt−1 + (
H∑
s=1

δs)(pt−1 − pt−2).

This forecasting rule can be interpreted as follows: the agent uses his anchor

and the last observation as the current level of prices, but also extrapolates

trends from recent prices and adds them to his expected value. The AR(2)

rule explicitly depends on the forecasting horizon length H: the trend ex-

trapolation component increases with the length of the forecasting horizon.

For the simulation purposes, we parametrise AR(2) based on the estimations

provided in [68]. We use the value of parameters estimated on the data from

group 4 and fix AR(2) as follows: α = 15, β = 0.7, and δ = 0.7. Simula-

tions are presented in Figure 4.1. Based on the observed price dynamics, we

formulate several testable hypotheses:

Hypothesis 4. There is no substantial difference in average prices between

all experimental treatments.

This hypothesis may be seen as a weak form of informational efficiency of

the experimental markets. In our simulations, we observe either convergence

to, or fluctuations around, the fundamental price.

Hypothesis 5. There is a substantial difference in the volatility of price

between markets with stable price history and unstable price history for each

forecasting horizon length.
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This hypothesis relates to the importance of initial price histories. Sim-

ulations suggest that initial price fluctuations are reinforced in all experi-

mental markets, and volatility is higher overall in initially unstable markets.

Hypothesis 6. There is a more substantial increase in the volatility of price

in markets with an unstable price history than for markets with a stable price

history as the length of the forecasting horizon increases.

This hypothesis directly relates to the role of the forecasting horizon’s

length. Theoretically, observed price fluctuations are reinforced as agents

extrapolate the price trend more frequently when forecasting a price further

in the future.

4.4 Experimental design

The experiment was conducted at the University of Technology Sydney’s

Behavioural Lab in May, August, and September 2018. A total number of

222 students, recruited in the ORSEE7 system, participated in 6 main ex-

perimental treatments and 1 extra session, discussed in Section 4.5.4. No

student participated in more than one session. Each session lasted approxi-

mately 90 minutes and subjects earned 30 Australian dollars (including the

show-up fee) on average. The experiment was programmed and conducted

using the z-Tree software.8

At each experimental treatment, the session participants were randomly

divided in fixed groups of 6 people to operate in the same market. In the

7The Online Recruitment System for Economic Experiments (ORSEE) (see [54] for
details).

8Zurich Toolbox for Readymade Economic Experiments (z-Tree) (see [46] for details).
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Figure 4.2: An artificial example of the screen layout used in experiments. Participants

can submit their prediction for the future price. Participants are shown information

on previous period earnings and cumulative earnings. Past prices and predictions are

available in two formats: a graph and a table.

instructions, participants were given the information on their task of acting

as “professional forecasters”, as well as qualitative and quantitative features

of the market and the remuneration procedure.9 At the beginning of the

experiment, participants were shown the initial history of prices: an either

stable (we denote these treatments with an “S”) or unstable (we denote these

treatments with a “U”) sequence of the first 10 prices. Based on observed

history, participants made their prediction in period 11 for the price one-

period ahead (we add “1” to the treatment name), two-periods ahead, or

three-periods ahead (reflected in the treatment name accordingly). This task

of predicting the future price was performed for 50 consecutive periods.10

Table 4.1 summarizes information on the number of experimental markets

in each treatment.

9Instructions are available in the appendix.
10We count only predictions, which are elicited with monetary incentives, therefore the

actual number of periods in the sessions slightly increases with an increase in horizon
length.
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Price Horizon Market Number of

history length label markets

Stable H=1 S1 4

H=2 S2 4

H=3 S3 3

Unstable H=1 U1 8

H=2 U2 6

H=3 U3 6

Unstable with H=3 SU3 6

strong feedback

Table 4.1: Information on a number of experimental markets for each treatment. Each

treatment is a combination of the initial price history and the forecasting horizon length.

Basic experimental design is 2 by 3, whilst one extra treatment with strong feedback was

added to investigate coordination effects.

In all sessions, the price-generating process followed the dynamics defined

by the equation (4.4). The participants collected points for the accuracy of

their forecasting at each period t in accordance with the following rule:

E = max {1300− 1300

49
(pt − pet )

2, 0}. (4.5)

This trimmed quadratic scoring rule is widely used in LtF experiments.

The payoff function can be derived from the profit of the firm, which is

advised by the “professional forecaster”. This function is trimmed to avoid

inquiring about losses and possible bankruptcy of the subject during the

experiment.

Points earned during the experiment were converted by the end of the ex-

periment to Australian dollars, with the following exchange rate: 0.5 dollar

for 1300 points. A participant could earn up to a half-dollar for each pre-

111



diction, and remuneration linearly decreased with an increase in quadratic

error of prediction, providing incentives to give accurate forecasts.

4.5 Results

In this section, we start by discussing the aggregate results of our experi-

mental markets. We consider price dynamics and compare results in differ-

ent treatments using various measures of price stability and efficiency. We

further investigate the origins of identified differences with examination of

individual forecasting behaviour. Results from an extra session are used to

highlight the importance of coordination of expectations for generating price

fluctuations.

4.5.1 Aggregate price dynamics

Aggregate price dynamics observed in different treatments overall are in line

with preliminary simulation–price fluctuated around its fundamental value

of 60.11 Figure 4.3 shows price sequences in different markets in each of the

6 treatments. Based on observations of these graphs, several preliminary

conclusions can be made.

11There are several notable outlying observations. For one of the groups in one-period
ahead forecasting with stable price history, we can observe cyclic fluctuations of the price
around non-fundamental value. This out of the box behaviour is explained by forecasting
behaviour of one participant, who had been predicting the price to be around 5 throughout
the duration of the experiment (see group 3 in Figure C.1). We could also observe two
outliers in prices: in two-periods ahead forecasting with stable price history and in three-
periods ahead forecasting with unstable price history. Price jumps in that markets were
caused by the typos in submitted individual forecasts (see group 2 in Figure C.2 and group
2 in Figure C.6). These distortions could substantially affect quantitative comparison of
the different treatments. Therefore, all discussions and tests will be based on the data,
which do not include these 3 markets.
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Figure 4.3: Price dynamics in main 6 experimental treatments. Different groups are

captured with different colours on each graph. Constant fundamental price of 60 is

captured by the dotted black line. Left panels: stable initial price history. Right panels:

unstable initial price history. Top row : one-period ahead forecasting. Middle row : two-

periods ahead forecasting. Bottom row : three-periods ahead forecasting.

First, if we consider observations of price dynamics in markets with dif-

ferent initial price history, we can conclude that, for all forecasting horizon

lengths, instability of initial price history leads to higher instability in the

market. Markets with an initially stable price demonstrate only slight fluc-

tuations of the price around the fundamental value. Much of this variation

can also be attributed to the noise term added to the pricing equation 4.3.

By contrast, most of the markets with unstable initial price history display

periodic fluctuations with substantial divergence of the price from the funda-
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mental value. This sensitivity of dynamics to initial conditions is in line with

the previous LtF experiments, but initial prices previously had never been

explicitly controlled. Therefore, this first result is partly in line with initial

predictions, but more importantly, it can shed light on several previously

unexplained results of the LtF experiments.

Second, we can observe that increasing the length of the forecasting hori-

zon has different effects in different environments. In markets with stable

initial history, an increase in the length of the forecasting horizon has a neg-

ligibly small stabilizing effect which nevertheless smoothes away even a small

fluctuation observed in the one-period ahead forecasting markets. A clearer

picture is provided by the markets with unstable price histories: an ampli-

tude of cyclic price fluctuations in one-period ahead markets is the largest;

prices in two-periods ahead markets have smaller periodic fluctuations; and

most of the three-period ahead market cycles vanish shortly after the start.

We formalise the preliminary results and test several hypotheses for the

effects of horizon length by comparing volatility of price dynamics in markets

of different treatments. Additionally, several measures of bubbles used in

the literature are reported: Relative Absolute Deviation12 (RAD), Relative

Deviation (RD), and Price Amplitude13 (PA). Results are presented in Table

4.2. The average price on most of the markets is close to the fundamental

value of 60, but markets differ in terms of volatility and bubble measures.

We test these differences for statistical significance and report the following

results with regard to the hypotheses introduced in Section 4.4.

We summarize aggregate experimental results and conclude that, when

looking at the average prices of all treatments, Hypothesis 4 cannot be re-

12Both RAD and RD were introduced in [102] and later used in [74].
13For examples of PA treatment see, for example, [85] and [72].

114



Price Horizon Market Mean Variance RAD RD PA

history length price

Stable H=1 S1G1 57.6678 4.27 0.04 -0.04 0.13

S1G2 58.6889 0.98 0.02 -0.02 0.07

S1G3* 23.2870 106.63 0.61 -0.61 0.59

S1G4 58.2308 13.33 0.04 -0.03 0.23

H=2 S2G1 56.6320 0.98 0.06 -0.06 0.08

S2G2* 64.3277 205.65 0.09 0.07 1.61

S2G3 59.3702 1.17 0.02 -0.01 0.12

S2G4 59.0789 0.49 0.02 -0.02 0.05

H=3 S3G1 63.4562 1.64 0.06 0.06 0.10

S3G2 58.9571 1.53 0.02 -0.02 0.08

S3G3 59.7626 0.38 0.01 0.05

Unstable H=1 U1G1 63.2846 1.58 0.05 0.05 0.09

U1G2 60.6354 2.68 0.02 0.01 0.10

U1G3 52.2529 571.48 0.36 -0.13 1.43

U1G4 63.8478 48.46 0.10 0.06 0.63

U1G5 61.2963 1.14 0.02 0.02 0.07

U1G6 72.2549 2039.10 0.62 0.20 2.87

U1G7 231.6256 93474.39 3.17 2.86 15.25

U1G8 67.6405 3253.69 0.42 0.13 5.71

H=2 U2G1 54.8434 45.76 0.12 -0.09 0.42

U2G2 51.9298 344.63 0.26 -0.13 1.14

U2G3 58.4176 198.11 0.19 -0.03 0.88

U2G4 60.3232 139.88 0.17 0.01 0.64

U2G5 57.8411 171.40 0.18 -0.04 0.92

U2G6 53.5109 362.53 0.27 -0.11 1.20

H=3 U3G1 60.4672 4.76 0.03 0.01 0.22

U3G2* 67.57 162.07 0.13 0.13 1.48

U3G3 60.56 6.61 0.04 0.01 0.17

U3G4 54.37 123.75 0.15 -0.09 0.92

U3G5 61.33 21.19 0.05 0.02 0.47

U3G6 58.5669 13.05 0.04 -0.02 0.25

Unstable with H=3 SU3G1 88.9184 4029.25 0.50 0.48 3.98

strong feedback SU3G2 60.7229 0.94 0.02 0.01 0.08

SU3G3 59.7607 243.52 0.20 1.05

SU3G4 55.7279 3.30 0.07 -0.07 0.17

SU3G5 50.6042 381.77 0.27 -0.16 1.92

SU3G6 45.0973 216.59 0.29 -0.25 1.04

Table 4.2: Different price statistics and bubble measures calculated for each of the 37

experimental markets: Mean, Variance, Relative Absolute Deviation (RAD), Relative

Deviation (RD), and Price Amplitude (PA). The first ten observations of the price–which

were available for participants as initial history–and non-incentivised prices are excluded,

leaving 50 price observations per market. Three markets with outlying observations are

marked with the asterisk: S1G3*, S2G2*, and U3G2*.
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jected.14 Hypothesis 5 can only be rejected for one-period ahead forecast-

ing markets, while it is confirmed for two-periods ahead and three-periods

ahead markets, where unstable initial history induced more volatile dynam-

ics.15 Hypothesis 6 is not supported by the data: all stable initial price

markets have similar levels of price volatility. In markets with initially un-

stable prices, both the one- and two-periods ahead forecasting produces a

high level of volatility, whilst the three-periods ahead forecasting market has

smaller levels of volatility and the hypothesis of equality with another two

treatments can be rejected.

4.5.2 Individual forecasting behaviour

Behavioural heterogeneity in individual forecasts appears to play an im-

portant role in aggregate fluctuations of the market prices. We investigate

individual forecasting rules as a possible source of mismatch between ob-

served experimental prices and preliminary simulations, which were run us-

ing AR(2) behavioural rules. Consider market dynamics in Figure 4.4, where

both market prices and individual forecasts are depicted.16

First, we do observe heterogeneity in forecasts, and it is higher for unsta-

ble initial price history treatments. This is in line with an intuition regarding

the complexity of the forecasting task. Unstable history leaves room for par-

ticipants to have significantly different beliefs about future dynamics. This

observation was predicted by simulations provided in Section 4.3, where

14Table C.2 contains results of all pair-wise Wilcoxon rank sum tests. The only two
treatments, which equality can be rejected at 10% level of significance, is stable history
treatments with one-period ahead and three-periods ahead forecasting horizons.

15Table C.3 contains results of all pair-wise Wilcoxon rank sum tests for equality of the
variances.

16More illustrative graphs for all experimental markets are available in the appendix.
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Figure 4.4: Examples of individual forecasts and market price dynamics in six basic

treatments, one typical group was chosen for each treatment. Different colours capture

different participants’ forecasts on each graph. Market price fluctuations are captured by

the dashed black line. Constant fundamental price of 60 is captured by the dotted black

line. Left panels: stable initial price history. Right panels: unstable initial price history.

Top row : one-period ahead forecasting. Middle row : two-periods ahead forecasting.

Bottom row : three-periods ahead forecasting.

convergence was slower in initially unstable markets, even for sophisticated

general-form rule such as sample average learning. At the same time, the

high level of heterogeneity in the three-periods ahead forecasting markets

with stable price histories may suggest that even in a stable environment,

the coordination of the three-periods ahead forecasts is harder to achieve at

the group level.
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Second, we can observe an overall quick coordination in forecasting in

all experimental markets, especially in those with shorter horizons. Coor-

dination on the fundamental price forecasting had a stabilizing effect in all

the markets with an initially stable price. At the same time, the coordi-

nation on non-fundamental predictions, especially in one- and two-periods

ahead markets, amplified initial fluctuations of unstable price history mar-

kets and led to the aggregate fluctuations during the main body of market

price observations in the markets.

Third, coordination of forecasts is overall lower in the three-periods ahead

forecasting markets. It contributes to the price volatility in the stable price

history markets, but not significantly. On the contrary, in unstable history

markets, a longer horizon appears to be responsible for breaking down co-

ordination on the price cycles observed in the two-periods ahead markets.

Therefore, we observe a stabilization effect of an increase of the horizon

length which does not relate to a discounting factor, but rather has coordi-

nation failure origins. We further investigate the importance of coordination

in Section 4.5.3.

Data on individual forecasts of participants allow us to access whether the

behavioural rules used for the simulation in Section 4.3 is a valid approach to

modelling expectation formation. We estimate the following general adap-

tive forecasting rule, which uses information both on previously observed

prices and previously submitted forecasts:

pet = α + (
k∑

s=1

βspt−s) + (
l∑

s=1

γsp
e
t−s).
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We estimate this rule for each participant and the results are reported

in Tables C.7-C.10, available in the appendix. Although overall there is a

substantial level of heterogeneity in individual forecasting strategies, several

coefficients are significant substantially more often then the others: β1, β2,

and γ1. These coefficients are significant determinants of forecasting be-

haviour for 73%, 47%, and 35% of participants, respectively. This rule can

be effectively rearranged to obtain an AR(3) rule that is very similar to the

one used for simulation in Section 4.3.

Since observed individual forecasting strategies are well described by

behavioural rules that are similar to those used in the simulation, the ex-

perimental results on an aggregate level remain puzzling. We propose the

coordination of expectations as one of the important factors that might be

responsible for convergence in the three-periods ahead forecasting markets.

Preliminary simulations were run with homogeneous expectations, whilst we

observe a lot of heterogeneity in expectations in experimental markets, even

among trend-followers.

4.5.3 Coordination

To quantify the coordination of individual forecasts, we first measure indi-

vidual quadratic errors that measure the accuracy of submitted forecasts.

Then we split an error into two components: dispersion and common errors.

Dispersion reflects disagreement in submitted forecasts, while common er-

ror demonstrates coordination on non-fundamental forecasts. Consider the

following measure of average individual forecasting squared error of all N
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Price Horizon Market Individual Fraction Dispersion Fraction Common Fraction

history length Error Error

Stable H=1 S1G1 3.04 100% 0.80 26% 2.24 74%

S1G2 1.04 100% 0.11 11% 0.93 89%

S1G3* 158.47 100% 106.77 67% 51.69 33%

S1G4 7.17 100% 6.04 84% 1.13 16%

H=2 S2G1 3.81 100% 1.83 48% 1.98 52%

S2G2* 1498.64 100% 1056.03 70% 442.61 30%

S2G3 8.28 100% 5.50 66% 2.78 34%

S2G4 2.48 100% 1.07 43% 1.41 57%

H=3 S3G1 18.03 100% 10.73 60% 7.30 40%

S3G2 13.17 100% 7.18 55% 5.99 45%

S3G3 1.80 100% 0.76 42% 1.05 58%

Unstable H=1 U1G1 1.28 100% 0.54 42% 0.75 58%

U1G2 3.47 100% 2.31 67% 1.16 33%

U1G3 251.67 100% 44.64 18% 207.03 82%

U1G4 23.94 100% 5.36 22% 18.58 78%

U1G5 1.32 100% 0.69 52% 0.63 48%

U1G6 423.07 100% 98.27 23% 324.80 77%

U1G7 13200.67 100% 1644.70 12% 11555.96 88%

U1G8 373.91 100% 37.54 10% 336.37 90%

H=2 U2G1 127.29 100% 39.64 31% 87.65 69%

U2G2 684.72 100% 53.76 8% 630.96 92%

U2G3 410.45 100% 50.60 12% 359.85 88%

U2G4 331.19 100% 41.35 12% 289.84 88%

U2G5 466.10 100% 117.50 25% 348.60 75%

U2G6 1035.65 100% 172.05 17% 863.60 83%

H=3 U3G1 35.98 100% 23.97 67% 12.01 33%

U3G2* 1410.13 100% 998.19 71% 411.94 29%

U3G3 23.63 100% 5.75 24% 17.88 76%

U3G4 472.73 100% 111.42 24% 361.30 76%

U3G5 237.59 100% 23.36 10% 214.24 90%

U3G6 181.44 100% 2.82 2% 178.63 98%

Unstable with H=3 SU3G1 11122.26 100% 9749.27 88% 1372.99 12%

strong feedback SU3G2 4.04 100% 1.21 30% 2.83 70%

SU3G3 677.85 100% 102.41 15% 575.44 85%

SU3G4 21.34 100% 12.93 61% 8.41 39%

SU3G5 1744.78 100% 919.55 53% 825.23 47%

SU3G6 633.61 100% 73.58 12% 560.03 88%

Table 4.3: Mean Square Error (MSE) of individual forecasts and its decomposition into

Dispersion and Common Error components calculated for each of the 37 experimental

markets. Three markets with outlying observations are marked with the asterisk: S1G3*,

S2G2*, and U3G2*.

agents participating in the same market for T periods:

MSE =
1

T

(
T∑
t=1

1

N
(

N∑
i=1

(pet,i − pt)
2)

)
,

where pet,i is participants i forecast of the price in period t.
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This MSE measure of forecasting accuracy, which averages all quadratic

errors across time periods and participants, shows how well participants

completed their experimental task of “professional forecasters”. At the same

time, by inspecting graphs with individual forecasts in each market, we can

observe strong coordination on non-fundamental predictions, for example,

in Group 3 in one-period ahead markets and Group 4 in two-periods ahead

markets with unstable initial history, which are depicted in Figure 4.4. To

measure both dispersion of forecasts around non-fundamental forecasts and

the common error of this group error, we use the following decomposition

technique:

MSE =
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − pt)
2)

)
=

=
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − p̄et )
2)

)
+

1

T

T∑
t=1

(p̄et − pt)
2 =

= Dispersion+ CommonError,

where p̄et =
1
N

∑N
i=1 p

e
t,i is the group average forecast of the price in period t.

Decomposition of individual errors MSE into Dispersion and Common-

Error components is similar in spirit to decomposition of the MSE of an esti-

mator into variance and squared bias; derivation is provided in the appendix.

Based on estimates provided in Table 4.3, several notable conclusions can be

made. Individual forecasting errors are smaller in the markets with stable

initial price history when compared to markets with unstable initial con-

ditions. This is in line with the overall aggregate price stability observed

in these markets. Common error fractions in individual errors are much

121



larger in markets with unstable initial price histories. This measure quan-

tifies the coordination of forecasts on non-fundamental prediction strategies

and demonstrates connection to observed price fluctuations.

4.5.4 Extra sessions with strong feedback

Results from the markets with initially unstable histories and long fore-

casting horizons provide somewhat intriguing evidence. Price dynamics in

these markets are relatively stable on the aggregate level, however at the

individual level, and especially in the initial rounds, forecasts are not con-

centrated around the fundamental value. Despite that, the price converges

and promptly stabilises seemingly because of two effects. The first effect is

a weak feedback in these markets. As discussed in detail in Section 4.3, an

increase in a forecasting horizon’s length results in a mechanical increase in

the stabilization forces. The second effect is motivated by the differences in

individual behaviour observed in one-period ahead, two-periods ahead, and

three-periods ahead forecasting markets–coordination between forecasting

behaviour, and in particular on some non-fundamental value, is harder to

achieve if the information on accuracy of prediction arrives to participants

with the longer delay. To test the hypothesis regarding validity of the sec-

ond effect, we run extra sessions that are designed to isolate the effect of

feedback strength.

We apply new parametrisation of the fundamentals to change the feed-

back strength in the 3-periods ahead forecasting market. We follow three

criteria in search of parameter values for extra sessions: (i) fundamental

price is equal to 60 similarly to all markets, (ii) feedback strength is close

to 0.95 replicating the feedback strength of one-period ahead forecasting
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Figure 4.5: Price dynamics in all 6 experimental markets with unstable initial price

history, 3-period ahead forecasting and strong feedback. Different groups are captured

with different colours. Constant fundamental price of 60 is captured by the dotted black

line.

markets, and (iii) values of the interest rate and the dividend are not over-

complicated by the number of decimals. The following parametrisation is

utilised in extra sessions as a reasonable compromise between three conflict-

ing criteria: gross interest rate R = 1.016 and dividend ȳ = 0.96. In the

market with three-periods ahead forecasting, this parametrization induces

the following pricing equation:

For H = 3 : pt � 0.95
(
pet+3 + 3

)
+ εt.

Note that this equation with approximately calculated values is identical

to the pricing in a one-period ahead market with default parametrization

of the fundamentals. Therefore, differences between market dynamics of

these two markets can be associated with the information delay structure

and related coordination difficulties.
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Figure 4.6: Forecasts and price dynamics in the Group 6 of 3-periods ahead forecasting

with unstable price history and strong feedback.

We run six markets of long horizons forecasting with strong feedback.

The resulting market price dynamics are depicted in Figure 4.5. Three mar-

kets clearly exhibit instability and the other three exhibit some fluctuations

around the fundamental price similar to one-period ahead markets. Over-

all, strengthening the feedback brings instability to markets in line with

mechanical model comparative static predictions. Observed convergence of

price dynamics in several markets to non-fundamental value is another im-

plication of the stronger feedback in line with model intuition.

At the individual level, we also observe behaviour consistent with the

initial hypothesis. Figure 4.6 contains a graph with dynamics of the price in

Group 6, as well as all individual forecasts. We can observe that coordination

appears to be weak and initial concentration of all forecasts on the same

trend vanishes over time.

We calculate the median of the standard deviation of predictions to mea-

sure the level of non-coordination in all markets. Figure 4.7 contains a graph

with non-coordination measure for each market. All markets with initially
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Figure 4.7: Level of discoordination of prediction in all markets measured as median of

the standard deviation of predictions.

stable price history exhibit good coordination. For markets with unstable

price history, we can observe a positive relationship between the length of

the forecasting horizon and the level of non-coordination.

4.6 Conclusion

We run experimental markets with positive feedback effects to investigate

the effects induced by an increase in forecasting horizon length on price

volatility. We find that in experimental asset markets with initially stable

price histories, the length of the forecasting horizon does not have any effect,

and markets remain stable. On the contrary, increasing the horizon length on

the markets with unstable price histories lead to stabilisation, and periodic

fluctuations observed in short forecasting horizon markets with persistent

divergence from the fundamental value become less salient.
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Observed bubbles and crashes can be explained by simple behavioural

forecasting rules that are used by participants in all markets. Subjects tend

to extrapolate observe price patters, which reinforce and amplify initial price

fluctuation if those are initially observed. We run extra experimental sessions

to show that expectation coordination failure can play a role in the stabilising

factor. In three-periods ahead forecasting markets, although participants

still tend to have trend-following or adaptive expectations, it appears to be

harder for participants to coordinate on non-fundamental predictions that

can otherwise lead to periodic price fluctuations.

Presented results motivate further investigations about possible policy

implication. In markets with short forecasting horizons, investors may be

more prone to volatility contagion, which can be addresses by introducing

lower limits on asset holding periods. This raises a policy trade-off problem

between price stability and price efficiency.

The experimental study in this chapter was focused on markets with

homogeneous forecasting horizons. Note that the asset-pricing model intro-

duced in Section 4.2 allows us to derive price equations for markets populated

by investors with heterogeneous forecasting horizons. We leave experimen-

tal investigation of possible effects induced by co-existence of investors with

different forecasting horizons on the price dynamics for future research.

Additionally, we acknowledge several related ways to extend our under-

standing of the forecasting horizon’s effects on price stability. The exper-

iment in which participants forecast in both stable and unstable markets

may identify effects of the volatility experience. It may shed light on how

prone are different markets to volatility contagion. Further experiments may

be run in order to investigate possible effects of the combination of trading
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task alongside the forecasting task, for example Learning-To-Optimize ex-

periments (see [12]). Alternatively, a standard double auction auction with

restrictions on holding period can be used in the experimental setup to study

the effects of forecasting and trading periods in more sophisticated market

environment.
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Chapter 5

Conclusion and Future Work

All three chapters of this thesis generate insightful results, which are of

theoretical and empirical importance. The presented papers extend our un-

derstanding of both the markets and those forces that may drive prices away

from fundamental values. This knowledge is crucial for tailoring appropri-

ate policy responses with price stabilisation interventions. Additionally, all

three chapters generate results with insightful extensions and applications

that could shape a promising research agenda.

In the second chapter of this thesis, I present results from the laboratory

experiment on HSM. In the experiment, subjects choose between: (i) a

sophisticated and stabilising, but costly, heuristic, and (ii) a destabilising,

but cheap, näıve heuristic. Theoretical predictions are confirmed, and an

increase in the costs for the stabilising heuristic generates instability and

leads to endogenous fluctuations of price. These results have an important

implication for agent-based models that were built on the basis of HSMs and

applied to the study of policy implications in complex, nonlinear dynamics

settings, e.g., Schmitt and Westerhoff (2015).
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The third chapter studies behavioural models of attention adjustment

to repetitive binary choice. Models from the different strands of the litera-

ture, including HSM, use a logit model to study adaptive choice. Usually,

the logit parameter, which represents ‘focus’ or ‘attention’, is set to an ex-

ogenously fixed value. A behavioural model of attention adjustment, or a

‘self-tuning’ model where subjects scale down the attention if the payoff dif-

ference is not large, demonstrates the best fit to the data. This model is

also portable across environments with close estimates of the parameter, and

thus, the use of this model addresses important calibration issues discussed

in the literature. A self-tuning model of adaptive choice can be incorporated

into existing empirical studies to improve the goodness of fit of learning and

agent-based models. Additionally, the provided results can be used to en-

dogenise variation in the attention parameter in static equilibrium notions

such as in the logit quantal response equilibrium, introduced in Mckelvey

and Palfrey (1995).

The forth chapter of this thesis relates to behavioural finance literature

and experimentally investigates one of the possible sources of the excess

volatility in the markets: the length of the forecasting horizon. The ex-

perimental results show that markets with initially unstable price dynamics

tend to reinforce price deviations more often as the horizon length increases.

Participants extrapolate the price trends in medium-long horizons, which

destabilises the market price and leads to bubbles and crashes. To confirm

the robustness of the results, future work should focus on running new exper-

iments with markets populated by investors with mixed forecasting horizons,

and markets with alternative pricing mechanisms, e.g., a double auction.
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Appendix A

Appendix to Chapter 2

A.1 Stylized HSM

In the experiment we use a stylized heuristic switching model. Below we

provide a formal analysis of this model and show that the properties of the

original Brock-Hommes model are preserved.

The dynamics of the stylized model are given by the 1D equation (2.5).

We switch the noise off, εt = 0, to focus on the analysis of the deterministic

skeleton xt+1 = f(xt), with

f(x) =
λx

1 + exp[α + β(x2 − C)]
, (A.1)

where C = WB − WA can be interpreted as the costs for alternative A.

Given the value of the state variable, xt, we can easily recover the fraction

of B-choices as

nB,t+1 =
1

1 + exp[α + β(x2
t − C)]

=
xt+1

λxt

. (A.2)
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In the analysis below we assume C > 0 and β ≥ 0, but we will not

restrict the other parameters. Note that in the experiment presented in the

paper we set λ = 2.1 and C = 8 (High blocks) or C = 0.1 (Low blocks).

The behavioral parameters α and β, from the discrete choice model, describe

subjects’ choices.

The following result characterizes the dynamic properties of (A.1).

Proposition A.1.1. Let f be defined in (A.1) with C > 0 and β ≥ 0.

Consider the system xt+1 = f(xt) and let n∗ = 1/(1 + exp[α− βC]).

1. x∗ = 0 is a steady state for all parameter values. In this steady state

the fraction of agents choosing alternative B is given by n∗B = n∗. This

steady state is unique for λ < 1 and globally stable when |λn∗| < 1.

2. For λ > 0, the system undergoes a pitchfork bifurcation when λ =

1/n∗ > 1. At the bifurcation two non-zero steady states, x+ > 0

and x− = −x+, are created, with corresponding steady state fraction

n+
B = n−B = 1/λ.

3. For λ < 0, a period doubling bifurcation occurs when λ = −1/n∗ < −1.
At the bifurcation a two-cycle {x+, x−}, with x+ > 0 and x− = −x+,

is created, with corresponding steady state fraction n+
B = n−B = −1/λ.

Proof. It is obvious that x∗ = 0 is a steady state of the system. Other steady

states are solutions of the equation

1 =
λ

1 + exp[α + β(x2 − C)]
⇔ exp[α + β(x2 − C)] = λ− 1 .
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This equation has no solutions when λ ≤ 1. For the case λ > 1 we find that

x2 =
ln(λ− 1)− α

β
+ C .

Therefore, for α < ln(λ − 1) + βC (which is equivalent to λ > 1/n∗) the

original system has two non-zero steady states

x± = ±
√

ln(λ− 1)− α

β
+ C . (A.3)

In both steady states, n∗B, the fraction of agents choosing B is equal to 1/λ.

To investigate the local stability properties of the steady states we take

the derivative of f(x):

f ′(x) =
λ

1 + exp[α + β(x2 − C)]
− 2x2λβ

exp[α + β(x2 − C)]

(1 + exp[α + β(x2 − C)])2
.

In the zero steady state the slope is λ/(1 + exp[α − βC]) = λn∗. Thus it is

locally asymptotically stable for |λn∗| < 1. Moreover, we can also write

|xt+1| = |λxt| 1

1 + exp[α + β(x2 − C)]
≤ |λxt| 1

1 + exp[α− βC]
= |λ||xt|n∗ .

Therefore, when |λn∗| < 1 the map is a contraction and the zero steady

state is globally stable.

The slope at the zero steady state is equal to 1 when λ = 1/n∗. Given

that the map f is odd, system is symmetric with respect to x. Therefore

at λ = 1/n∗ the system undergoes a pitchfork bifurcation. We have shown

above that the two steady states for λ > 1/n∗ are x+ and x− as given by

(A.3).
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When λ = −1/n∗, the slope at the zero steady state is equal to −1 and,

hence, the system undergoes a period-doubling bifurcation. For λ < −1/n∗

we can define x+ and x− in analogy with (A.3) as

x± = ±
√

ln(|λ| − 1)− α

β
+ C .

Then

f(x+) =
λx+

1 + exp[α + β((x+)2 − C)]
=

λx+

|λ| = −x+ = x− and f(x−) = x+ .

Thus, {x+, x−} is a two-cycle created at the moment of the bifurcation. It

then follows from (A.2) that along this cycle nB ≡ −1/λ.

We illustrate the properties of the system in Fig. A.1 with six bifurcation

diagrams. To build them we fix λ = 2.1 and consider two values of cost,

as in the experiment. The diagrams in the left panels are built for High

cost (C = 8) and the diagrams in the right panels are built for Low cost

(C = 0.1). For each diagram we fix a specific value of α as follows: α = 0.4

for the diagrams in the top panels, α = 0 for the diagrams in the middle

panels, and α = −0.4 for the diagrams in the lower panels. Finally, for each

diagram, we vary β between 0 and 5 for High cost and between 0 and 50 for

Low cost, and show (against every value of β) 500 points of the dynamics of

system (A.1), initialized at x0 = 0.25, after 400 transitory periods.1

We note that the left and right diagrams look similar for every row,

exhibiting the typical shape of the Brock-Hommes framework. When β

increases, first, the zero steady state loses stability through the pitchfork

1Since the noise εt is off, the state variable x will stay positive on every trajectory
for such initial value. The bifurcation diagrams for negative initial value look similar to
those shown in Fig. A.1, but it is in the negative domain of the state variable.
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Figure A.1: Bifurcation diagrams with respect to the Intensity of Choice, β,
for system (A.1) with λ = 2.1. Left panels : High cost, C = 8. Right panels :
Low cost, C = 0.1. Predisposition parameter: α = 0.4 (top panels), α = 0
(middle panels) and α = −0.4 (lower panels).

bifurcation, as proven in Proposition A.1.1.2. Two non-zero steady states

are created, and we observe one of them, x+. It is straightforward to check

that the slope of f in each of the steady states is given by

f ′(x±) = 1− 2β

(
ln(λ− 1)− α

β
+ C

)(
1− 1

λ

)
.

Therefore, for any value of λ and the other parameters, when β increases

the slope will decrease and the non-zero steady state will eventually lose

stability through a period doubling bifurcation. A further increase in β, as
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shown in Fig. A.1, leads to complicated dynamics with increasing ranges of

the state variable. The points of bifurcations occur much earlier, however,

for the High cost case than for the Low cost case. Bifurcations diagrams do

not change significantly also with changes in α (except that the zero steady

state is never stable for relatively high α, but it is stable for low values of

β, when α is low).

Our choice of parameter values in the experiment was motivated by these

diagrams, as they predict different behavior in two treatments for very large

range of values of behavioral parameters, β and α, under assumption of

similar behavior in two treatments.
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A.2 Experimental Instructions

Below we provide the short version of the instructions. For the full version

which includes the examples of screens explained to the participants, quiz,

and questionnaire, see the On-line Appendix.

General information

Today you will participate in an experiment which will require you to make

economic decisions. During the experiment you will be able to earn a number

of points. The better your decisions are, the more points you are likely

to earn. These points will be converted into Australian dollars after the

experiment.

Task overview

Consider a situation in which you are offered a choice between two invest-

ment alternatives. As in real markets, the profits of these alternatives depend

on the decisions of all market participants (including yourself) and also on

chance.

This experiment has two parts2, each consisting of 40 decision peri-

ods. In the beginning of each part you will be randomly matched to several

other participants in this experiment that will be active in the same market.

The same participants will be in the same market as you during this first

part of the experiment. Every decision period you will have to choose one

of the two alternatives, A or B. After you, and all other participants, made

2In additional sessions with High Long block Instructions were changed accordingly.
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a decision, the profits of both alternatives are determined. Your decision

will determine how many points you may get for this period. This number

of points will be used to determine your final earnings. The exact procedure

that determines your final earnings from the experiment is explained below

(under Remuneration).

Example: if in some decision period you have chosen A, and then (on

the basis of this decision and others’ choices) the profits of the alternatives

turned out to be 7.35 for A and 2.53 for B, then for this period you will be

able to get 7.35 points.

Before you select one of the alternatives you will be shown the profits

of both alternatives for all previous periods, as well as the history of your

own decisions. The only exception is the very first period (for each of the

two parts), when no history is available. Note that the prospective profits

are not known to you at the moment of your decision. After you made your

decision for a given period, you will get all the information on realized profits

of both alternatives as well as your number of points for this period.

After the first part of the experiment is finished, i.e., after the first 40

decision periods, the second part of the experiment starts. For this part

you will be assigned to another group with several other participants (some,

but not all, of them may be from the market that you participated in in the

first part). This new group of participants now participates in another mar-

ket, which is similar but where profits of the two alternatives are determined

in a different manner. You will perform the same task of choosing between

the two alternatives for another 40 periods.
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You will see a countdown timer at every decision period. You do not

have to finalize your decision in that time interval, but we nevertheless ask

you to make your decisions in a timely manner.

Remuneration

Your total earnings in this experiment will be determined after the exper-

iment by the following procedure. Two different periods will be chosen

randomly by the computer program from the 40 periods of the first part of

the experiment. Another two periods will also be chosen randomly by the

computer program from the 40 periods of the second part of the experiment.

The sum of your points from these 4 periods divided by 2 will constitute

the final earnings in Australian Dollars. Your final earnings will be rounded

to the nearest value with a half-dollar precision.

In addition you will receive 10 AUD as show-up fee.

Note that with this procedure your performance for every period of

the experiment potentially matters for your final monetary payoff.

At the end of each part of the experiment you will be shown the final

screen with information about all your decisions in this part as well as profits

of the two alternatives. You will also be informed which decision periods

were randomly chosen for payment purposes. If you wish, you can keep this

information for yourself in the last page of these Instructions.
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Additional information

� Before the experiment starts you will have to take a short quiz which

is designed to check your understanding of the instructions.

� By the end of the experiment you will be asked to answer a question-

naire. Inserted data will be processed in nameless form only. Please

fill in the correct information.

� During the experiment any communication with other participants,

whether verbal or written, is forbidden. The use of phones, tablets or

any other gadgets is not allowed. Violation of the rules can result in

exclusion from the experiment without any remuneration.

� Please follow the instructions carefully at all the stages of the experi-

ment. If you have any questions or encounter any problems during the

experiment please raise your hand and the experimenter will come to

help you.

Please ask any question you have now!
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Appendix B

Appendix to Chapter 3

B.1 Estimations of basic non-tuning models
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Table B.1: The logit parameter estimates for the standard model and performance

measure model with and without predisposition.

Model Simple DCM DCM with predisposition

� Block β S.E. α S.E. β S.E.

1 WN 0.19 0.03 0.97 0.09 0.16 0.04

2 WN 0.30 0.04 0.42 0.10 0.28 0.04

3 BH 0.41 0.04 -0.22 0.11 0.38 0.04

4 BH 0.48 0.04 -0.39 0.12 0.42 0.04

5 SI 3.33 0.27 0.40 0.13 3.56 0.30

6 SI 4.04 0.32 0.66 0.15 4.66 0.41

7 SP 3.57 0.95 0.26 0.11 3.33 0.84

8 SP 4.91 0.93 0.03 0.11 4.93 0.93

9 SP 11.00 1.46 -0.13 0.13 11.75 1.69

10 SP 9.90 1.50 0.17 0.12 9.26 1.51

11 SP 2.06 0.66 0.23 0.11 2.23 0.66

12 SP 8.29 1.40 -0.38 0.13 10.56 1.74

13 SP 4.53 1.03 0.13 0.11 4.75 1.04

14 SP 8.59 1.40 0.28 0.11 8.60 1.36

15 UP 0.09 0.02 0.31 0.11 0.08 0.02

16 UP 0.13 0.02 0.41 0.12 0.12 0.02

17 UP 0.11 0.02 0.30 0.11 0.10 0.02

18 UP 0.17 0.02 0.26 0.12 0.16 0.02

19 UP 0.10 0.02 0.15 0.11 0.09 0.02

20 UP 0.14 0.02 0.05 0.11 0.13 0.03

21 UP 0.14 0.02 0.21 0.12 0.13 0.02

22 UP 0.17 0.02 0.38 0.12 0.16 0.02

23 UPL 0.15 0.01 0.08 0.05 0.15 0.01

24 UPL 0.17 0.01 0.13 0.05 0.17 0.01

Pooled 0.17 0.01 0.14 0.05 0.17 0.01
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Table B.2: The logit parameter estimates for the standard model and performance

measure model with three lags.

� Block β1 S.E. β2 S.E. β3 S.E.

1 WN 0.21 0.03 0.02 0.03 0.12 0.03

2 WN 0.32 0.04 -0.10 0.04 0.01 0.04

3 BH 0.84 0.08 -0.43 0.06 -0.08 0.05

4 BH 1.11 0.10 -0.59 0.08 -0.09 0.06

5 SI 3.80 0.39 -0.33 0.49 -0.25 0.38

6 SI 5.38 0.48 -1.35 0.55 -0.14 0.44

7 SP 3.45 0.95 0.08 0.68 0.78 0.61

8 SP 5.21 0.96 -0.84 0.82 -0.75 0.81

9 SP 10.93 1.59 1.55 1.35 -1.65 1.47

10 SP 9.79 1.52 2.09 0.90 -0.10 0.96

11 SP 1.91 0.67 0.29 0.49 0.22 0.47

12 SP 8.74 1.49 -1.35 1.40 -0.86 1.31

13 SP 4.79 1.02 -1.28 0.94 0.15 0.82

14 SP 8.82 1.42 -0.93 0.74 -0.63 0.74

15 UP 0.08 0.02 0.02 0.02 -0.01 0.01

16 UP 0.12 0.02 0.01 0.02 0.01 0.02

17 UP 0.11 0.02 -0.02 0.01 0.00 0.01

18 UP 0.17 0.02 0.01 0.02 -0.02 0.02

19 UP 0.08 0.02 0.01 0.02 0.05 0.02

20 UP 0.12 0.03 0.01 0.02 0.02 0.02

21 UP 0.13 0.02 0.01 0.02 0.03 0.02

22 UP 0.18 0.02 -0.01 0.02 0.01 0.02

23 UPL 0.15 0.01 0.01 0.01 0.02 0.01

24 UPL 0.16 0.01 0.03 0.01 0.01 0.01

Pooled 0.17 0.01 0.00 0.01 0.00 0.01
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Table B.3: The logit parameter estimates for the standard model and performance

measure model with predisposition and two lags.

� Block α S.E. β1 S.E. β2 S.E.

1 WN 1.01 0.10 0.17 0.04 -0.05 0.04

2 WN 0.54 0.11 0.31 0.04 -0.15 0.04

3 BH 0.01 0.15 0.86 0.09 -0.48 0.06

4 BH -0.08 0.18 1.07 0.12 -0.61 0.08

5 SI 0.38 0.13 3.91 0.41 -0.44 0.33

6 SI 0.59 0.16 5.78 0.54 -1.33 0.36

7 SP 0.27 0.11 3.20 0.88 0.60 0.57

8 SP 0.00 0.11 5.19 0.97 -0.98 0.81

9 SP -0.15 0.13 11.31 1.72 1.39 1.33

10 SP 0.17 0.12 9.15 1.52 2.10 0.89

11 SP 0.25 0.11 2.10 0.68 0.52 0.45

12 SP -0.36 0.13 10.65 1.75 -0.61 1.38

13 SP 0.12 0.11 4.97 1.04 -1.12 0.93

14 SP 0.26 0.12 8.63 1.36 -0.64 0.76

15 UP 0.31 0.11 0.07 0.02 0.01 0.01

16 UP 0.40 0.12 0.12 0.02 0.02 0.02

17 UP 0.32 0.11 0.11 0.02 -0.03 0.02

18 UP 0.26 0.12 0.16 0.02 0.01 0.02

19 UP 0.12 0.11 0.09 0.02 0.02 0.02

20 UP 0.04 0.12 0.13 0.03 0.01 0.02

21 UP 0.18 0.12 0.12 0.02 0.02 0.02

22 UP 0.43 0.13 0.17 0.02 -0.03 0.02

23 UP 0.08 0.05 0.15 0.01 0.01 0.01

24 UP 0.12 0.05 0.16 0.01 0.03 0.01

Pooled 0.14 0.05 0.17 0.01 0.00 0.01
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B.2 The Model Confidence Set approach

I closely follow the notations introduced in the original paper and summarise

the MCS approach in general terms as follows. Using the initial set of

competing models M0, empirical criterion of evaluation, for instance value

of Log-Likelihood function, and confidence level α, the MCS approach allows

to identify a set of equally good modelsM∗, which contains the best model

with a given level of confidence.

Denote the initial set of model byM0, which containsm different models

indexed by i. Performance of each model is evaluated by the loss function

value Li,t, which represents models performance in predicting observed data

at time period t. Define relative performance for every pair of models di,j as

follows:

dij,t ≡ Li,t − Lj,t.

Alternative models are compared by the expected loss μij = E(dij). In

such a way model i is preferred to the model j if μij < 0. Accordingly, the

set of superior models M∗ is defined as follows:

M∗ ≡ {i ∈ M0 : μij ≤ 0 for all j ∈ M0}.

The set M∗ is identified as a result of the sequence of tests. Each test

is design to check if any particular element in the set is inferior to elements.

If hypothesis of equal fitness is rejected the corresponding element is elimi-

nated:
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H0,M : μij = 0 for all i, j ∈ M0.

Iterative process of elimination in the MCS approach is build upon two

essential components. The first component is equivalence test δM, such

that δM = 0 corresponds to H0,M acceptance, and δM = 1 corresponds to

rejection. The second component is elimination rule eM which identifies the

element to be excluded from the set at the next iteration. Setting initially

M = M0, the following algorithm leads to the α-confidence set of models

M∗
1−α:

1. Test H0,M with δM at the level α.

2. If δM = 0, set M∗
1−α = M. If δM = 1, use eM to identify inferior

model mj, define M =M\mj, and repeat the iteration.

Equivalence test δM and elimination rule eM are based on constructed t-

statistics. Denote the relative sample loss statistics by d̄ij ≡ n−1
∑n

t=1 dij,t

and d̄i ≡ m−1 ∑
j∈M d̄ij, t-statistics are constructed as follows:

tij =
d̄ij√
ˆvar(d̄ij)

and ti =
d̄i√
ˆvar(d̄i)

for i, j ∈ M.

Given this t-statistics, test statistics for hypothesis and elimination rule-

sare constructed as follows:

TR,M = max
i,j∈M

|tij| and Tmax,M = max
i∈M

ti.
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Asymptotic distributions are obtained with bootstrap methods, for in-

stance stationary bootstrap scheme proposed in (author?) [89]. In this case

the MCS algorithm has straightforward implementation, where TR,M is used

to test if M is a confidence set, and model with maximum value of Tmax,M

is eliminated in case hypothesis is rejected.
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B.3 Estimations of absolute value scaling

models

Table B.4: The logit parameter estimates for the self-tuning model with the maxi-

mum absolute values scaling and performance measure model with 2 lags and without

predisposition.

� Block β1 S.E. β2 S.E.

1 WN 0.82 0.15 0.24 0.15

2 WN 1.47 0.19 -0.36 0.18

3 BH 4.61 0.42 -2.73 0.34

4 BH 6.45 0.58 -3.77 0.46

5 SI 3.67 0.37 -0.56 0.30

6 SI 5.17 0.46 -1.46 0.33

7 SP 1.16 0.24 0.46 0.23

8 SP 1.39 0.24 -0.33 0.22

9 SP 1.58 0.24 -0.22 0.24

10 SP 1.76 0.29 0.45 0.26

11 SP 1.49 0.24 0.60 0.23

12 SP 1.03 0.19 -0.27 0.19

13 SP 0.97 0.23 -0.11 0.23

14 SP 1.80 0.26 -0.22 0.22

15 UP 1.42 0.23 0.42 0.21

16 UP 1.61 0.25 0.25 0.23

17 UP 1.75 0.27 -0.33 0.24

18 UP 1.89 0.25 0.02 0.21

19 UP 0.95 0.23 0.19 0.23

20 UP 1.22 0.23 0.02 0.21

21 UP 1.45 0.22 0.32 0.21

22 UP 1.91 0.24 -0.10 0.22

23 UP 1.03 0.09 0.14 0.09

24 UP 1.22 0.09 0.28 0.08

Pooled 1.51 0.09 0.05 0.09
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Table B.5: The logit parameter estimates for the self-tuning model with the maximum

absolute values scaling and performance measure model with 3 lags without predisposi-

tion.

� Block β1 S.E. β2 S.E. β3 S.E.

1 WN 0.92 0.16 0.08 0.16 0.52 0.15

2 WN 1.49 0.19 -0.40 0.19 0.11 0.17

3 BH 5.29 0.47 -3.61 0.45 0.81 0.23

4 BH 6.50 0.58 -3.87 0.51 0.15 0.32

5 SI 3.66 0.37 -0.34 0.45 -0.23 0.36

6 SI 5.17 0.46 -1.28 0.50 -0.20 0.42

7 SP 1.12 0.24 0.33 0.25 0.33 0.24

8 SP 1.40 0.24 -0.30 0.22 -0.23 0.22

9 SP 1.76 0.27 0.04 0.26 -0.64 0.26

10 SP 1.78 0.30 0.56 0.27 -0.37 0.27

11 SP 1.51 0.24 0.57 0.23 0.15 0.24

12 SP 1.01 0.20 -0.18 0.20 -0.24 0.18

13 SP 0.98 0.24 -0.17 0.25 0.14 0.23

14 SP 1.82 0.27 -0.21 0.22 -0.10 0.25

15 UP 1.39 0.23 0.37 0.22 0.09 0.13

16 UP 1.62 0.26 0.26 0.24 -0.03 0.11

17 UP 1.72 0.28 -0.38 0.26 0.06 0.11

18 UP 1.87 0.25 0.00 0.22 0.04 0.12

19 UP 0.86 0.23 -0.01 0.24 0.30 0.16

20 UP 1.12 0.24 -0.06 0.22 0.14 0.12

21 UP 1.47 0.23 0.35 0.22 -0.05 0.10

22 UP 1.89 0.24 -0.23 0.24 0.19 0.15

23 UP 0.98 0.09 0.09 0.09 0.10 0.05

24 UP 1.22 0.09 0.27 0.09 0.01 0.05

Pooled 1.51 0.10 0.04 0.09 0.01 0.05
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Table B.6: The logit parameter estimates for the self-tuning model with the maximum

absolute values scaling and performance measure model with predisposition and one lag.

� Block α S.E. β1 S.E.

1 WN 0.98 0.09 0.74 0.17

2 WN 0.44 0.10 1.29 0.18

3 BH -0.24 0.11 2.13 0.22

4 BH -0.38 0.12 2.58 0.24

5 SI 0.41 0.13 3.42 0.29

6 SI 0.65 0.15 4.39 0.39

7 SP 0.01 0.12 1.38 0.22

8 SP -0.09 0.11 1.31 0.23

9 SP -0.29 0.13 1.68 0.23

10 SP 0.08 0.12 1.88 0.28

11 SP 0.03 0.11 1.52 0.24

12 SP -0.35 0.13 1.18 0.21

13 SP 0.05 0.11 0.93 0.22

14 SP 0.24 0.11 1.77 0.25

15 UP 0.22 0.11 1.47 0.22

16 UP 0.37 0.12 1.66 0.23

17 UP 0.23 0.11 1.55 0.25

18 UP 0.21 0.12 1.86 0.24

19 UP 0.11 0.11 1.00 0.20

20 UP 0.03 0.11 1.21 0.22

21 UP 0.18 0.12 1.49 0.21

22 UP 0.34 0.12 1.73 0.21

23 UPL 0.07 0.05 1.04 0.09

24 UPL 0.14 0.05 1.26 0.09

Pooled 0.11 0.05 1.51 0.09
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Table B.7: The logit parameter estimates for the self-tuning model with the maximum

absolute values scaling and performance measure model with predisposition and 2 lags.

� Block α S.E. β1 S.E. β2 S.E.

1 WN 1.01 0.10 0.78 0.17 -0.20 0.17

2 WN 0.54 0.11 1.45 0.20 -0.63 0.20

3 BH -0.23 0.13 4.25 0.44 -2.66 0.34

4 BH -0.29 0.17 5.82 0.63 -3.57 0.46

5 SI 0.38 0.13 3.75 0.39 -0.41 0.31

6 SI 0.58 0.16 5.51 0.51 -1.31 0.35

7 SP -0.02 0.12 1.17 0.24 0.46 0.24

8 SP -0.10 0.11 1.40 0.24 -0.34 0.22

9 SP -0.28 0.14 1.76 0.27 -0.14 0.24

10 SP 0.07 0.12 1.72 0.29 0.44 0.26

11 SP -0.02 0.12 1.50 0.24 0.61 0.23

12 SP -0.33 0.13 1.21 0.21 -0.12 0.19

13 SP 0.05 0.11 0.97 0.23 -0.11 0.23

14 SP 0.23 0.12 1.80 0.26 -0.16 0.22

15 UP 0.19 0.12 1.37 0.23 0.37 0.21

16 UP 0.36 0.12 1.58 0.25 0.18 0.24

17 UP 0.25 0.11 1.70 0.27 -0.39 0.25

18 UP 0.21 0.12 1.86 0.24 -0.01 0.22

19 UP 0.10 0.11 0.93 0.23 0.15 0.23

20 UP 0.03 0.12 1.21 0.24 0.01 0.22

21 UP 0.14 0.12 1.40 0.22 0.25 0.22

22 UP 0.39 0.13 1.89 0.25 -0.32 0.24

23 UPL 0.07 0.05 1.02 0.09 0.13 0.09

24 UPL 0.12 0.05 1.21 0.09 0.26 0.09

Pooled 0.11 0.05 1.50 0.09 0.03 0.09
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Table B.8: The logit parameter estimates for the self-tuning model with the maximum

absolute values scaling and performance measure model with predisposition and 3 lags.

� Block α S.E. β1 S.E. β2 S.E. β3 S.E.

1 WN 1.01 0.10 0.78 0.17 -0.21 0.18 0.03 0.18

2 WN 0.57 0.11 1.42 0.20 -0.58 0.20 -0.19 0.19

3 BH -0.06 0.15 5.14 0.57 -3.54 0.48 0.77 0.24

4 BH -0.35 0.20 5.64 0.70 -3.39 0.57 -0.22 0.41

5 SI 0.40 0.13 3.76 0.39 -0.09 0.45 -0.35 0.37

6 SI 0.63 0.16 5.65 0.55 -0.81 0.51 -0.59 0.45

7 SP -0.03 0.12 1.13 0.24 0.33 0.25 0.34 0.24

8 SP -0.11 0.11 1.43 0.25 -0.32 0.22 -0.24 0.22

9 SP -0.22 0.14 1.88 0.28 0.06 0.26 -0.55 0.26

10 SP 0.08 0.12 1.73 0.30 0.56 0.27 -0.38 0.27

11 SP -0.03 0.12 1.53 0.25 0.58 0.24 0.16 0.24

12 SP -0.31 0.14 1.19 0.22 -0.09 0.20 -0.11 0.19

13 SP 0.05 0.11 0.99 0.24 -0.17 0.25 0.15 0.23

14 SP 0.23 0.12 1.81 0.26 -0.15 0.23 -0.09 0.25

15 UP 0.18 0.12 1.35 0.23 0.33 0.23 0.08 0.13

16 UP 0.37 0.12 1.63 0.26 0.23 0.25 -0.08 0.11

17 UP 0.25 0.12 1.69 0.27 -0.42 0.26 0.03 0.11

18 UP 0.20 0.12 1.85 0.25 -0.02 0.23 0.02 0.12

19 UP 0.05 0.12 0.86 0.23 -0.02 0.25 0.29 0.16

20 UP 0.01 0.12 1.12 0.25 -0.06 0.22 0.13 0.12

21 UP 0.16 0.13 1.43 0.23 0.29 0.23 -0.07 0.10

22 UP 0.37 0.13 1.88 0.25 -0.38 0.25 0.11 0.14

23 UPL 0.06 0.05 0.98 0.09 0.09 0.09 0.09 0.05

24 UPL 0.13 0.05 1.21 0.09 0.26 0.09 -0.01 0.05

Pooled 0.11 0.05 1.50 0.10 0.03 0.09 0.00 0.05
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B.4 The Brock-Hommes Model

Consider economy, which consists of producers of non-storable good which

is supplied to a competitive market. Given expected market price producers

supply optimal quantity of good to the market. Equilibrium price is de-

termined by the market clearing condition. Realized profits affect choice of

price prediction rule for the next period. Given chosen prediction expecta-

tion about next period price is formed and the process is repeated.

Producers are assumed to have identical quadratic cost function:

c(qi) = q2i /2b,

where qi is produced quantity and b > 0 is production function parame-

ter.

This production function is later substituted into the following profit

function:

πi,t = qi,tpt − c(qi,t) = qi,tpt − q2i /2b,

where πi,t is profit, pt is market price.

From solving profit maximization problem by each agent i, given ex-

pected market price pei,t, one derives linear supply function:

si(p
e
i,t) = qi,t = bpei,t.
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Demand function for the good is set to be linear be definition:

d(pt) = A− Bpt,

where A and B are demand function parameters.

Equilibrium price is determined by the market clearing condition:

Dt = St,

where Dt and St are aggregate demand and supply respectively.

Previous condition could be rewritten as follows:

Dt =
N∑
i=1

di(pt) = N(A− Bpt) = St =
N∑
i=1

si(p
e
i,t) = b(

N∑
i=1

(pei,t)).

We can define average expected price pet =

∑N
i=1(p

e
i,t)

N
. Using this nota-

tion allows to rewrite the market clearing condition as follows:

A− Bpt = bpet .

In such a case expectations about future market price play crucial role

in determining the systems’ dynamics. Model presumes there are two pre-

dictors available to agents: rational and naive expectations. Costly rational

expectation provides perfect foresight prediction and costless naive expec-

tation only uses last observed market price as a prediction of price for the

upcoming period.
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per,t+1 = pt+1,

pen,t+1 = pt,

where per,t+1 is rational prediction and pen,t+1 is naive prediction.

Denote a number of agents choosing rational expectation in time t to be

Nr,t and number of agents choosing naive expectation in time t to be Nn,t =

N −Nr,t, where N is total number of producers. Given such composition of

producers in the market, average expected price can be defined as a function

of fractions fo different predictors:

pet+1 = per,t+1

Nr,t

N
+ pen,+1

Nn,t

N
= pt+1(1− nn,t) + ptnn,t,

where nn,t is a fraction of naive predictor users.

We can substitute this expression for average price to the market clearing

condition to obtain:

A− Bpt+1

b
= pt+1(1− nn,t) + ptnn,t.

By rearranging items in preceding expression the following equation for

the price dynamics as a function of the previous period price and the fraction

of the naive prediction users can be written down:

pt+1 =
A− ptbnn,t

B + b(1− nn,t)
= f(pt, nn,t).
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To define how agents choose prediction rule we firstly calculate each

predictors corresponding realized profits at time t:

πr,t =
b

2
p2t − C,

πn,t =
b

2
pt−1(2pt − pt−1),

where C represents fixed exogenously given cost of acquiring perfect foresight

prediction as a rational expectation.

Agents’ decision on particular prediction rule is determined by the dis-

crete choice model, where higher realized profit from using particular pre-

diction, leads to a higher probability for the prediction rule to be chosen for

the next period:

Pn,t =
eβπn,pt+1

eβπr,pt + eβπn,pt
=

1

1 + eβ(πr,pt−πn,pt )

Pr,t =
eβπr,pt

eβπr,pt + eβπn,pt
= 1− Pn,t

where β represents agents’ intensity of choice.

In case of continuum of agents, the Law of Large Numbers guarantees

that the total fraction of users of each rule is exactly equal to the corre-

sponding probability. Then dynamics of fractions are described by following

equations:

nn,t =
1

1 + eβ(πr,pt−πn,pt )
,

nr,t = 1− nn,t.
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In this case main determinant of the distribution of fractions is difference

in profits:

πr,t − πn,t =
b

2
p2t − C − b

2
pt−1(2pt − pt−1) =

b

2
(pt − pt−1)2 − C.

We can substitute obtained expression for profits difference in the ex-

pression determining nn,t to obtain:

nn,t =
1

1 + eβ(
b
2
(pt−pt−1)2−C)

.

To obtain equation for fractions dynamics previous expression for the

period t+ 1 is rewritten:

nn,t+1 =
1

1 + eβ(
b
2
(pt+1−pt)2−C)

.

Now replace price of pt+1 with equation of it’s dynamics to get expression

for the fraction of naive prediction users as a function of previous period

fraction and price:

nn,t+1 =
1

1 + e
β( b

2
(

A−ptbnn,t
B+b(1−nn,t)

−pt)2−C)
=

1

1 + e
β( b

2
(

A−pt(B+b)
B+b(1−nn,t)

)2−C)
= g(pt, nn,t).

Now by combining two equations of dynamics for price and naive pre-

diction fraction system of non-linear equations can be obtained.
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B.5 Extension of the self-tuning model for N

alternatives

Self-tuning model in case of binary-choice problems have both simple form

and simple intuitive behavioural interpretation. In this section I would like

to discuss how model can be applied in the settings where more than two al-

ternatives are available for the choice. As I introduce general N -alternatives

choice model, I will discuss how intuition still applies in particular case of 3

alternatives as an example.

We start by introducing logit choice model for N alternatives. Probability

to pick alternative a is defined as follows:

Pa,t =
exp(βπa,t−1)∑N
n=1 exp(βπn,t−1)

. (B.1)

Analogously to the binary case I show that choice can be equivalently

presented as a function of payoff differences, by dividing both numerator

and denominator by exp(βπa,t−1), which gives the following expression:

Pa,t =
1

1 +
∑N

n=1,n �=a exp(β(πn,t−1 − πa,t−1))
. (B.2)

Self-tuning version of the model as before modifies the logit parameter β:

Pa,t =
1

1 +
∑N

n=1,n �=a exp(
β
F
(πn,t−1 − πa,t−1))

. (B.3)

We now introduce common normalising factor F for number of previous

observations used for normalisation L:
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F = max
k=1..N,j=1..N,T=1..L

|πk,t−T − πj,t−T |.

Lets consider the case with N=3. For the sake of simplicity I also fix

L = 1. Normalising factor is then can be written as follows:

F = max[|π1,t−1 − π2,t−1|, |π1,t−1 − π3,t−1|, |π2,t−1 − π3,t−1|].

We can interpret decision making process as follows: if all profit differences

are similar in absolute values then F has also similar values, therefore, logit

parameter is constant over time. Once profits experience transition from

period where large differences was observed to small differences, then logit

parameter is decreasing. Later means that agents become indifferent be-

tween options, because they observe indistinguishably different profits in

term relative to the previously observed differences. If transition takes place

from small differences to large differences, then logit parameter will increase

because current decision is more important as profit difference is large rela-

tive to previously observed.

B.6 Simulations

As some heterogeneity among estimations is still present in our parameter

values, I run simulation to check that predictions of the augmented switching

model are robust to identified differences in estimations of the IoC param-

eter. I now study the dynamics of modified model for previously estimated

parameter values. I include the lowest estimated value β = 0.87, the largest

estimation β = 3.83 and the best fit β = 1.53 suggested for calibration.
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Figure B.1: Simulations of the price dynamics and corresponding sample autocorrela-

tion. Parameters are fixed to A = 0, B = 0.5, b = 1.35 and C = 1. Top row : β = 0.87.

Middle row : β = 1.53. Bottom row : β = 3.83. Left panels: Predictions of the standard

model. Right panels: Predictions of the modified model.

Figure B.1 provides graphs of both modified and original model for the

values attached. We can observe that opposite to the original model dy-

namics, which as predicted settles on the two-period cycle, modified model

induce non-stable dynamics, especially for a large value of β. This suggest,

that according to experimentally observed range of modified IoC parameter

values, only unstable price dynamics is produced, although autocorrelation

structure very close to two-period cycles.

Next exercise is devoted to studying effects of changes in rational ex-

pectation cost C. I vary the value of C from 0.1 to 10, fixing the rest of

parameters to be the same as before and setting β = 1.53. Simulation are

presented in Figure B.2. Similarly to original model, decrease in information

cost brings stability to price dynamics, which can be observed in the middle

row graphs. On the contrary, increase in the cost destabilises price dynam-
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Figure B.2: Simulations of the price dynamics and corresponding sample autocorrela-

tion. Parameters are fixed to A = 0, B = 0.5, b = 1.35 and β = 1.53. Top row : C = 1.

Middle row : C = 0.1. Bottom row : C = 10. Left panels: Predictions of the standard

model. Right panels: Predictions of the modified model.

Figure B.3: Lyapunov exponent calculated for different values of the IoC parameter

in the augmented model with self-tuning switching mechanism. Positive values indicate

chaotic price dynamics for corresponding values of the IoC parameter.

ics in the bottom row graphs. Therefore, I can conclude that predictions

with respect to relation between cost and stability are valid for the modified

model as well.
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Appendix C

Appendix to Chapter 4

C.1 Decomposition

MSE =
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − pt)
2)

)
=

1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − p̄et + p̄et − pt)
2)

)
=

=
1

T

T∑
t=1

(
1

N
(

N∑
i=1

((pet,i − p̄et ) + (p̄et − pt))
2)

)
=

=
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − p̄et )
2 + 2

1

N

N∑
i=1

(pet,i − p̄et )(p̄
e
t − pt) +

1

N
(

N∑
i=1

(p̄et − pt))
2)

)
=

=
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − p̄et )
2 + 2(p̄et − pt)

1

N

N∑
i=1

(pet,i − p̄et ) + (p̄et − pt)
2)

)
=

=
1

T

T∑
t=1

(
1

N
(

N∑
i=1

(pet,i − p̄et )
2)

)
+

1

T

T∑
t=1

(
(p̄et − pt)

2
)
=

= Dispersion+ CommonError,
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C.2 Decomposition Calculation

All 50 forecasts 1-17 forecasts 18-34 forecasts 34-50 forecasts

Price Horizon Market Individual Dispersion Fraction Common Fraction Individual Dispersion Fraction Common Fraction Individual Dispersion Fraction Common Fraction Individual Dispersion Fraction Common Fraction
history length Error Error Error Error Error Error Error Error

Stable H=1 S1G1 3.04 0.80 26% 2.24 74% 2.98 0.63 21% 2.35 79% 3.85 1.36 35% 2.48 65% 2.24 0.37 16% 1.88 84%
S1G2 1.04 0.11 11% 0.93 89% 1.33 0.17 13% 1.16 87% 1.07 0.12 11% 0.95 89% 0.71 0.05 7% 0.66 93%
S1G3 158.47 106.77 67% 51.69 33% 166.55 128.53 77% 38.02 23% 185.07 115.98 63% 69.09 37% 121.61 73.87 61% 47.73 39%
S1G4 7.17 6.04 84% 1.13 16% 19.02 17.16 90% 1.86 10% 1.38 0.41 30% 0.96 70% 0.73 0.20 28% 0.53 72%

H=2 S2G1 3.81 1.83 48% 1.98 52% 6.81 3.70 54% 3.11 46% 3.25 1.17 36% 2.08 64% 1.23 0.55 45% 0.68 55%
S2G2 1498.64 1056.03 70% 442.61 30% 10.05 3.23 32% 6.82 68% 12.75 2.34 18% 10.41 82% 4659.03 3294.17 71% 1364.86 29%
S2G3 8.28 5.50 66% 2.78 34% 22.66 15.44 68% 7.23 32% 1.12 0.49 44% 0.63 56% 0.62 0.27 44% 0.34 56%
S2G4 2.48 1.07 43% 1.41 57% 3.94 1.43 36% 2.51 64% 1.36 0.45 33% 0.91 67% 2.12 1.35 64% 0.77 36%

H=3 S3G1 18.03 10.73 60% 7.30 40% 42.75 26.43 62% 16.33 38% 7.71 3.47 45% 4.23 55% 2.72 1.76 65% 0.96 35%
S3G2 13.17 7.18 55% 5.99 45% 33.72 19.06 57% 14.66 43% 2.90 1.49 51% 1.40 49% 2.25 0.61 27% 1.65 73%
S3G3 1.80 0.76 42% 1.05 58% 4.43 1.79 40% 2.64 60% 0.59 0.30 51% 0.29 49% 0.30 0.14 48% 0.16 52%

Unstable H=1 U1G1 1.28 0.54 42% 0.75 58% 1.87 1.17 63% 0.70 37% 0.86 0.11 13% 0.75 87% 1.10 0.32 29% 0.78 71%
U1G2 3.47 2.31 67% 1.16 33% 6.64 5.56 84% 1.07 16% 1.69 0.61 36% 1.07 64% 1.99 0.66 33% 1.33 67%
U1G3 251.67 44.64 18% 207.03 82% 11.46 3.66 32% 7.80 68% 250.19 34.75 14% 215.44 86% 508.47 98.69 19% 409.78 81%
U1G4 23.94 5.36 22% 18.58 78% 2.86 0.88 31% 1.99 69% 9.24 1.68 18% 7.56 82% 61.95 14.02 23% 47.93 77%
U1G5 1.32 0.69 52% 0.63 48% 2.00 1.22 61% 0.78 39% 0.71 0.08 11% 0.64 89% 1.26 0.79 63% 0.46 37%
U1G6 423.07 98.27 23% 324.80 77% 40.37 5.75 14% 34.62 86% 310.19 67.71 22% 242.48 78% 949.64 229.05 24% 720.59 76%
U1G7 13200.67 1644.70 12% 11555.96 88% 5.90 2.28 39% 3.61 61% 6638.38 924.65 14% 5713.74 86% 34192.54 4154.83 12% 30037.71 88%
U1G8 373.91 37.54 10% 336.37 90% 2.67 1.50 56% 1.16 44% 6.98 1.04 15% 5.94 85% 1158.23 114.62 10% 1043.61 90%

H=2 U2G1 127.29 39.64 31% 87.65 69% 188.08 76.25 41% 111.84 59% 138.79 26.32 19% 112.47 81% 50.46 14.89 30% 35.56 70%
U2G2 684.72 53.76 8% 630.96 92% 27.73 8.62 31% 19.11 69% 621.54 43.39 7% 578.15 93% 1449.90 112.74 8% 1337.15 92%
U2G3 410.45 50.60 12% 359.85 88% 136.97 15.29 11% 121.69 89% 696.52 56.24 8% 640.27 92% 397.09 82.12 21% 314.96 79%
U2G4 331.19 41.35 12% 289.84 88% 163.23 20.92 13% 142.31 87% 436.81 29.27 7% 407.54 93% 397.43 75.89 19% 321.54 81%
U2G5 466.10 117.50 25% 348.60 75% 520.33 116.89 22% 403.45 78% 519.19 110.16 21% 409.04 79% 352.07 125.97 36% 226.11 64%
U2G6 555.16 180.24 32% 374.93 68% 94.79 59.46 63% 35.33 37% 976.48 282.54 29% 693.94 71% 596.66 199.87 33% 396.80 67%

H=3 U3G1 35.98 23.97 67% 12.01 33% 51.78 30.70 59% 21.08 41% 49.34 36.32 74% 13.02 26% 4.99 3.70 74% 1.29 26%
U3G2 1410.13 998.19 71% 411.94 29% 68.23 22.46 33% 45.78 67% 4062.27 2904.23 71% 1158.04 29% 18.01 9.73 54% 8.27 46%
U3G3 23.63 5.75 24% 17.88 76% 30.97 11.61 37% 19.36 63% 25.19 2.85 11% 22.34 89% 14.16 2.59 18% 11.57 82%
U3G4 472.73 111.42 24% 361.30 76% 985.95 163.91 17% 822.04 83% 322.30 111.89 35% 210.41 65% 87.25 55.16 63% 32.09 37%
U3G5 87.04 23.43 27% 63.61 73% 225.08 50.67 23% 174.41 77% 27.15 15.40 57% 11.75 43% 4.01 3.03 75% 0.98 25%
U3G6 20.02 2.86 14% 17.16 86% 43.67 5.01 11% 38.65 89% 12.67 2.22 18% 10.45 82% 2.69 1.24 46% 1.46 54%

Unstable with H=3 SU3G1 11122.26 9749.27 88% 1372.99 12% 1.63 0.62 38% 1.01 62% 51.85 26.40 51% 25.46 49% 34700.23 30437.77 88% 4262.46 12%
strong feedback SU3G2 4.04 1.21 30% 2.83 70% 8.40 2.24 27% 6.16 73% 2.73 1.00 37% 1.73 63% 0.81 0.34 42% 0.47 58%

SU3G3 677.85 102.41 15% 575.44 85% 652.51 32.17 5% 620.34 95% 1247.12 222.81 18% 1024.31 82% 99.92 49.11 49% 50.81 51%
SU3G4 21.34 12.93 61% 8.41 39% 51.42 30.51 59% 20.91 41% 7.23 4.09 57% 3.13 43% 4.39 3.64 83% 0.75 17%
SU3G5 1744.78 919.55 53% 825.23 47% 979.60 78.18 8% 901.42 92% 455.58 177.25 39% 278.33 61% 3927.56 2602.19 66% 1325.37 34%
SU3G6 633.61 73.58 12% 560.03 88% 653.38 16.67 3% 636.71 97% 1049.05 115.04 11% 934.01 89% 171.22 9 53% 81.21 47%

Table C.1: Decomposition of forecasting errors calculated across markets and forecasting periods within 3 subsamples.
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C.3 Individual forecasts
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Figure C.1: Forecasts and price dynamics in 4 groups of 1-period ahead forecasting

with stable price history.
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Figure C.2: Forecasts and price dynamics in 4 groups of 2-periods ahead forecasting

with stable price history.
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Figure C.3: Forecasts and price dynamics in 3 groups of 3-periods ahead forecasting

with stable price history.
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Figure C.4: Forecasts and price dynamics in 8 groups of 1-period ahead forecasting

with unstable price history.
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Figure C.5: Forecasts and price dynamics in 6 groups of 2-periods ahead forecasting

with unstable price history.
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Figure C.6: Forecasts and price dynamics in 6 groups of 3-periods ahead forecasting

with unstable price history.
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Figure C.7: Forecasts and price dynamics in 6 groups of 3-periods ahead forecasting

with unstable price history and strong feedback.
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C.4 Non-parametric tests

S1 S2 S3 U1 U2 U3

S1 0.40 0.40 0.38 0.02 0.14

S2 0.40 1.00 0.13 0.02 0.04

S3 0.40 1.00 0.13 0.02 0.04

U1 0.38 0.13 0.13 0.95 0.62

U2 0.02 0.02 0.02 0.95 0.05

U3 0.14 0.04 0.04 0.62 0.05

Table C.2: P-values of a two-sided Wilcoxon rank sum test of the null hypothesis of

equal medians of average prices in sessions of different treatments are reported.

S1 S2 S3 U1 U2 U3

S1 0.40 0.40 0.28 0.02 0.25

S2 0.40 0.70 0.02 0.02 0.04

S3 0.40 0.70 0.08 0.02 0.04

U1 0.28 0.02 0.08 0.95 0.62

U2 0.02 0.02 0.02 0.95 0.01

U3 0.25 0.04 0.04 0.62 0.01

Table C.3: P-values of a two-sided Wilcoxon rank sum test of the null hypothesis of

equal medians of variances of prices in sessions of different treatments are reported.

S1 S2 S3 U1 U2 U3

S1 0.70 0.70 0.19 0.02 0.79

S2 0.70 1.00 0.08 0.02 0.39

S3 0.70 1.00 0.08 0.02 0.39

U1 0.19 0.08 0.08 1.00 0.28

U2 0.02 0.02 0.02 1.00 0.01

U3 0.79 0.39 0.39 0.28 0.01

Table C.4: P-values of a two-sided Wilcoxon rank sum test of the null hypothesis of

equal medians of RAD of prices in sessions of different treatments are reported.
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S1 S2 S3 U1 U2 U3

S1 0.70 0.10 0.08 0.55 0.39

S2 0.70 0.40 0.08 0.38 0.57

S3 0.10 0.40 0.28 0.10 0.79

U1 0.08 0.08 0.28 0.01 0.07

U2 0.55 0.38 0.10 0.01 0.08

U3 0.39 0.57 0.79 0.07 0.08

Table C.5: P-values of a two-sided Wilcoxon rank sum test of the null hypothesis of

equal medians of RD of prices in sessions of different treatments are reported.

S1 S2 S3 U1 U2 U3

S1 0.40 0.40 0.38 0.02 0.14

S2 0.40 1.00 0.13 0.02 0.04

S3 0.40 1.00 0.13 0.02 0.04

U1 0.38 0.13 0.13 0.95 0.62

U2 0.02 0.02 0.02 0.95 0.05

U3 0.14 0.04 0.04 0.62 0.05

Table C.6: P-values of a two-sided Wilcoxon rank sum test of the null hypothesis of

equal medians of PA in sessions of different treatments are reported.

170



C.5 Individual forecasting strategies

Market Participant α β1 β2 β3 β4 γ1 γ2 γ3 γ4 Autocorrelation

’S1G1’ 1 2.14 -1.67
’S1G1’ 2 1.52
’S1G1’ 3 1.58 -0.96
’S1G1’ 4 0.92 1.70 -0.90
’S1G1’ 5 1.83 -2.05 0.30 0.26
’S1G1’ 6 1.82 -0.99 0.45 -0.29
’S1G2’ 1 1.49 -0.84 0.36
’S1G2’ 2 1.54
’S1G2’ 3 1.78 -0.85
’S1G2’ 4 1.22 -0.35
’S1G2’ 5 1.60 -0.94
’S1G2’ 6 1.56 -0.77 0.35 -0.48
’S1G3’ 1 1.45 0.74 -0.54
’S1G3’ 2 0.51
’S1G3’ 3 2.22
’S1G3’ 4 8.85 1.70
’S1G3’ 5 1.95 -0.85
’S1G3’ 6 2.22 -0.44
’S1G4’ 1 1.23
’S1G4’ 2 1.96 -1.38
’S1G4’ 3 1.53
’S1G4’ 4 1.40 -0.67
’S1G4’ 5 1.36
’S1G4’ 6 2.27 -1.11 -1.19 0.71
’S2G1’ 1 1.24 0.92
’S2G1’ 2 1.17 -1.07 0.64 -0.48
’S2G1’ 3 0.32 0.46
’S2G1’ 4 1.41 -1.63
’S2G1’ 5 0.67 0.67
’S2G1’ 6 0.80 0.45
’S2G2’ 1 0.11 -0.12 1.00 0.30
’S2G2’ 2 1.02 -1.63 0.72 1.08 -0.19
’S2G2’ 3 1.14
’S2G2’ 4 0.90 -1.18 0.49 0.89
’S2G2’ 5
’S2G2’ 6 4.62 0.15 -0.26 0.17 1.55 -0.57 -0.40 0.31
’S2G3’ 1 0.95 0.79 -0.53
’S2G3’ 2 0.78 0.33
’S2G3’ 3 0.67 -0.39 0.32 0.35
’S2G3’ 4 2.90
’S2G3’ 5 0.54 -0.43 0.33 0.57
’S2G3’ 6 0.60
’S2G4’ 1 0.80 -0.44
’S2G4’ 2 0.98 -0.47 5
’S2G4’ 3 0.69 0.40 -0.33
’S2G4’ 4 0.80 -0.56 0.61 0.39
’S2G4’ 5 1.48
’S2G4’ 6 0.43 0.79
’S3G1’ 1 0.32 -0.42 0.63
’S3G1’ 2 0.94 -0.71 0.52 -0.40
’S3G1’ 3
’S3G1’ 4 1.39 -1.09
’S3G1’ 5 0.97 0.39 0.32
’S3G1’ 6 1.43 -1.08 0.33
’S3G2’ 1 1.66 -1.54 0.35
’S3G2’ 2 0.93 -0.95 0.69 -0.32 -0.32
’S3G2’ 3 1.07 -1.39 0.81
’S3G2’ 4 1.04
’S3G2’ 5 2.12 -2.07 0.52
’S3G2’ 6 0.43 0.50
’S3G3’ 1 1.01 0.44
’S3G3’ 2 0.21 -0.28 0.24 0.84 0.46 -0.27 1
’S3G3’ 3
’S3G3’ 4 0.29 0.26 0.58 0.25 -0.44 0.30 1
’S3G3’ 5 0.99 -0.39
’S3G3’ 6

Table C.7: Estimates for individual forecasting strategies in markets with initially stable

price histories. Only significant coefficients are reported.
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Market Participant α β1 β2 β3 β4 γ1 γ2 γ3 γ4 Autocorrelation

’U1G1’ 1 1.74 -0.85
’U1G1’ 2 2.15 -1.74 0.33
’U1G1’ 3 1.42
’U1G1’ 4 1.51 -0.90 0.37 -0.18
’U1G1’ 5 1.15 -0.54 -0.75 0.49 0.42 0.34
’U1G1’ 6 1.27 -0.66 0.45
’U1G2’ 1 1.77 -1.45 0.61
’U1G2’ 2 1.26
’U1G2’ 3 1.34 -0.57 0.39 0.24
’U1G2’ 4 1.98
’U1G2’ 5 1.17
’U1G2’ 6 1.41 0.28 -0.31
’U1G3’ 1 8.30 1.05 -1.38 0.89
’U1G3’ 2 2.59 -2.96 1.64
’U1G3’ 3 1.96 0.70
’U1G3’ 4 1.81 -1.11
’U1G3’ 5 11.37 2.17 -3.15 2.90 -0.93 -0.77
’U1G3’ 6 7.99 1.72 -1.14
’U1G4’ 1 13.03 1.04 -2.40 1.36
’U1G4’ 2 6.02 1.04 -1.35 0.84 0.95
’U1G4’ 3 2.20
’U1G4’ 4 2.61
’U1G4’ 5 4.66 1.70 -1.05
’U1G4’ 6 3.87 -4.09 2.84 -0.46
’U1G5’ 1 1.20
’U1G5’ 2 1.32
’U1G5’ 3 1.36 1.07 -0.58 0.49
’U1G5’ 4 1.41 1.29
’U1G5’ 5 1.42 -0.83 0.60 0.47 -0.51
’U1G5’ 6 1.00
’U1G6’ 1 2.21 -2.35 -0.47
’U1G6’ 2 2.04 -0.48 -0.72
’U1G6’ 3 3.32 -3.51 -0.74
’U1G6’ 4 2.69 -2.53
’U1G6’ 5 2.25 -0.71
’U1G6’ 6 2.17 -1.46 -0.47
’U1G7’ 1 2.32 -1.55 1.92 -1.07
’U1G7’ 2
’U1G7’ 3 2.37 -1.08 -0.74
’U1G7’ 4 34.23 -2.40 3.20 -3.19 2.65
’U1G7’ 5 2.21 -1.04 2.16 -0.71 -1.22
’U1G7’ 6 1.71 -1.57
’U1G8’ 1 13.90 1.75 -1.53 -2.13 0.58 -0.78 0.66 0.74
’U1G8’ 2 -12.42 2.36 -1.74 1.79 -1.35
’U1G8’ 3 24.28 -2.86 2.18
’U1G8’ 4 -6.63 2.74 -1.51 1.60 -0.43 -0.86 -0.92
’U1G8’ 5 -23.88 5.09 3.10 -0.83 -1.58 -1.67
’U1G8’ 6 2.18 4.43 -0.98 -1.38 -1.44 -1.83

Table C.8: Estimates for individual forecasting strategies in markets with initially

unstable price histories and one-period ahead horizons. Only significant coefficients are

reported.
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Market Participant α β1 β2 β3 β4 γ1 γ2 γ3 γ4 Autocorrelation

’U2G1’ 1 1.75 -2.03 1.21
’U2G1’ 2 1.70 -1.53 0.32 0.38
’U2G1’ 3 2.03 -1.49
’U2G1’ 4 2.23 -1.75 0.64 0.39
’U2G1’ 5 1.86 -1.40
’U2G1’ 6 0.93
’U2G2’ 1 19.95 2.71 -4.45 4.78 -1.39 0.64 -1.01 -0.85
’U2G2’ 2 2.02 -1.09
’U2G2’ 3 2.11 -1.47
’U2G2’ 4 20.88 1.92 -2.36 1.80 -1.35 0.60
’U2G2’ 5 2.51 -2.98 1.29
’U2G2’ 6 3.65 -5.46 3.06 0.76
’U2G3’ 1 1.59 -1.26 0.41
’U2G3’ 2 2.71 -3.57 2.39
’U2G3’ 3 2.98 -2.16 2.09 -1.01
’U2G3’ 4 2.26 -2.21 1.70 -0.70 -0.66
’U2G3’ 5 1.72 -1.76
’U2G3’ 6 10.56 2.55 -3.24 1.44 0.68
’U2G4’ 1 1.88 -1.97
’U2G4’ 2 1.53
’U2G4’ 3 1.70 -1.00
’U2G4’ 4 69.27 2.73 -2.29 -0.57 -1.00 0.57
’U2G4’ 5 1.65
’U2G4’ 6 3.31 -2.20 -0.97
’U2G5’ 1 1.98 -1.78 1.82
’U2G5’ 2 2.02 -2.70 2.14 0.52
’U2G5’ 3 2.33 -1.58 -0.46
’U2G5’ 4 3.68 -2.50 -0.67
’U2G5’ 5 1.66 -0.91
’U2G5’ 6 0.98 -0.55
’U2G6’ 1 1.37 1.53
’U2G6’ 2 1.51 0.45
’U2G6’ 3 2.60 -1.57 -0.36 0.43
’U2G6’ 4 3.08 -3.06
’U2G6’ 5 2.02 -1.74 1.33
’U2G6’ 6 11.97 2.09 -1.41
’U3G1’ 1 0.58 0.74 -0.24 5.00
’U3G1’ 2
’U3G1’ 3 0.50 -0.69 0.58 0.32
’U3G1’ 4
’U3G1’ 5 0.65 0.33
’U3G1’ 6 1.00
’U3G2’ 1 1.09 -0.78 0.33 0.36
’U3G2’ 2 1.55 -0.97
’U3G2’ 3 0.40 -0.27 0.67
’U3G2’ 4
’U3G2’ 5 0.50 0.52
’U3G2’ 6 0.13 -0.09 0.83
’U3G3’ 1 1.56 -1.42 0.52
’U3G3’ 2 2.17 -1.83 0.56 -0.56
’U3G3’ 3 0.35 -0.39 0.30 1.00
’U3G3’ 4 2.52 -1.66
’U3G3’ 5 1.95 -2.34 1.30 0.43
’U3G3’ 6 1.78 -1.83
’U3G4’ 1 0.72 -0.72 0.43
’U3G4’ 2 1.48 -1.49 -0.35
’U3G4’ 3 44.42
’U3G4’ 4 1.92 -1.88
’U3G4’ 5 1.88 -1.86 2.04
’U3G4’ 6 1.46
’U3G5’ 1 0.57 0.65 -0.44
’U3G5’ 2 2.65 -2.23
’U3G5’ 3 2.59 -0.90 -0.53
’U3G5’ 4 0.85 0.30
’U3G5’ 5 1.76 -1.63
’U3G5’ 6 1.54 -1.57 0.43 0.46
’U3G6’ 1 2.75 -3.00 1.74 0.38
’U3G6’ 2 1.62 -1.02
’U3G6’ 3 1.86 -1.90 0.36 -0.34
’U3G6’ 4 1.73
’U3G6’ 5 0.80 -1.12 1.03
’U3G6’ 6 1.66

Table C.9: Estimates for individual forecasting strategies in markets with initially

unstable price histories and both two- and three-period ahead horizons. Only significant

coefficients are reported.
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Market Participant α β1 β2 β3 β4 γ1 γ2 γ3 γ4 Autocorrelation

’WU3G1’ 1 0.71 0.40 -0.48 0.53 -0.37 0
’WU3G1’ 2 0.31 -0.45 0.68 0.46 0.48 -0.41 5
’WU3G1’ 3 -154.08 0.22 0.21 -0.46 -0.66 2.32 2.43 4
’WU3G1’ 4 -33.98 0.08 0.32 -0.15 -0.77 1.43 0.77 3
’WU3G1’ 5 -23.86 2.85 0
’WU3G1’ 6 83.16 1.06 0.47 -0.75 -0.35 0.19 -0.73 -0.35 1
’WU3G2’ 1 1.37 0.06 0
’WU3G2’ 2 1.07 -0.54 0.38 0.38 0
’WU3G2’ 3 1.21 -1.31 0.50 -0.36 0.36 0
’WU3G2’ 4 1.19 -0.95 0.69 -0.41 0
’WU3G2’ 5 1.24 -1.03 0.66 0
’WU3G2’ 6 0.53 0.65 0
’WU3G3’ 1 1.71 -1.22 0
’WU3G3’ 2 1.55 -1.73 0.53 0
’WU3G3’ 3 1.62 -1.47 0.43 -0.47 0
’WU3G3’ 4 1.03 -0.97 0.60 0
’WU3G3’ 5 1.94 -2.02 0
’WU3G3’ 6 1.44 -1.70 0
’WU3G4’ 1 2.09 -1.28 0.83 -0.31 4
’WU3G4’ 2 1.85 -1.03 0
’WU3G4’ 3 0.49 0
’WU3G4’ 4 0
’WU3G4’ 5 -1.05 0.75 1.45 -0.57 0
’WU3G4’ 6 0.47 0.55 4
’WU3G5’ 1 0.90 -0.87 0.51 -0.50 0
’WU3G5’ 2 21.94 0.55 0
’WU3G5’ 3 0
’WU3G5’ 4 0.32 -0.38 1.00 -0.56 0
’WU3G5’ 5 0.99 -0.57 0
’WU3G5’ 6 0.53 0.55 0
’WU3G6’ 1 1.26 -0.51 0
’WU3G6’ 2 1.31 -0.59 0
’WU3G6’ 3 13.88 0.94 0
’WU3G6’ 4 1.27 0.50 1
’WU3G6’ 5 1.20 0
’WU3G6’ 6 1.09 -1.11 0

Table C.10: Estimates for individual forecasting strategies in markets from extra ses-

sions. Only significant coefficients are reported.

C.6 Data from previous LtF experiments

Table C.11: Descriptive statistics of price observed in previous 0-period
ahead and 1-periods ahead LtF experiments.

Data Mean price’ ’Std Dev’

’1 period ahead. Group 1’ 54.79 28.41
’1 period ahead. Group 2’ 56.09 23.33
’1 period ahead. Group 3’ 56.37 24.26
’1 period ahead. Group 4’ 58.67 4.56

’0 periods ahead. Group 1’ 57.15 9.36
’0 periods ahead. Group 2’ 58.97 6.53
’0 periods ahead. Group 3’ 58.58 4.63
’0 periods ahead. Group 4’ 59.14 13.07
’0 periods ahead. Group 5’ 94.23 142.09
’0 periods ahead. Group 6’ 58.89 7.76
’0 periods ahead. Group 7’ 62.13 0.87

We can observe that, generally, standard deviation is substantially higher

in 1-periods ahead forecasting markets with two notable exceptions. Group

4 in 1-periods ahead markets has no bubbles and crushes patterns and Group
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5 has outlier previously attributed to the participant?s possible typo. The

rest of observation suggests that in positive feedback markets increase of

forecasting horizon leads to higher volatility of the market price.

The crucial difference between 0-period and 1-period ahead treatments

lies in price setting mechanism. Market maker in one case and market

clearing in other could be a potential source of identified differences.
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IInstructions 
General information 
Today you will participate in an experiment which will require you to predict the future price 
of a risky asset. During the experiment you will be able to earn a number of points. The better 
your predictions are, the more points will you earn. These points will be converted into 
Australian dollars after the experiment.

Information about your task 
You are a financial forecaster working for a pension fund that wants to optimally invest a 
large amount of money for 3 periods. The pension fund has two investment options: a risk-free
investment and a risky investment. The risk-free investment is putting money in a savings 
account, which pays a fixed and constant interest rate over 3 periods. The alternative for the 
pension fund is to invest its money in a risky asset, where risk comes from the uncertain future 
price of that asset.  

In each period the pension fund has to decide which fraction of its money to put in the savings
account and which fraction of its money to invest in the risky asset. To make the optimal 
investment decision, the pension fund needs an accurate prediction of the future price of the 
asset. The pension fund is only interested in the price of the risky asset after 3 periods.  

As the financial forecaster of the fund, you have to predict the price for the risky asset 3 
periods ahead during 53 subsequent periods. Your earnings during the experiment depend upon 
the accuracy of your predictions. The smaller your errors in each period are, the higher 
your total earnings will be.

Information about the asset market 
The market price of the risky asset in each period is determined by demand and supply. The
total supply of assets is fixed during the experiment. The demand for assets is mainly 
determined by the aggregate demand of several large pension funds active in the asset market. 
There is also some uncertain, small demand for assets by private investors but the effect of 
private investors upon the asset price is small.

Information about the investment strategies of the pension funds 
The precise investment strategy of the pension fund that you are advising and the investment 
strategies of the other pension funds are unknown. The savings account, that provides the risk-
free investment, pays a fixed interest rate of 5% per period. The owner of the risky asset
receives an uncertain payment in each period, but economic experts have computed that this 
payment is 3 dollars per period on average. The return of the asset market per period depends 
upon these payments as well as upon price changes of the asset.  

As the financial forecaster of a pension fund you are only asked to predict, in each period, the 
3 periods ahead price of the asset. Based upon your future price predictions, your pension fund 
will make an optimal investment decision and hold the asset for 3 periods. The higher your
predicted future price is, the larger will be the fraction of money invested by your pension fund 
in the asset market in the current period, so the larger will be its demand for assets. 
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IInformation during the experiment 
At the beginning of the experiment, you have the history of the asset price in the first 10 periods,
and you start in period 11 by giving your prediction of the price in period 14. After all 
participants have given their predictions, the realized asset price for period 11 will be revealed.
Then you (as all other participants) will need to make a new prediction, now for the price in 
period 15, so that the asset price for period 12 can be defined. And so on. This process continues 
until period 63, where the last prediction, for the price in period 66, will be given.

To predict the asset price for period + 3 in period , the available information consists of
• past prices up to period 1,
• your previous predictions up to period + 2,
• your past earnings up to period 1.

Starting from period 14, your earnings in each period will be based upon your prediction error,
that is, the difference between the price you predicted for that period and the realized price in 
that period. The last period for which you will be paid is period 63.

The better you predict the asset price in each period, the higher your aggregate earnings will 
be. Earnings for each period in points will be automatically computed according to the 
following earnings table, where “error” denotes the absolute value of the difference between 
your prediction and price in that period. Information on your earnings in the current period and 
cumulative earnings will be reported to you during the experiment.

After the experiment your earned points will be converted into Australian dollars, with 1300
points equal to 50 cents. You will be paid the sum of show-up fee and all your earnings in 
AUD.

Earnings table
Error Points Error Points Error Points Error Points Error Points

0.1 1300 1.5 1240 2.9 1077 4.3 809 5.7 438
0.2 1299 1.6 1232 3 1061 4.4 786 5.8 408
0.3 1298 1.7 1223 3.1 1045 4.5 763 5.9 376
0.4 1296 1.8 1214 3.2 1028 4.6 739 6 345
0.5 1293 1.9 1204 3.3 1011 4.7 714 6.1 313
0.6 1290 2 1194 3.4 993 4.8 689 6.2 280
0.7 1287 2.1 1183 3.5 975 4.9 663 6.3 247
0.8 1283 2.2 1172 3.6 956 5 637 6.4 213
0.9 1279 2.3 1160 3.7 937 5.1 610 6.5 179

1 1273 2.4 1147 3.8 917 5.2 583 6.6 144
1.1 1268 2.5 1134 3.9 896 5.3 555 6.7 109
1.2 1262 2.6 1121 4 876 5.4 526 6.8 73
1.3 1255 2.7 1107 4.1 854 5.5 497 6.9 37
1.4 1248 2.8 1092 4.2 832 5.6 468 7 or more 0
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AAdditional information 
By the end of the experiment, you will be paid privately. Before the payment you will 
be asked to answer a questionnaire. Inserted data will be processed in nameless form 
only. Please fill in the correct information.

During the experiment any communication with other participants, whether verbal or 
written, is forbidden. The use of phones, tablets or any other gadgets is not allowed. 
Violation of the rules can result in exclusion from the experiment without any 
remuneration.

Please follow the instructions carefully at all the stages of the experiment. If you have 
any questions or encounter any problems during the experiment, please raise your hand 
and the experimenter will come to help you.

Please ask any questions you have now!
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