Video Trajectory Analysis

Jiang Bian Faculty of Engineering and Information Technology University of Technology Sydney

A thesis submitted for the degree of

Doctor of Philosophy

2019

To my loving parents Zuosen Bian and Yanhui He my wife Yiran Ding and my children Xuyuan Bian and Jingbo Bian

Certificate of Original Authorship

I, Jiang Bian declare that this thesis, is submitted in fulfilment of the requirements for award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by an Australian Government Research Training Program.

Jiang Bian

Acknowledgements

I would like to express my special appreciation and thanks to my supervisor Professor Dacheng Tao and Professor Maolin Huang. Dacheng accepted my application four years ago and gave me the chance to change my life. In first 45 months, he consistently taught me how to research. From reading literatures to writing my own papers, from implementing others' methods to devising my own methods, I learned a lot under his instructions. Maolin gave me the chance to finish my PhD degree and taught me how to write papers and submit one conference paper to review under his supervision. He gave his total support to help me improve myself.

I have to say thank you to my wife Yiran Ding, she tried her best to support me and gave me all her have to help me finish my degree without disturbing. I also wish to give special thanks to Chaoyue Wang, Guoliang Kang, Dayong Tian and Jiayan Qiu. Without their helps, my life in Sydney would not be so easy. I am grateful to Zijing Chen. Our work stations are neighboring. Her opinions deeply impressed me and gave me more space to explore. I would like to give my gratitude to Jun Li and Maoying Qiao for their helps on my research.

I would like to give thanks to my friends I met in Sydney, especially to Zhenkai Hao. Zhenkai is an graduated student from University of Sydney. He shared lots of his experiences on learning English to me, and life skills.

Finally, I would like to express my gratitude to my family, my parents and my children, for their encouragement and support.

Abstract

Considering the critical role of trajectory data mining in modern intelligent systems for surveillance security, abnormal behavior detection, crowd behavior analysis, and traffic control. Furthermore, with the widely spreading of camera, trajectories are recorded by camera, so trajectory analysis including trajectory clustering in computer vision is of great use for a lot of works. However, video trajectories analysis is also a hard work, because its limited information to generate trajectories and few representation methods are available. Thus, the better performance could be reached if more reliable motion information is employed. A lot of characterizations are contained in trajectory data that can be useful and powerful in trajectory clustering including distance, speed, direction, relative displacement and some other features. Finally, in the case that a large number of trajectory data need to be cluster into small number of categorizes which are hidden "groups", an unsupervised clustering model is also required to implement the goal.

In addition, with more and more lecture videos are available on the Internet, on-line learning and e-learning are getting increasing concerns because of many advantages such as high degree of interactivity. The semantic content discovery for lecture video is very important. However, every lecture video contains a lot of semantic information including spoken language and lecture notes, so how to use all these features is a key problem to improve the performance of e-learning. Therefore, a novel method is proposed in this paper. Reference points

are detected and the scale-invariant feature transform (SIFT) descriptor is used to represent the image patches around the points. In addition, SIFT is a descriptor that is fast and robust to match. In order to unify the lengths of trajectories, Discrete Fourier Transformation (DFT) transforms trajectories into frequency domain with a fixed length, so that pattern information is retained. Furthermore, one more feature type is involved to describe object motion that presents the motion of object relative to the camera, and the difference between the static objects and moving objects can be figured out.

Latent Dirichlet Allocation (LDA) has great performance on natural language processing, but it prefers to model discrete words only. However, another different kind of semantic feature, continues feature, involves in, so we derive a novel clustering model called derived LDA model which the word-topic distribution following Multivariate distribution. After derived LDA, we derive dual-variable LDA model that processes two different features parallel. Furthermore, a detailed derivative process is given to support our model.

In the experiment, we applied our model into two data sets including lecture video and KITTI data set. In lecture video data set, the speaking content and the notes on presentation slides are extracted from the lecture videos, and dual-variable LDA model involves to cluster the videos. For KITTI data set, derived LDA model is applied to consider continue feature only, and dual-variable LDA model is employed to process two kinds of features. The experimental results show that the proposed method can effectively discover the meaningful semantic characters of the lecture videos.

Contents

Contents						
List of Figures						
1	Introduction					
	1.1	Research Challenge	2			
	1.2	Research Objectives	3			
	1.3	Summary of Contributions	5			
	1.4	Outline	5			
		1.4.1 Significance	5			
		1.4.2 Innovations \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	6			
	1.5	Publications Related to This Thesis	7			
2	Related works					
	2.1	Background of Trajectory Generation	8			
	2.2	Background of Feature Extraction	13			
	2.3	Background of Trajectory Clustering	15			
		2.3.1 Preliminaries	15			
		2.3.2 Unsupervised Algorithms of Trajectory Clustering	21			
		2.3.3 Supervised Algorithms of Trajectory Clustering	29			
		2.3.4 Semi-supervised Algorithms of Trajectory Clustering	34			
	2.4	Conclusion	35			
3	Traj	jectory generation with SIFT	39			
	3.1	Methodology	39			

CONTENTS

		3.1.1	Characterize points detection	40
		3.1.2	Characterize points tracking	40
	3.2 Experiments			
		3.2.1	SURF algorithm	44
		3.2.2	SIFT algorithm	44
	3.3		$\sin \ldots$	46
4	Tra	jectory	Feature Extraction	49
	4.1	Method	lology	50
		4.1.1	Continuous Features	50
		4.1.2	Discrete Features	51
	4.2	Experin	ments	54
	4.3	Conclu	sion	55
5	Due	Ironial	ble LDA Model for Trajectory Clustering	
	Duc	u-varia	Die LDA Model for Trajectory Clustering	57
0	5.1			5 7 62
0		Multim	nodel-LDA Model for Semantic Topic Discovery	
0		Multim 5.1.1	nodel-LDA Model for Semantic Topic Discovery	62
0		Multim 5.1.1 5.1.2	nodel-LDA Model for Semantic Topic Discovery	62 63
0	5.1	Multim 5.1.1 5.1.2 Dual-va	aodel-LDA Model for Semantic Topic Discovery	62 63 63
0	5.1 5.2	Multim 5.1.1 5.1.2 Dual-va Experin	nodel-LDA Model for Semantic Topic Discovery	62 63 63 73 79
0	5.1 5.2	Multim 5.1.1 5.1.2 Dual-va Experin 5.3.1	avidel-LDA Model for Semantic Topic Discovery	62 63 63 73 79 79
	5.1 5.2	Multim 5.1.1 5.1.2 Dual-va Experin 5.3.1 5.3.2	nodel-LDA Model for Semantic Topic Discovery	62 63 63 73 79
6	5.15.25.35.4	Multim 5.1.1 5.1.2 Dual-va Experin 5.3.1 5.3.2	nodel-LDA Model for Semantic Topic Discovery	62 63 63 73 79 79 82
-	 5.1 5.2 5.3 5.4 Con 	Multim 5.1.1 5.1.2 Dual-va Experin 5.3.1 5.3.2 Conclusion	nodel-LDA Model for Semantic Topic Discovery	62 63 63 73 79 79 82 85

List of Figures

1.1	The trade-off between features and clustering	2
1.2	Algorithm procedure. Objects generate multiple trajectories which	
	start with the characterize point and classify into categories, each	
	category has its unique semantic information representing only one	
	type object.	6
2.1	Trajectory generated by GPS tracking devices	10
2.2	Trajectory generated from camera device	10
2.3	Optical Flow algorithm: Optical flow is the pattern of apparent	
	motion of image objects between two consecutive frames caused	
	by the movement of object or camera $\ldots \ldots \ldots \ldots \ldots \ldots$	11
2.4	Optical Flow algorithm in real world application	12
2.5	The outlier is separated from normal trajectory	13
2.6	The issues need to be fixed in characterizing trajectory data	14
2.7	For arbitrary trajectory data set, the lengths of trajectories are	
	different from each other	16
2.8	DBSCAN for trajectory clustering	22
2.9	DBSCAN	23
2.10	Hierarchical clustering models	25
2.11	Hierarchical clustering models	26
2.12	k-NN for trajectory clustering. Inquiry trajectory is the green one,	
	the labeled data are the red and the blue ones which means two	
	clusters	30
2.13	CNN is one of the classical models of Neural Network and widely	
	used in images classification	37

LIST OF FIGURES

2.14	Our proposed algorithm clustering trajectories	38
3.1	Box filters approximates to Gaussian second order in y- and xy-	
	direction [11]. \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	41
3.2	Orientation histogram	43
3.3	Results of experiments on the first image of first three sequences	
	in KITTI data set.	45
3.4	Results of experiments on arbitrary three images of the first se-	
	quence of KITTI data set.	47
3.5	Results of experiments on arbitrary three images of the second	
	sequence of KITTI data set.	48
4.1	Top to bottom: 0th, 40th, 80th and 120th frame in 1st sequence	
	of KITTI benchmark. A white van and a cyclist keep staying in	
	the center area of camera image. According to that ego-platform	
	is moving, we have the information that the van and the cyclist is	
	moving	52
4.2	Top to bottom: 120th, 130th and 140th frame in 1st sequence of	
	KITTI benchmark. The vehicles parking on the roadside moving	
	a big distance in camera image, such as the silver one moving from	
	center area to border area	53
4.3	Results of split camera image into 3×3 patches. The white van	
	and cyclist are keeping in the center area. \ldots	54
4.4	Results of split camera image into 3×3 patches. The white van	
	and cyclist are keeping in the center area.	55
5.1	Multimodel-LDA based topic discovery for lecture videos	60
5.2	Dual-variable LDA model for trajectory data	61
5.3	(a). standard LDA model. (b). multi-modal LDA model $\ .$	62
5.4	Graphical representation of dual-variable LDA model	79