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Abstract

Considering the critical role of trajectory data mining in modern intel-

ligent systems for surveillance security, abnormal behavior detection,

crowd behavior analysis, and traffic control. Furthermore, with the

widely spreading of camera, trajectories are recorded by camera, so

trajectory analysis including trajectory clustering in computer vision

is of great use for a lot of works. However, video trajectories analysis

is also a hard work, because its limited information to generate trajec-

tories and few representation methods are available. Thus, the better

performance could be reached if more reliable motion information is

employed. A lot of characterizations are contained in trajectory data

that can be useful and powerful in trajectory clustering including dis-

tance, speed, direction, relative displacement and some other features.

Finally, in the case that a large number of trajectory data need to be

cluster into small number of categorizes which are hidden “groups”,

an unsupervised clustering model is also required to implement the

goal.

In addition, with more and more lecture videos are available on the

Internet, on-line learning and e-learning are getting increasing con-

cerns because of many advantages such as high degree of interactivity.

The semantic content discovery for lecture video is very important.

However, every lecture video contains a lot of semantic information

including spoken language and lecture notes, so how to use all these

features is a key problem to improve the performance of e-learning.

Therefore, a novel method is proposed in this paper. Reference points

are detected and the scale-invariant feature transform (SIFT) descrip-

tor is used to represent the image patches around the points. In ad-

dition, SIFT is a descriptor that is fast and robust to match. In order



to unify the lengths of trajectories, Discrete Fourier Transformation

(DFT) transforms trajectories into frequency domain with a fixed

length, so that pattern information is retained. Furthermore, one

more feature type is involved to describe object motion that presents

the motion of object relative to the camera, and the difference be-

tween the static objects and moving objects can be figured out.

Latent Dirichlet Allocation (LDA) has great performance on natu-

ral language processing, but it prefers to model discrete words only.

However, another different kind of semantic feature, continues fea-

ture, involves in, so we derive a novel clustering model called derived

LDA model which the word-topic distribution following Multivariate

distribution. After derived LDA, we derive dual-variable LDA model

that processes two different features parallel. Furthermore, a detailed

derivative process is given to support our model.

In the experiment, we applied our model into two data sets including

lecture video and KITTI data set. In lecture video data set, the speak-

ing content and the notes on presentation slides are extracted from

the lecture videos, and dual-variable LDA model involves to cluster

the videos. For KITTI data set, derived LDA model is applied to con-

sider continue feature only, and dual-variable LDA model is employed

to process two kinds of features. The experimental results show that

the proposed method can effectively discover the meaningful semantic

characters of the lecture videos.
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