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Abstract

Considering the critical role of trajectory data mining in modern intel-

ligent systems for surveillance security, abnormal behavior detection,

crowd behavior analysis, and traffic control. Furthermore, with the

widely spreading of camera, trajectories are recorded by camera, so

trajectory analysis including trajectory clustering in computer vision

is of great use for a lot of works. However, video trajectories analysis

is also a hard work, because its limited information to generate trajec-

tories and few representation methods are available. Thus, the better

performance could be reached if more reliable motion information is

employed. A lot of characterizations are contained in trajectory data

that can be useful and powerful in trajectory clustering including dis-

tance, speed, direction, relative displacement and some other features.

Finally, in the case that a large number of trajectory data need to be

cluster into small number of categorizes which are hidden “groups”,

an unsupervised clustering model is also required to implement the

goal.

In addition, with more and more lecture videos are available on the

Internet, on-line learning and e-learning are getting increasing con-

cerns because of many advantages such as high degree of interactivity.

The semantic content discovery for lecture video is very important.

However, every lecture video contains a lot of semantic information

including spoken language and lecture notes, so how to use all these

features is a key problem to improve the performance of e-learning.

Therefore, a novel method is proposed in this paper. Reference points

are detected and the scale-invariant feature transform (SIFT) descrip-

tor is used to represent the image patches around the points. In ad-

dition, SIFT is a descriptor that is fast and robust to match. In order



to unify the lengths of trajectories, Discrete Fourier Transformation

(DFT) transforms trajectories into frequency domain with a fixed

length, so that pattern information is retained. Furthermore, one

more feature type is involved to describe object motion that presents

the motion of object relative to the camera, and the difference be-

tween the static objects and moving objects can be figured out.

Latent Dirichlet Allocation (LDA) has great performance on natu-

ral language processing, but it prefers to model discrete words only.

However, another different kind of semantic feature, continues fea-

ture, involves in, so we derive a novel clustering model called derived

LDA model which the word-topic distribution following Multivariate

distribution. After derived LDA, we derive dual-variable LDA model

that processes two different features parallel. Furthermore, a detailed

derivative process is given to support our model.

In the experiment, we applied our model into two data sets including

lecture video and KITTI data set. In lecture video data set, the speak-

ing content and the notes on presentation slides are extracted from

the lecture videos, and dual-variable LDA model involves to cluster

the videos. For KITTI data set, derived LDA model is applied to con-

sider continue feature only, and dual-variable LDA model is employed

to process two kinds of features. The experimental results show that

the proposed method can effectively discover the meaningful semantic

characters of the lecture videos.
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Chapter 1

Introduction

With the development of tracking and surveillance devices, a tremendous amount

of object trajectory data has been collected, which makes extracting useful in-

formation both imperative and challenging. Trajectory clustering is an efficient

method of analyzing trajectory data that has been applied to pattern recognition,

data analysis, machine learning, and many other areas. One of the benefits of

trajectory clustering is its ability to reveal the spatiotemporal information con-

tained in trajectory data. Hence, it has become ubiquitous in some fields of

application, such as object motion prediction [24], traffic monitoring [6] [48] [81],

activity understanding [8] [135] [151], abnormal detection [20] [141] [156] [163], 3

dimensional reconstruction [70], weather forecasting [38] and geography [93].

In technical details, trajectory clustering aims to recognize objects through a

unique motion status or track. This requires measuring multiple features, each

representing different characteristics. Furthermore, it is worth noting that the

selected clustering method should consider a trade-off between the extracted fea-

tures in Fig.1.1. For example, a positional feature should be coupled with a PCA

or densely-based method to improve clustering performance.

In order to measure similarities among different types of trajectory data, data

representation, feature extraction and distance metric selection are critical pre-

liminary works of trajectory clustering. For example, trajectories can be repre-

sented as a vector and downsampled to a unified length, so Euclidean distance

is used [98]. Trajectories also can be treated as samples of a probabilistic dis-

tribution. Hence, Bhattacharyya Distance [79] is used to measure the distance

1



Figure 1.1: The trade-off between features and clustering.

between two distributions.

Hence, in more details, it is critical to generate trajectory data from video

dataset robust, because the objects are influenced by illumination, environment

and the performance of recording device. Then, a feature descriptor is also needed

to fix the varying trajectories lengths and keep more information. Furthermore,

the descriptor should considers the format of trajectory data, either. For exam-

ple, 3D positional information are recored by GPS device, but only 2D positional

information are applied in video trajectories. Finally, a proper clustering method

is implemented here which may considers different feature types. Thus, the thesis

is organized as followed, the related works are reviewed in section 2, trajectory

generation and feature extraction are described in section 3 and 4, and section 5

discuss our novel video trajectory analysis methods.

1.1 Research Challenge

This study explores three main research questions (RQ):

RQ 1: How to generate trajectories?

2



RQ 2: Which features are extracted?

RQ 3: How to cluster trajectories?

To answer these research questions, three corresponding research objectives

are given.

RO 1: Trajectory generation

The images from existing positioning systems, such GPS, only contain pixel

information but an appropriate method for tracking the key points of objects is

still needed. This demands a fast and robust feature descriptor that can accu-

rately match key points in different frames.

RO 2: Feature extraction

Once a trajectory has been generated, it is critical that each trajectory has a

different the length. Further, since so much information is required for clustering,

e.g., shape, position, length, direction, variation, etc., a more flexible feature is

required as opposed to simply resampling or substituting a trajectory with sub-

trajectories.

RO 3: Trajectory clustering

Clustering is trajectory analysis technique that groups different parts of a

dataset according to similarity. Given the success of LDA in discrete data clus-

tering tasks, like natural language processing, an LDA model that can cluster

trajectories based on complex features is needed.

1.2 Research Objectives

I aim to develop trajectory clustering method to deal with video data set by using

SIFT, DFT and novel LDA called dual-variable LDA model.

� Objective one: Trajectory generation

Limited information is available in a video dataset for generating trajecto-

ries after the pixels have been chosen as tracking points. Therefore, a fast,

robust algorithm is needed to match pixels in consecutive frames. Many

studies have turned to the SIFT algorithm to detect and describe a pixel’s

3



local features because of its robustness in extracting features and its speed

in matching arbitrary pixels. Further, SIFT generates a new trajectory

when an arbitrary pixel cannot be matched in the next frame.

� Objective two: Feature extraction

As previously mentioned, it is critical that the length of each generated

trajectory is different. Moreover, the spatiotemporal, shape and position

information contained in a trajectory is key to clustering. Therefore, a bet-

ter feature extraction method is vital, and DFT has emerged as a promising

approach. DFT can describe a trajectory by transforming an original se-

quence into the frequency domain with an arbitrary fixed length. This tech-

nique only requires one further feature that describes the object’s movement

condition to determine the motion of the object’s trajectory. For example,

if a frame is split into 3x3 patches, an object is recognized as moving when

the trajectory travels through different patches, but static when it stays in

the same patch throughout the entire video relative to the camera.

� Objective three: Trajectory clustering

LDA is a generative statistical model that groups similar parts of a dataset

using unobserved criterion. It is a technique that has been used in natural

language processing many times. LDA only processes discrete data, using

multinomial distribution, but some of the features in trajectories are dis-

crete; the others are continuous. Thus, a novel model is needed to simulate

both types of features and combine their corresponding distributions. An

dual-variable LDA model is proposed to address this problem.

In dual-variable LDA, discrete data such as object movement feature are

modeled by Multinomial distribution. Dirichlet distribution parameterized

by α simulates the prior on per-document topic distribution, and the distri-

bution parameterized by β simulates the prior on pre-topic word distribu-

tion. For continuous features, DFT coefficients, the features belonging to

same frequency domain comprise word dictionary. Each word is modeled by

Multivariate distribution because each word obeys Gaussian distribution.

4



The prior on per-topic word distribution is used to compute the parameters

of the multivariate distribution, µ and Σ. Furthermore, the parameters

distributions are conjugate prior distribution.

1.3 Summary of Contributions

The main contribution of this thesis is incorporating different features into video

trajectory analysis. A novel topic model is presented that classifies trajectories

by considering multiple features. A brief outline of the thesis is provided in the

following paragraphs.

Chapter 2 includes a comprehensive review and discussion of the state-of-

the-art techniques in trajectory generation, trajectory feature extraction, and

trajectory clustering methods.

Chapter 3 explains how the SURF detector and the SIFT descriptor have been

implemented to track the characteristic points in objects.

Chapter 4 describes the spatiotemporal information extraction process for

different measurement spaces and motion statuses. These features uniquely rep-

resent each trajectory and serve as comparisons for other features in the trajectory

data.

Chapter 5 provides a brief review of the topic models and presents the clus-

tering algorithm step-by-step. This chapter also includes the multi-modal LDA

model that processes two features of the same type, and the dual-variable LDA

model that processes two feature of different types.

And my algorithm flow chart is shown in Fig.1.2.

1.4 Outline

1.4.1 Significance

SIFT’s robustness and scale invariance properties have been validated in numer-

ous computer vision tasks, make it the preferred choice over other techniques

5



Figure 1.2: Algorithm procedure. Objects generate multiple trajectories which
start with the characterize point and classify into categories, each category has
its unique semantic information representing only one type object.

for many scholars. However, SIFT could be extended to consider more features,

including the relative motion of objects and DFT coefficients. Relative motion

is a continuous feature that describes the movement condition, while DFT co-

efficients represent motion patterns by projecting high-dimensional data into a

low-dimensional construct. The novel LDA model presented in this thesis bal-

ances both features to generate richer trajectories.

1.4.2 Innovations

SIFT tracks reference points for objects in video dataset, and trajectories are

represented and characterised by a DFT feature space and the relative motion of

the object. Hence, motion patterns and motion gestures can be generated.

This thesis presents a novel LDA model that incorporates two different types

of features and a Gibbs sampler to correct the probability over many states.

6



1.5 Publications Related to This Thesis

1. Jiang, B., Dayong, T., Yuanyan T., and Dacheng T. (2019). Trajectory Data

Classification: A Review. ACM Transactions on Intelligent Systems and

Technology (TIST), accepted.

2. Jiang, B., Maolin H. (2019). Semantic Topic Discovery for Lecture Video.

Intelligent Systems, accepted.
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Chapter 2

Related works

This chapter establishes the definitions for key concepts in the field of video

trajectories, including trajectory generation, characterizations methods and clus-

tering models, and a review relating to trajectory clustering is also given [?] With

this background information in place, the overall goal and broad procedure for

extracting trajectory data from consecutive video frames is outlined. This in-

cludes the issues such as appropriate feature description, identifying the type of

object associated with a trajectory, and classifying trajectories into categories.

Before the following discussion, all abbreviations are listed in Table.2.1.

2.1 Background of Trajectory Generation

Generally, trajectories are generated from 2D location information that has been

recorded on a device, such as Global Positioning System (GPS). However, 2-

dimensional data lacks a great deal of detail that can influence the accuracy of

clustering, for example, the scale of the object, the range of movement, how

quickly the object moved. Hence, ideally, trajectory data should contain 3D co-

ordinates and spatiotemporal information.

Trajectory data are recorded in different formats according to device types,

object motion or even purposes. For instance, GPS tracking devices generate a

trajectory by tracking object movement as Trajectory = (Tr1, T r2, · · · , T rN),

which is a consecutive sequence of points in geographical space, and Tri denotes

8



Table 2.1: Multimodal-LDA variable list

abbreviation model name
SIFT scale-invariant feature transform
SURF speeded up robust features
PCA principal component analysis
SVM support-vector machines
DFT discrete fourier transform
MDL minimum description length
MBR minimum bounding rectangle
EM expectation–maximization
KLT Kanade–Lucas–Tomasi feature tracker
FCM Fuzzy C-means
HITS hypertext included topic search
TAD test-and-divide
SVD singular-value decomposition
k-NN k-nearest neighbors
GMM Gaussian mixture model

MCMC Markov chain Monte Carlo
DP Dirichlet process

DPMM Dirichlet process mixture model
HDP Hierarchical Dirichlet process
CNN Convolutional Neural Networks
MLP Multilayer perceptron
DNN Deep neural network
OCR optical character recognition
ASR automatic speech recognition

DBSCAN Density-based spatial clustering of applications with noise

a combination of coordinates and time stamp like Tri = (xi, yi, ti), as shown

in Fig.2.1. In some specific circumstances, other properties relevant to object

movement are added, such as velocity, direction, acceleration or geographic in-

formation [153] [154].

Different from GPS devices, which record position information of trajectory

data only, trajectory data also can be generated from image data or video data.

In some papers, the interest points are located as initial points of trajectories,

and models are used to track the interest points in the following images. As

9



Figure 2.1: Trajectory generated by GPS tracking devices

Figure 2.2: Trajectory generated from camera device

shown in Fig.2.2, for image data, a sequence of pixels in consecutive frames form

up a trajectory, which is similar to optical flow [18] [138]. Furthermore, scale-

invariant feature descriptors are employed to track the points in video data set

as well [60] [130]. With the trajectory data generated from images or videos, spa-

tiotemporal and image information including pixels or scale is employed. On the

other hand, the semantic trajectory data are attracted more and more attention

recently [28] [164], because they contain more information to improve classifica-

tion accuracy, and can be used directly and hence save more time.

Therefore, the aim of this study is to generate a trajectory by comparing

and matching image patches or pixels from two image points in consecutive

frames [113]. Several scholars have already developed trajectory methods along

these lines: the iterative closest point algorithm [25], the robust point matching

algorithm [29] and more popular method, optical flow algorithm [54] which is

shown in Fig.2.3 and Fig.2.4. These methods can robustly track points in video

data, but they cannot extract characteristic points, i.e., unique object representa-

tions represented as trajectories. Further, other factors may influence trajectory

10



generation, such as occlusion, changes in scale, and illumination. To overcome

these issues, pixel-level feature detection and tracking methods are needed.

In this study, SIFT algorithm is presented as a solution for detecting and

Figure 2.3: Optical Flow algorithm: Optical flow is the pattern of apparent
motion of image objects between two consecutive frames caused by the movement
of object or camera

characterizing local features in an image [87] [145], because SIFT is a feature de-

tection algorithm to detect and describe local feature of image data. It identifies

and tracks a point of interest for each object using a feature description. Hence,

a feature extracted from a training frame can then be detected in the query

frame, whether or not the scale, noise, or illumination of the image changes. An-

other advantage of SIFT algorithm is its ability to track the relative positions

between points of interest by tracking the feature points in consecutive frames.

The experiments in later chapters prove this is an efficient method for generating

trajectories.

To ensure the SIFT algorithm performing, the SURF algorithm is used to

11



Figure 2.4: Optical Flow algorithm in real world application

locate the characteristic points. SURF is a patented local feature detector and

descriptor and has been widely used in object recognition, image registration,

image classification, and 3D reconstruction [11] [50] [115]. Although the two

algorithms are similar, SURF is only used for point detection in the generation

step, as it is faster and more robust than SIFT in the applications explored in this

study. Hence, the first step is to use SURF to detect the characteristic points in

one object and represent them as multiple characteristic points. Once extracted,

SIFT tracks those points, connecting consecutive frames in order, to generate the

trajectories. In addition, the method relies on 3D world coordinates since these

data contain spatiotemporal information, which improves clustering performance.

However, given the goal is to identify the type of object the trajectory data

is describing, more characteristic information is needed. For example, measuring

velocity helps to distinguish vehicles from pedestrians. Hence, a more appropriate

method for generating trajectory data would record the most useful information

12



for generating trajectory data from video footage.

2.2 Background of Feature Extraction

In the field of trajectories, representation methods describe trajectory data ac-

cording to its properties. There are many ways to measure the properties of

trajectory data, such as directly through a distance measurement [98], with PCA

model [8] [9] which is an orthogonal transformation to represent data by a set of

principle components or DBSCAN [59] [139] which a data clustering algorithm,

or through a range of other algorithms. However, these methods tend to deal

with a limited amount of information and therefore only capture a few proper-

ties. Moreover, most of these models are used to recognise outliers in trajectory

data [108], as shown in Fig.2.5.

Furthermore, trajectories are presented in different lengths at most circum-

Figure 2.5: The outlier is separated from normal trajectory.

stances. Therefore, one of the goals of this study is to develop a method of

trajectory generation that can characterize trajectory data with spatiotemporal

information and describe an object’s motion status, as well as overcome issues

associated with length in Fig.2.6.

In trajectory feature extraction, there are typically many features available

to choose. Some features are simple to extract, such as vector field [38], which

describes the vector and direction of object, or curving fitting [158], which fits a

13



Figure 2.6: The issues need to be fixed in characterizing trajectory data.

trajectory using a fixed number of parameters and representations of several sub-

trajectories [8] [9] [76], because segmenting a trajectory can reveal spatiotemporal

information. However, clustering and identifying a trajectory is more difficult,

particularly with limited information.

To address this challenge, the method presented in this study extracts two

different features from trajectory data; one feature represents the tracking in-

formation, the other represents motion information. DFT algorithm is used to

collect samples from the frequency domain. Specifically, the original trajectory

data in the time domain are treated as signals of different lengths with unique

characteristics. Then, sine and cosine functions or complex sinusoids can be used

to calculate the amplitude and frequency coefficients in the frequency domain.

From the opinion of digital signal processing, trajectory data are generated by

a function, and the function being any quantity or signal that varies over time.

Further, using a fixed number of parameters could be an efficient way of rep-

resenting trajectory data of various lengths after the DFT process. With this

approach, the unique feature types in the trajectory data could be compared in

the same space. For instance, Zavarehei and Vaseghi [157] used a DFT to analyse

voice trajectories in this way, while Naftel and Khalid [97] used a DFT to learn

motion trajectories. DFT has also been used to extract one or more features for

clustering trajectory data [56].

That collaborating the coefficients of DFT allows more information related to

an object’s motion to be collected. However, this technique created a new prob-
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lem objects that appear to be moving when they should be static. The trajectory

data are recorded when the ego-platform moves while recording. Therefore, sev-

eral papers have incorporated relative motion into their methods [60] [136].

2.3 Background of Trajectory Clustering

According to the availability of labeled data, trajectory clustering methods are

divided in three categories: unsupervised, supervised, semi-supervised. Unsu-

pervised models aim at clustering data without human experts supervision or

labeled data. An inference function has been drawn by analyzing unlabeled data

sets [35] [38] [143] [148]. Supervised models are learned prior to trajectory clus-

tering. Furthermore, with training data set, supervised clustering models are

classification models, and semi-supervised classification models as well. However,

all trajectory classification and clustering models are called trajectory clustering

models here. Generally, labeled data are used to learn a function mapping data

to their labels, i.e. clusters. The clusters of unlabeled data are predicted by this

function, then [44] [156] [146] [26]. Labeling data need a heavy burden of manual

works by human experts. It is unfeasible for large data sets. Semi-supervised

compromises the previous two types of models. It is trained by labeled data and

tuned by unlabeled data [48] [141] [156].

The rest of this section is organized as follows. Preliminary works are in-

troduced as follow, and then the models based on unsupervised algorithms are

described. A description of the models under supervised algorithms are presented

in the following. Finally, I discusses some models based on semi-supervised algo-

rithms. Conclusions are made in the last.

2.3.1 Preliminaries

2.3.1.1 Trajectory Clustering Preparation

In some clustering models [56] [97] [120] [158], trajectory data are required to be

set as a unified length so that they could be measured. However, as shown in

Fig.2.7, for two arbitrary trajectories, their lengths may be largely different from
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each other. Therefore, representing trajectories in a unified length with little loss

of information is a major preliminary work of these models. This procedure is

called clustering preparation.

For some methods, original data are represented in other space with the same

Figure 2.7: For arbitrary trajectory data set, the lengths of trajectories are dif-
ferent from each other.

length. For instance, trajectory data are projected into a subspace [55]. Linear

transformation algorithms aim at representing trajectory as a combination of ba-

sis trajectories [2]. Curve fitting is another method to approximate trajectories

by a parameterized quadratic curve [158]. In order to distinguish similar curves,

the direction of the last trajectory point is chosen as an additional parameter.

In [120], trajectory data are approximated by a uniform cubic B-spline curve, so

that a representation capable of encoding both the shape and the spatiotempo-

ral profile of trajectory data is obtained. In addition, the lengths of trajectories

are added to distinguish the trajectories with similar shapes. According to the

fact that trajectory data contain a lot kinds of positional information, such as

coordinates, speed and directions, vector fields are employed to represent trajec-

tory data [38]. Vector fields give trajectory a smooth streamline and induce a

notion of similarity of trajectories. PCA is a statistical procedure to compute a

set of linearly uncorrelated variables called principal components by orthogonal
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transformation. To avoid partially extracted information, a number of organized

segmentations substitute for the corresponding trajectory in [8] and [9]. The time

ordering data are transformed and represented in frequency domain by DFT, so a

trajectory can be represented as a fixed length vector comprised of Fourier coeffi-

cients in [97] and [56]. In [60], the interaction of trajectories are encoded and set

as elements of codebook, so camera motion is ignored and the model’s robustness

is improved.

Re-sampling methods choose trajectory points by sampling rule to unify tra-

jectory lengths. Trajectory data are segmented as sub-trajectories, and all of them

are re-sampled to a fixed length so that sub-trajectories are arranged as matrix [9].

In a complex scene such as hand writing data set, Equidistant sampling fixes the

problem that two same characters are recorded in different temporal sequence

because of different writing speeds [116]. Since re-sampled trajectory points

are discontinuous, it is critical that normalization should be involved after re-

sampling [84]. It has been widely acknowledged that re-sampling method causes

information loss [109]. Therefore, sparsity regularization is used in [19], [33], [101]

and [140].

Sub-trajectories hold partial and hidden information of original trajectory

data [56] [76], so they are put together and describe trajectory with more flexibil-

ity. For instance, the latent motion rule beneath hurricane trajectories is figured

out and a certain hurricane trend chart is printed by analyzing sub-trajectories

of past hurricane trajectories in [38]. Sub-trajectories also lead to simplified tra-

jectories which represent trajectory data as some smaller, less complex primitives

suitable for storage and retrieval purposes [3]. In [150], sub-trajectories are gener-

ated by pre-defined policies based on facility performance, time range or distance

range. In [8] and [9], trajectory is segmented at the so-called changing points

at which direction or speed changes dramatically. Curvature describes direction

information, and it could be extracted if a trajectory is treated as a curve by con-

necting consecutive trajectory points. Curvatures are computed by transforming

3-dimensional position coordinates of points into spherical system and quantized

as up, down, left, right [36], then a trajectory is segmented at the points where

curvature changes. In addition, MDL principle traces the sub-trajectories to es-

timate trajectory motion by minimizing the differences between sub-trajectories
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and the corresponding trajectories in [76]. MBR separates trajectories under

occlusion and optimize the inter-object separability [3]. It is an algorithm op-

timizing the bounding rectangles containing sub-trajectories to ensure that the

distance between two rectangles are closer than the distance of trajectories.

Some specific regions of surveillance area hold special semantic information

and attract more attention so Regional Segmenting method is implemented. The

whole scene is split into several regions and boundaries of the regions segment

trajectories [160]. As independent motion pattern, sub-trajectories characterize

more information while original trajectory presents limited information.

Some specific regions of surveillance area hold special semantic information.

Thus, the points inside the special regions are used to represent trajectory or

scene in [129] and all these points are called Points of Interest (POI). The points

outside the regions are ignored because they are short of useful information. For

instance, activity analysis is a key part in surveillance application to seek low-level

situational awareness by understanding and characterizing behaviors of objects

in the scene [95], so it is critical to extract POI in the special regions. In topo-

graphical map, POI inside the special regions are represented as a single node.

For example, two types of POI are introduced in [95] where the first one is the

points in entry/exit zones and the second one is the points at the scene landmarks

that objects intend to approach, move away or stay for a long time. Except for

the special areas, points are represented by a node if their speed are less than a

threshold in [13] and [96]. The importance of points can be measured and high-

scored ones are selected in [169]. For video data, POI are obtained by Pyramid

Representation [136]. In addition, optical flow is another popular implementation

by estimating trajectory motion in [39] and [138].

In image frames, more robust and representative features are needed rather

than only positional information of trajectory points in [60] and [136]. In [136],

histograms of oriented gradients (HOG) and histograms of optical flow (HOF)

features are used to describe static appearance information and local motion

information of trajectories, respectively. HOG feature computes orientation in-

formation to keep scale-invariant property of tracking point and it is fast to

implement [60] [66] [71] [88] [89] [144]. Furthermore, SIFT descriptor represents

image patch around tracking point [125] [130] [132] [134] [137], and computes
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scale and orientation information of image patches to localize tracking object

in consecutive frames. As a feature extraction method , KLT tracker is used

to find trajectory points and SIFT is applied to represent them [130]. In [134],

Difference-of-Gaussian (DOG) detector is used to detecting trajectory points in-

stead of KLT in [130].

2.3.1.2 Common Distance Measurements

Essentially, trajectory are allocated into cohesive groups according to their mutual

similarities. An appropriate metric is necessary [7] [94] [159].

Euclidean Distance: Euclidean distance requires that lengths of trajectories

should be unified and the distances between the corresponding trajectories points

should be summed up,

D(A,B) =
1

N

∑
[(axn − bxn)2 + (ayn − byn)2]

1
2 , (2.1)

where axn and ayn indicate the nth point of trajectory A on Cartesian coordinate.

N is the total number of points. Euclidean distance is used to measure the dis-

tance of trajectories in [98].

Hausdorff Distance: Hausdorff distance measures the similarities by consider-

ing how close every point of one trajectory to some points of the other one, and

it measures trajectories A and B without unifying the lengths in [85] [22],

D(A,B) = max{d(A,B), d(B,A)}, (2.2)

d(A,B) = max
a∈A

min
b∈B
||a− b||

d(B,A) = max
b∈B

min
a∈A
||b− a||,

(2.3)

Bhattacharyya Distance: Bhattacharyya distance measures how closely of two

probability distributions. In [79], it is employed to measures similarities of quan-

tized directions of points,

D(A,B) = − ln(BC(A,B)), (2.4)
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where BC(A,B) =
∑T

t=1

√
at · bt and it is used to measure the separability of A

and B. at and bt are quantized directions.

Frechet distance: Frechet distance measures similarity between two curves

by taking into account location and time ordering. After obtaining the curve

approximations of trajectories A and B, their curves map unit interval into metric

space S, and a re-parameterization is added to make sure t cannot be backtracked.

Frechet distance is defined as

D(A,B) = inf
α,β

max
t∈[0,1]

{d (A(α(t)), B(β(t)))}, (2.5)

where d is distance function of S, α, β are continuous and non-decreasing re-

parameterization.

Dynamic Time Warping (DTW) Distance: DTW is a sequence alignment

method to find an optimal matching between two trajectories and measure the

similarity without considering lengths and time ordering [10] [118].

W (A,B) = min
f

1

n

n∑
i=1

||ai − bf(i)||2, (2.6)

where A has n points and B has m points, all mappings f : [1, n]→ [1,m] should

satisfy the requirements that f(1) = 1, f(n) = m and f(i) ≤ f(j), for all 1 ≤
i ≤ j ≤ n.

Longest Common Subsequence (LCSS) Distance: LCSS aims at finding the

longest common subsequence in all sequences, and the length of the longest sub-

sequence could be the similarity between two arbitrary trajectories with different

lengths. The distance LCSSε,δ(A,B) is written as

LCSSε,δ(A,B) =



0, if A or B is empty

1 + LCSSε,δ(Head(A), Head(B)),

if ||aN − bM || < ε and |N −M | < δ

max(LCSSε,δ(Head(A), B),

LCSSε,δ(A,Head(B))), otherwise,

(2.7)
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where Head(A) indicates first N −1 points belonging to A and Head(B) denotes

first M − 1 points of B. Finally, D(A,B) = 1− LCSSε,δ(A,B)

max(N,M)
.

Other distance types : In [75] [76] [82], more other distance types are proposed

to consider more properties such as angle distance, center distance and parallel

distance. Angle distance is defined as

dangle(Li, Lj) =

{
||Lj|| × sin(θ), 0o ≤ θ ≤ 90o

||Lj||, 90o ≤ θ ≤ 180o,
(2.8)

where θ is the smaller intersecting angle between Li and Lj. For center distance,

dcenter(Li, Lj) = ||centeri − centerj||, (2.9)

where dcenter(Li, Lj) is the Euclidean distance between center points of Li and

Lj. And parallel distance is

dparallel(Li, Lj) = min(l1, l2), (2.10)

where l1 is the Euclidean distances of ps to si and l2 is that of pe to ei. ps and pe

are the projection points of sj and ej onto Li respectively.

Distance metrics are used in much more fields relating to trajectories clus-

tering, e.g., density clustering [4] [17] [75] [76] [102]. It is critical to choose an

optimal distance according to the scene. For instance, LCSS distance is proved to

provide outperforming performance without concerning trajectories length [94].

Hausdorff distance aims at finding the minimum distance between two trajecto-

ries and ignore time-order in data. A comparison of distance is listed in Table I,

2.3.2 Unsupervised Algorithms of Trajectory Clustering

Unsupervised algorithms infer a function to describe internal relationships be-

tween unlabeled data. Clustering is the method to draw this hidden structure,

and some models relating to trajectory clustering are reviewed such as Densely

Clustering models, Hierarchical Clustering models and Spectral Clustering mod-

els.

21



Table 2.2: Summary of common distance measurements

Measurement types Unifying lengths Computational complexity

Euclidean distance Yes O(n)
Hausdorff distance No O(mn)

Bhattacharyya distance Yes O(n)
Frechet distance No O(mn)
LCSS distance No O(mn)
DTW distance No O(mn)

other distance types No O(1)

2.3.2.1 Densely Clustering Models

Figure 2.8: DBSCAN for trajectory clustering

Given the centroids, the closely points are packed together and this procedure

is called densely clustering. Inspired by this idea, DBSCAN is proposed in [35]

and shown in Fig.2.8. A simple presentation is shown in Fig.2.9. In DBCSAN,

point p is chosen as the core point and distance threshold ε is given in advance.
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Figure 2.9: DBSCAN

The points inside circle of which the radius is ε and the center is p are called

directly reachable to p. Furthermore, points {q1, q2, ......, qn} are reachable to p if

there is a path that q1 is directly reachable to p and each qi+1 is directly reachable

qi [59] [139]. Other points are the outliers. Thus, the distance metric and the

core parts selection are important. For solving the problem that DBSCAN cannot

cluster the trajectories with large differences in densities [64] [75] [76], all trajec-

tories are partitioned and substituted by sub-trajectories, then sub-trajectories

are clustered and all clusters are grouped at the last step. However, different from

measuring distance by Euclidean distance in [76], the distance is measured by a

combination of angle distance, center distance, parallel distance with equal Iight

in [64] and [75]. The core trajectories are computed from the clusters and used

for classifying new coming trajectory in [30], [75], [166] and [167], e.g., all trajec-

tories points belonging to same cluster are averaged as a new point at each time,

and all averaged points form the representations of clusters [75]. In an adaptive
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multi-kernel-based method, shrunk clusters represent all groups by considering

the attributes including positions, speeds and points, which retains much more

discriminative messages in [149].

Besides DBSCAN, there are some other models belonging to Densely Clus-

tering models cluster trajectory data. K-means clusters trajectories by searching

centroids of clusters repeatedly [38] [42] [57] [92] [96] [126]. For improving the

performance of K-means, EM algorithm is implemented to solve optimization

problem iteratively [170], because EM is an iterative method to find maximum

likelihood or posteriori estimates. Due to the issues such as data imprecision

and complexity of large data sets, a trajectory may belong to multiple clusters

so EM is used to classify them [65]. FCM algorithm, which is a fuzzy clustering

algorithm, employs parameters to measure the level of cluster fuzziness for each

trajectory which called fuzzifier. The algorithm searches correct direction in each

iteration for cluster trajectories [104] [105] [121].

2.3.2.2 Hierarchical Clustering Models

Hierarchical Clustering models help to understand trajectory by multiple features,

so this tree-type construction is proper to implement. Hierarchical Clustering

models generally fall into two clustering types, Agglomerative and Divisive. As

shown in Fig.2.10 and Fig.2.11, two hierarchical types are also known as “bottom-

up” and “top-down” approaches.

In Agglomerative frameworks, trajectories are grouped and the similar clus-

ters are merged by searching their common properties. Optimal classifications

are obtained by repeating representation computation and clusters merging until

meeting the requirements. Inspired by this idea, Agglomerative clustering models

Ire explored in [168] to mine the locations that users are interested, HITS model

is proposed to achieve this goal and movement tracks of users are recorded as

trajectories. Top n interesting trajectory clusters are obtained iteratively and

the most popular locations are generated.

Different from Agglomerative, Divisive frameworks cluster trajectory data into

groups and split them recursively to reach the requirements. Following this frame-
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Figure 2.10: Hierarchical clustering models

work, trajectory data are characterized by direction feature and clustered by

Dominant-set embedded Bhattacharyya distance in initial clustering stage [79].

In each cluster, trajectories are split further except for the ones holding similar

positions. Because of the good performance of iterative models, TAD model is

proposed [165] which is a Divisive framework detecting all the closed trajecto-

ries firstly and splitting them recursively. More attributes of trajectory points

are considered to improve the performance in [143]. For instance, trajectory

A = {a1, a2, · · · , an} where ai = 〈xi, yi, βi〉. It is comprised of 2-dimensional po-

sition and an additional attribute β such as velocity or object size. In the coarse

clustering step, the distance measurement between trajectory A and its nearest

observation trajectory B are shown as follows,

f(A,B) =
1

NA

∑
ai∈A

||(xai − xbψ(i), y
a
i − ybψ(i) + γd(βai , β

b
ψ(i)))||, (2.11)

where ψ(i) = arg minj∈B ||(xai − xbj, y
a
i − ybj)|| and the minimum distance value

is counted as the distance between A and B. NA is the total number of points
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Figure 2.11: Hierarchical clustering models

belonging to A, d(βai , β
b
ψ(i)) indicates the dissimilarity of A and B, and γ is Iight

parameter. In the fine-clustering stage, the model aims at distinguishing distor-

tions by considering directed similarity SA→B and confidence CA→B

SA→B =

∑
ai∈A c(ai, bψ(i))s(ai, bψ(i))∑

ai∈A c(ai, bψ(i))
, (2.12)

CA→B =

∑
ai∈A c(ai, bψ(i))

2∑
ai∈A c(ai, bψ(i))

, (2.13)

where c(ai, bψ(i)) = exp(
−||(xai−xbψ(i)

,yai −ybψ(i)
)||

σ1
) and s(ai, bψ(i)) =

exp(−d(βai ,β
b
ψ(i)

))

σ2
.

Furthermore, a similar hierarchical framework is explored to group videos

by constructing the trajectories of video [41] as an unordered tree, and a ker-

nel method recognizes videos by clustering the trees. In addition, Hierarchical

Clustering models also recognize actions from video in [112] and [127]. For two

trajectories in video, a = {xa1, xa2, · · · , xata} and b = {xb1, xb2, · · · , xbtb}, the distance

is computed as follows,
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d(a, b) = max
t∈[τ1,τ2]

dspatial[t] ·
1

τ2 − τ1

τ2∑
t=τ1

dvelocity[t], (2.14)

where dspatial[t] is the positional distance at time stamp t, and dvelocity[t] is the sim-

ilarity measurement relative to velocity. An affinity matrix w(a, b) = exp(−d(a, b))

is calculated and trajectories are clustered by greedy agglomerative hierarchical

models [112] [127]. The clusters are overlapped because of similar parts, so every

trajectory is Iighted and optimized to classify in [99]. Since one motion object may

generate several trajectories, it is critical to employ as much features as possible

to ensure object recognition, and a multi-layer classifier is invented in [5] and [79].

2.3.2.3 Spectral Clustering Models

Trajectory data can be represented as a matrix called affinity matrix, and the

relationships between them are extracted as the elements of matrix. The top

K eigenvectors form clusters with distinctive gaps between them which can be

readily used to separate data into different groups [148]. In addition, affinity

matrix characterizes videos [128] and represents the relationships. In [58], affinity

matrix A is constructed as follows,

Aij = exp[
−d̄ij
2σ2

], (2.15)

where d̄ij = 1
n

∑n
k=1 ||xi,k − xj,k||, and xi,k indicates the kth point of trajectory i.

Considering different lengths of trajectories, some novel models are explored to

construct affinity matrix [15] [16] and it is constructed as

Aij =

e
(− 1

σiσj
||vi−vj ||2)

, for i 6= j

0, otherwise,
(2.16)

where vi and vj are points, σi and σj indicates scale invariance which computed

by the median of the l nearest neighbors. In order to increase the separation of

points belonging to different groups, SVD decomposition is used to construct the

affinity matrix [72]. In addition, a novel distance method is explored to compute
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trajectories P and Q [6] so that spatial distinction can be considered.

s(P,Q) = e−
1
2
hα(P,Q)hα(Q,P )/(σpσQ), (2.17)

hα(P,Q) = ordαp∈P

(
min

q∈N(C(p))
d(p, q)

)
, (2.18)

where hα(P,Q) is the directed Hausdorff distance, ordαp∈Pf(p) indicates the value

of f(p) and N(C(p)) denotes the subset of points which the ones matching to the

point p in trajectory P .

For clustering high dimensional trajectory data by Spectral Clustering mod-

els, several novel methods are explored in [21], [53] and [161]. For example, a

mixture of affinity subspaces is applied to approximate trajectory in [21], and a

new similarity metric captures causal relationships between time series in [53].

Trajectory data are represented by considering covariance features of trajectories

in [34], so it avoids considering different lengths of trajectory data. Spectral clus-

tering works with multiple-instance learning frameworks to achieve human action

recognition in [152].

Spectral Clustering models are derived from Graph Theory in which an undi-

rected graph represents the relationships and constructs a symmetric adjacency

matrix presenting them [14]. By constructing a graph, both explicit and im-

plicit intentions inside trajectory data are mined [23]. The graph is cut into

sub-graphs to classify trajectories, and each sub-graph represents its own clus-

ter [83] [158]. Hierarchical layers search sub-clusters in each cluster by treating

trajectories points as graph nodes and this procedure is called Hierarchical graph

partitioning [47]. For considering more variables, a novel measurement function

comprised of the entropy rate of a random walk on a graph is presented in [85].

From the idea that an undirected graph can be represented as an adjacent ma-

trix, a directed graph also can be involved [81]. Trajectory Binary Partition Tree

(BPT) represents video in [103] by representing trajectories as nodes so the edges

indicate relationships between a pair of trajectories, and graph cut method groups

trajectory data. Because of the robustness of composite feature descriptors, the

descriptors including SURF and Maximally Stable Extremal Regions (MSER)

are employed in [83]. An object creates several trajectories if different parts of
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the object are tracked, so a model is invented to describe trajectories by feature

patches [86]. The edges are computed by geometric distance and appearance dis-

tance. Hausdorff distance is utilized to measure the similarities and set as Iights

of edges in [62]. Since the great performance of PageRank, it is used to score the

edges in [27], too.

2.3.2.4 Discussion

Densely Clustering models classify trajectories by distance metrics mostly, which

may result in classifying trajectory data by spatial information. Hierarchical

Clustering models fix this problem by considering more attributes in each level.

However, this operation cost much more time in computation. Spectral Cluster-

ing models compute internal relationships by analyzing the affinity matrix, and

it saves much more computational resource by processing all trajectory data to-

gether. However, [63] mentions that Spectral Clustering models have their own

limitation that they are pre-defined only for the non-negative affinities between

trajectories. Furthermore, that trajectory lengths are required to be unified is

another issue of applying Spectral Clustering models.

2.3.3 Supervised Algorithms of Trajectory Clustering

Supervised algorithms aims at learning a function which determines the labels

of testing data after analyzing labeled training data. Therefore, supervised algo-

rithms outperform others and the supervised ones could save much more com-

putation resource. In some supervised algorithms, trajectory data are classified

by unsupervised algorithms and the representations of clusters are obtained to

classify new inquiry trajectories. For example, in Densely Clustering models, the

representations can be computed from the grouped training trajectory data and

new coming trajectories are clustered quickly in [8] and [104]. Trajectory data

are classified and organized in a tree-construction and new coming trajectories

are clustered by searching the tree in [48] and [106].
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2.3.3.1 Nearest Neighbor Algorithms

Nearest Neighbor algorithms, such as k-NN algorithm, are finding a voting sys-

tem to determine the category of a new coming entity and all data are kept in the

same feature space. In trajectory clustering, the distances from an inquiry tra-

jectory to all labeled trajectory data are computed, and the label of the inquiry

trajectory is voted by its k nearest neighbors. Shown in Fig.2.12, the inquiry

trajectory is assigned as blue cluster if k = 1 and assigned as red one if k = 3.

In the implementation, it is important to choose a suitable distance metric

Figure 2.12: k-NN for trajectory clustering. Inquiry trajectory is the green one,
the labeled data are the red and the blue ones which means two clusters.

according to the scenario, occlusion, trajectory data source and feature types.

Therefore, trajectory data are represented by MBR and classified by k-NN in [44].

It avoids occlusion and increasing inter-object separability. Furthermore, trajec-

tory data are represented in Riemannian manifold [32] so their shapes can be

modeled and compared by using an elastic metric. For accessing k-NN faster,

fast nearest neighbor (fastNN) algorithm organizes trajectory data in an Oc-

tree [110]. With the increasing inquiry trajectories, the trends of trajectory data

in a fixed period are required instead of general representation, so a circumstance
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that dynamically searches the nearest neighbors in a fixed period or the ones be-

longing to some specific types is considered in [40]. As a supervised classification

method, SVM is trained to generate the hypervolume, and the inquiry trajectory

is determined as outliers if it falls outside the hypervolume [108]. Structural SVM

is explored to detect social groups in crowds in [124]. Furthermore, SVM works

with Graph Theory to cluster trajectories in [122].

2.3.3.2 Statistical Models

Statistical models exploit a set of probability distributions to represent the data

generating process such as GMM and Bayesian inference. GMM usually combines

with EM algorithm to train each component, and Bayesian inference obtains a

set of probability functions which determine the categories of inquiry trajectory

data. Bayes’ theorem is critical for Bayesian inference and written as P (A|B) =
P (B|A)P (A)

P (B)
where A and B indicate two events in event space.

GMM aims at describing the sample from {x1, x2, · · · , xn} in a component of

GMM as

P (xj) =
K∑
i=1

πiN(xj;µi,Σi), (2.19)

where N(xj;µi,Σi) is the probability density of the ith component belonging to

a component with mean µi and variance Σi. πi is the Iight with a constraint that∑K
i=1 πi = 1, and they can be computed according to event frequency. Gener-

ally, EM algorithm iteratively optimizes the parameters of GMM, but Maximum

Likelihood algorithm is implemented instead of EM if labeled trajectory data are

available in training stage. For example, video events are treated as a linear com-

bination of a set of event patterns, and two probabilistic terms are proposed to

characterize video events in [156]. Furthermore, the abnormal patterns are scored

by summarizing the probabilities of trajectory data of the corresponding video.

GMM models the variance caused by the environmental factors and embedded

into DTW to recognize gestures [10].

Bayesian inference classifies new coming data, and the classified ones update
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the probability functions of Bayesian inference. For samples {x1, x2, · · · , xn},
the probability of the corresponding labels y1:n is p(y1:n|x1:n). Derived from

MCMC algorithm, the distribution of variables can be approximated by a joint

distribution, so Gibbs sampling is used to approximate p(y1:n|x1:n) by sampling

p(yi|y−i, x1:n) iteratively. According to Bayes’ theorem, p(yi|y−i, x1:n) is repre-

sented as p(yi|y−i, x1:n) ∝ p(xi|yi)p(yi|y−i) where p(xi|yi) is the likelihood and

p(yi|y−i) is the marginal distribution. In DP model which is one of the Bayesian

inference frameworks, p(yi|y−i) is formulated as p(yi|y−i) ∝ αG0(yi)+
∑

j∈−i δ(yi−
yj) where α is scale parameter and G0 is base measure in sample space. The

clusters can be parameterized for classifying new inquiry data, e.g., DPMM is

used to represent all m clusters with parameterized indexes {Θ1,Θ2, · · · ,Θm}
in [56]. Finally, the new inquiry trajectory is classified by a trained DPMM as

p(Θk|R) ∝ p(R|Θk)p(Θk) where p(R|Θk) is the likelihood and p(Θk) is the prior

probability. In order to learn coupled spatial and temporal patterns, HDP algo-

rithm is applied in [135]. Bayesian model is used to segment object by classifying

trajectories, so that human motion is also detected [31].

2.3.3.3 Neural Network

Neural network is an artificial system simulating the biological neural network in

animal brains. The network is constructed by a number of mutually connected

neurons, and each neuron is represented as a real number. Neural networks

can represent data such as deep generative model and applied in Computer Ver-

sion mostly, as shown in Fig.2.13, which is a popular graph presentation. It is

trained to represent multivariate time series if trajectory data are generated as

a vector [155], and a deep fully-connected Neural Network with Iight decay and

sparsity constraint transfers trajectory data from different viewpoints to a fixed

viewpoint in compact representation [111].

In most cases, Neural Network is used to classify data. It can be vieId

as a mathematical function f : X → Y where X is the observation and Y in-

dicates the corresponding label. For example, CNN or called ConvNet consists

of multiple layers including convolutional, pooling and fully connected layers.
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That layout tolerates the variations of the input data, avoids overfitting prob-

lem and distinguishes data as similar as MLP. CNN has been proved efficient

in clustering issue of computer vision. As Fig.2.13 shown, CNN is comprised

by two convolutional layers, two pooling layers, two fully connected layers and

one output layer which acts as an image classifier. CNN is employed for trajec-

tory clustering in [26] and [146]. Furthermore, CNN also ranks the trajectory

clustering results in [39]. A flexible deep CNN called Deep Event Network is

trained by ImageNet data set, and the trained Deep Event Network is tuned to

extract generic image-level features of trajectory data in [43]. In order to figure

out the differences between image classification and multimedia event detection,

DevNet fine tunes parameters by a specific data set, and backward passing is

employed to identify pixels in consecutive frames to recount events. DNN is an-

other Neural Network which learns a more compact and powerful representation

of trajectories [49]. Furthermore, DNN keeps the structural relationships between

trajectories in [119], and mines the relationship between multiple features includ-

ing spatiotemporal features, audio features and inter-class relationship to classify

videos in [61] and [147]. Self-Organizing Map learns the similarities between tra-

jectories in a 2-dimensional grid and each element of the grid indicates a specific

prototype in [97] and [117]. In training steps, each training trajectory is trying

to find the most suitable prototype in network, and adjust the neighbors of the

matched one accordingly.

2.3.3.4 Discussion

Nearest Neighbor algorithm only considers the spatial relationships between a

pair of trajectory data but ignores local characters. Statistical model makes up

for this imperfection by combining them in a mixture model or inferring the

relationships in Bayesian models. Neural Network considers the differences of

trajectory data and requires a huge number of data to train it. Though the su-

pervised methods obtain the classifiers by observing a number of training data,

overfitting problem may happen when the model overreacts training data.
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2.3.4 Semi-supervised Algorithms of Trajectory Cluster-

ing

Semi-supervised algorithms fall between unsupervised algorithms and supervised

algorithms. The algorithms make use of a small number of labeled data and

continuous inquiry data to complete tasks. The model is trained by labeled data

firstly, then inquiry data are kept sending to the trained model to make sure that

it can be updated to outperform the previous model. Semi-supervised procedure

needs only a small cost in terms of human classification efforts. This procedure

not only avoids overfitting problem, but also is more accurate than the unsuper-

vised ones.

Therefore, some semi-supervised algorithms are invented from unsupervised

or supervised algorithms. For example, trajectory data are classified firstly and

the new inquiry ones are clustered to update the classifier automatically [48]

[73] [141] [156]. Detected anomaly trajectory data are used to recalculate the

representation of anomaly trajectory clusters in [73]. Trajectory data of video

are modeled as the combination of normal and abnormal patterns, and proba-

bilistic terms characterize the patterns in [156]. From this modeling, the terms

can be updated by the detected inquiry trajectory. In order to detect abnormal

trajectories faster in complex scene, low-rank approximation is employed to de-

scribe trajectory data and the new detected abnormal ones update the threshold

in [141].

Inspired by Hierarchical Frameworks, trajectories and the clusters are repre-

sented as a tree where children nodes indicate trajectories and roots denote the

representations of the clusters in [69], [80] and [107]. A new cluster is created if no

clusters close to the inquiry trajectory. Trajectory T is constructed as a vector of

2 dimensional coordinates T = {t1, · · · , tn} where tj = {xj, yj}. A representation

of cluster is computed as Ci = {ci1, · · · , cim}, where cij = {xij, yij, σ2
ij} and σ2

ij

is an approximation of the local variance of the cluster i at time j. The inquiry

trajectory is assigned to the nearest cluster and the corresponding cluster should

be updated by the new one. For the nearest cluster point c = {x, y, σ2} to the

point of trajectory t = {x̂, ŷ}, c is updated as following

34




x = (1− α)x+ αx̂

y = (1− α)y + αŷ

σ2 = (1− α)σ2 + α[dist(ti, cj)]
2,

(2.20)

where α is the update rate between 0 and 1.

Considering the fact that Bayesian model is derived from Bayes’ theorem, the

parameters are optimized by sampling training data, and it is feasible to update

the model by classified new inquiry data [56]. Furthermore, in order to add new

trajectory data, the previous samples and the new ones are sampled by Gibbs

Sampling as

p(ηi|η−i, y1:N+φ) = p(ηi|η1:N = W1:N , η
new
−i , y1:N+φ), (2.21)

where y is trajectory data, η1:N indicate the known states of the previous samples,

and N + 1 < i < N + φ. ηnew−i denote the states of new inquiry trajectory data

except for the ith one. From Bayes’ theorem, the cluster process is rewritten

as p(yi|ηi)p(ηi|η1:N = W1:N , η
new
−i ). p(yi|ηi) is estimated by the previous samples

and it is assumed to be Gaussian distribution. The only issue need to be fixed is

carrying out Gibbs Sampling on ηN+1:N+φ to compute p(ηi|η1:N = W1:N , η
new
−i ).

2.4 Conclusion

In this chapter, we reviewed the methods of trajectory classification. Accord-

ing to the fact that trajectory data have a variety of characterizations and data

forms, training data have been involved or motion information such as speed value

are recorded. Then, different algorithms are required to reach the goal, so they

are classified into three categories: unsupervised, supervised and semi-supervised

algorithms. Unsupervised algorithms are called as clustering methods, and it

can be grouped into three sub-categories: Densely Clustering models, Hierarchi-

cal Clustering models and Spectral Clustering models, and Spectral algorithms

take better performance in this category. By means of a comprehensive analysis,

we found that unsupervised algorithms have the disadvantages of high computa-
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tion cost and heavy memory load, though there is no training data requirement

or human experts’ supervision. Supervised algorithms are divided into Near-

est Neighbor algorithms, Statistical models and Neural Network. Furthermore,

Neural Network is applied to solving a number of issues including trajectories

classification. Although a huge number of training data and plenty of time are

needed to understand the construction inside trajectory data by training Neural

Network, it is fast on classifying the new coming trajectory and shows robustness,

accuracy in the real-time application. Semi-supervised algorithms combine the

advantages of both previous algorithms, but validation step and correction step

are required to iterate several times. Therefore, it reduces computation time and

it is suitable for the scenario that a small number of labeled data is involved.

From the above discussion, some novel models employ more feature and most

of them consider spatial information. However, only spatial information presents

location, distance from others and traveled distance, the motion trajectory rel-

ative to world, direction, motion streaming and some other information are dis-

carded. Therefore, we need to find a way to employ trajectory data directly or

transfer them into another representational space. Furthermore, the motion rel-

ative to recording device should also be recorded, because a lot of trajectories

generating by static objects have similar shape with recording device. According

to the above discussion, a novel model is needed to combine two different seman-

tic features, which are continue feature and discrete feature. In the case that

big size of data set, small number of categorizes and the independence between

arbitrary two trajectories involves here, topic model is employed to implement

trajectory clustering and find the hidden “topics”. My algorithm flow is shown

in Fig.2.14.
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Figure 2.13: CNN is one of the classical models of Neural Network and widely
used in images classification
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Figure 2.14: Our proposed algorithm clustering trajectories
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Chapter 3

Trajectory generation with SIFT

Generating trajectory from video data set impedes the efficiency of clustering ap-

proaches. However, most methods record the object tracks by manually tagging.

Although the objects are tracked by most advanced methods [37] [90] [91], the

the size is different in different frames, and it also influences the accuracy of the

clustering. In order to fix the above issues, multiple points are extracted and

characterized to represent one single object. Furthermore, the feature extraction

and description methods are supposed to be robust in the our algorithm. There-

fore, based on the discussion in Chapter 2, we use SURF and SIFT algorithm to

locate and track the objects. In doing so, multiple fixed features are extracted

and represent single object in the video. In doing so, the points are located

and described by SURF in fast and robust characterization, and SIFT tracks

the features in consecutive frames. However, 2D image coordinates contain less

information than 3D real world coordinates, so we rectify 3D coordinate into 2D

image coordinates and compare them with the extracted feature points. Experi-

ments show the our generation method can extract trajectories fast and efficiently.

3.1 Methodology

In this section, we introduce the method that detect and track the characterize

points tasks. Furthermore, characterize points are the feature points of objects
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and described in feature descriptor, so that is a critical task in our implementa-

tion. Firstly, we introduce the SURF algorithm detecting the points. Then, we

explain how SIFT algorithm tracks the points and the corresponding 3D coordi-

nates are chosen to represent the trajectories. Finally, we show the experiment

results improving the efficient of trajectory generation.

3.1.1 Characterize points detection

Similar but different to SIFT algorithm, some square-shaped filters are employed

as Gaussian smoothing. In this way, it faster than SIFT to locate the characterize

points. In order to improve the performance of computation accuracy, Hessian

matrix H(x, σ) is used to measure the location and its scale [11]. Given pixel

x = (x, y) of image I, H(x, σ) of pixel x is

H =

(
Lxx(p, σ) Lxy(p, σ)

Lyx(p, σ) Lyy(p, σ)

)
(3.1)

where Lxx(p, σ) is the convolution of second-order derivative of Gaussian with

image at x, and it is similar to the other elements in equation.(3.1). σ dedicates

the scale in the above. In general, we use a box filter of size 9×9, which approxi-

mate to a Gaussian second order derivatives with σ = 1.2 and Fig.3.1 shows how

box filter works on an image.

In some methods, Gaussian filters are applied to generate image pyramids,

which means repeatedly smoothed with a Gaussian and sub-sampled to achieve

the goal. In such a method, Hessian matrix, there is no need to apply Gaussian

filters iteratively. Furthermore, the other layers of image are resulted from the

filters of size 15, 21 and so on accordingly.

3.1.2 Characterize points tracking

After detecting the characterize points, the next step is tracking the points and

consist them into trajectories. A proper descriptor is critical to match the two

points belonging to different frames. SIFT algorithm transforms an image into

a large set of local feature vectors, and each feature vector is invariant to image
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Figure 3.1: Box filters approximates to Gaussian second order in y- and xy-
direction [11].
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translation, scaling, rotation and illumination. However, different SIFT algo-

rithm, we use SURF feature detector to locate the characterize points. For the

descriptor and matching step, SIFT algorithm is employed because it outperforms

other contemporary local descriptor on a lot of complicated scenes. From SIFT

algorithm, it gives each point two types of features as the representation. The

first one is orientation, it achieves that the descriptor is invariance to rotation,

location and scale by computing the gradient magnitude m(x, y) and orientation

θ(x, y) as follow,

m(x, y) =

√
(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y − 1))2 (3.2)

θ(x, y) = atan2((L(x+ 1, y)− L(x− 1, y)) , (L(x, y + 1)− L(x, y − 1))) (3.3)

where L(x, y) indicates an image sample, the magnitude and direction calculations

are done for each pixel in a neighboring region around characterize point which

we located by SURF feature. Furthermore, an orientation histogram with 8 bins

is formed and each bin covers 45 degrees, and example is shown in Fig.3.2. For

each sample, it added to a histogram bin is weighted by its gradient magnitude.

Given the computation of each image pixel, a description is presented as

follow. SIFT algorithm segments 16 × 16 region with characterize point as the

centering one, and the region contains 4 sub-regions which is 4 × 4 pixels size.

In each sub-region, every pixel is computed and obtain an orientation histogram

with 8 bins. The histogram is computed by using a Gaussian-weighted window

with σ that is 1.5 times that of the scale of the characterize points. In doing

so, a descriptor is generated and presented as a vector of all the values of these

histogram, and it has 128 elements. In order to enhance invariance to affine

changes in illumination, the description vector is also need to be normalized in

unit length.
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Figure 3.2: Orientation histogram

3.2 Experiments

The aim of the implement is two-fold: (1) to test if the characterize points of

meaningful object can be extracted; (2) to test if the trajectories can be gener-

ated. From the review of the above, we compare SURF and SIFT with other

algorithms, and decide to apply them to generate trajectory data from video

dataset.

We conduct experiments on tracking benchmarks of the KITTI Vision Bench-

mark Suite [45], which are collected by drive a standard station wagon with two

high -resolution camera and grayscale video cameras around mid-size city. For

tracking benchmarks, it developed by its specific purpose, tracking, and it has

21 training sequence including 1756 images. We apply label information on each

trajectory by identifying its first point of the corresponding trajectory which label

belong to.

For global setting, 400 is the minimum Hessian threshold throughout our ex-

periments. We use the default setting of [87]’s SIFT algorithm parameter setting,
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and the parameters settings are given as follow,

Table 3.1: SURF parameters setting

Hessian threshold 400
Octaves number 2

feature dimensions 64

Table 3.2: SIFT parameters setting

feature numbers 100
Octaves number 2

contrast threshold 0.04
Gaussian function σ 1.6

3.2.1 SURF algorithm

We choose first 100-150 images from all sequences, the minimum Hessian thresh-

old was chosen as 400, and the results are shown in Fig.3.3.

3.2.2 SIFT algorithm

As Fig.3.3 shown, a bunch of characterize points are located. However, only a

small set has meaning, and most of them belong to miscellaneous. Therefore,

we apply label information on that and choose the points meaningful, few other

points are chosen as miscellaneous points. Furthermore, after computing the dis-

tance between arbitrary two feature descriptor, we set a distance threshold to

choose some good matches. We display some matching results in Fig.3.4 and

Fig.3.5. From the results, we found the matched points could coming from dif-

ferent objects. Therefore, we compute the distance from the current point to

original point and make a comparison between them to measure if one object
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Figure 3.3: Results of experiments on the first image of first three sequences in
KITTI data set.

them came from. In the case that the ego-vehicle platform is moving, so the still

object is moving relative to the ego-platform, but the speed and relative motion

of all still objects are same. Therefore, in the feature extraction step, we have to

take into account all these factors and classify the trajectories by using them.

Based on our opinion, we generate 350,609 trajectories and most of them are

meaningful such as pedestrian, van, car, tram and cyclist. After that, we match

the characterize point to 3D real world coordinate. Camera calibration technol-
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ogy is used here to calibrate the point from 3D real world coordinate to 2D image

coordinate. Furthermore, 3D coordinate and image data are recorded by Lidar

device and camera, respectively, so the calibration between two different devices

is also needed.

3.3 Conclusion

In this chapter, we proposed a method to locate, extract and connect points as

trajectory, and find their label for further use as well. The method is specifically

designed for generating trajectory in 3D real world coordinate that have camera

calibration, characterize point location and characterize point connection. We

illustrate how to find the points in 3D environment. To increase the accuracy of

generation, we propose to compute the distance between two points belonging to

the consecutive frames. respectively. Experimentally, our method generates a lot

of trajectory data and most of them have meaning. In future work, we will focus

on image segmentation and choose one point to represent object and improve the

performance of trajectory generation.
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Figure 3.4: Results of experiments on arbitrary three images of the first sequence
of KITTI data set.
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Figure 3.5: Results of experiments on arbitrary three images of the second se-
quence of KITTI data set.
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Chapter 4

Trajectory Feature Extraction

In Chapter 3, trajectory data are generated by connecting characterize points in

consecutive frames. If the spatiotemporal information are treated as main fea-

tures or factors to cluster, classification performance could be improved. With

spatiotemporal information, a feature extraction method can be implemented

here.

Trajectory data contains a lot of information about objects, which even can

help computer to recognize what the object is. Therefore, a proper method is

needed to extract the features including all information. Most existing methods

focus on single type feature such as motion and relative location, but it ignores

other information. For example, vehicle can be recognized by its motion but it

could be confused with cyclist, so it only be separated if speed information is in-

volved in clustering step. In this chapter, we extract two types features including

continues feature and discrete feature.

In this chapter, we propose to extract two different feature types of trajectory

data. First, the coefficients of DFT are extracted to represent the spatiotemporal

information in unique frequency domain, and it is important that all trajectory

data are transformed into a fixed number of parameters. Then, we compare the

initial and end states of object trajectory to obtain the relative motion of the

corresponding object.
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4.1 Methodology

Trajectory data contain a lot of information that is useful for trajectory cluster-

ing. However, limited methods are proposed to extract them and the extracted

information are finite. Therefore, DFT and relative motion are employed to rep-

resent trajectory data.

Furthermore, another issue need to be fixed, the trajectory length. Trajectory

data are recorded as different length. For example, suppose we have two trajec-

tories, Trajectory1 = {tr1, tr2, · · · , trm1} and Trajectory1 = {tr1, tr2, · · · , trm2},
which have different lengths, so we need to find a proper method to measure

the difference between Trajectory1 and Trajectory2 which difference from some

popular methods such as Distance measuring methods. Therefore, that is a issue

if m1 6= m2 and they hold much information including trajectory lengths.

4.1.1 Continuous Features

DFT is an algorithm converting digital signals in time domain to the samples in

frequency domain. The coefficient of DFT are the parameters of sine and cosine

function, so we can use same number of parameters represent different trajecto-

ries. That operation makes data could been compared under same circumstance.

For DFT, it is defined as follow,

Xk =
N−1∑
n=0

xn · exp

(
−2πi

N
kn

)

=
N−1∑
n=0

xn · [cos (2πkn/N)− i · sin (2πkn/N)]

(4.1)

where {xn} have N elements. All {xn} can be transformed into {Xk} and each Xk

is represented by the combination of
∑N−1

n=0 xn cos (2πkn/N) and
∑N−1

n=0 xn sin (2πkn/N).

We collect trajectory data as 3 dimensional format as tri = (xi, yi, zi), so we
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can get 3 set of DFT coefficients as Xk, Yk and Zk.

Xk =
N−1∑
n=0

xn · exp

(
−2πi

N
kn

)

Yk =
N−1∑
n=0

yn · exp

(
−2πi

N
kn

)

Zk =
N−1∑
n=0

zn · exp

(
−2πi

N
kn

)
(4.2)

Furthermore, we can set the number of coefficients are fixed, even though

the number of points in each trajectory may vary. The coefficients of DFT fol-

low continues distribution, so we call the coefficients of DFT as continues feature.

4.1.2 Discrete Features

Although we have extracted continues features, the object status is still unknown

because the still objects may have similar or even same trajectory. For example,

two objects on the roadside may have motion when the recording device is moving

on the road, even one of them is on the road such as stopping vehicle. Therefore,

the object motion related to recording device is critical to determine whether it

is still, it improves the performance of feature extraction and clustering accuracy.

Based on the above discussion, we need to compute the distance that object

moved. However, it could be large in most circumstance, for example, a parking

vehicle on the roadside could be recorded for a brunch of frames and generate

a large of trajectory points, so the distance between the first point and the last

one would be a big distance. Therefore, in the real world, it is unexpectable

to determine the motion with regard to the ego-platform when 3D positions of

trajectory apply in our model.

We prefer to use the data that record in ego-viewpoint, for instance, camera

device [162]. In each frame, objects are observed and recorded in ego-device’s

viewpoint, i.e. what you see is what you get relative to your position in Fig.4.1

and Fig.4.2.
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Figure 4.1: Top to bottom: 0th, 40th, 80th and 120th frame in 1st sequence of
KITTI benchmark. A white van and a cyclist keep staying in the center area of
camera image. According to that ego-platform is moving, we have the information
that the van and the cyclist is moving.
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Figure 4.2: Top to bottom: 120th, 130th and 140th frame in 1st sequence of
KITTI benchmark. The vehicles parking on the roadside moving a big distance
in camera image, such as the silver one moving from center area to border area.

The relative motion only used to determine the object motion status, so we

call this type of feature as Discrete feature.
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4.2 Experiments

Our experiments are still conducted on tracking data set of KITTI benchmarks.

For continues feature, we follow equation.(5.1) to generate the features. For

discrete features, we propose to split the image frame into 3 × 3 patches and

compute the object moving distance from the start to the end, shown in Fig.4.3

and Fig.4.4. By computing the distance of object traveled, we can determine the

corresponding object is moving or not, even it slower or faster than the speed of

camera device.

Figure 4.3: Results of split camera image into 3× 3 patches. The white van and
cyclist are keeping in the center area.
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Figure 4.4: Results of split camera image into 3× 3 patches. The white van and
cyclist are keeping in the center area.

4.3 Conclusion

This chapter proposes to extract two different features which is continue feature

and discrete feature to represent trajectory data. Experiments on KITTI bench-

mark show it efficient on describing object motion status. However, it still have

some issues need to be noticed and improved that, one object may have multiple

trajectories including long trajectories and short trajectories. The short ones may

not properly describe the object motion status, even few information inside the

coefficients of DFT. Therefore, a threshold is needed to determine which trajecto-

ries are required and suitable for feature extraction, which means the trajectories

we need are the ones have long tracks.
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In the following chapter, we will introduce dual-variable LDA model to process

all these features to cluster trajectory data. According to the fact that LDA al-

gorithm has state-of-art performance in clustering algorithm, we proposes a novel

algorithm to analysis two different features and give a cluster result. Hence, the

proposed dual-variable LDA model is expected to boost the clustering accuracy.
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Chapter 5

Dual-variable LDA Model for

Trajectory Clustering

As a type of statistical model for discovering the abstract “topics” that occur in

vocabulary corpus, topic model is an efficient and fast method to classify query

data, but the input data is only vocabulary words or bag of words. Due to its

great performance and highly accuracy, a lot of models use topic model to imple-

ment clustering works [68] [74] [114] [142].

Furthermore, according to the application in real world, we prefer to employ

unsupervised classification method, or called clustering method, to implement our

trajectories clustering. As a model employing a lot of features and categorizing

into small number of topics, topic model is a proper method to implement the

goal. However, only one type of semantic feature is considered. Thus, a topic

model considering two more semantic features is needed here. Motivated by [67]

and [77], we propose a model to discover semantic content from the obtained

evidences. Furthermore, our model is derived from topic model [78], which is

derived from pLSA [51] [52] and LDA [12] [133]. Specifically, LDA is a generative

probabilistic model introduced, and it is a three-level hierarchical Bayesian prob-

abilistic model that a mixture of a latent set of distributions of discrete semantic

data to set topics. Our multi-modal LDA model is derived from LDA model. It

is a generative model that allows a set of few unobserved words explaining a large

set of observed words. In simple words, the observed data can be clustered into
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categories which could be described by few topic words. In the previous chapter,

we obtain the features of trajectory data, but they are different types and have

different data type. Hence, we need to propose a novel method to process these

features and classify them into corresponding categories, because words, one of

the discrete features, is only input data that LDA model can process.

In this chapter, we present dual-variable LDA model by combining discrete

and continue features, which discrete feature are traditional input of LDA model.

In doing so, spatiotemporal feature which act as continues feature and motion

feature which act as discrete feature are both applied in clustering model and

improve the performance. However, traditional LDA model only considers dis-

crete feature, vocabulary words, so we need to derive a novel distribution function

to estimate the probability of continues feature allocating to the topics. Then,

Gibbs sampler has been approved the accuracy and fast in sampling proper words

and assigned into topics, and it is a MCMC algorithm for obtaining a sequence

of observations which are approximated from a specified multivariate probability

distribution. Therefore, we need to find a sampling method for the coefficients of

DFT and it should be suitable for sampling in our model. Finally, we combined

two probability distribution together to form the assignment results and obtain

the categories for each trajectory.

LDA algorithm are efficient to process semantic data and it was presented

as a graphical model [12]. More than semantic data, a lot of other features are

involved as well [1] [68] [142]. It still remaining challenging to improve the perfor-

mance and operating speed for clustering images or video data. A straightforward

method to cluster visual words which indicate image patch to generate a few set

of topics, and all visual words are consist as documents [123] [142]. The method is

useful to segment the objects from image and classify them into categories. Fur-

thermore, LDA algorithm is used for recognize human actions [100]. However,

they all employ low-level visual words, such as image patches, spatial interesting

points and pixels, into topics with semantic meaning.

In this chapter, we propose a dual-variable LDA algorithm to process two

variables extracted from single data. Firstly, a dual-variable LDA model for two

discrete features is proposed and apply on lecture videos, which represent as two

semantic words sets extracted from the speech of speaker and content of slides,
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we call this model as multimodel-LDA model. After that, another dual-variable

LDA model is further derived to process trajectory data, represented by continues

feature and discrete feature, and it will have an experiment on KITTI benchmark.

Lecture videos are knowledge sources, intellectual properties of university and

material for multimedia course ware and teaching evaluation. Compared with

text in the book, lecture video has many unique advantages: it is more salient

and attractive, so it can grab users’ attention instantly; it carries more visual in-

formation that can be comprehended more quickly. Currently, data, speech and

digital TV broadcast are regarded as the most considerable contents of online

learning or e-learning is rapidly emerging in the world, and separate education to

students distributed around the world. According to the booming of Internet and

digital technology, Internet based distance learning has many advantages such as

high degree of interactivity, a variety of courses is available at any time, uses

less bandwidth. To give background, Web Based Training is a computer-based

educational service that uses the Internet to support distance learning. And this

technology is becoming popular for providing university courses and business

training as it allows students to learn wherever they are situated.

Therefore, how to mine the related knowledge and corresponding multime-

dia from Internet is a key for online-learning. For this purpose, we propose a

system that users can efficiently find their interesting multimedia from the Inter-

net. Furthermore, users can publish their note or comments for some lectures,

and share with other users through the network. This makes a community for

online-learning, which is interactive and efficiently. Therefore, the content-based

multimedia retrieval is an important problem for our system.

Different from general multimedia on the Internet, lecture videos contain many

information sources. Specially, a lecture video also contains speech of speaker,

and the video usually contains the slides for the lecture, as shown in Fig.5.1. Fur-

thermore, there are some scripts or PowerPoint for the lecture on the Internet.

The fusion of this video is important for content-based multimedia retrieval.

As shown in Fig.5.1, our system first segments each video into shots, and

obtains two kinds of information from each shot: speech of speaker and content

of slides. Regards to speech of speaker, we extract what the speaker has said by

ASR which is an algorithm extracting semantic text from spoken language. Re-
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Figure 5.1: Multimodel-LDA based topic discovery for lecture videos.

gards to content of slides, we first extract keyframes of the shot, which is defined

as the frame that contains the slides of the lecture. Since the video of lecture

usually contains two kinds of frames: one is an image of speaker, the other is an

image of slides. It is obvious the frames contains slides contains more useful clue

for content analysis. After keyframe extraction, we extract what the slide shows

by OCR which converts text from images to machine-encoded text. Therefore, we

obtain two sets of texts from the shot, which are treated as evidence for semantic

content analysis. In this section, we propose a model for discovery of semantic

content from the obtained evidence, as shown in Fig.5.3(b).

After multimodel-LDA model for two discrete variables, we furthermore de-

rive a dual-variable LDA model for two different variables in the following section.

This is a more proper method to solving trajectory data generated from video

data. Trajectory are represented as vector and one variable indicating object

motion status. All variables are set up as word-document assignment and a gen-

erative procedure to assign words to documents.
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Figure 5.2: Dual-variable LDA model for trajectory data.
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5.1 Multimodel-LDA Model for Semantic Topic

Discovery

Topic model, such as pLSA [51] [52] and LDA [12], is originally proposed for

text processing, where the topics are described by a distribution of words. For

example, LDA is a generative probabilistic model introduced. It is a three-level

hierarchical Bayesian probabilistic model that a mixture of a latent set of distri-

butions of discrete semantic data to set topics, as shown in Fig.5.3(a).

Figure 5.3: (a). standard LDA model. (b). multi-modal LDA model
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5.1.1 Evidence Extraction

Before we process semantic information from video, we need to extract that by

some methods. In lecture video, speakers teach knowledge to students or Inter-

net users through speaking and showing slides, so semantic information can be

extracted from lecture’s presentation and slides on projector.

ASR can extract information from speech through capturing spoken words

and then classify words groupings to form a sentence. It is a computer-driven

and transcribes spoken language into text that can be read by using real time.

An ASR system to function, it must follow three steps. The system will capture

words that are recording with any storage device, and then converting the digi-

tal signals of the speech into syllables (phonemes). This is referred to as feature

analysis. Next, the system will match the spoken syllables to a phoneme sequence

that is kept in an acoustic model database. This is called pattern classification.

The system will then try to make sense of what is being said by comparing the

word phonemes from the previous step, this time with a language model database.

Based on ASR, speech information can be extracted.

OCR extracts semantic information on slides through scanning and translat-

ing image of handwritten, typewritten or printed text into machine-encoded text.

An OCR system recognizes the fixed static shape of the character and using a

smaller dictionary to match recognized words, so that it can increase recognition

rates. Through this technology, the semantic information on slides can be ex-

tracted.

5.1.2 Multimodal-LDA Model

The Markov chain Monte Carlo is constructed to converge to the target distri-

bution [46]. Furthermore, [51] uses Gibbs Sampler, the heat bath algorithm in

statistical physics, where the next state is reached by sequentially sampling all

variables from their distribution when conditioned on the current values of all

other variables and the data. So based on this thinking, Thomas proposed the

equation
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P (zi = j |z−i,w ) ∝
n

(wi)
−i,j + β

n
(wi)
−i,j +Wβ

n
(di)
−i,j + α

n
(di)
−i, + Tα

(5.1)

where n
(·)
i is a count that does not include the current assignment of zi . This

result is quite intuitive; the first ratio expresses the probability of wj under topic j,

and the second ratio expresses the probability of topic j in document di. Having

obtained the full conditional distribution, the Monte Carlo algorithm is then

straightforward. {zi} are initialized to values in {1, 2, · · · , T}, determining the

initial state of the Markov chain. We do this with an online version of the Gibbs

sampler.

Table 5.1: Multimodal-LDA variable list

α Dirichlet prior parameter on the per-document topic distributions
β Dirichlet prior parameter on the per-topic word distribution based on ASR
λ Dirichlet prior parameter on the per-topic word distribution based on OCR
θi the topic distribution for document i, and theta∼ Dir(α)
α the word distribution for topic i based on ASR, and Φ ∼ Dir(β)
α the word distribution for topic i based on OCR, and δ ∼ Dir(λ)

1. Choose θi ∼ Dir (α), where i ∈ {1, · · · ,M} and Dir (α) is Dirichlet Distribu-

tion;

2. For each ASR words vector wi of WASR, choose φi ∼ Dir (β), where wi ∈
[1, · · · , wW1 ];

3. For each OCR words vector lj of WOCR, choose δj ∼ Dir (λ), where lj ∈
[1, · · · , lL1 ];

4. For each word wi in the ASR word set:

• Choose zi ∼Multinomial (θi).

• Choose wi from p (wi|zi, β), a multinomial probability conditional on the topic

zi
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5. For each word lj in the OCR word set:

• Choose zj ∼Multinomial (θj).

• Choose lj from p (lj|zj, β), a multinomial probability conditional on the topic

zi

Now, we explain these variables in Table.5.1. According to Thomas’s thinking,

we advised LDA model based on Gibbs Sampler so that they can input two avail-

able and cluster them based on semantic information. And we get words from

videos by ASR, get words from videos by OCR, and given documents containing

topics expressed over words. Based on [46], we need to derive equation include

two variables.

Φ is T × V Markov matrix, where V is the dimension of the vocabulary and

T is the dimension of the topics, and each row of which denotes the word dis-

tribution of a topic. Our strategy for discovering topics differs from previous

approaches in not explicitly representing θ and δ as parameters to be estimated,

but instead considering the posterior distribution over the assignments of words

to topics p (L|Z). We then obtain estimates of θ and δ by examining this poste-

rior distribution.

Before we derive multimodal-LDA algorithm, we have to derive Gibbs sam-

pling based LDA model firstly. we should notice that α is a value. Although

these hyper-parameters could be vector-valued, we assume symmetric Dirichlet

priors because of the purposes of Gibbs sampling based LDA model, with and

each having a single value. However it is a k dimensional vector in original LDA

model. With generative model, the formula can be written as

P (Z,W|α, β) = P(Z|α) ·P(W|Z, β), (5.2)
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where P (Z|α) and P (W|Z, β) are derived in the following.

P (Z|α) =

∫
θ

P (Z, θ|α)dθ

=

∫
θ

∏
d

P (Zd|θd)P(θd|α)dθ

=

∫
θ

∏
d

P (θd|α)
∏
n

P(Zd,n|θd)dθ

=
∏
d

∫
θd

P (θd|α)
∏
n

P(Zd,n|θd)dθd,

(5.3)

where d indicates document index and n denotes word index. Furthermore, d, n

are integer values, and d ∈ [1, D], n ∈ [1, N ]. P (θd|α) is chosen from a Dirichlet

Distribution, and P (Zd,n|θd) is equal to
∏

t θ
ndn,t
d,t where t indicates topic index,

ndn,t is the total number of the nth word belonging to the dth document that

assigning to the tth topic. Therefore, we can obtain

P (Z|α) =
∏
d

∫
θd

P (θd|α)
∏
n

P(Zd,n|θd)dθd

=
∏
d

∫
θd

1

B(α)

∏
t

θα−1
d,t ·

∏
n

∏
t

θ
ndn,t
d,t dθd

=
∏
d

∫
θd

1

B(α)

∏
t

θα−1
d,t ·

∏
t

θ
∑
n n

d
n,t

d,t dθd

=
∏
d

∫
θd

1

B(α)

∏
t

θ
α−1+

∑
n n

d
n,t

d,t dθd

=
∏
d

1

B(α)

∫
θd

∏
t

θ
α−1+

∑
n n

d
n,t

d,t dθd.

(5.4)

According to the properties of Dirichlet Distribution,
∫
Dir(α)dx =

∫
1

B(α)
xα−1dx =

1, then we can get
∫
xα−1dx = B(α).

66



P (Z|α) =
∏
d

1

B (α)

∫
θd

∏
t

θ
α−1+

∑
n n

d
n,t

d,t dθd

=
∏
d

1

B (α)
·B

(
α +

∑
n

ndn,t

)

=
∏
d

Γ (Tα)

Γ (α) T
·
∏

t Γ
(
α +

∑
n n

d
n,t

)
Γ
[∑

t

(
α +

∑
n n

d
n,t

)]
=

(
Γ (Tα)

Γ (α) T

)D
·
D∏
i=1

∏T
t=1 Γ

(
α + ndt

)
Γ
(
Tα + nd(·)

) .

(5.5)

From the equation.(5.5), P (Z|α) is only relating to documents and topics. For

the second term P (W|Z, β) of equation.(5.2), the derivation is following,

P (W|Z, β) =

∫
Φ

P (W|Φ,Z, β)P (Φ|Z, β) dΦ

=

∫
Φ

P (W|Φ,Z)P (Φ|β) dΦ

=
∏
t

∫
φt

P (W|φt,Z)P (φt|β) dφt

=
∏
t

∫
φt

P (φt|β)
∏
n

∏
d

P (wd,n|Zd,n = t, φt) dφt.

It should be concern that Φ are the words distributions over K topics and

they are unrelated with document, so we assume that wn,d is corresponding to

the vth word in the vocabulary where v ∈ [1, V ].

P (W|Z, β) =
∏
t

∫
φt

P (φt|β)
∏
n

∏
d

P (wd,n|Zd,n, φt) dφt

=
∏
t

∫
φt

1

B (β)

∏
v

φβ−1
t,v ·

∏
v

φ
nt,v
t,v dφt

=
∏
t

1

B (β)

∫
φt

∏
v

φ
β−1+nt,v
t,v dφt

=
∏
t

1

B (β)
B (β + nt,v)
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=
∏
t

Γ (V β)

Γ (β)V
·
∏

v Γ (β + nt,v)

Γ [
∑

v (β + nt,v)]

=

(
Γ (V β)

Γ (β)V

)T
·
T∏
t

∏
v Γ (β + nt,v)

Γ
(
Nβ + nt,(·)

) . (5.6)

Therefore, from equation.(5.5) and equation.(5.6), the generative model are rewrit-

ten as

P (Z,W|α, β) =

(Γ (Tα)

Γ (α) T

)D
·
D∏
i=1

∏T
t=1 Γ

(
α + ndt

)
Γ
(
Tα + nd(·)

)


×

[(
Γ (V β)

Γ (β)V

)T
·
T∏
t

∏
v Γ (β + nt,v)

Γ
(
Nβ + nt,(·)

)] .
(5.7)

Posterior probability can be obtained by Bayes’ theorem,

P (Z|W) =
P (Z,W)∑
Z P (Z,W)

. (5.8)

It is difficult to compute posterior probability P (Z|W) directly, because the

denominator
∑

Z P (Z,W) =
∑D

d=1

∑N
n=1 P (Zd,n,W) cannot be compute. Thus,

Gibbs sampler is employed to solve the equation. Gibbs sampler is derived from

Markov chain Monte Carlo (MCMC) algorithm for obtaining a sequence of sam-

ples by applying sampling method iterative, and it useful when direct sampling

is difficult. The probability of nth word belonging to dth document is assigned

to tth topic is proposed as follow,

P
(
Zd,n = t|Z−(d,n),W

)
= P

(
Zd,n = t|Wd,n,Z−(d,n),W−(d,n)

)
=
P
(
Wd,n, Zd,n = t|W−(d,n),Z−(d,n)

)
P
(
Wd,n|W−(d,n),Z−(d,n)

) ,
(5.9)

By Bayesian rule (posterior is in propotion to prior multiple with likelihood),

the conditional prior of Zd,n is P
(
Zd,n = t|W−(d,n),Z−(d,n)

)
and the likelihood is

P
(
Wd,n|W−(d,n),Z−(d,n),Zd,n = t

)
,
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P
(
Zd,n = t|Wd,n,Z−(d,n),W−(d,n)

)
∝P

(
Zd,n = t|W−(d,n),Z−(d,n)

)
·

P
(
Wd,n|W−(d,n),Z−(d,n),Zd,n = t

)
,

(5.10)

For the first term, P
(
Zd,n = t|W−(d,n),Z−(d,n)

)
, Zd,n is sampled by the fixed

Z−(d,n) with Gibbs sampling, so P
(
Zd,n = t|W−(d,n),Z−(d,n)

)
= P

(
Zd,n = t|Z−(d,n)

)
.

P
(
Zd,n = t|Z−(d,n)

)
=

D∏
i=1

∫
θi

P
(
Zd,n = t|θi,Z−(d,n)

)
P
(
θi|Z−(d,n)

)
dθi

=
D∏
i=1

∫
θi

P (Zd,n = t|θi)P
(
θi|Z−(d,n)

)
dθi

∝
D∏
i=1

∫
θi

P (Zd,n = t|θd) · P
(
Z−(d,n)|θi

)
P (θi) dθi

=
D∏
i=1

∫
θi

θ
ndn,t
d,t · P

(
Z−(d,n)|θi

)
P (θi) dθi

=
D∏
i=1

∫
θi

θ
ndn,t
d,t ·

T∏
k=1

θ
ni−n,k
i,k · 1

B (α)

T∏
k=1

θα−1
i,k dθi

=
1

B (α)

D∏
i=1

∫
θi

T∏
k=1

θ
α−1+

∑N
j=1 n

i
j,k

i,k dθi

∝
D∏
i=1

∫
θi

T∏
k=1

θ
α−1+

∑N
j=1 n

i
j,k

i,k dθi

=
D∏
i=1

∏
k Γ
(
α +

∑N
j=1 n

i
j,k

)
Γ
[∑

k

(
α +

∑N
j=1 n

i
j,k

)]
=

D∏
i=1,i6=d

∏
k Γ
(
α +

∑Ni
j=1 n

i
j,k

)
Γ
(
Tα +

∑Ni
j=1 n

i
j,(·)

) · ∏k Γ
(
α +

∑Nd
j=1 n

d
j,k

)
Γ
(
Tα +

∑Nd
j=1 n

d
j,(·)

) .
All parameters are fixed in first term of the above equation, and the denomi-

nator of second term is fixed as well, so it can be dropped.
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P
(
Zd,n = t|Z−(d,n)

)
=

D∏
i=1,i6=d

∏
k Γ
(
α +

∑Ni
j=1 n

i
j,k

)
Γ
(
Tα +

∑Ni
j=1 n

i
j,(·)

) · ∏k Γ
(
α +

∑Nd
j=1 n

d
j,k

)
Γ
(
Tα +

∑Nd
j=1 n

d
j,(·)

)
∝
∏
k

Γ

(
α +

Nd∑
j=1

ndj,k

)

=
∏
k 6=t

Γ

(
α +

Nd∑
j=1

ndj,k

)
· Γ

(
α +

Nd∑
j=1

ndj,t

)
=
∏
k 6=t

Γ
(
α + nd−n,k

)
· Γ
(
α + nd−n,t + ndn,t

)
.

The first term ndj,k = 0whenk 6= t, j = n in dth document. The property of

Gamma function is used in the following derivation, Γ (x+ 1) = xΓ (x).

P
(
Zd,n = t|Z−(d,n)

)
=
∏
k 6=t

Γ
(
α + nd−n,k

)
· Γ
(
α + nd−n,t + ndn,t

)
=
∏
k 6=t

Γ
(
α + nd−n,k

)
· Γ
(
α + nd−n,t + 1

)
=
∏
k 6=t

Γ
(
α + nd−n,k

)
· Γ
(
α + nd−n,t

)
·
(
α + nd−n,t

)
=
∏
k

Γ
(
α + nd−n,k

)
·
(
α + nd−n,t

)
,

That the words assigned to tth topic influences the results and other words are

fixed is the condition should be taken into account, so∏
k

Γ
(
α + nd−n,k

)
·
(
α + nd−n,t

)
∝ Γ

(
α + nd−n,t

)
·
(
α + nd−n,t

)
=Γ
(
α + nd−n,t + 1

)
,

It should be clarified that Γ (x) is an increasing function except for the circum-

stance that x ≤ 0,

P
(
Zd,n = t|Z−(d,n)

)
= Γ

(
α + nd−n,t + 1

)
∝ α + nd−n,t. (5.11)
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For the second term of equation.(5.10), W−(d,n),Z−(d,n) and Zd,n are fixed

P
(
Wd,n|W−(d,n),Z−(d,n),Zd,n = t

)
=
∏
k

∫
φk

P
(
Wd,n|φk,W−(d,n),Z−(d,n),Zd,n = t

)
· P
(
φk|W−(d,n),Z−(d,n),Zd,n = t

)
dφk

=
∏
k

∫
φk

P (Wd,n|φt,Zd,n = t)P
(
φk|W−(d,n),Z−(d,n),Zd,n = t

)
dφk

∝
∏
k

∫
φk

P (Wd,n|φt,Zd,n = t) · P
(
W−(d,n)|Z−(d,n),Zd,n = t, φk

)
P (φk) dφk,

where Wd,n is equal to the vth word in vocabulary, and r is involved to indicate

arbitrary word index in vocabulary.

P
(
Wd,n|W−(d,n),Z−(d,n),Zd,n = t

)
∝
∏
k

∫
φk
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)
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∏
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(5.12)

Therefore, based on equation.(5.11) and equation.(5.12), we can obtain

P
(
Zd,n = t|Z−(d,n),W

)
=
(
α + nd−n,t

)
·
β + n

−(d,n)
t,v

V β + n
−(d,n)
t,(·)

. (5.13)

Now we need to add one more discrete variable in this model and form LDA

based on Gibbs Sampler had two variables. And we get equation P (Z|W,L)

P (Z|W,L) = P (W|Z)× P (Z)× P (L|W,Z) . (5.14)

Through clustering words by P (W|Z) and P (L|Z), and getting that P (L|W,Z) =

P (L|Z). Therefore, equation.(5.13) can be express as follow

P (W|Z)× P (Z)× P (L|W,Z) = P (W|Z)× P (Z)× P (L|Z) (5.15)

Through analyzing this formula, the equation with two available based on Gibbs

Sampler is

P (Zk|Z−k,W,L) =
nk(·),v + β

VASR∑
r=1

nk(·),r + β

nk(·),v + λ

VOCR∑
r=1

nk(·),r + λ

nku,(·) + α (5.16)

72



5.2 Dual-variable LDA model for Trajectory Clus-

tering

After multi-modal LDA model derivation, we come to derive dual-variable LDA

model which contains continues features and discrete features. From the above

section, we can derive a novel Gibbs sampling based LDA model, so we further

derive a LDA model to process two different features in this section.

As a generative model, topics generate words in LDA model, and words can

be allocated to categories by posterior distribution. Therefore, as the continues

features, the coefficients of DFT are real vectors, so we need to find a proper

distribution to character the vectors. In our opinion, we use Multivariate distri-

bution to describe real vector, and Normal-inverse-Wischart distribution is used

as posterior distribution to inference the categories of words. The parameters of

Normal-inverse-Wischart distribution includes λ, ν and p, they corresponds to

L+m where m is the counting of samples and it also presented as ν, p indicates

L dimensions. In the following content, we’ll discuss and derive our model.

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
is the only term we need to concern which

indicates the generation of word n belonging to document d, and the probability

of the other words P
(
W−(d,n)|Z−(d,n), Zd,n = t, µk,Σk

)
follows Multivariate distri-

bution. Furthermore, the parameters µk and Σk are generated by the vocabularies

belonging the corresponding topics. Therefore, the derivation we can get is as

follows

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
=

∫
µ

∫
Σ

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µ,Σ

)
· P
(
µ,Σ|W−(d,n), Z−(d,n), Zd,n = t

)
dΣdµ

=
∏
k

∏
k

∫
µk

∫
Σk

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µk,Σk

)
· P
(
µk,Σk|W−(d,n), Z−(d,n), Zd,n = t

)
dΣkdµk

=
∏
k

∏
k

∫
µk

∫
Σk

P (Wr|Zr = t, µt,Σt) · P (µk,Σk|W−r, Z−r, Zr = t) dΣkdµk

∝
∏
k

∏
k

∫
µk

∫
Σk

N (µt,Σt) · [P (W−r|Z−r, Zr = t, µk,Σk) · P (µk,Σk)] dΣkdµk
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=
∏
Zv

∏
Zv

∫
µZv

∫
ΣZv

N (µZr=t,ΣZr=t) ·

[
V∏

v=1,v 6=r

N (µZv ,ΣZv) · P (µZv |ΣZv) · P (ΣZv)

]
dΣZvdµZv

=
∏
Zv

∏
Zv

∫
µZv

∫
ΣZv

V∏
v=1

N (µZv ,ΣZv) · P (µZv |ΣZv) · P (ΣZv) dΣZvdµZv

=
∏
Zv

∏
Zv

∫
µZv

∫
ΣZv

V∏
v=1

N (µZv ,ΣZv) ·N
(
µZv ,

1

L+mZv

ΣZv

)
·W−1 (ΨZv , ν +mZv) dΣZvdµZv .

(5.17)

It should be noted that, in generative model, Zr generates Wr only and only vth

vocabulary is considering. Furthermore, Zv are all fixed here, and k = t only

when r = v. In order to simplified the equation, so we assume that Zv = k which

indicates kth topic. Furthermore, µk is L dimensional mean vector and Σk is

L×L covariance matrix, mk indicates the counting of vocabularies classified into

kth topic. Therefore,
N (µk,Σk) = det (2πΣk)

− 1
2 exp

[
−1

2
(Wr:Zr=k − µk)

>Σ−1
k (Wr:Zr=k − µk)

]
W−1 (Ψk, ν +mk) =

|Ψk|
ν+mk

2

2
L(ν+mk)

2 · Γ
(
ν+mk

2

) |Σk|−
L+ν+mk+1

2 exp

(
−1

2
tr
(
ΨkΣ

−1
k

))
Based on Bayes’ Theorem, P (B|A) ∝ P (B) · P (A|B), so we can obtain the

equation as follows,

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µ,Σ

)
=

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
· P
(
µ,Σ|Wd,n,W−(d,n), Z−(d,n), Zd,n = t

)
P
(
µ,Σ|W−(d,n), Z−(d,n), Zd,n = t

)
(5.18)

where Wd,n is the L-dimensional vector. P
(
µ,Σ|W−(d,n), Z−(d,n), Zd,n = t

)
is char-

acterized by Normal-inverse-wishart distribution, and µ, Σ are determined by

words Wd,n. However, in the denominator of equation.5.18, W−(d,n) and Z−(d,n)

are fixed, Wd,n is not involved in, so the denominator is fixed value. From equa-

tion.(5.18), it can be rewritten as
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P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
∝
P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µ,Σ

)
P
(
µ,Σ|Wd,n,W−(d,n), Z−(d,n), Zd,n = t

) .
(5.19)

Then, we need to derive two terms in the right hand of the equation. For the

numerator, P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µ,Σ

)
, it characterizes as Multivari-

ate distribution with mean µ and variance Σ as

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t, µ,Σ

)
=
∏
r

∏
k

det
(
2πΣliter

k

)− 1
2 exp

[
−1

2

(
Wr − µliterk

)> · Σ−1
k ·

(
Wr − µliterk

)] (5.20)

where µk = µt only when r = v, Wr indicates rth vocabulary in the dictionary, k

is topic index and v is the index of the current vocabulary.

For the denominator, P
(
µ,Σ|Wd,n,W−(d,n), Z−(d,n), Zd,n = t

)
, it follows Normal-

inverse-wishart distribution. In details, Σ is sampled from inverse Wishart distri-

bution with parameters Ψ and ν, and µ is sampled from Multivariate distribution

with mean µ0 and variance 1
λ
Σ

P
(
µ,Σ|Wd,n,W−(d,n), Z−(d,n), Zd,n = t

)
=
∏
r

∏
k

h
(
νliterk , L

)
|Σliter

k |−
νliterk +L+1

2 exp

[
−1

2
tr
(

Ψliter
k ·

(
Σliter
k

)−1
)]
·

det

(
2π · 1

λliterk

Σliter
k

)− 1
2

exp

[
−1

2

(
µliterk − µ0

k

)> · 1

λliterk

(
Σliter
k

)−1 ·
(
µliterk − µ0

k

)]
(5.21)

where λliterk = λ + mk, ν
liter
k = ν + mk and mk indicates the counting of sam-

ples belonging to kth topic. h (ν, L) = |Ψ|
ν
2

2
νL
2 ΓL( ν2 )

where Γ (·) is the multivariate

gamma function. Furthermore, in equation.(5.20) and equation.(5.21), µ and Σ

are updated as
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
µliterk =

λkµ+mkW r:k

λk +mk

,

Σliter
k =

Ψliter
k

(νk − L+ 1)
.

where Ψliter
k = Ψ + Sk + λkmk

λk+mk

(
W r:Zr=k − µ0

k

) (
W r:Zr=k − µ0

k

)>
, and Sk =

∑V
r=1(

Wr:Zr=k −W r:Zr=k

)> (
Wr:Zr=k −W r:Zr=k

)
From equation.(5.20) and equation.(5.21),

P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
=
∏
r

∏
k

det
(
2πΣliter

k

)− 1
2 exp

[
−1

2

(
Wr − µliterk

)> · (Σliter
k

)−1 ·
(
Wr − µliterk

)]
·{∏

r

∏
k

h
(
νliterk , L

)
|Σliter

k |−
νliterk +L+1

2 exp

[
−1

2
tr
(

Ψliter
k ·

(
Σliter
k

)−1
)]}−1

·{∏
r

∏
k

det

(
2π · 1

λliterk

Σliter
k

)− 1
2

exp

[
−1

2

(
µliterk − µ0

k

)> · 1

λliterk

(
Σliter
k

)−1 ·
(
µliterk − µ0

k

)]}−1

=
∏
r

(
1

λlitert

)L
2

· f−1
t · exp[

−2λlitert

Ψliter
t

tr−1
(
Σliter
t

) (
Wr:Zr=t − µlitert

)> (
Wr:Zr=t − µlitert

)
·
((
µlitert − µ0

t

)−1
)> (

µlitert − µ0
t

)−1
]

It should be noticed that only the vocabularies classified to tth topic are con-

cerned in equation, so the others can be dropped. In order to combine two

factors together, we need to derive the joint probability distribution. Based on

Gibbs sampling,

P
(
Zd,n = t|Wd,n, Z−(d,n), Zd,n

)
∝ P

(
Zd,n = t|W−(d,n), Z−(d,n)

)
· P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
.
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Two factors are substituted into equation,

P
(
Zd,n = t|Wd,n, Z−(d,n), Zd,n

)
∝P

(
Zd,n = t|W−(d,n), Z−(d,n)

)
· P
(
Wd,n|W−(d,n), Z−(d,n), Zd,n = t

)
=P

(
Zd,n = t|Z−(d,n)

)
· P
(
W 1
d,n,W

2
d,n|W 1

−(d,n),W
2
−(d,n), Z−(d,n), Zd,n = t

)
=P

(
Zd,n = t|Z−(d,n)

)
· P
(
W 1
d,n|W 1

−(d,n),W
2
−(d,n), Z−(d,n), Zd,n = t

)
· P
(
W 2
d,n|W 1

−(d,n),W
2
−(d,n), Z−(d,n), Zd,n = t

)
(5.22)

We need to apply the properties of conditional probability distribution here.

Assume that two event sets and B are independent,

P (Ai, B−i|A−i) = P (Ai|A−i) · P (B−i|A−i) .

For the formula of conditional probability distribution,

P (Ai, B−i|A−i) = P (Ai|A−i, B−i) · P (B−i|A−i) .

From the above two equation, we can obtain that P (Ai|A−i) = P (Ai|A−i, B−i),
thus, equation.(5.22) can be rewritten as

P
(
Zd,n = t|Z−(d,n)

)
·P
(
W 1
d,n|W 1

−(d,n), Z−(d,n), Zd,n = t
)
·P
(
W 2
d,n|W 2

−(d,n), Z−(d,n), Zd,n = t
)

After Gibbs sampling based LDA model for continues features are obtained,

we discuss dual-variable LDA model for trajectory clustering as follows. Trajec-

tory is generated by recording the positions of moving object in fixed time period.

However, the length of trajectory may be different from the others. Thus, tra-

jectories can be transformed into frequency domains and represented by a fixed

number of coefficients. In computer version, DFT aims to describe the degree of

gray scale change of image, and considers the relationship between arbitrary pair

of trajectory points. Therefore, DFT is used to characterize the positional vari-

ation of trajectories and its coefficients represent trajectory by denoting as wl,j,

where l indicates frequency domain index and j donates trajectory index. DFT

coefficients belonging to same frequency domain comprise a independent vocabu-

lary. The original vocabulary which comprised by N words instance is substituted
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by new vocabularies in our model, so that L1 dimensional vector represents tra-

jectory in our model. (Note: other features should be added and discussed here.

Speed and direction can be extracted and added. I intend to employ object move-

ment condition as another feature. In details, the scene is split into 3× 3 patches

and the trajectory is determined as moving relative to the camera if the first point

and the last point are belonging to different patches.) However, the dimension of

L1 is increased if more continuous features are added. L = L1+L2 where L2 is the

dimensions of discrete features. One of the vocabularies are constructed as follows

wj = [w1,j,w2,j, · · · ,wL,j]

where j is word index. In wj, DFT coefficients are continuous and the relative

motion is discrete feature. Therefore, DFT coefficients are represented by Mul-

tivariate distribution because Gaussian distribution defines continuous feature

conditioned on the topic Zj as P (wl1,j|Zj = t) = N (µ,Σ). Multinomial distri-

bution describes the relative motion in dual-variable LDA model. The graphical

representation is shown in Fig.5.4. ϕ denotes multinomial distribution represent-

ing each topic is characterized by discrete words and the size of ϕ is T ×N × L1

where N is the amount of trajectories and T indicates the total number of topics.

Each continuous feature follows Multivariate distribution N (µ,Σ). It should be

noticed that the parameters are unknown in generative process, so the prior are

µ ∼Multivariate
(
µ0, κ

−1
0 Σ

)
and Σ ∼ Wishart−1 (Ψ, ν0) where µ0 is the mean

of κ0 observations, and Ψ indicates the sum of pairwise deviation products of

ν0 observations, Ψ = ν0Σ0. The documents are represented by the mixtures of

latent topics and they still be characterized by multinomial distribution. All fea-

tures are separated as discrete features W1 and continuous features W2, and the

generative process of dual-variable LDA model are presented as follows: (Note:

covariance matrix is critical if multi-dimensional continuous features are involved,

and the same situation should be also considered when it happened in discrete

circumstances.)

1. Choose θi ∼ Dir (α), where i ∈ {1, · · · ,M} and Dir (α) is Dirichlet Distribu-

tion.

2. For each discrete feature vectorl1 of W1, choose ϕl1,t ∼ Dir (βl1), where t ∈
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Figure 5.4: Graphical representation of dual-variable LDA model.

{1, · · · , T} and l1 ∈ [1, · · · , L1].

3. For each continuous feature vector l2 ofW2, choose µl2 ∼Multivariate
(
µl2
0 ,
(
κl20
)−1

Σl2

)
,

Σl2 ∼ Wishart−1
(
Ψl2 , ν

l2
0

)
and l2 ∈ [L1 + 1, L1 + L2].

4. For each feature of each of the N words wl,j:

4.1. Choose Zj ∼Multinomial (θi).

4.2. Choose a discrete feature of word wl1,j, it draws from Multinomial
(
ϕl1,Zj

)
.

4.3. Choose a continuous feature of word wl2,j, it draws from Gaussian distribu-

tion N
(
µl2,Zj ,Σl2,ZjZj

)
.

5.3 Experiments

5.3.1 Multi-modal LDA model

In our experiment, we choose 100 lecture videos from http://videolectures.net to

have an experiment, and these 100 videos have different titles which focus on

Beyesian Process or Dirichlet Process in Machine Learning, which means the

words relating to probability knowledge, characterizing method and describing

models are involved. Then, we segment them into many shots based on time, for

example, we segment a 20-mins video into 20 shots that each shot has 1 minute.

Therefore, we totally get 1640 shots and 11000 key frames from these 100 videos.

After that, we use ASR and OCR to extract semantic information from these
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key frames. The words extracted by ASR and OCR are treated as two kinds of

evidences.

Since most existed OCR tools focus on recognize characters instead of words

in OCR, a word will be recognized incorrectly even if there is a character in the

word is recognized incorrectly. Thus, we need do some spelling check and correc-

tion operation after OCR extraction.

In ASR, some speakers teach their lectures with their assent, relating to dif-

ferent countries or different regions, for example, someone speak “dream” as

“doraemon”’ and “very” as “vely”. Besides that, speakers say some prepositions

such as “is”, “and”, “or”, so we also need to delete these words and the similar

ones after extraction step.

To address these problems, we build up a stop-word dictionary as follows:

firstly, we find a stop-word list on the network as initial dictionary; and then

through analyzing the extracting information, the words such as “enough” and

“local”, can be added to dictionary. Repeating this program one by one, we can

get dictionary and use it as filter to shield words that have no meaning for dis-

covery knowledge to classify shots.

Now we take experiment with extracting semantic information to discovery

knowledge and classify these shots into different topics. The dataset of clustering

is too large, so we show a part of them.

In Table.5.2 and Table.5.3, we can find some words like “cftp” is not a word

Table 5.2: Extracting words from the first lecture video.

ASR OCR

Extracting words

acknowledged approach
act approaches

action bayesian
active beliefs
actual borrow
added borrow

additional cftp

that has some mean. Therefore, we state that “cftp” means “coupling from the
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Table 5.3: Extracting words from the second lecture video.

ASR OCR

Extracting words

act applicable
additional bayesian

africa bound
against bounds

ago cholesky
ahead concave

analyst concavity

past” and it occurs in the sentence that, We borrow methods for inference UGMs:

CFTP in Ising and Potts models. Thus, we need to note that this type of word

means Abbreviation.

Because they have different titles mainly focus on 3 fields, so we set T = 3,

which means we should classify 100 videos include 11000 key frames into 3 topics.

Then, we adjust the dimension of vocabulary and topic matrix, so we can index

vocabulary and word number clearly. α, λ are the assuming symmetric Dirichlet

priors, we set α = 5/T , β = 0.01 and λ = 2.

In case that each topic contains a lot of words, so we only list first 5 words

Table 5.4: Result of Multi-modal LDA with Gibbs Sampler

Topic 1 Topic 2 Topic 3
reg features gp-lvm

prior parameter portfolios
changes algorithm performance
extend rsthq modular
vary bars sensitive

of each topic. Furthermore, we compare the classification and the corresponding

probabilities with the category of lecture videos. In Table.5.4, we can find that

the words in Topic 1 discuss probability distribution, the words in Topic 2 focus

on the feature of model or characterizing the objects, and Topic 3 involves in
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analyzing experiment results and performance of models in science field. It fits

the categories of lecture video on website. Then, we can prove multi-modal LDA

model, processing with two variables with Gibbs Sampler, is useful.

Based on these topics and through analyzing the meaning of every topic, we

can define topics and may be one topic can be given two or three words for

indexing. Furthermore, this method can be used in some other applications in-

volving different features and semantic topics are needed. Users can browse videos

through searching these words, and scanning lecture videos directly.

5.3.2 Dual-variable LDA model

In our experiment, we apply the trajectory data generated from KITTI bench-

mark in the previous sections. All trajectory data are generated by “van”, “cy-

clist”, “pedestrian”, “car” and “misc” which means miscellaneous objects in data

set such as traffic lights, road signs and trees on roadside. The aim of follow-

ing experiment is evaluated with traditional LDA model [12], the derived LDA

model and dual-variable LDA model. We set parameters in same setting, where

α = 5/T , β = 0.1, µ0 = 1, κ0 = 5, ν0 = 5 and iterate sampling step for 50 times.

Furthermore, there are a lot of trajectory data have same labels, so we integrate

them as the unique one.

We take an experiment on Sequence.00 of training data set of KITTI bench-

mark, and the results are displayed in the following table,
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Table 5.5: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.00 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.275182 0.283880 0.244036 0.196902
word assign probability word assign probability word assign probability word assign probability

Misc 0.797675 Misc 0.744048 Misc 0.814285 Misc 0.679984
Van 0.153095 Cyclist 0.155845 Van 0.114583 Van 0.242373

Cyclist 0.049227 Van 0.096456 Cyclist 0.071128 Cyclist 0.077638
Pedestrian 0.000003 Pedestrian 0.003651 Pedestrian 0.000003 Pedestrian 0.000004

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.258491 0.247391 0.246148 0.247971
word assign probability word assign probability word assign probability word assign probability

Cyclist 0.318233 Cyclist 0.310658 Misc 0.377422 Misc 0.293645
Misc 0.313821 Misc 0.296433 Cyclist 0.343025 Van 0.28901

Pedestrian 0.316311 Van 0.256301 Van 0.265028 Cyclist 0.26392
Van 0.051735 Pedestrian 0.136508 Pedestrian 0.014427 Pedestrian 0.152535

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.267853 0.273746 0.254126 0.236712
word assign probability word assign probability word assign probability word assign probability

Misc 0.451273 Misc 0.662023 Misc 0.475956 Misc 0.334036
Cyclist 0.419016 Cyclist 0.22273 Van 0.348032 Van 0.32153

Van 0.109403 Van 0.078147 Cyclist 0.15881 Cyclist 0.184327
Pedestrian 0.020304 Pedestrian 0.0371 Pedestrian 0.017302 Pedestrian 0.160303
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In Table.5.5, the probabilities of the assigned words which belonging to same

group are summed together to check the performance of clustering. For exam-

ple, the trajectories of “Misc” in Topic 1 are summed up as 79.76% by applying

traditional LDA model. θ gives a probability of topic in the document which

denotes as vocabulary in our experiment, because all the words are set in one

document. Therefore, θ indicates the confidence of the corresponding topic de-

termination. Traditional LDA model considers discrete feature as visual words,

and derived LDA model could employ continues feature which is motion infor-

mation. We can see that “misc” is set as priority by traditional LDA model and

“cyclist” is ranked as the first one by derived LDA model, which means continue

feature can get better performance than discrete feature for trajectory cluster-

ing. It proves that continues feature presents more characterized content, and

traditional LDA only focus on the limited feature. However, derived LDA model

focuses on continues features and proves the performance of classification, because

continues feature contains more robust and useful characterization than discrete

feature. From Table.5.5, “misc” generating too much trajectory data so they are

the noisy of trajectory data in sequence 00. Therefore, after accumulating the

probabilities belonging to the corresponding objects, the trajectories labeled as

“misc” are set as the priority in some topics. By derived LDA model, “Cyclist”

ranks as the first one in two topics, and the differences between the probability

of “Misc” and others are smaller than the ones in traditional LDA model. By

dual-variable LDA model, although “misc” still ranks as first classification in each

topic, their probabilities are lower relative to the others by comparing the exper-

iment results in traditional LDA. Thus, it also proves that continues feature is

critical to trajectory clustering. For the trajectories labeled as “pedestrian”, only

25 trajectories and 24140 trajectories are generated totally, so they are much less

than the amount of the arbitrary ones. Therefore, the probabilities of trajectory

in pedestrian topic are computed as the lowest words in each topic. For other 20

benchmark of KITTI, their experiment results can be found in Appendix.A.
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5.4 Conclusion

In this chapter, we propose a novel LDA model to process two different features

and classify the objects into categories, we call the method as dual-variable LDA

model. This model is specifically designed for process continue feature and dis-

crete feature, respectively, and combine two probabilities of the corresponding

same object as the result. In doing so, the spatiotemporal information of tra-

jectory data are used up to analyze the properties of objects. To illustrate how

performance our model has, we firstly derive multi-modal LDA model and take

an experiment on lecture video and prove its accuracy. Then, dual-variable LDA

model is derived and it proved that the model is superior than single variable

LDA model on trajectory data analysis. However, there is a issue need to be

fixed that it is not too robust to tolerate much noise. In future work, we will

focus on optimizing trajectory data construction, repeating and redundant tra-

jectories are dropped out. Furthermore, a supervised LDA model is needed to be

derived to improve the performance.
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Chapter 6

Conclusions

In this thesis, we exploit a novel method to cluster trajectory data and lecture

videos.

We saw that how to measure trajectories with different lengths is important.

Thus, a representation method or feature descriptor is essential for trajectory clus-

tering. In recent years, transforming trajectory data into other space is paid more

attentions, such as DFT which keeping data information and unifying lengths of

trajectory data [56]. For other preparation works, re-sampling is efficient for

sparse scene [140], but it limits the robustness of model. Curve approximation

fits the movement of trajectory [120] [158]. Hence, trajectory data preparation

may be a promising and helpful direction.

Recently, Densely Clustering models have achieved great progress in trajectory

clustering. In particular, novel distance metrics have been proposed to measure

trajectory data according to different properties. Furthermore, for the trajectory

data with large difference in density, grid construction is employed to improve

the performance [131]. Besides grid-based DBCSAN, sub-trajectories are acted

as the substitutes for trajectory in [64], [75] and [76].

Though Spectral Clustering models and Graph method share a similar idea,

they are intrinsically different. Spectral Clustering models are easy to implement

and have no restriction on data dimensions, but the models require non-negative

affinities and this limitation restricts the performance and the application. There-

fore, a suitable affinity matrix construction method is needed. Furthermore, it

is critical to determine scale value when the affinity matrix is being computed,

86



because it determines the clustering results are efficient or not. Thus, Spectral

Clustering models need to handle the problem of constructing affinity matrix.

In supervised algorithms, a large number of training data are required to ob-

tain an efficient model. However, such as in Neural Network, there may have

overfitting problem and some special steps are needed like pooling layers in CNN.

In addition, it should be noticed that a meaningful distance metric is essential

for Nearest Neighbor algorithms.

They are the possible direction on improving trajectory clustering by other

models. In the thesis, we first reviewed the current popular cluster models includ-

ing the unsupervised ones, the supervised ones and semi-supervised ones. Further-

more, different trajectory representations are discussed, either. After comparing

different clustering models, unsupervised model is proper in our application, be-

cause no training data is involved here, and the representation by transforming

to another space is chosen in the case that much more information are useful and

powerful to recognize the inner connection between different trajectories.

For trajectory clustering, the first step of the method is the trajectory genera-

tion step. Here, a SURF detector extracts multiple characteristic points for each

object. Then, a SIFT descriptor tracks these characteristic points by matching

them across several consecutive frames. Experiments demonstrate good perfor-

mance in both representing and tracking objects.

Next, a DFT algorithm is used to reveal spatiotemporal information about

the trajectories. Each trajectory is transformed into the same length and its orig-

inal information is preserved. The process is fast and efficient. Further, relative

motion is incorporated into the model to distinguish still objects from moving

objects – i.e., still objects have the same trajectory as a moving ego-platform.

Lastly, two novel LDA models that derived LDA model process continue fea-

ture to cluster lecture video data, and dual-variable LDA model process two

different feature types to classify trajectory data. In details, Gibbs sampling

is used to improve the clustering performance because of good clustering per-

formance of MCMC algorithm. These methods not only quickly and efficiently

clusters the trajectories, they also consider the properties of the trajectory data

and outperform traditional LDA models.

The implementation is inspired by the previous works, and derives a more
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advanced model to improve the performance and fit to our application. From the

experimental results, the algorithms presented in this thesis are effective and ro-

bust for clustering lecture videos and video trajectory data. They can be used to

cluster data depending on continue feature or two different kinds of features, such

like videos. Hence, they inspire several possible directions for further improving

the performance. For example, different parameters may not follow one Dirichlet

Distribution, so more complicated distribution can be employed, and the trajec-

tory generation step could be improved to solve noise issues better. Furthermore,

deep learning methods are state-of-art models on extracting features and classi-

fication, so that is another future work to be done.
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Appendix A

Results of Video Trajectory

Clustering
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Table A.1: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.01 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.272991 0.255502 0.196093 0.275413
word assign probability word assign probability word assign probability word assign probability

Misc 0.719238 Misc 0.671156 Misc 0.632166 Misc 0.657999
Car 0.280758 Car 0.320202 Car 0.367828 Car 0.341997
Van 0.000004 Van 0.008641 Van 0.000005 Van 0.000004

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.258032 0.247161 0.247125 0.247592
word assign probability word assign probability word assign probability word assign probability

Misc 0.433622 Misc 0.453977 Misc 0.608528 Misc 0.50927
Car 0.407753 Car 0.437517 Car 0.31602 Van 0.296012
Van 0.158625 Van 0.108506 Van 0.075452 Car 0.194708

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.271011 0.256312 0.200311 0.267832
word assign probability word assign probability word assign probability word assign probability

Misc 0.496827 Misc 0.37631 Misc 0.655177 Misc 0.6215
Car 0.334628 Car 0.349422 Car 0.178821 Car 0.190477
Van 0.168645 Van 0.274278 Van 0.166011 Van 0.188023
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Table A.2: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.02 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.279467 0.204508 0.299836 0.216189
word assign probability word assign probability word assign probability word assign probability

Misc 0.952085 Misc 0.972702 Misc 0.884067 Misc 0.907368
Car 0.047902 Pedestrian 0.017519 Car 0.097907 Car 0.092616

Pedestrian 0.000004 Car 0.009767 Cyclist 0.016647 Pedestrian 0.000005
Van 0.000004 Van 0.000006 Van 0.001375 Van 0.000005

Cyclist 0.000004 Cyclist 0.000006 Pedestrian 0.000004 Cyclist 0.000005

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.246772 0.251291 0.248004 0.253933
word assign probability word assign probability word assign probability word assign probability

Misc 0.366717 Misc 0.329321 Misc 0.296331 Misc 0.411528
Car 0.321453 Pedestrian 0.244227 Car 0.244637 Car 0.310019
Van 0.13811 Car 0.187633 Van 0.189122 Pedestrian 0.207733

Pedestrian 0.09611 Van 0.13941 Cyclist 0.177605 Van 0.04141
Cyclist 0.07761 Cyclist 0.099509 Pedestrian 0.092305 Cyclist 0.02951

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.265431 0.234621 0.28993 0.223762
word assign probability word assign probability word assign probability word assign probability

Misc 0.317326 Misc 0.447437 Misc 0.32181 Misc 0.284929
Car 0.264857 Pedestrian 0.264529 Car 0.282634 Car 0.262544
Van 0.19331 Car 0.189919 Van 0.166451 Pedestrian 0.24912

Pedestrian 0.180404 Van 0.091412 Cyclist 0.140602 Van 0.171601
Cyclist 0.044103 Pedestrian 0.006703 Pedestrian 0.088603 Cyclist 0.031902
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Table A.3: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.03 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.30256 0.254008 0.24417 0.199262
word assign probability word assign probability word assign probability word assign probability

Misc 0.831675 Misc 0.840026 Misc 0.955034 Misc 0.812297
Car 0.168325 Car 0.159974 Car 0.044966 Car 0.187703

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.248042 0.24836 0.250273 0.253325
word assign probability word assign probability word assign probability word assign probability

Car 0.799459 Car 0.844197 Car 0.649135 Misc 0.849922
Misc 0.200541 Misc 0.155803 Misc 0.350864 Car 0.150177

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.257732 0.251101 0.239981 0.207364
word assign probability word assign probability word assign probability word assign probability

Misc 0.900133 Misc 0.994037 Misc 0.51516 Misc 0.825536
Car 0.099867 Car 0.005962 Car 0.484839 Car 0.174464
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Table A.4: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.04 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.244526 0.19254 0.272554 0.290381
word assign probability word assign probability word assign probability word assign probability

Misc 0.784396 Car 0.601438 Car 0.805815 Van 0.681272
Car 0.215596 Van 0.323607 Misc 0.187182 Misc 0.229459
Van 0.000004 Misc 0.057552 Van 0.006999 Car 0.089266

Tram 0.000004 Tram 0.017403 Tram 0.000004 Tram 0.000004

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.252512 0.246896 0.248957 0.251636
word assign probability word assign probability word assign probability word assign probability

Car 0.379053 Car 0.362606 Misc 0.477732 Misc 0.468353
Misc 0.333126 Misc 0.250053 Car 0.285307 Van 0.269431
Van 0.179609 Van 0.20014 Van 0.146653 Car 0.206512

Tram 0.108213 Tram 0.187101 Tram 0.090308 Tram 0.055704

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.243361 0.200335 0.267732 0.273365
word assign probability word assign probability word assign probability word assign probability

Misc 0.334039 Car 0.523718 Car 0.429738 Van 0.449523
Car 0.319255 Van 0.21493 Misc 0.214747 Misc 0.443065
Van 0.173604 Misc 0.196642 Van 0.222513 Car 0.062111

Tram 0.173004 Tram 0.06471 Tram 0.133102 Tram 0.045401

93



Table A.5: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.05 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.23775 0.291679 0.254033 0.216537
word assign probability word assign probability word assign probability word assign probability

Misc 0.94122 Misc 0.941333 Misc 0.998224 Car 0.886807
Car 0.058773 Car 0.058662 Car 0.001771 Misc 0.102834

Cyclist 0.000006 Cyclist 0.000005 Cyclist 0.000006 Cyclist 0.010359

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.250224 0.252689 0.247759 0.248328
word assign probability word assign probability word assign probability word assign probability

Misc 0.661223 Misc 0.690108 Car 0.753733 Misc 0.399708
Car 0.269909 Car 0.296863 Misc 0.196246 Car 0.353967

Cyclist 0.068767 Cyclist 0.012929 Cyclist 0.050021 Cyclist 0.246425

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.247726 0.273312 0.250322 0.230153
word assign probability word assign probability word assign probability word assign probability

Misc 0.468834 Misc 0.648326 Misc 0.439609 Car 0.520234
Car 0.344507 Car 0.178455 Car 0.352681 Misc 0.434327

Cyclist 0.186659 Cyclist 0.173219 Cyclist 0.20771 Cyclist 0.045439
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Table A.6: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.06 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.245301 0.201811 0.301002 0.251886
word assign probability word assign probability word assign probability word assign probability

Misc 0.606034 Car 0.519720 Car 0.452801 Car 0.599446
Car 0.345831 Misc 0.404759 Misc 0.41541 Misc 0.314987

Truck 0.048135 Truck 0.075521 Truck 0.131788 Truck 0.085567

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.255453 0.247771 0.244204 0.252572
word assign probability word assign probability word assign probability word assign probability

Car 0.355434 Car 0.385273 Car 0.362253 Car 0.470931
Misc 0.326357 Misc 0.383612 Truck 0.352242 Misc 0.309228
Truck 0.318309 Truck 0.231115 Misc 0.285505 Truck 0.219741

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.255316 0.245713 0.242832 0.256139
word assign probability word assign probability word assign probability word assign probability

Car 0.433577 Car 0.353682 Car 0.480533 Car 0.664927
Misc 0.404521 Misc 0.333607 Misc 0.307452 Misc 0.181556
Truck 0.161902 Truck 0.312611 Truck 0.212015 Truck 0.153417
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Table A.7: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.07 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.264756 0.231013 0.240138 0.264093
word assign probability word assign probability word assign probability word assign probability

Misc 0.803997 Misc 0.761026 Car 0.641834 Misc 0.807407
Car 0.152628 Car 0.158357 Misc 0.285823 Car 0.14256

Truck 0.043372 Truck 0.073604 Truck 0.072339 Truck 0.030242
Van 0.000003 Van 0.007013 Van 0.000003 Van 0.019791

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.245621 0.252134 0.249926 0.252318
word assign probability word assign probability word assign probability word assign probability

Misc 0.410977 Car 0.499223 Misc 0.402352 Misc 0.390353
Car 0.214813 Misc 0.232641 Car 0.371707 Car 0.268211

Truck 0.2131 Truck 0.168212 Truck 0.180317 Truck 0.172136
Van 0.16101 Van 0.099934 Van 0.045603 Van 0.16931

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.244812 0.250662 0.251619 0.252907
word assign probability word assign probability word assign probability word assign probability

Misc 0.430137 Misc 0.328153 Car 0.679739 Misc 0.340634
Car 0.364606 Car 0.274105 Misc 0.222841 Car 0.267951

Truck 0.134132 Truck 0.20603 Truck 0.072603 Truck 0.212212
Van 0.071036 Van 0.191715 Van 0.024816 Van 0.179202
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Table A.8: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.08 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.23521 0.30105 0.268471 0.19527
word assign probability word assign probability word assign probability word assign probability

Misc 0.77535 Misc 0.802073 Misc 0.831121 Misc 0.771983
Van 0.122322 Van 0.187954 Van 0.157696 Van 0.167949

Truck 0.066381 Car 0.009968 Car 0.011178 Car 0.060061
Car 0.035947 Truck 0.000005 Truck 0.000005 Truck 0.000007

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.250545 0.244752 0.253749 0.250954
word assign probability word assign probability word assign probability word assign probability

Misc 0.436553 Misc 0.334423 Misc 0.406527 Misc 0.346852
Van 0.247928 Van 0.279357 Van 0.279533 Van 0.336334

Truck 0.208007 Car 0.262012 Car 0.162821 Car 0.302509
Car 0.107612 Truck 0.124107 Truck 0.151219 Truck 0.014307

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.251977 0.24557 0.251363 0.251091
word assign probability word assign probability word assign probability word assign probability

Misc 0.494065 Misc 0.445681 Misc 0.831121 Misc 0.312491
Van 0.243827 Van 0.404008 Van 0.157696 Van 0.269407

Truck 0.1904 Car 0.084401 Car 0.011178 Car 0.247201
Car 0.071808 Truck 0.06601 Truck 0.000005 Truck 0.170901
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Table A.9: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.09 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.363018 0.245167 0.188652 0.203164
word assign probability word assign probability word assign probability word assign probability

Car 0.692574 Misc 0.819827 Misc 0.68363 Misc 0.718214
Misc 0.307426 Car 0.180183 Car 0.31637 Car 0.281786

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.246203 0.252197 0.249718 0.251882
word assign probability word assign probability word assign probability word assign probability

Misc 0.597272 Misc 0.581723 Misc 0.582743 Misc 0.567337
Car 0.402728 Car 0.418276 Car 0.417256 Car 0.432663

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.246834 0.252918 0.249358 0.25089
word assign probability word assign probability word assign probability word assign probability

Car 0.727153 Misc 0.779309 Misc 0.960527 Misc 0.510233
Misc 0.272847 Car 0.220691 Car 0.039473 Car 0.489766
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Table A.10: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.10 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.209578 0.225042 0.304546 0.260834
word assign probability word assign probability word assign probability word assign probability

Misc 0.881533 Misc 0.841173 Misc 0.947767 Misc 0.943794
Car 0.114587 Car 0.158816 Car 0.048949 Car 0.056197
Van 0.003875 Van 0.000006 Truck 0.003281 Van 0.000005

Truck 0.000006 Truck 0.000006 Van 0.000004 Truck 0.000005

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.248613 0.24774 0.251917 0.25173
word assign probability word assign probability word assign probability word assign probability

Misc 0.563527 Misc 0.367423 Misc 0.797152 Misc 0.362957
Car 0.311433 Car 0.267637 Car 0.083533 Car 0.362723

Truck 0.106819 Truck 0.187952 Truck 0.06971 Van 0.231412
Van 0.018221 Van 0.176908 Van 0.049605 Truck 0.042908

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.248862 0.247927 0.251668 0.251543
word assign probability word assign probability word assign probability word assign probability

Misc 0.352228 Misc 0.338223 Misc 0.559701 Misc 0.378009
Car 0.321733 Car 0.278364 Car 0.293377 Car 0.365328
Van 0.252927 Van 0.225702 Truck 0.090321 Van 0.177852

Truck 0.073112 Truck 0.157811 Van 0.056603 Truck 0.077811
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Table A.11: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.11 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.263082 0.303294 0.192061 0.241562
word assign probability word assign probability word assign probability word assign probability

Misc 0.710455 Misc 0.714034 Misc 0.768918 Misc 0.714277
Car 0.239965 Car 0.276636 Car 0.1232 Van 0.149309
Van 0.042776 Van 0.009326 Pedestrian 0.105172 Car 0.135215

Pedestrian 0.006804 Pedestrian 0.000004 Van 0.00271 Pedestrian 0.001199

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.251255 0.249639 0.253159 0.245947
word assign probability word assign probability word assign probability word assign probability

Misc 0.375326 Misc 0.326927 Misc 0.773037 Misc 0.349753
Car 0.297038 Car 0.312763 Car 0.131322 Van 0.266127
Van 0.284522 Van 0.214909 Pedestrian 0.083431 Car 0.242507

Pedestrian 0.043112 Pedestrian 0.1454 Van 0.01221 Pedestrian 0.141502

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.251601 0.247332 0.253505 0.247562
word assign probability word assign probability word assign probability word assign probability

Misc 0.431877 Misc 0.408933 Misc 0.676632 Misc 0.411131
Car 0.251016 Car 0.291726 Car 0.120748 Van 0.312047
Van 0.193705 Van 0.173831 Pedestrian 0.115903 Car 0.261713

Pedestrian 0.123301 Pedestrian 0.12541 Van 0.086706 Pedestrian 0.015209
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Table A.12: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.12 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.172181 0.305723 0.190292 0.331804
word assign probability word assign probability word assign probability word assign probability

Misc 0.870717 Misc 0.65531 Misc 0.838568 Misc 0.773458
Cyclist 0.129227 Cyclist 0.33043 Car 0.137241 Car 0.152227

Car 0.000028 Car 0.024165 Cyclist 0.024165 Cyclist 0.052451
Pedestrian 0.000028 Pedestrian 0.000016 Pedestrian 0.000025 Pedestrian 0.021863

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.25815 0.26129 0.235209 0.245351
word assign probability word assign probability word assign probability word assign probability

Cyclist 0.490323 Cyclist 0.420763 Misc 0.394427 Misc 0.330523
Misc 0.230247 Misc 0.317221 Cyclist 0.350533 Car 0.326941
Car 0.184311 Car 0.185112 Car 0.156321 Cyclist 0.215723

Pedestrian 0.095119 Pedestrian 0.076906 Pedestrian 0.098718 Pedestrian 0.126813

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.258875 0.261773 0.231828 0.247525
word assign probability word assign probability word assign probability word assign probability

Misc 0.433178 Misc 0.341019 Misc 0.365757 Misc 0.482323
Cyclist 0.203901 Cyclist 0.286122 Car 0.355022 Car 0.350642

Car 0.186212 Car 0.253557 Cyclist 0.235712 Cyclist 0.153831
Pedestrian 0.176809 Pedestrian 0.119402 Pedestrian 0.043509 Pedestrian 0.013304
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Table A.13: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.13 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.193596 0.301518 0.22851 0.276376
word assign probability word assign probability word assign probability word assign probability

Misc 0.927429 Misc 0.818556 Misc 0.775525 Misc 0.87638
Pedestrian 0.070836 Pedestrian 0.080725 Pedestrian 0.090949 Cyclist 0.061805

Cyclist 0.001721 Van 0.060427 Cyclist 0.061049 Person 0.026784
Person 0.000005 Car 0.027383 Car 0.027827 Van 0.017514

Car 0.000005 Cyclist 0.012906 Van 0.023467 Pedestrian 0.011162
Van 0.000005 Person 0.000003 Person 0.021183 Car 0.006355

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.247106 0.249526 0.251328 0.25204
word assign probability word assign probability word assign probability word assign probability

Misc 0.218727 Misc 0.324727 Misc 0.279111 Misc 0.335027
Pedestrian 0.217607 Van 0.263533 Cyclist 0.236437 Cyclist 0.262952

Cyclist 0.199751 Pedestrian 0.20231 Pedestrian 0.207132 Person 0.182211
Person 0.187212 Car 0.158612 Car 0.153209 Van 0.114701

Car 0.147301 Cyclist 0.034108 Van 0.093713 Pedestrian 0.066109
Van 0.029502 Person 0.01671 Person 0.030407 Car 0.0391

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.247059 0.251376 0.249431 0.252135
word assign probability word assign probability word assign probability word assign probability

Misc 0.282438 Misc 0.255617 Misc 0.269227 Misc 0.259431
Pedestrian 0.170137 Pedestrian 0.252022 Pedestrian 0.260233 Cyclist 0.239922

Cyclist 0.167212 Van 0.180517 Cyclist 0.258718 Person 0.207607
Person 0.147607 Car 0.17032 Car 0.098701 Van 0.185121

Car 0.142005 Cyclist 0.077201 Van 0.086807 Pedestrian 0.105909
Van 0.0907 Person 0.064321 Person 0.026314 Car 0.00211
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Table A.14: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.14 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.184218 0.291856 0.248325 0.275782
word assign probability word assign probability word assign probability word assign probability

Misc 0.933885 Misc 0.926538 Misc 0.803138 Car 0.592815
Van 0.058909 Car 0.071293 Car 0.175516 Misc 0.299039
Car 0.007198 Van 0.002165 Pedestrian 0.018547 Van 0.071105

Pedestrian 0.000007 Pedestrian 0.000004 Van 0.002799 Pedestrian 0.037041

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.248613 0.252774 0.248802 0.249811
word assign probability word assign probability word assign probability word assign probability

Misc 0.518531 Misc 0.389321 Misc 0.534623 Car 0.427231
Van 0.261828 Car 0.233046 Car 0.321133 Misc 0.280346
Car 0.291021 Van 0.214521 Pedestrian 0.119821 Van 0.202021

Pedestrian 0.00072 Pedestrian 0.163011 Van 0.024423 Pedestrian 0.090402

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.249685 0.253278 0.250946 0.246092
word assign probability word assign probability word assign probability word assign probability

Misc 0.414701 Misc 0.428508 Misc 0.417018 Car 0.285971
Van 0.341228 Car 0.357611 Car 0.351723 Misc 0.284601
Car 0.136441 Van 0.125737 Pedestrian 0.175531 Van 0.241418

Pedestrian 0.10773 Pedestrian 0.088143 Van 0.055608 Pedestrian 0.188004
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Table A.15: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.15 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.232468 0.221238 0.291802 0.254492
word assign probability word assign probability word assign probability word assign probability

Misc 0.699319 Misc 0.707465 Car 0.633655 Misc 0.860704
Car 0.162418 Pedestrian 0.179127 Misc 0.159753 Cyclist 0.087301

Pedestrian 0.104433 Car 0.089707 Cyclist 0.145853 Pedestrian 0.045369
Cyclist 0.03883 Cyclist 0.0237 Pedestrian 0.060739 Car 0.006626

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.252433 0.253057 0.247816 0.246693
word assign probability word assign probability word assign probability word assign probability

Misc 0.382709 Misc 0.424121 Misc 0.328912 Misc 0.370737
Car 0.275033 Pedestrian 0.363257 Car 0.282861 Cyclist 0.291608

Pedestrian 0.257517 Car 0.141309 Cyclist 0.195908 Pedestrian 0.183337
Cyclist 0.08464 Cyclist 0.071412 Pedestrian 0.192319 Car 0.154318

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.251061 0.251747 0.24975 0.247442
word assign probability word assign probability word assign probability word assign probability

Misc 0.364452 Misc 0.436317 Car 0.430238 Misc 0.272431
Car 0.268521 Pedestrian 0.271236 Misc 0.295607 Cyclist 0.269209

Pedestrian 0.254812 Car 0.159628 Cyclist 0.219523 Pedestrian 0.229353
Cyclist 0.112214 Cyclist 0.132828 Pedestrian 0.054632 Car 0.229007
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Table A.16: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.16 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.276766 0.236292 0.239568 0.247374
word assign probability word assign probability word assign probability word assign probability

Misc 0.514796 Pedestrian 0.551602 Pedestrian 0.444259 Pedestrian 0.616123
Pedestrian 0.300242 Misc 0.39412 Misc 0.420115 Misc 0.34762

Cyclist 0.097531 Car 0.05019 Cyclist 0.109461 Car 0.019882
Car 0.087431 Cyclist 0.004088 Car 0.026164 Cyclist 0.016375

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.249205 0.251036 0.246314 0.253445
word assign probability word assign probability word assign probability word assign probability

Misc 0.385127 Pedestrian 0.294203 Pedestrian 0.621049 Pedestrian 0.358402
Pedestrian 0.226233 Misc 0.282233 Misc 0.17132 Misc 0.220857

Cyclist 0.204112 Car 0.233526 Cyclist 0.123927 Car 0.218841
Car 0.184528 Cyclist 0.190038 Car 0.083704 Cyclist 0.2019

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.247759 0.252674 0.247663 0.251903
word assign probability word assign probability word assign probability word assign probability

Misc 0.318673 Pedestrian 0.435337 Pedestrian 0.508404 Pedestrian 0.338039
Pedestrian 0.288604 Misc 0.258324 Misc 0.298027 Misc 0.315841

Cyclist 0.233611 Car 0.194833 Cyclist 0.16354 Car 0.181207
Car 0.169112 Cyclist 0.111406 Car 0.029929 Cyclist 0.164913
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Table A.17: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.17 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.210186 0.218035 0.221632 0.350147
word assign probability word assign probability word assign probability word assign probability

Misc 0.671198 Misc 0.530003 Pedestrian 0.511435 Misc 0.549273
Pedestrian 0.325681 Pedestrian 0.463613 Misc 0.419924 Pedestrian 0.417327

Cyclist 0.003121 Cyclist 0.006384 Cyclist 0.068641 Cyclist 0.0344

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.249182 0.251717 0.249591 0.249509
word assign probability word assign probability word assign probability word assign probability

Misc 0.384733 Misc 0.547627 Pedestrian 0.637481 Misc 0.519451
Pedestrian 0.373547 Pedestrian 0.427166 Misc 0.209703 Pedestrian 0.251622

Cyclist 0.24172 Cyclist 0.025306 Cyclist 0.152915 Cyclist 0.228927

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.247139 0.254905 0.250082 0.247874
word assign probability word assign probability word assign probability word assign probability

Misc 0.409477 Misc 0.559828 Pedestrian 0.459161 Misc 0.428831
Pedestrian 0.389521 Pedestrian 0.279931 Misc 0.382327 Pedestrian 0.345427

Cyclist 0.201002 Cyclist 0.160241 Cyclist 0.158512 Cyclist 0.225741
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Table A.18: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.18 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.324637 0.152514 0.250674 0.272175
word assign probability word assign probability word assign probability word assign probability

Misc 0.902131 Misc 0.965762 Misc 0.959268 Misc 0.86135
Van 0.067129 Car 0.03423 Car 0.039583 Car 0.138646
Car 0.03074 Van 0.000008 Van 0.001148 Van 0.000004

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.249412 0.250043 0.246488 0.254057
word assign probability word assign probability word assign probability word assign probability

Misc 0.479339 Misc 0.414328 Misc 0.623739 Misc 0.416671
Van 0.427657 Car 0.370261 Car 0.212021 Car 0.377911
Car 0.093004 Van 0.215411 Van 0.16424 Van 0.205418

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.249814 0.249871 0.245456 0.254859
word assign probability word assign probability word assign probability word assign probability

Misc 0.480871 Misc 0.403287 Misc 0.497665 Misc 0.709559
Van 0.325113 Car 0.330502 Car 0.363221 Car 0.211617
Car 0.193916 Van 0.266212 Van 0.139114 Van 0.078824
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Table A.19: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.19 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.209211 0.269387 0.214022 0.307381
word assign probability word assign probability word assign probability word assign probability

Misc 0.831119 Misc 0.706127 Misc 0.69004 Misc 0.691732
Van 0.070488 Car 0.142716 Car 0.101376 Van 0.166957

Cyclist 0.043232 Cyclist 0.088806 Cyclist 0.080769 Pedestrian 0.076524
Car 0.034501 Van 0.061686 Pedestrian 0.073899 Cyclist 0.047394

Pedestrian 0.02066 Pedestrian 0.000665 Van 0.053916 Car 0.017394

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.250933 0.248209 0.250076 0.250782
word assign probability word assign probability word assign probability word assign probability

Misc 0.256731 Misc 0.278531 Misc 0.290131 Misc 0.295621
Van 0.235027 Car 0.247726 Car 0.234922 Van 0.277454

Cyclist 0.192416 Cyclist 0.243811 Cyclist 0.179617 Pedestrian 0.188601
Car 0.161021 Van 0.229721 Pedestrian 0.154721 Cyclist 0.163512

Pedestrian 0.154805 Pedestrian 0.00011 Van 0.140608 Car 0.074813

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.251993 0.248663 0.249117 0.250227
word assign probability word assign probability word assign probability word assign probability

Misc 0.318161 Misc 0.252431 Misc 0.322739 Misc 0.342131
Van 0.287124 Car 0.229044 Car 0.267421 Van 0.335022

Cyclist 0.252407 Cyclist 0.187613 Cyclist 0.202217 Pedestrian 0.192037
Car 0.106302 Van 0.16991 Pedestrian 0.201702 Cyclist 0.0830

Pedestrian 0.036005 Pedestrian 0.160902 Van 0.005921 Car 0.047909
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Table A.20: Results of traditional LDA model [12], derived LDA model with continue feature only and dual-variable
LDA model on sequence.20 of training data set of KITTI benchmark.

Topic 1 Topic 2 Topic 3 Topic 4

traditional LDA model [12]

θ
probability

θ
probability

θ
probability

θ
probability

0.250442 0.29207 0.235696 0.221792
word assign probability word assign probability word assign probability word assign probability

Car 0.7526 Car 0.640687 Car 0.744626 Car 0.862398
Misc 0.247393 Misc 0.340548 Misc 0.212091 Misc 0.137595
Van 0.000007 Van 0.018764 Van 0.043282 Van 0.000008

derived LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.246903 0.260133 0.250695 0.242268
word assign probability word assign probability word assign probability word assign probability

Car 0.518731 Car 0.598771 Car 0.607911 Car 0.379731
Misc 0.454947 Misc 0.353018 Misc 0.239147 Misc 0.349327
Van 0.026321 Van 0.048211 Van 0.152942 Van 0.270842

dual-variable LDA model

θ
probability

θ
probability

θ
probability

θ
probability

0.245639 0.260302 0.250274 0.243785
word assign probability word assign probability word assign probability word assign probability

Car 0.661871 Car 0.401181 Car 0.484872 Car 0.394066
Misc 0.293717 Misc 0.31081 Misc 0.402916 Misc 0.384736
Van 0.044412 Van 0.288009 Van 0.112212 Van 0.221208
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