UNIVERSITY OF TECHNOLOGY SYDNEY Faculty of Engineering and Information Technology

CONTROL ARCHITECTURE AND PATH PLANNING FOR QUADCOPTERS IN FORMATION

by

Van Truong Hoang

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Sydney, Australia

2019

Certificate of Original Authorship

I, Van Truong Hoang declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy degree, in the School of Electrical and Data Engineering, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 28 June 2019

ABSTRACT

CONTROL ARCHITECTURE AND PATH PLANNING FOR QUADCOPTERS IN FORMATION

by

Van Truong Hoang

Unmanned aerial vehicles (UAVs) have found many areas of operation with numerous studies available in the literature. However, increasing demands in applications and the rapid development of technologies have transcended the use of a single UAV to the formation and their coordination. In the literature, UAVs' low-level control, path planning, and formation maintenance have been addressed mainly in separation. This research proposes a control architecture that integrates those three subsystems with a task assessment unit and communication links to accommodate a variety of applications.

At the low level, robustness of the UAV control systems is important for applications which require accurate attitudes, also for safety maintenance and configuration preservation when flying in formation. In operations, UAVs are often subject to nonlinearity, external disturbances, parametric uncertainties and strong coupling, which may downgrade their control performance. Therefore, the first focus is to design robust control schemes to track desired attitudes under various conditions. Accordingly, robust low-level controllers for UAVs are developed, namely the adaptive quasi-continuous and adaptive twisting sliding mode control. They offer a novel technique to adaptively change the control parameters of the so-called sliding modes for the sake of performance improvements.

To deploy multiple-UAV systems, the proposed control architecture includes robust control, path planning, and formation maintenance to create a real-time system that can be used for many engineering purposes. The system coordinates multiple UAVs in a specific formation to collect data of the inspected objects. The hardware extension on the basis of 3DR Solo drones includes the Internet of Things (IoT) and environmental sensors. Communication links are implemented by employing IoT boards for components of the control architecture to equip them with network and data processing capabilities.

For UAV formation control, a novel multi-objective angle-encoded particle swarm optimisation algorithm is proposed to generate formation trajectories. Here, the algorithm is developed to minimise a cost function incorporating multiple objectives subject to formation constraints that include inspection task completion, shortest paths and safe operation of the drones.

To handle difficulties arising from various inspection surfaces, avoid possible dynamic collisions, and maintain safe motion of the whole UAV formation, the path planning algorithm is incorporated with a reconfigurable capability developed to be integrated to the control architecture. This integration allows for flexible changing of the formation to accommodate additional constraints on collision avoidance, flight altitude, communication range, and visual inspection requirements.

Throughout the dissertation, analytical work developed is validated by extensive simulation, comparisons and experiments to evaluate the proposed approach and confirm its feasibility and effectiveness. Discussions on theoretical aspects and implementation details are included together with some recommendations.

Acknowledgements

Firstly, I would like to express my deepest appreciation to my principal supervisor, Associate Professor Quang Ha for the opportunity to work on this topic as well as his academic supervision of my candidature here at the University of Technology, Sydney. His direction, motivation, expertise and criticism allowed me to reach this significant milestone in my life.

I also would like to express my gratitude to my co-supervisor, Dr. Manh Duong (Danny) Phung, for his enthusiastic supervision and support of my academic research. It was an immense help, and he contributed significantly to the completion of this work. He is more than a brother with valuable suggestions and assistance in all other aspects of life during my time in Sydney.

I wish to thank my another co-supervisor, Dr. Ngoc Ha Pham for his academic advice to improve the research.

My gratitude also goes to my friend and colleague, Mr. Ansu Man Singh for his warm advice and encouragement as well as his time to support me when I faced the crisis time of my Ph.D. candidate. Thanks also go to my colleagues, Mr. Dinh Tran Hiep, Dr. Santanu Metia, Mr. Qiuchen Zhu for their assistance to overcome difficulties during the candidature. I also wish to thank all of the other Ph.D. candidates in my group as well as friends at UTS who have helped me and made my life more enjoyable.

I would like to take this opportunity to gratefully acknowledge the Vietnam International Education Development (VIED) under the Ministry of Education and Training (MoET) and the Graduate Research School (GRS), University of Technology, Sydney (UTS), for the financial support of my research under the UTS-VIED Ph.D. Student Collaborative Scholarship. Most importantly, I would like to dedicate this dissertation to my family. I am forever in debt to my parents, Thi Phuong Nguyen and Ngoc Hap Hoang. Without the sacrifices they have made on my behalf, I would not be where I am today. My wife, Thi Hue Bui, my beloved children Trong Huynh and Huyen Trang have given me unbounded love and support throughout my life. I owe my wife for the extremely hard time she has had to take care of all family members by herself so that I have been able to concentrate only on my study. This thesis could not have been completed without her silent sacrifices.

List of publications

The content of this thesis has been published in the following papers:

Journal papers

- J-1. V. T. Hoang, M. D. Phung, T. H. Dinh, and Q. P. Ha, "System architecture for real-time surface inspection using multiple UAVs," <u>IEEE Systems Journal</u>, accepted.
- J-2. Van Truong Hoang, Quang Hieu Pham, "Super-twisting second-order sliding mode for attitude control of quadcopter UAVs," Special Issue On Measurement, Control and Automation, <u>Vietnam Journal of Automation Today</u>, vol. 20, pp. 52-59, 2017.

Conference papers

- C-1. V. T. Hoang, M. D. Phung, T. H. Dinh, Q. Zhu, and Q. P. Ha, "Reconfigurable multi-UAV formation using angle-encoded PSO," in <u>The 2019 IEEE</u> <u>15th International Conference on Automation Science and Engineering (CASE</u> 2019), Vancouver, Canada, 22-26 AUG 2019, accepted.
- C-2. Qiuchen Zhu, Tran Hiep Dinh, Van Truong Hoang, Manh Duong Phung, and Quang Phuc Ha, "Crack detection using enhanced thresholding on UAV based collected images," in <u>Australasian Conference on Robotics and Automation</u> <u>2018 (ACRA 2018)</u>, Canterbury, New Zealand, 4-6 DEC 2018.
- C-3. V. T. Hoang, M. D. Phung, T. H. Dinh, and Q. P. Ha, "Angle-encoded swarm optimization for UAV formation path planning," in <u>The 2018 IEEE/RSJ</u> <u>International Conference on Intelligent Robots and Systems (IROS 2018)</u>, Madrid, Spain, 1-5 OCT 2018. IEEE, pp. 5239-5244.

- C-4. V. T. Hoang, M. D. Phung, and Q. P. Ha, "Adaptive twisting sliding mode control for quadrotor unmanned aerial vehicles," in <u>Control Conference</u> <u>(ASCC), The 11th Asian</u>, Gold Coast, Australia, 17 - 20 DEC 2017. IEEE, pp. 671-676.
- C-5. Manh Duong Phung, Van Truong Hoang, Tran Hiep Dinh, and Quang Ha, "Automatic crack detection in built infrastructure using unmanned aerial vehicles," in <u>Proceedings of the 2017 International Symposium on Automation and Robotics in Construction (ISARC 2017)</u>, Taipei, Taiwan. 28 JUN-1 JUL 2017, pp. 823-829.
- C-6. Van Truong Hoang, Ansu Man Singh, Manh Duong Phung, and Quang Ha, "Adaptive second-order sliding mode control of UAVs for civil applications," in <u>Proceedings of the 2017 International Symposium on Automation</u> <u>and Robotics in Construction (ISARC 2017)</u>, Taipei, Taiwan. 28 JUN-1 JUL 2017, pp. 816-822.
- C-7. Ansu Man Singh, Van Truong Hoang, and Quang Ha, "Fast terminal sliding mode control for gantry cranes," in <u>Proceedings of the 2016 International</u> <u>Symposium on Automation and Robotics in Construction (ISARC 2016)</u>, Auburn, USA, 18-21 JUL 2016, pp. 437-443.

Contents

Certif	icate	ii
Abstra	act	iii
Ackno	owledgments	V
List of	f publications	vii
List of	f figures	xiii
Abbre	eviation	xvi
Notat	ion	xviii
1 Intro	oduction	1
1.1 U	nmanned aerial vehicles	1
1	1.1.1 Unmanned aerial vehicle categories	1
1	1.1.2 Quadcopters: an introduction	5
1	1.1.3 UAVs research areas	9
1.2 M	fotivation	11
1.3 T	`hesis objectives	12
1.4 T	besis organisation	15
2 Liter	rature survey	18
2.1 L	ow-level control for unmanned aerial vehicles	
2	2.1.1 Robust and adaptive controllers	
2 2	2.1.2 Sliding mode controllers	20

		2.1.3	Other control strategies	27
	2.2	Path ge	eneration techniques for UAVs	30
	2.3	Format	ion control approaches	34
	2.4	Summa	ury	38
3	Ad	laptive	e robust control design for quadcopters	39
	3.1	Introdu	action	39
	3.2	Quadco	ppter model	39
	3.3	Sliding	manifold	44
	3.4	Adaptiv	ve quasi-continuous sliding mode control	45
		3.4.1	QCSM control design	45
		3.4.2	Adaptive QCSM design	47
	3.5	Adapti	ve twisting sliding mode control	48
		3.5.1	Equivalent control design	49
		3.5.2	Discontinuous control design	49
	3.6	Results		51
		3.6.1	Simulation setup	51
		3.6.2	AQCSM simulation and validation	53
		3.6.3	AdTSM simulation and validation	57
	3.7	Summa	ury	62
4	M	ulti-U.	AV system architecture	66
	4.1	Introdu	ction	66
	4.2	System	overview	67
	4.3	Theore	tical background	70
		4.3.1	Task assessment	70

		4.3.2	UAV path planning problem	71
		4.3.3	Formation concepts	74
	4.4	Experi	mental quadcopter and hardware development	79
		4.4.1	Experimental quadcopter	79
		4.4.2	Hardware extension and communication development $\ . \ . \ .$	84
		4.4.3	IoT Devices	85
		4.4.4	Communication Protocols	85
		4.4.5	Data Processing	87
		4.4.6	Other hardware retrofitting	87
	4.5	Summa	ary	90
5	Ar	ngle-ei	ncoded swarm optimisation for UAV formation	
0	11	th pla		01
	pa	ui pia	unning	91
	5.1	Introdu	action	91
	5.2	Format	tion path planning	91
		5.2.1	Angle-encoded PSO or θ -PSO	92
		5.2.2	Rationale	93
		5.2.3	Cost function	95
		5.2.4	Path planning implementation	98
		5.2.5	Path generation for individual UAV	99
		5.2.6	Overall algorithm	100
	5.3	Experi	ments	101
	5.3	Experi 5.3.1	ments	101 101
	5.3	Experi: 5.3.1 5.3.2	ments	101 101 104

6	Re	config	gurable multi-UAV formation	109
	6.1	Introdu	uction	. 109
	6.2	Metho	dology	. 109
		6.2.1	Introduction of UAV formation topologies	. 109
		6.2.2	Reconfiguration with intermediate waypoints	. 110
		6.2.3	Reference trajectory generation	. 113
		6.2.4	Algorithm implementation	. 113
	6.3	Experi	ments	. 114
		6.3.1	Experimental setup	. 114
		6.3.2	Results	. 117
	6.4	Conclu	sion \ldots	. 119
7	Co	onclus	ion	122
	7.1	Thesis	summary	. 122
	7.2	Thesis	contributions	. 124
		7.2.1	Robust low-level control of the quadcopter drive	. 124
		7.2.2	A prototype of system architecture for multi-UAV formation	
			control	. 125
		7.2.3	Multi-UAV path planning for formation control	. 125
		7.2.4	Reconfigurable formation of multiple UAVs	. 126
	7.3	Discuss	sion and future research	. 126
		7.3.1	Discussion	. 126
		7.3.2	Future work	. 128
	Bi	bliogr	aphy	130

xii

List of figures

1.1	Categories of size and endurance based UAVs (Source: Nonami et	
	al. [144])	6
1.2	Quadcopter operation in monitoring of high-rise buildings	8
1.3	Worldwide bridges collapse, a sign of things to come if infrastructure maintenance is ignored, (a) The West Gate Bridge in Melbourne, 1970, (b) A pedestrian bridge in Miami, 2018, and (c and d) The Genoa bridge in Italy, 2018 (Source: ABC News, https://www.abc.net.au/news/2018-08-17/genoa-bridge-collapse- road-safety-ponte-morandi-west-gate/10131098, access February 2019)	13
3.1	A schematic diagram of quadcopter	40
3.2	Insfrastructure inspection	52
3.3	Responses of the quadcopter in nominal conditions $(P, Q \text{ and } R$ -	
	roll, pitch and yaw angular velocities)	54
3.4	Control torques	55
3.5	Angular velocity and angle responses in the presence of disturbances .	55
3.6	Comparison of angle and angular velocity responses in the presence of parametric variations (red) and the nominal conditions (blue dash)	56
3.7	The adaptation of gain $\alpha_1(t)$ in various scenarios	56
3.8	Responses of the quadcopter $(P, Q \text{ and } R\text{- roll}, \text{ pitch and yaw})$	
	angular velocities) in nominal conditions $\ldots \ldots \ldots \ldots \ldots \ldots$	58

3.9	Control torques	59
3.10	Angular velocity and angle responses in the presence of disturbances.	60
3.11	Angle and angular velocity responses in the presence of parametric	
	variations	61
3.12	Experimental data acquisition	61
3.13	Time responses of three control inputs	62
3.14	The roll and pitch angle and angular velocity responses of	
	controllers in nominal condition	63
3.15	The roll and pitch angle and angular velocity responses of	
	controllers in occurrence of disturbances	63
3.16	The roll and pitch angle and angular velocity responses of	
	controllers in occurrence of parametric variations	64
3.17	Zoom-in tracking errors of controllers at the steady state \ldots .	65
4.1	System architecture	68
4.2	Inertial and formation frames in UAV formation	77
4.3	Initialisation process for UAV formation	79
4.4	Message flows between 3DR Solo and GCS via Solo Link $\ . \ . \ .$.	81
4.5	The 3DR Solo drone with body coordinate frame $\ . \ . \ . \ . \ .$.	82
4.6	Data communication structure	84
4.7	The 3DR Solo drone with retrofitted components $\hfill \ldots \ldots \ldots \ldots$	86
4.8	Three Solo drones with the gateway router	87
4.9	The 3DR Solo drone with LIDAR	88
4.10	Communication delay between UAVs (red solid line) and between	
	UAVs and RCUs (blue dashed line)	89

5.1	Obstacle representation and safe distance calculation 96
5.2	Mission Planner incorporating Google Satellite Map to create initial
	information and an inspection plan
5.3	The light rail bridge to be inspected with the obstacles identified 101 $$
5.4	Pseudo code for path generation process
5.5	3DR Solo drones used in experiments
5.6	Convergence comparison between PSO, GA, TLBO and $\theta\text{-}\text{PSO}$ 104
5.7	Bridge inspection with UAV formation
5.8	Trajectories of three drones tracking the planned paths
5.9	Altitudes of the three drones in the formation test
5.10	Errors between the planned and flown paths
6.1	Reconfigurable formation
6.2	Pseudo code for reconfigurable trajectory generation process 115
6.3	Flowchart of the entire system framework
6.4	Transformation of triangular formation (a) to alignment (b), and
	rotation (c) configurations
6.5	UAVs' trajectories in horizontal plane in the alignment formation 119
6.6	3D real-time plot for alignment formation
6.7	Altitudes and ground speeds of UAVs during the experiment with
	rotating reconfiguration
6.8	Ground speed of UAVs in rotating reconfiguration
6.9	Trajectories of UAVs in the experiment with shrink reconfiguration . 121
7.1	Network delay during the inspection

Abbreviation

1-SMC	First-order sliding mode control
2-SMC	Second-order sliding mode control
2-D	Two-dimensional
3-D	Three-dimensional
ANN	Artificial neural network
APF	Artificial potential field
AdTSM	Adaptive twisting sliding mode
AQCSM	Adaptive quasi-continuous sliding mode
ATSM	Accelerated twisting sliding mode
CGLA	Geometric learning algorithm
COG	Center of gravity
IP	Internet protocol
IWP	Intermediate waypoint
GA	Genetic algorithm
GCS	Ground control stations
GPS	Global positioning system
GST	Google satellite map
HALE	High altitude long endurance
HOSM	Higher-order sliding modes
IoT	Internet of things
LIDAR	Light detection and ranging
L-F	Leader-follower
LQG	Linear quadratic gaussian

LQR	Linear quadratic regulator
MALE	Medium altitude long endurance
MAV	Micro UAV
MPC	Model predictive control
MUAV	Miniature UAV
NAV	Nano UAV
PD	Proportional-derivative
PID	Proportional-integral-derivative
PRM	Probabilistic roadmap method
PSO	Particle swarm optimisation
QCSM	Quasi-continuous sliding mode
RCU	Remote computational units
RRT	Rapidly exploring random tree
RTK	Real-time kinematic
RTP	Real-time transport protocol
SOSM	Second-order sliding modes
STSM	Super-twisting sliding mode
SUAV	Small UAV
TCP	Transmission control protocol
TUAV	Tactical UAV
UAV	Unmanned aerial vehicle
UDP	User datagram protocol
UGV	Unmanned ground vehicle
VRB	Virtual rigid body
VS	Virtual structure
VTOL	Vertical take-off and landing
θ -PSO	Angle-encoded particle swarm optimisation

Nomenclature and Notation

General Formatting Style

$[\cdot]$	The time derivative of a variable
$[\cdot]^T$	Transpose of a vector or a matrix
$\ \cdot\ $	The norm of a vector
$\operatorname{sign}(\cdot)$	The signum function
	Specific Symbol Usage
$\{E\}$	Earth fixed inertial coordinate frame
$\{B\}$	A quadcopter's body coordinate frame
$\{F\}$	A formation coordinate frame
$\{O\}$	A inertia frame of the formation
С	Force-to-torque coefficient of a quadcopter
c_1, c_2	PSO gain coefficients
C_j	Coordinates of the j th IWP
C_k	Centers coordinate of the k th obstacle
c_x	cos(x)
d	Disturbance vector
$d_{\rm com}$	Communication range
d_i	Distance between the UAV_i and the formation centroid
d_k^S	Safe distance of the k th obstacle
$d_{ heta}$	Pitch disturbance
d_{ϕ}	Roll disturbance
d_{ψ}	Yaw disturbance
e	A vector containing control error

F	Sum of aerodynamic forces affecting the quadcopter
F_i	Lift force generated by the i th motor/propeller
g	Gravitational acceleration
g_{ij}	A PSO global-best position
Η	Transformation matrix
Ι	Inertia matrix of a quadcopter
J	The overall cost function
J_1	A cost component corresponding to a path length
J_2	A cost component corresponding to a violation
J_3	A cost component corresponding to a flying altitude
J_F	A cost function for path planning algorithm
J_R	A cost component corresponding to an intermediate waypoint
K	Number of obstacles
L_i	The total number of segments of the path T_{Fi}
M_j	Number of intermediate waypoints
p	Roll angular velocity of a quadcopter
P_n^*	Flying path for the $UAVn$
P_F	Position of the formation's centroid
p_{ij}	A PSO local-best positions
P_F^j	A set of waypoints of the formation at the j th intermediate waypoint
P_n^j	A set of waypoints of the UAV n at the j th intermediate waypoint
q	Pitch angular velocity of a quadcopter
R	Rotation matrix
r	Yaw angular velocity of a quadcopter
r_1, r_2	PSO pseudorandom scalars
r_F	Radius of the formation
r_k	Radius of the k th obstacle

r_Q	Radius of a quadcopter including propellers
$r_{l,k}^S$	Safe radius from the l th path segment to the k th obstacle
r_n^S	Safe radius of the n th UAV
$S(\omega)$	A skew-symmetric matrix
s_x	sin(x)
T_F^*	Reference trajectory of the formation centroid
T_{Fi}	The formation path at i th iteration
T_n	Reference trajectory for the n th UAV
u	A vector of control input
u_D	Discontinuous control component
u_{eq}	Equivalent control component
u_T	A twisting sliding controller
u_z	Altitude control input
$u_{ heta}$	Pitch control input
u_{ϕ}	Roll control input
u_ψ	Yaw control input
V_0	Lyapunov function of the sliding surface
v_{ij}	Velocity of the i th particle in dimension j
V_l	Violation cost of the l th segment
V_n	Velocity profile for the n th UAV
$V_{\sigma,\alpha}$	Global Lyapunov function
X	State of a dynamic system
x_{ij}	Position of the i th particle in dimension j
x_{max}	Upper restriction of the search space
x_{min}	Lower restriction of the search space
z_k^{max}	Maximum altitude of the k th obstacle
α	A vector containing adaptive gains

$lpha_i$	An adaptive gain of the state i
$\alpha_{M,i}$	A maximum possible value of the adaptive gain
$\alpha_{m,i}$	A threshold of the adaptive gain
$\Delta \theta_{ij}$	phase angle increment of the i th particle in dimension j
Θ	Orientation vector of a quadcopter
θ	Pitch angle
$ heta_{ij}$	Phase angle of the i th particle in dimension j
Λ_g	θ -PSO global best positions
Λ_i	θ -PSO personal best positions
σ	A vector containing the sliding surface components
au	A torque component caused by thrust forces
$ au_a$	A torque component caused by the aerodynamic friction
$ au_b$	A torque component caused by body gyroscopic effects
$ au_p$	A torque component caused by propeller gyroscopic effects
$ au_{ heta}$	Pitch torque
$ au_{\phi}$	Roll torque
$ au_\psi$	Yaw torque
ϕ	Roll angle
ψ	Yaw angle
ω	A vector containing the three angular rates

 Ω_r Overall residual propeller angular speed