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ABSTRACT

CONTROL ARCHITECTURE AND PATH PLANNING FOR

QUADCOPTERS IN FORMATION

by

Van Truong Hoang

Unmanned aerial vehicles (UAVs) have found many areas of operation with nu-

merous studies available in the literature. However, increasing demands in applica-

tions and the rapid development of technologies have transcended the use of a single

UAV to the formation and their coordination. In the literature, UAVs’ low-level

control, path planning, and formation maintenance have been addressed mainly in

separation. This research proposes a control architecture that integrates those three

subsystems with a task assessment unit and communication links to accommodate

a variety of applications.

At the low level, robustness of the UAV control systems is important for applica-

tions which require accurate attitudes, also for safety maintenance and configuration

preservation when flying in formation. In operations, UAVs are often subject to

nonlinearity, external disturbances, parametric uncertainties and strong coupling,

which may downgrade their control performance. Therefore, the first focus is to

design robust control schemes to track desired attitudes under various conditions.

Accordingly, robust low-level controllers for UAVs are developed, namely the adap-

tive quasi-continuous and adaptive twisting sliding mode control. They offer a novel

technique to adaptively change the control parameters of the so-called sliding modes

for the sake of performance improvements.

To deploy multiple-UAV systems, the proposed control architecture includes ro-

bust control, path planning, and formation maintenance to create a real-time system

that can be used for many engineering purposes. The system coordinates multiple



UAVs in a specific formation to collect data of the inspected objects. The hardware

extension on the basis of 3DR Solo drones includes the Internet of Things (IoT) and

environmental sensors. Communication links are implemented by employing IoT

boards for components of the control architecture to equip them with network and

data processing capabilities.

For UAV formation control, a novel multi-objective angle-encoded particle swarm

optimisation algorithm is proposed to generate formation trajectories. Here, the

algorithm is developed to minimise a cost function incorporating multiple objectives

subject to formation constraints that include inspection task completion, shortest

paths and safe operation of the drones.

To handle difficulties arising from various inspection surfaces, avoid possible

dynamic collisions, and maintain safe motion of the whole UAV formation, the path

planning algorithm is incorporated with a reconfigurable capability developed to be

integrated to the control architecture. This integration allows for flexible changing

of the formation to accommodate additional constraints on collision avoidance, flight

altitude, communication range, and visual inspection requirements.

Throughout the dissertation, analytical work developed is validated by exten-

sive simulation, comparisons and experiments to evaluate the proposed approach

and confirm its feasibility and effectiveness. Discussions on theoretical aspects and

implementation details are included together with some recommendations.
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∆θij phase angle increment of the ith particle in dimension j

Θ Orientation vector of a quadcopter

θ Pitch angle

θij Phase angle of the ith particle in dimension j

Λg θ-PSO global best positions

Λi θ-PSO personal best positions

σ A vector containing the sliding surface components

τ A torque component caused by thrust forces

τa A torque component caused by the aerodynamic friction

τb A torque component caused by body gyroscopic effects

τp A torque component caused by propeller gyroscopic effects

τθ Pitch torque

τφ Roll torque

τψ Yaw torque

φ Roll angle

ψ Yaw angle

ω A vector containing the three angular rates

Ωr Overall residual propeller angular speed
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