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Abstract: In recent years, remote sensing researchers have investigated the use of different modalities
(or combinations of modalities) for classification tasks. Such modalities can be extracted via a diverse
range of sensors and images. Currently, there are no (or only a few) studies that have been done to
increase the land cover classification accuracy via unmanned aerial vehicle (UAV)–digital surface
model (DSM) fused datasets. Therefore, this study looks at improving the accuracy of these datasets
by exploiting convolutional neural networks (CNNs). In this work, we focus on the fusion of DSM
and UAV images for land use/land cover mapping via classification into seven classes: bare land,
buildings, dense vegetation/trees, grassland, paved roads, shadows, and water bodies. Specifically,
we investigated the effectiveness of the two datasets with the aim of inspecting whether the fused
DSM yields remarkable outcomes for land cover classification. The datasets were: (i) only orthomosaic
image data (Red, Green and Blue channel data), and (ii) a fusion of the orthomosaic image and DSM
data, where the final classification was performed using a CNN. CNN, as a classification method,
is promising due to hierarchical learning structure, regulating and weight sharing with respect to
training data, generalization, optimization and parameters reduction, automatic feature extraction
and robust discrimination ability with high performance. The experimental results show that a CNN
trained on the fused dataset obtains better results with Kappa index of ~0.98, an average accuracy of
0.97 and final overall accuracy of 0.98. Comparing accuracies between the CNN with DSM result and
the CNN without DSM result for the overall accuracy, average accuracy and Kappa index revealed
an improvement of 1.2%, 1.8% and 1.5%, respectively. Accordingly, adding the heights of features
such as buildings and trees improved the differentiation between vegetation specifically where plants
were dense.
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1. Introduction

In the past few years, unmanned aerial vehicles (UAVs) have been extensively used to collect
image data over inaccessible/remote areas [1–3]. Ease-of-use and affordability are two catalysing factors
for the widespread use of UAVs in civilian and military applications [1,4]. Images captured using UAVs
are used for geographical information system databases, datasets for automated decision-making,
agricultural mapping, urban planning, land use and land cover detection and environmental monitoring
and assessment [1,5–7]. Such images are commonly used in supervised machine learning-based
classification tasks as training data [8–10]. One reason for this is that these images have high resolution
and a good range of spectral bands [6]. This is an advantage since training and validating a supervised
classifier for a remote sensing task demands reliable features. Due to the quality of UAV images
nowadays, extracting reliable features to form a dataset becomes less of a problem. Example of such
features are land cover characteristics (geometrical and spectral) from Light Detection and Ranging
(LiDAR) and hyperspectral data [11]. Moreover, to enhance land cover classification, the combination
of multisource (active/passive sensors) or multimodal data (data with different characteristics) is
recommended [12,13]. For example, Jahan et al. [11] fused different LiDAR and hyperspectral datasets,
and their derivatives, and proved that the overall accuracy of the fused datasets are higher than the
single dataset. Another fusion of LiDAR and aerial colour images was performed to enhance building
and vegetation detection [11]. These additional features can sometimes improve the classification
accuracy for specific domains and use cases. For example, dataset fusion of RGB (Red, Green and Blue)
images obtained from UAVs or other sources together with elevation information from digital surface
models (DSM) provided a more holistic representation for the construction of accurate maps [11].
Considering DSMs as additional features was shown to improve classification results for image
segmentation [14].

Based on the success of previous studies [11,15–17], this paper also examines feature fusion
but for the specific task of land cover classification taking advantage of fused DSM–UAV images.
Specifically, we investigated the effectiveness of using a single feature modality (RGB data only) versus
the fusion of RGB and DSM data. The classification algorithm used to compare the two datasets is a
convolutional neural network (CNN), which is a deep-learning technique that hierarchically learns
representations from training data, regulates and shares the weight with respect to the training data,
generalizes, optimizes, and reduces the parameters with the higher ability to discriminate and extract
features, automatically [18,19]. The specific land cover classifications that we considered were: (i) bare
land, (ii) buildings, (iii) dense vegetation/trees, (iv) grassland, (v) paved roads, (vi) shadows, and (vii)
water bodies.

2. Related Studies

Several studies have been conducted using different approaches and models for tasks such as land
use land cover and crops classification. These studies have primarily varied according to the technique
used. Reference [20] developed a hybrid model based on the integration of random forest and a
texture analysis to classify urban-vegetated areas. Their model contained 200 decision trees trained on
hand-crafted spectral–textural features. The highest accuracy reported was 90.6%. The work in [21]
used a multiple kernel-learning (MKL) model to classify UAV data in Kigali, Rwanda. Their model
showed superior classification performance (90.6% accuracy) and outperformed the single standard
single-kernel Support Vector Machine model by 5.2%. In another study [22], a classification framework
based on deep-learning and an object-based image analysis (OBIA) proposed to classify UAV data into
five categories, namely, water, roads, green land, buildings, and bare land. The proposed framework
first performed graph-based minimal spanning-tree segmentation, followed by spatial, spectral, and
texture feature extraction from each object. The features were fed into a stacked autoencoder (SAE) for
training and achieved an overall accuracy of 97%.

Recently, cameras mounted on UAVs have enabled the acquisition of higher quality images from
remote locations, especially those of wet and cropland images. Machine learning has also played an
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important role, where algorithms such as Support Vector Machine (SVM), Logistic Regression and
Artificial Neural Networks (ANN) have been used to perform automatic land classification [23,24].
Lie et al. [25] used high-quality images with OBIA based on multi-view information. They classified
wetlands in Florida, USA, into seven classes, namely, Cogon grass, improved pasture, Saw Palmetto
shrubland, broadleaf emergent marsh, graminoid freshwater marsh, hardwood hammock–pine, forest,
and shadows with an overall accuracy of 80.4%, a user accuracy of 89.7%, and a producer accuracy of
93.3%. Reference [26] developed a model combining deep CNNs with OBIA to create land cover maps
from high resolution UAV images with a very good overall accuracy of 82.08%.

The work in [27] developed a model based on conditional random fields where they integrated
multi-view and context information. Their work looked at different classifiers, namely, the Gaussian
mixed model (GMM), random forests (RF), SVM and DCNN. Machine learning algorithms seem to
provide very good classification accuracy, with GMM and DCNN outperforming the rest. Reference [28]
evaluated classifications after applying an advanced feature selection model to SVM and RF classifiers.
A novel method was developed in [6] where the fuzzy unordered rule algorithm and OBIA were
integrated to extract land cover from UAV images. Their method first segments the images based on
multi-resolution segmentation, then optimises them based on feature selection (integrating feature
space optimisation into the plateau objective function) and finally classifies them using a decision
tree and an SVM. Overall accuracy was reported to be 91.23%. Very-high resolution aerial images
were classified using a CNN in [29], which has been shown to be effective for the extraction of specific
objects such as cars. In another study [18], the capability of CNN to classify aerial photos (with 10 cm
resolution) was examined and verified using medium-scale datasets.

To the best of our knowledge, CNNs have not yet been applied to fused DSM and UAV datasets
for land cover classification. Because the resolution of the imagery directly affects the accuracy of
the land cover classification, we applied a CNN algorithm to the fusion of a UAV image and DSM
(both with 0.8 m/pixel resolution) for urban feature extraction to inspect the accuracy of the result.
In general, UAV datasets have lower resolution and accuracy compared to aerial photos [30]. Therefore,
this study looks at improving the accuracy by exploiting CNNs for these datasets. The following
sections explain and discuss the state of the art with respect to classifying UAV datasets with a focus
on deep-learning-based methods.

3. Materials and Methods

3.1. UAV Data Acquisition

The UAV dataset used in this study was acquired over the Universiti Sains Malaysia campus on
3 February 2018 at 12:00 am (Figure 1). The data acquisition was performed using a UAV flying at
an altitude of 353 m using a Canon PowerShot SX230 HS (5 mm). The images were characterised by
three channels (RGB) with a ground resolution of approximately 9.95 cm/pixel, a 4000 × 3000-pixel
resolution and an 8-bit radiometric resolution. An orthomosaic photo was produced from the captured
image sequence with Average Root Mean Square Errors (RMSE) of 0.192894 m (1.08795 pix). A DSM
was also generated using Agisoft PhotoScan Professional (version 1.3.4, http://www.agisoft.com). The
selected subset covers approximately 1.68 km2. The point clouds produced by Agisoft had a point
density of approximately 1.58 points/m2, and the resolution of the DSM was 79.6 cm/pixel.

http://www.agisoft.com
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Figure 1. The unmanned aerial vehicle (UAV) datasets used in this work: (a) the orthomosaic image
and (b) the constructed digital surface model (DSM).

3.2. Ground Truth Data

A total of 412 ground truth (GT) data (totalling 15,550 pixels) were sampled from Google Earth
images. Each sample was labelled according to its respective class. For verification purposes, a
filed survey was conducted to verify that the Google Earth samples matched the onsite class labels.
The seven land cover classes considered in this work were: (i) bare land, (ii) buildings, (iii) dense
vegetation/trees, (iv) grassland, (v) paved roads, (vi) shadows, and (vii) water bodies. The details for
the GT data is shown in Table 1.

Table 1. Number of regions of interest (ROIs) and pixels per land cover class in the ground truth
(GT) dataset.

Land Cover Class Number of ROIs Number of Pixels

Bare land 27 1104
Buildings 129 3833

Dense vegetation/trees 53 1917
Grassland 47 3094

Paved roads 92 1343
Shadows 36 76

Water bodies 28 4183

Training, Validation and Testing Set

From the above dataset, 50% was allocated for training, 25% for validation, and the remaining
25% was used as a random test. Each set is explained in the following paragraphs. The training dataset
is used to train the CNN. In general, the training set contained labelled instances that were known to
the classifier. At each training iteration, the model performed classification for all instances of the input
(one iteration involving all dataset instances is called an epoch) based on the initial weights of the network.
A loss value was associated with each epoch, which represents the error between CNN’s predictions
and the actual class labels. After the predetermined number of epochs was reached, the weights in the
network were updated accordingly via an algorithm such as Stochastic or Batch Gradient Descent. The
ultimate goal for training is for the error to be minimized, or a stopping criterion to be reached.
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The validation set, whose labels are also known to the classifier, serves two purposes. The first
is to ensure the model does not overfit the data in the training set. The second purpose is to aid any
necessary hyperparameter tuning. In CNNs, hyperparameters are settings that can be manipulated to
ensure the best output. Example hyperparameters are the learning rate, number of epochs, number of
hidden layers, activation function choices, and batch size. During the training process, the results from
the validation set (such as the validation loss and validation accuracy) can be monitored in order to
determine whether any hyperparameters need to be tweaked. The CNN weights however are not
updated based on the validation loss.

The test set is a set unseen by the CNN (i.e., labels are not visible). After the CNN produced
satisfactory results based on the training and validation sets, it was then evaluated on the test set.
Having a good and randomized test set (while still adhering to the distribution and assumptions of the
original problem) can be very useful especially if a classifier is to be deployed in real-world situations.
In our work, the test set was used to ultimately verify the accuracy of our CNN model.

3.3. Image Pre-Processing

Image pre-processing is done to prepare the image data for CNN. This was mainly done using
existing packages and software such as ArGIS, Agisoft PhotoScan Professional and Python coding.
The Agisoft PhotoScan allows the creation of georeferenced dense point clouds, textured polygonal
models, digital elevation models (DEMs), and orthomosaics from a set of overlapping images with the
corresponding referencing information [6]. Orthomosaic images and the DSM of the study area were
firstly calibrated interior and exterior camera calibrations followed by image matching and automatic
aerial triangulation. ArcGIS (v. 10.5) was then used to the point clouds to obtain a raster version of
the DSM (created via natural neighbour interpolation). For computational efficiency, the orthomosaic
image and the DSM (Digital Surface Model) were resampled to the same resolution of 0.8 m/pixel
using the ‘nearest’ resampling method. As two datasets have different features, the data rescaling was
applied using normalization. In this process, the real valued numeric attributes rescaled into the range
0 and 1. In general, the purpose of normalization is to change the values of numeric columns in the
dataset to a common scale, without distorting differences in the ranges of values.

3.4. Methodology

In this work, two datasets were used in order to see which performs best for land cover classification.
The two datasets are: (i) the RGB image and (ii) the fusion of RGB and DSM data. Patch-level analysis
is often used with deep learning methods, especially CNN in order to overcome challenges posted
by speckle noise and segmentation optimization which problems associated with pixel-level and
object-level feature extraction [18]. In a patch-level (also known as tile-based) analysis, images are
divided into a grid of tiles of m×m and then each patch is separately analyzed. The size of the image
patch used to train the CNN was determined based on the spatial resolution of the RGB image and the
expected size of the objects in the scene. In this study, the selected patch size was 9 × 9 pixels.

The classification of the land cover was performed using a CNN [14,22,31–35]. CNNs simulate
the working of a human brain using a multilayer structure [26]. These artificial neural networks
learn to classify an image using a number of convolutional layers, which increasingly improve
the labelling process [29]. It is as a result of hierarchical nature of the CNN classifier with the
learning of convolutional filters, updating weight, regularization, and optimization to improve feature
extraction [19]. It empowers the ability to automatically learn contextual features from input images,
and its architecture provides a suitable platform to analyse very-high-resolution images [14].

Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) work like a human brain with multilayer structure [36].
These networks learn to classify the image by using the number of convolutional layers that increasingly
improve the labeling process [37]. CNN is an artificial neural network that uses the local receptive field
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and shared weights [18]. This deep learning method has the ability to automatically learn hierarchically
contextual features from the input image and this architecture provide a suitable platform to analyze
very-high-resolution images [29]. In addition, information can be extracted at different levels including
pixel-level, object-level, and patch-level.

The architecture of CNN is based on three series of operations (layers): 2D convolution layer,
pooling layer (subsampling), and fully connected layer [36]. Additionally, some deeper structures can
be used to improve CNNs generalization such as nonlinear activations, regularization (dropout and
batch normalization), stochastic pooling, and so on [18,38].

(1) CNN Convolutional Layer
First, a 2D convolutional layer with a set of learnable convolutional filters (kernels) can learn

high-level features detection from training datasets. The convolution operator of CNN (1) is applied to
an input image X ε Rm×n×d to obtain the output in a nonlinear transformation [14]:

y = x ∗ w + b (1)

This convolution is operated between x and a filter w ε R m×m×d where b ε R is the bias, and it
constructs a feature map y ε RM-m+1×N-m+1 by applying a local sliding window of w (filter) in every
patch in x of size m × m.

Then, an Adaptive Moment Estimation (Adam) optimizer is utilized to train the networks as
an effective stochastic optimization method [18,39] Afterward, the result of the first operation is
transformed by a nonlinear activation function through nonlinearity such as Rectified Linear Unit
(ReLU) to remove negative values from an activation map as:

y = max (0; x) (2)

Besides, batch normalization as regularization is applied to each feature map (the output of
previous activation function) to normalize the map within a batch to have zero mean and unit
standard deviation [14]. Batch normalization uses stochastic gradient descent to improve training and
minimizing loss before every convolutional layer (for more details on batch normalization see [40].

(2) CNN Pooling Layer
The next operation (pooling) aims to merge similar features (values that statistically are highly

correlated) into one, and this task is usually done by choosing the maximum value in a local patch for
the output [41]. The pooling layer (downsampling operation) attempts to reduce the spatial size of
the output and it controls overfitting, as well. Following this step, another hyperparameter is set as
dropout to control overfitting [42] and improve the learning process [14].

(3) CNN Fully Dense Layer
In the end, the Softmax classifier (activation function) was used to predict the exclusive classes

and the characteristics of the CNN code were combined into a fully dense layer to classify each pixel in
the image to the most likely label [18,41]. Softmax classifier discriminates the category of each pixel by
weighting the distance between validation data and training datasets from that class [43].

In summary for this study, the network consisted of one 2D convolution layer that learned
64 kernels with a filter size of 3 × 3. The convolution results then went through a rectified linear unit
(ReLU) layer before being down-sampled via maxpooling with a filter size of 2 × 2. A dense layer with
128 neurons then followed with ReLU activation, followed by a final softmax dense layer with seven
neurons indicating the number of classes. Note that dropout was implemented to avoid overfitting.
A dropout of 0.2 was performed after the maxpooling layer, and another dropout of 0.5 was performed
after the dense ReLU layer. The network was optimised using an Adam optimiser with a batch size of
32, and the number of iterations was 200 epochs. The loss calculated for the training was categorical
cross entropy.

This study investigated the effectiveness of two settings. First, the CNN was trained using only
the RGB image. Then, we looked at the effectiveness of a combined dataset using a fusion of the RGB
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image and the DSM data. The two networks were trained to see whether the fusion of RGB and DSM
would yield superior results. A summary of the of the workflow and the procedures is shown in
Figure 2.
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3.5. Evaluation Metrics

In this study, the metrics used were the overall accuracy (OA), the average accuracy (AA), the
per-class accuracies (PA), and the Kappa index (K). OA measures the percentage of total classified
pixels that truly labelled into the specific land cover classes and it was computed by dividing the total
correctly classified pixels (

∑
Di j or the sum of the major diagonal) by the total number of pixels (N) in

the error matrix, as is shown in Equation (3), and PA was obtained using Equation (4):

OA =

∑
Di j

N
(3)

PA =
Di j

Ri
(4)

where Di j is the total number of correctly classified pixels in row i and column j and Ri is the total
number of pixels in row. To compute AA, we used Equation (5) while defining m as the number of
the classes:

AA =

∑m
1 PAm

m
(5)

Conversely, the Kappa index (K) is a discrete multivariate technique used in accuracy
assessments [44]. A Kappa analysis yields a K statistic, which is a quantitative measure of the
level of agreement or accuracy in correctly classified pixels [45]. A kappa of 1 indicates ideal agreement,
whereas a kappa of 0 indicates agreement equivalent to chance to truly classify the pixels. The K
statistic was computed as:

K =
N
∑m

i, j=1 Di j −
∑m

i, j=1 Ri.C j

N2 −
∑m

i, j=1 Ri.C j
(6)
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where m is the number of classes, Di j is the number of correctly classified pixels in row i and column j,
Ri is the total number of pixels in row i, C j is the total number of pixels in column j and N is the total
number of pixels.

Validation curves are indicators that show whether the training iterations improve the model
performance. Validation curves plot the training and validation epoch on the horizontal axis and a
quality metric (the accuracy, Equation 7 or loss, Equation 8) on the vertical axis. An accuracy curve is
a typical quality measurement [46,47] coming from the confusion matrix and shows all correct and
incorrect classifications. The accuracy is calculated as:

Accuracy =

∑
i=1 Cii∑m

i=1
∑m

j=1 Ci j
(7)

where Cii is the correct classification on the diagonal, m is the number of classes, Ci j is the number

of times items of class i were classified as class j (an incorrect classification) and
m∑

i=1

m∑
j=1

Ci j is the total

number of samples that were evaluated. Another indicator to interpret CNN’s performance and
capability is by loss curve to show whether the optimization process and relative learning progress
improves for several epochs [48]. As the classification process involves generalization, so there is some
level of information loss which leads to loss of completeness in the final result [49]. The loss function is
generally defined by:

loss = 1−Accuracy (8)

As the dataset used was imbalanced, we also calculated the F1 Score. The F1 Score is basically
a weighted average (or harmonic mean) of two other metrics, namely Precision and Recall. In this
work, we performed macro-averaging for all three metrics since this way of calculation better caters for
multiclass imbalance [50]. In macro-averaging, each metric is averaged over all classes. The formulas
for all metrics are as shown in the following:

PrecisionMacro =

∑
i=1

TPi
TPi+FPi

Number o f Classes
(9)

RecallMacro =

∑
i=1

TPi
TPi+FNi

Number o f Classes
(10)

F1 ScoreMacro = 2×
PrecisionMacro ×RecallMacro

PrecisionMacro + RecallMacro
(11)

The abbreviations TPi, FPi and FNi stand for True Positives for class-i, False Positives for class-i
and False Negatives for class-i, respectively.

4. Results

This section provides the experimental results of our study. The CNN was implemented in Python
on an Intel Core-i7 (2.90 GHz) system with 32 GB RAM. The classification maps produced by CNN for
both datasets are shown in Figure 3. The GT (Figure 3a) and the classified maps (Figure 3b,c) provided
promising land cover classifications throughout the study area.
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Figure 3. Classification map produced by the CNN based on the two datasets: (a) GT, (b) RGB only
dataset and (c) RGB + DSM dataset.

Figure 4 depicts the percentage of GT datasets pixels for each land cover class for both RGB
and fused images. The GT samples in each class within the RGB image and the fused data were
approximately balanced. Conversely, samplings between classes were not equally collected. For
example, the number of GT pixels for the paved road classes in both datasets was approximately
0.3% while the percentages for the building class were close to 0.8%, which was nearly 2.6 times
more sampling than for the paved road class. The percentage of GT pixels displayed variation from a
minimum of 0.1% (in the shadow class) to a maximum of 1.5% (in the water body class). Therefore,
the unbalanced distribution of GT samples between land cover classes resulted in obvious unfair
distribution in training (50% of GT), validation (25% of GT), and testing (25% of GT) pixels, as well.
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To evaluate the results, validation curves (accuracy and loss) of the two models are shown in
Figures 5 and 6. Figure 5 shows the accuracy curves (training and validation) for both datasets.
Comparing the accuracies curves of the two methods, it is obvious that the two models were perfectly
generalised, and that the validation accuracy curve is slightly higher than the training accuracy curve.
Figure 6 represents the loss curves for the two CNN dataset classifiers. The loss of information in each
model continued to decrease with training iteration for both methods. This pattern was also followed
by the validation dataset.
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Other evaluation metrics are presented in Table 2. The overall accuracy (OA) appeared to increase
from 0.965 to 0.991 when the DSM image was considered. A similar improvement in the average
accuracy (AA) was also recorded, from 0.933 to 0.989, when considering the DSM data. Similarly, the
testing data (Table 2) showed an improvement in the OA from 0.968 to 0.980 and the AA improved
from 0.952 to 0.970. Conversely, the highest value of the Kappa index (K) was measured (0.988) in the
training data based on the implementation of the CNN with DSM. Undoubtedly, the model that did
not include the DSM feature had a lower performance than the fused datasets using the testing and
training datasets.
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Table 2. Performance of the classification methods used in the current study measured using standard
accuracy metrics.

Model OA AA K

Training CNN with DSM 0.991 0.989 0.988
CNN without DSM 0.965 0.933 0.956

Testing CNN with DSM 0.980 0.970 0.976
CNN without DSM 0.968 0.952 0.961

OA = overall accuracy, AA = average accuracy, K = Kappa index

Table 3 shows the per-class accuracies (PA) achieved by the proposed model based on the
training data.

Table 3. Per-class accuracies (PA) for the training dataset.

Class CNN with DSM CNN without DSM

Bare land 0.996 0.981
Buildings 0.992 0.951

Dense vegetation 1.000 0.769
Grassland 0.956 0.946

Paved roads 0.990 0.995
Shadows 0.990 0.890

Water bodies 1.000 1.000

These results suggest that the CNN with DSM model was able to classify nearly all of the classes
with relatively high accuracy. The maximum accuracy was 1.0 for the water body and dense vegetation
classes, while the minimum accuracy belonged to the grassland class (0.956). Similarly, the maximum
accuracy obtained by CNN without DSM was 1.0 for the water body class. Conversely, the minimum
accuracy was obtained by the dense vegetation class at 0.769 for the CNN without DSM.

Table 4 shows that the additional DSM data improved the classification accuracy in the testing
dataset compared to the RGB data alone. The highest PA recorded based on CNN with DSM was
0.999 referring to the water body class, and the lowest PA occurred in the bare land class with a value
of 0.925. Conversely, the CNN without DSM (RGB only) had highest and lowest PA values of 0.996
(paved roads) and 0.853 (grassland).
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Table 4. PA obtained by the different classification methods for the testing dataset.

Class CNN with DSM CNN without DSM

Bare land 0.925 0.990
Buildings 0.983 0.979

Dense vegetation 0.966 0.923
Grassland 0.954 0.853

Paved roads 0.986 0.996
Shadows 0.978 0.923

Water bodies 0.999 0.999

Table 5 shows the Precision, Recall and F1 score for each class. The highest F1 score recorded
based on CNN with DSM was 1.00 belonging to waterbody class, and the lowest F1 score referred to
shadow class with a value of 0.921. Conversely, the CNN without DSM (RGB only) had the highest
and lowest F1 score values of 0.998 and 0.711 by water body and shadow classes, respectively.

Table 5. Recall, Precision, F1 Score obtained using CNN with DSM and CNN without DSM.

Class
CNN without DSM CNN with DSM

RecallMacro PrecisionMacro F1 ScoreMacro RecallMacro PrecisionMacro F1 ScoreMacro

Bare land 0.976 0.998 0.987 0.959 1.00 0.979
Buildings 0.996 0.987 0.991 0.989 0.995 0.992

Dense vegetation 1.00 0.812 0.896 1.00 0.927 0.962
Grassland 0.872 1.00 0.931 0.954 1.00 0.976

Paved roads 0.966 0.975 0.971 0.995 0.946 0.970
Shadows 0.552 1.00 0.711 0.855 1.00 0.921

Water bodies 0.997 0.999 0.998 1.00 1.00 1.00

To further assess the performance and functionality of the proposed method, its transferability to
another UAV subset was evaluated. The visual interpretation showed that the area consisted of several
land cover types, including bare land, dense vegetation, grassland, waterbody, building, shadow, and
paved road. The UAV was taken from the same environment to the first dataset, hence, the same set
of hyperparameters was used for CNN (Activations = ReLU and Softmax, optimizer = Adam, batch
size = 32, patch size = 9× 9, number of epochs = 200, and dropout = 0.2 and 0.5). Figure 7 shows the
classified images obtained from the two datasets: (a) RGB only (b) fused RGB and DSM. The accuracy
of the classification results is mentioned in Table 6.

Table 6. Performance of the classification methods used in the current study measured using standard
accuracy metrics.

Model OA AA K

Training CNN with DSM 0.92 0.91 0.91
CNN without DSM 0.89 0.86 0.88

Testing CNN with DSM 0.90 0.89 0.89
CNN without DSM 0.88 0.87 0.88
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5. Discussion

The present study led to the generation of two land cover classification maps, as shown in
Figure 3. According to a visual inspection, the bare land and buildings were misclassified more in the
north-eastern part of the map based on the RGB image (Figure 3b) compared to the result based on the
data fusion (Figure 3c). The additional elevation data points resulted in the better overall bare land
classification, as seen in Figure 3c. A comparison between the classification results showed that more
misclassifications were present when the DSM data were not considered in locations where there was
confusion between grassland and dense vegetation areas. It is likely that the height data from the DSM
allowed the network to correctly differentiate between grass and dense vegetation (trees).

Unexpectedly, despite including the DSM data, some paved roads were misclassified as buildings
in the centre to south in Figure 3c. Both datasets performed well for water body classification. From
these results, we hypothesise that the CNNs performed misclassifications primarily due to dataset
imbalances, which is a point mentioned by Marcos et al. [14]. Lack of proper sampling could also be
a contributing factor. Specifically, a majority of the sampled pixels was from water bodies (~1.5%);
this class unsurprisingly had the best classification accuracy for both datasets. The smallest number
of sampled GT pixels (Figure 4) was for the shadow, paved roads, and dense vegetation classes (less
than 0.3%). Therefore, the homogeneity of the selected GT dataset between the land cover classes and
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fully representative sampling may increase the quality of CNN classification operations. These results
show that the proposed CNN with DSM is an effective image classification approach and highlight the
improved model performance compared to the CNN without DSM classifiers.

In addition, the accuracy curves (Figure 5) were used to qualitatively assess the results and
indicated that there was no sign of overfitting in the processing and, therefore, using dropouts in the
CNN process was a success. Likewise, the loss curves (Figure 6) for each model behaved uniformly
and the appearance of the curves showed that the learning progress and the optimising process in
both datasets were relatively good, as there were no plateaus in the curves [46], and the labelling
improved during iteration [42,47]. This means that the optimisation process improved for several
epochs and might suggest a comparably good performance of the model regularisation (dropout and
batch normalisation) and optimisation algorithm (Adam optimiser), for both the CNN without DSM,
and the CNN with DSM.

To confirm the success of setting the dropout, we carried on the whole experiments again, without
setting dropout value in the process. The results of accuracy and loss curves (Figures 8 and 9)
showed that both model accuracy and model loss in validation dataset curves were associated with
huge numerous fluctuations and plateaus. This behaviour in loss curves may suggest that model
regularisation (without dropout) did not relatively improve within the iterations and it might affect the
pixels labelling procedures. Validation curve showed variation from the actual label (i.e., training curve)
and it fluctuated above the training curve, even though it finally decreased the loss of information,
the curve was not as perfect as the previous experiment with dropout. Accuracy curves also showed
unstable performance and they were lower than training curves especially in the RGB dataset, meaning
that the model without dropout was not generalized as well as the model with setting dropout value.
From those curves, it was concluded that removing the dropout had a more negative effect on the RGB
dataset rather than the fused dataset.
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According to the standard accuracy metrics (Table 2), it is obvious that the CNN performed better
after fusing the DSM with the RGB image. Moreover, the PA value (Table 3) showed a high accuracy
enhancement of up to 23.1% for dense vegetation, and 10% and 4.1% improvements for the shadow and
building classes, respectively. This finding indicates that adding the height of the features (e.g., trees
and buildings) to RGB images can improve the classification accuracy, especially in dense vegetation
areas. Even though the PA value for paved roads showed a slight loss of accuracy (0.5%) for the CNN
with DSM compared to the CNN without DSM and all the PA values for the other classes improved
with respect to the fusion. Overall, the experimental results for both datasets indicate that the model
architecture was appropriate. The best obtained values for the OA, AA, and Kappa index for the CNN
with DSM for the training dataset were 99.1%, 98.8% and 98.8%, respectively, using UAV datasets with
resolutions of 0.8 m/pixel.
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6. Conclusions

UAV data were used to produce an RGB orthomosaic photo and a DSM of the study area. For
this study, a deep-learning classifier (CNN) was used to exploit the two different datasets to map
the existing land cover classes into bare land, buildings, dense vegetation (trees), grassland, paved
roads, shadows, and water bodies: 1) a CNN was used to classify the orthomosaic photo data and 2) a
CNN was used to classify the fused orthomosaic photo and DSM data. Both datasets resulted in an
acceptable OA, AA, K and PA for the testing and training datasets. However, the dataset associated
with the height information (the fused orthomosaic photo and DSM) performed better in most of
the discriminative classes. In particular, where the appearances of objects are mostly similar and
when there is no height information, a model can mistakenly categorise bare land as a building or
classify grassland as trees (dense vegetation). Comparing the accuracies of the results between the
CNN with DSM and CNN without DSM, OA, AA and K showed improvements of 2.6%, 5.6% and
3.2%, respectively, for the training dataset and 1.2%, 1.8% and 1.5% for the testing dataset. The use of
DSM successfully enhanced the PA obtained for both the testing and training datasets. Nevertheless,
our observations of paved road and building misclassifications imply that the CNN with DSM was
sensitive to the training dataset and hyperparameters. Therefore, to enhance the results, additional
GTs are needed according to the height differences for a specific object and discriminative class, as
well as homogenised and well-distributed GT samples. This study showed the capability of CNN to
accurately classify UAV images that have a lower resolution to compare with very-high resolution
aerial photos, and it confirmed that the fusion of datasets is promising. Future work will focus on
the sensitivity of CNNs with other fusion methods to the training dataset, regularisation functions
and optimisers.
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