Molecular and physiological investigation of trace metal stress in seagrass, *Zostera muelleri*.

Thesis submitted to the University of Technology Sydney for the degree of DOCTOR OF PHILOSOPHY (PhD)

Submitted July, 2019

Nasim Shah Mohammadi, BSc. MSc.

Supervisors: Professor Peter Ralph, Dr Mathieu Pernice and Dr Manoj Kumar

The Thesis presented meets the standards and requirements set out by the University of Technology Sydney.

Certificate of original ownership

I hereby declare that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as part of the doctoral degree and/or fully acknowledged within the text. I also certify that this submission is my own work (Nasim Shah Mohammadi). Any help that I have received in my research work and the preparation of this thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in this thesis. This research is supported by an Australian Government Research Training Program.

Production Note:

Signature removed prior to publication.

01/07/2019

Acknowledgments

I would like to thank all who made the completion of this thesis possible. First and foremost, I wish to express my immense gratitude to my supervisor, Professor Peter Ralph for giving me the exciting opportunity to work within the Climate Change Cluster (C3) at the University of Technology Sydney and for his guidance throughout my PhD both scientifically and personally.

I would like to extend my appreciation to my co-supervisors, Dr Mathieu Pernice and Dr Manoj Kumar for their advice and support. I would also like to express my profound gratitude to Dr Mathew Padula for all the generous support and mentoring that helped me grow into my potential.

Many people helped me along the way and I would like to thank them for all their support. I would like to thank the C3 technical staff; Paul Brooks, Gemma Armstrong and Kun Xie for providing first-class support in the laboratories. In relation to fieldwork, Scott Allchin, Graeme Poleweski and Mikael Kim should be thanked. Also, I received generous supports from Dr Tim Kahlke, Dr Bernhard Tschitschko and Dr Raffaela Abbriano Burke in bioinformatics analysis.

Finally, I wish to express my gratitude for the love and support that my family and friends gave me during this journey. I cannot thank my parents enough specially my mother, Nahid, who I am forever indebted to for her continuous support of my goals and dreams. I express my special gratitude to my sister, Tina; my partner, Ben and my dear friends Dr Farzad Noorian, Ipek Karacan, Navpreet Ahluwalia Mangat, Angus Rawl, Shawn Price and Liis Vahtra. I thank them for their continuous support and encouragement. Most specifically, I would like to thank Dr Parisa Noorian for all her help and support and being by my side during all my highs and lows. I am so grateful for love, care and true friendship of all these people in my life.

Preface

The Chapters within this PhD thesis have been written with the intention of submission to scientific journals. The chapters are therefore presented in a journal format, ready for submission. Chapter 2 has been recently published in Aquatic Toxicology. Chapter 3 is under review to be published in Marine Pollution Bulletin. Chapter 4 - 6 will be submitted in the near future to scientific journals as original research articles. Given that this thesis is presented as a series of ready to submit manuscripts, there is an element of repetition in the introduction of some of the chapters.

General Abbreviations

2D-IEF Two Dimensional Isoelectric focusing

Ag Gold

Al Aluminium

ANOVA Analysis of variance
APX ascorbate peroxidase

ASC Ascorbate

ATP Adenosine 5- triphosphate

BLAST Basic Local Alignment Search Tool

bp Base pairs

C3 Climate Change Cluster

Ca²⁺ Calcium
CAT catalase
Cd Cadmium

cDNA Complementary Deoxyribonucleic Acid

Co Cobalt

COX Cytochrome c oxidase

COX17 cytochrome c oxidase Cu chaperone

Cr Chromium
Cu Copper
Cys Cystein

Cyt.b₆f Cytochrome b₆f

°C Celsius

DNA Deoxyribonucleic acid

dNTP Deoxyribonucleotide triphosphate

Fe Iron

 F_v/F_m maximum quantum yield of photosystem II

FW Fresh weight

g Relative centrifugal force

GO Gene Onthology

GPX glutathione peroxidase

h hour

HCl Hydrochloric acid

Hg Mercury

H₂O₂ Hydrogen peroxide

InterPro a database of protein families

KEGG Kyoto Encyclopedia of Genes and Genomes

LC-MS/MS Liquid Chromatography Tandem-Mass Spectrometry

LED light-emitting diodes

MAPK Mitogen-activated protein kinases

Mg Magnesium
mM milimolar
Mn Manganese

MQ MiliQ

MT2 metallothionein type 2
MT3 metallothionein type 3

MTs metallothioneins

NADP Nicotinamide adenine dinucleotide phosphate

NADPH/ NADP(H) Reduced nicotinamide adenine dinucleotide phosphate

NCBI National Center for Biotechnology Information

nM nanomolar

NPQ non-photochemical quenching

NSW New South Wales

ORF Open reading frame

PAM Pulse-Amplitude-Modulation

Pb Lead

PC Plastocyanin

PCR Polymerase Chain Reaction

PQ Plastoquinone
PSI Photosystem I
PSII Photosystem II

psu Practical salinity units

φPSII effective quantum yield of PSII

qPCR Quantitative Polymerase Chain Reaction

RGBW LEDs red, green, blue and white light-emitting diodes

RNA ribonucleic acid.

RNA-Seq RNA-Sequencing

ROS Reactive Oxygen Species

RT-qPCR Real time quantitative polymerase chain reaction RuBisCo Ribulose-1,5-bisphosphate carboxylase/oxygenase

Sb antimony

SOD superoxide dismutase

Se Selenium

STAR Spliced Transcripts Alignment to a Reference

Tm Melting temperature

W watt

Table of	Contents Pg.
Certificate	e of original ownership II
Acknowle	edgmentsIII
Preface	IV
General A	bbreviationsV
List of Fig	guresXIV
List of Ta	blesXVII
List of Ap	pendicesXVIII
Thesis sur	mmary1
PhD aims	and objectives
СНАРТЕ	CR 14
Abstrac	zt5
1. Seag	grass: the submerge pasture5
1.1.	Characteristics of the seagrass, Zostera muelleri
1.2.	Ecological importance of the seagrasses
2. Trac	ce metal toxicity in marine environments
2.1.	Trace metal-contaminated seagrass tissues as a threat to marine food web
	10
2.2.	Factors influencing trace metal absorption in seagrasses
3. Cu:	a mixed-blessing for seagrass health
3.1.	Major source of Cu contamination
3.2.	Level of Cu contamination in Australian waters
4. Curi	rent knowledge of the mechanism of trace metal toxicity response in plants
4.1.	The mechanism of trace metal absorption
4.2.	Photosynthetic response to Cu toxicity
4.3.	Enzymatic defense mechanism to Cu toxicity in plants and seagrasses .22

4.4. Chemical defense mechanism to Cu toxicity in plants and seagrasses 23
5. Identification of biomarkers for early assessments of trace metal toxicity24
6. Hyper-accumulation of trace metals in seagrasses: a combined role in adaptation
and phytoremediation
7. Conclusion
References
CHAPTER 247
Abstract48
1. Introduction
2. Materials and Methods
2.1. Seagrass samplings, aquaria setup and experimental design52
2.2. Detection of chlorophyll fluorescence
2.3. Detection of Cu level
2.4. Detection of ROS
2.5. Quantification of transcripts encoding antioxidant enzymes and Cu-
binding proteins54
2.5.1. Primer design
2.5.2. RNA extraction and synthesis of DNA
2.5.3. Differential gene expression analysis
2.5.4. Statistical analyses
3. Results
3.1. Content of Cu in leaves
3.2. Changes in photosynthetic parameters
3.3. ROS accumulation
3.4. Changes in gene expression
4. Discussion
5. Conclusion69
Acknowledgements71

Reference	ces71
CHAPTE	R 383
Abstract	84
1. Intro	duction84
2. Mate	rials and Methods86
2.1.	Sample collection and aquaria setup
2.2.	Experimental design
2.3.	RNA extraction
2.4.	Library preparation and RNA sequencing
2.5.	Genome-guided transcriptome assembly and annotation
3. Resu	lts
3.1.	Transcriptome assembly and functional annotation
3.2.	Changes in the expression of genes in Z. muelleri in response to Cu stress
	96
4. Disco	ussion
4.1.	Elevated Cu concentration impacts plant photosynthesis
4.2. muelle	Activation of inorganic carbon fixation in response to Cu stress in Z.
4.3. stress	Activation of energy production as a possible defense mechanism in Cued leaves of <i>Z. muelleri</i>
4.4. stress	Induced enzymatic and chemical defense mechanism in response to Cu
5. Conc	elusion
Acknow	ledgement
Reference	ces
CHAPTE	R 4122
Abstract	
1 Intro	duction

2. Mate	erials and Methods	126
2.1.	Plant material	126
2.2.	Protein extraction, purification, alkylation and reduction	127
2.3.	Protein-centric analysis (2-DE)	128
2.4.	Peptide-centric analysis	128
2.5.	LC-MS analysis of peptides	131
2.6.	Bioinformatics analysis	132
3. Resu	ults	132
3.1.	Proteome analysis using protein-centric approach	132
3.2.	Proteome analysis using peptide-centric approach	140
3.3.	Identification of the total number of expressed proteins in Z. m	<i>uelleri</i> from
pepti	de-centric methods	148
4. Disc	cussion	148
4.1.	2-DE method provided functional classification for 350 expres	_
in <i>Z</i> .	muelleri	149
4.2.	The combination of 1D-PAGE and SDB-RPS provided the	•
	rage for expressed proteins in <i>Z. muelleri</i> among four tested per ods	
5. Con	clusion	154
Acknov	wledgement	155
Referen	nces	155
СНАРТЕ	ER 5	164
Abstrac	ct	165
1. Intro	oduction	166
2. Mat	terials and Methods	167
2.1.	Sample collection and set-up for aquaria	167
2.2.	Treatment of Z. muelleri with Cu	168
2.3.	Protein extraction	168

2.4. In-solution digestion (ISD) of proteins
2.5. Peptide labelling by iTRAQ reagents
2.6. An optimized SDB-RPS-based desalting method
2.7. Bioinformatic analysis of peptides
2.7.1. iTRAQ analysis
2.7.2. Identification of differentially expressed proteins
3. Results
3.1. LC-MS/MS data analysis and functional annotation
3.2. Investigation of Cu-induced, differentially expressed proteins in <i>Z. mueller</i> plants
4. Discussion
4.1. Excess Cu negatively affects photosynthesis and carbon fixation in Z muelleri
4.2. Activation of oxidative stress in Z. muelleri under 500 μg Cu L ⁻¹ 188
4.3. An enhanced energy production is required to respond to Cu stress in Z muelleri
4.4. Excess Cu alters genetic information processing of <i>Z. muelleri</i> 191
5. Conclusion
Acknowledgement
References
CHAPTER 6
Abstract
1. Introduction
2. Materials and methods
2.1. Sample collection
2.2. Isolation of intact chloroplasts from <i>Z. muelleri</i>
2.3. Estimation of chlorophyll a/b ratio of intact chloroplasts205

2.4.	Estimation of the size of intact chloroplast using Differential interference
contr	rast (DIC) microscopy20:
2.5.	Protein extraction
2.6.	Immunoblotting
2.7.	In-solution digestion (ISD)
2.8.	Proteomic data analysis
3. Resu	ults20'
3.1.	Assessment of intact chloroplasts isolation
3.2.	Assessment of intact chloroplast isolation
3.3.	Isoelectric point and GRAVY index:
4. Disc	cussion210
5. Con	clusion
Acknov	wledgement219
Referen	nces
Synthesis	, outlook and conclusion22
Overvie	ew228
1. Phot	to-physiological damage occurs early in Z. muelleri229
2. Only	y two antioxidant enzymes continued to scavenging ROS over-production is
respons	se to Cu stress in <i>Z. muelleri</i>
	sible defense mechanisms in <i>Z. muelleri</i> after 7 days exposure to 500 μg C
L-1	232
4. Poss	sible biomarkers for monitoring seagrass health were suggested23.
5. Eval	luation of omics methods for future considerations
	imised methods were introduced and future work were addressed in this PhI
thesis	238
Referen	nces
Appendic	ees24

List of Figures Pg.

Figure 1-1. The morphology of <i>Z. muelleri</i>
Figure 1-2. Main sources of trace metal pollution9
Figure 1-3. Scheme of possible trace metal transporters in cytosol, vacuole
chloroplast and mitochondria of the leaves of terrestrial plants16
Figure 1-4. Proposed trace metal binding sites in plant photosystem19
Figure 1-5. Antioxidant responses to trace metals
Figure 2-1. The accumulation of Cu in the leaves of Zostera muelleri exposed to
control (black bars), 250 μg Cu L^{1} (light grey bars) and 500 μg Cu L^{1} (dark grey bars)
on day 1, 3 and 7
Figure 2-2. Time course of effective quantum yield (φPSII) (A) maximum quantum
yield (Fv/Fm) (B) and non-photochemical quenching (NPQ) (C) of Zostera mueller
up to 7 days exposure to various Cu concentrations
Figure 2-3. Total Reactive Oxygen Species (ROS) in the leaves of Zostera mueller
exposed to controls (black bars), 250 (light grey bars) and 500 μg Cu L^{1} (dark grey
bars) on day 1, 3 and 7
Figure 2-4. Quantitative PCR (qPCR) analyses for expression of sod (A), apx (B), can
(C) and gpx (D). Data were expressed relative to expression of control. Asterisk
indicates significant difference from control (One-Way ANOVA, $p < 0.05$). Error bars
show standard error, $n = 3$. For each replicate, 3 seagrass shoots were sampled63
Figure 2-5. Quantitative PCR (qPCR) analyses for expression of mt2 (A), mt3 (B) and
cox17 (C)64
Figure 2-6. Conceptual illustration showing differential expression of genes and
physiological responses in plants exposed to 250 μg Cu $L^{1}\left(A\right)$ and 500 μg Cu $L^{1}\left(B\right)$
69
Figure 3-1. Heatmaps of the log 2 fold change and z-score of normalized read counts
for significantly differentially expressed genes in response to 250 μg Cu L^{1} (left) and
500 μg Cu L ⁻¹ (right) after 7 days91
Figure 3-2. Sequence distribution (biological process) of top 50 genes expressed in
$250~\mu g$ Cu L^{-1} and $500~\mu g$ Cu L^{-1} after 7 days
Figure 3-3. Sequence distribution (molecular function) of top 50 genes expressed in
250 μg Cu L ⁻¹ and 500 μg Cu L ⁻¹ after 7 days93

Figure 3-4. Sequence distribution (cellular component) of top 50 genes expressed in
$250~\mu g$ Cu L^{1} and $500~\mu g$ Cu L^{1} after 7 days94
Figure 3-5. Functional classification of proteins in 250 μg Cu L^{1} and 500 μg Cu L^{1}
after 7 days95
Figure 3-6. Differentially expressed genes related to photosynthesis, carbon fixation,
energy metabolism, enzymatic and chemical defense mechanism under 250 μg Cu L
1 and 500 μg Cu L^{1}
Figure 4-1. Demonstrative example for the identification of proteins extracted from
leaves of seagrass Zostera muelleri
Figure 4-2. Protein percentage identified with unique peptides coverage (A), and
protein score (-10lgP) (B), functional classification of identified proteins (%)
belonging to diverse cellular metabolism (C), with corresponding Pi value (D) and
GRAVY scores (E) for the 2D-IEF based leaf proteome analysis of Z. muelleri136
Figure 4-3. Biological process (A), molecular function (B) and cellular component
(C) of proteins uniquely identified for the 2D-IEF based leaf proteome analysis of Z .
muelleri140
Figure 4-4. Venn diagram showing the total number of identified proteins as well as
the number of proteins uniquely identified in each method and number of common
proteins in all methods for Z. muelleri using Venny software
Figure 4-5. The percentage of unique identified peptides from each peptide-centric
methods. 143
Figure 4-6. The percentage of the -10lgP value of unique peptides from peptide-
centric methods
Figure 4-7. GRAVY score of the identified proteins from peptide-centric methods.
Figure 4-8. Distribution of isoelectric focusing of the identified proteins in peptide-
centric methods
Figure 4-9. Biological process (A), molecular function (B) and cellular component
(C) of proteins uniquely identified in Z. muelleri using peptic-centric methods148
Figure 5-1. Heatmap of 171 differentially expressed proteins isolated from <i>Z. muelleri</i>
plants exposed to 500 µg Cu L ⁻¹ for 7 days
Figure 5-2. Sequence distribution of biological process (A), molecular function (B)
and cellular component (C) of the top 50 differentially expressed proteins exposed to
500 μg Cu L ⁻¹ 175

Figure 5-3. Functional annotation of proteins differentially expressed in Z. muelleri
when exposed to 500 μg Cu L^{1}
Figure 5-4. Proteins related to photosynthesis, carbon fixation, energy metabolism,
genetic information processing and defence mechanism which their abundance altered
in response to 500 Cu $\rm L^{-1}$.
Figure 6-1. Intact chloroplast isolates as a layer in method A and as a ring at the
interface of 40/80% Percoll in method B
Figure 6-2. Microscopic visualization of an intact chloroplast under DIC microscopy.
Figure 6-3. Immunoblotting of chloroplast (A −C) and mitochondrial (D −E) marker
proteins
Figure 6-4. The percentage of unique matched peptides for identified proteins from
method B
Figure 6-5. The percentage of -10lgP value of identified proteins from method B.
Figure 6-6. GRAVY score indicating the hydropathy of the identified proteins from
method B
Figure 6-7. Distribution of isoelectric focusing of the identified proteins in method B.
212
Figure 7-1: Thesis conclusion representing: 1) Cu-induced protein and enzymes
linked to photosynthesis, carbon fixation, glycolysis and enzymatic defence
mechanism and 2) Five possible defense mechanisms in Z. muelleri in response to 7
day exposure to 500 µg Cu L ⁻¹ 236

List of Tables Pg.

Table 1-1 . Identified species in the family of <i>Zosteraceace</i> , their current location and
their status in the red list category of IUCN6
Table 1-2. Current knowledge of physiological responses of seagrasses to Cu stress.
20
Table 1-3. Trace metals translocation and tissue preference in seagrasses. 26
Table 2-1. Reference genes and target genes investigated in Zostera muelleri by using
RT-qPCR55
Table 2-2. Results of the repeated-measures ANOVA for effective quantum yield of
PSII (φPSII), maximum quantum yield (Fv/Fm) and non-photochemical quenching
(NPQ) and two-way ANOVA of leaf Cu content, and total reactive oxygen species
(ROS) in the leaves of Zostera mulerii after exposure to 0, 250 and 500 μg Cu L ⁻¹ .59
Table 3-1. Total number of expressed genes under 500 μg Cu $L^{\text{-1}}$ and 250 μg Cu $L^{\text{-1}}$.
89
Table 3-2. List of 25 differentially expressed genes selected to investigate in this
study98
Table 4-1. Total number of proteins and matched peptides from each peptide-centric
methods searched against Z. muelleri database
Table 5-1. List of 76 proteins related to photosynthesis, energy metabolism, carbon
fixation, defence mechanism and genetic information processing with their
corresponding protein names that were selected to investigate in this study180
Table 6-1. List of unique identified proteins from intact chloroplast isolates of Z.
muelleri using Scaffold software
Table 7-1. Evaluation of four omics methods used in this PhD project based on the
required time, the sensitivity of the technique, the cost and the coverage (range of
identification)

List of Appendices

Appendix 1. Support documents for quality control genes used in qPCR.
Appendix 2-A . Functional annotation of differentially expressed genes of <i>Z. muelleri</i>
at 250 μg Cu L^{1} and 500 μg Cu L^{1} using Blast2Go (gene identification). B . Functional
annotation of differentially expressed genes of Z. muelleri at 250 μg Cu L^{-1} and 500
μg Cu L ⁻¹ using Blast2Go (GO and InterPro IDs)
Appendix 3. Fold change of expressed genes exposed to 250 μg Cu L ⁻¹ 247
Appendix 4. Fold change of expressed genes exposed to 500 μg Cu L^{1} 247
Appendix 5. Demonstrative example for the identification of proteins extracted from
leaves of seagrass $\it Zostera\ muelleri$. Proteins were resolved on pI range 5–8 IPG strip
followed by SDS-PAGE. In this example, protein spot 15 was a visible spot that was
excised, trypsin digested and analysed using nanoLC-MS/MS
Appendix 6. Functional annotation and proteomic information of expressed proteins
using 2-DE gel
Appendix 7. Physio-chemical characterisations of expressed proteins using 2-DE gel.
Appendix 8. Protein FASTA of expressed proteins using 2-DE gel247
Appendix 9. LC-MS/MS results of expressed proteins using 2-DE gel247
Appendix 10. Total number of identified proteins from each peptide-centric methods
Appendix 11. LC-MS/MS results of expressed proteins from Method A247
Appendix 12. LC-MS/MS results of expressed proteins from Method C247
Appendix 13. LC-MS/MS results of expressed proteins from Method D248
Appendix 14. LC-MS/MS results of expressed proteins from Method E248
Appendix 15. Protein FASTA of expressed proteins from Method A248
Appendix 16. Protein FASTA of expressed proteins from Method C248
Appendix 17. Protein FASTA of expressed proteins from Method D248
Appendix 18. Protein FASTA of expressed proteins from Method E248
Appendix 19. Representation of protein identification for expressed proteins from
peptide-centric methods using Scaffold software
Appendix 20. LC-MS/MS results of expressed proteins using 6 iTRAQ labels248
Appendix 21. Protein FASTA of expressed proteins from 6 iTRAQ labels248

Appendix 22-A. Functional annotation of differentially expressed proteins of Z .
muelleri at 500 μg Cu L ⁻¹ using Blast2Go (gene identification). B . Functional
annotation of differentially expressed genes of Z. muelleri at and 500 μg Cu L ⁻¹ using
Blast2Go (GO and InterPro IDs)
Appendix 23. Accession number, ratio of protein abundance, standard deviation (SD),
p-value and statistical results of expressed proteins exposed to 500 μg Cu L ⁻¹ 248
Appendix 24. Original images of immunoblotting of chloroplast and mitochondria
marker antibodies
Appendix 25. LC-MS/MS results of expressed intact chloroplast proteins248
Appendix 26. Protein FASTA of expressed intact chloroplast proteins248
Appendix 27. Representation of protein identification probability of expressed
proteins from intact chloroplasts using Scaffold software248

Thesis summary

Despite the vast research on the negative effects of anthropogenic pollution on marine organisms, little is known about the toxicity responses of seagrasses to such perturbations. Understanding seagrass responses at the molecular level will ensure adequate conservation strategies to mitigate the increasing decline rate of seagrasses as a result of climate change and anthropogenic driven disturbances. The meadows of the Southern hemisphere seagrass species, *Zostera muelleri*, encounter similar threats, which led to a significant loss along the Australia and New Zealand coasts. Trace metal pollution and most specifically copper (Cu), have been previously reported in industrial, agricultural and domestic run-off waste which often finds their way to the ocean and jeopardise the health of the seagrass meadows.

Although we have a firm undersetting of the deleterious effect of Cu stress at the physiological and ecological level, no current knowledge exists on how *Z. muelleri* responds to elevated levels of Cu at the molecular level. Upon our investigation of the physiological responses of *Z. muelleri* to 250 μg Cu L⁻¹ and 500 μg Cu L⁻¹ over a 7 day period of exposure, the Cu accumulation in the leaves, the continual production of ROS and the decline of photosynthetic efficiency were observed in *Z. muelleri* at both above mentioned Cu concentrations. However, the responses were concentration-dependent illustrating 250 μg Cu L⁻¹ and 500 μg Cu L⁻¹ as a tolerable and a toxic level for *Z. muelleri*, respectively.

The results of our molecular investigations indicated regulation shifts in the expression of genes and the abundance of proteins mainly at 500 µg Cu L⁻¹ were associated with energy metabolism, carbon fixation, photosynthesis and defence mechanism. While the expression of genes (and the abundance of proteins) involved in energy metabolism (mainly glycolysis) and defence mechanism have been shown to be mainly increased, the opposite was observed in the photosynthetic process and carbon fixation. As a result, whilst these results offers a new level of understanding into the seagrass toxicity responses at transcriptomic and proteomic levels, it also provides candidate molecular markers for future toxicology studies and seagrass monitoring.

This PhD thesis also evaluates a protein-centric and four peptide-centric proteomic methods and proposed an optimised peptide desalting protocol. Additionally, major alterations in photosynthesis process as a result of Cu stress has led us to report on an optimised intact chloroplast isolation method that can be used for future proteomic-based studies.

PhD aims and objectives

The overall aim of this thesis is to investigate how *Z. muelleri* responds to Cu stress using physiological and molecular approaches. By combining transcriptomic and proteomic techniques, we have obtained a deeper understanding of how this seagrass species responds to elevated levels of Cu exposure at a complete "omic" level.

Given the fact that seagrasses are declining globally by anthropogenic pollutions, this work can contribute to identify potential biomarkers for early detection of trace metal toxicity in seagrasses and assist with better restoration, conservation management of seagrass meadows.

As a result, the objectives of this PhD thesis include:

- To provide a critical literature review on the current understanding of trace metal toxicity responses in seagrass species and identifying knowledge gaps in previous studies.
- To address base knowledge associated with trace metals in higher plants and seagrasses with special attention to Cu.
- To complete characterisation of leaf-specific transcriptome and proteome of *Z. muelleri* under elevated Cu stress.
- To establish links between physiology, transcriptional regulation and protein expression as a result of Cu toxicity response of *Z. muelleri*.
- To investigate and report possible biomarkers for early detection of Cu stress signals in *Z. muelleri*.