Faculty of Engineering and Information Technology University of Technology Sydney

Vision to Keywords: Automatic Image Annotation by Filling the Semantic Gap

A thesis submitted in partial fulfillment of the requirements for the degree of **Doctor of Philosophy**

by

Junjie Zhang

July 2019

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Junjie Zhang declare that this thesis, is submitted in fulfilment of the re-

quirements for the award of Doctor of Philosophy, in the School of Electrical

and Data Engineering/Faculty of Engineering and Information Technology at the

University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowl-

edged. In addition, I certify that all information sources and literature used are

indicated in the thesis.

This document has not been submitted for qualifications at any other academic

institution.

This research is supported by the Australian Government Research Training

Program.

Production Note:

Signature removed

Signature of Candidate: prior to publication.

Date: 08/07/2019

i

Acknowledgments

First of all, I would like to express the deepest appreciation to my principal supervisor Prof. Jian Zhang for his continuous support of my Ph.D. study; he has been a tremendous mentor for me. I have benefited a lot from the weekly discussions around the research problems, the valuable insights on the paper writing and the generous support for attending conferences. His patience, enthusiasm and professional guidance have helped me to grow as a research scientist as well as the writing of this thesis.

I would also like to thank my co-supervisor Prof. Qiang Wu and the collaborators: Prof. Chunhua Shen, Dr. Qi Wu and Prof. Jianfeng Lu, for not only their insightful guidance and comments on revising my paper drafts but also for the thought-provoking questions, which have incented me to widen my research from various perspectives.

I am grateful to my fellow labmates in the Global Big Data Technologies Centre: Xiaoshui Huang, Yifan Zuo, Lina Li, Huaxi Huang, Muming Zhao and Zongjian Zhang for the stimulating discussions on the research problems and the sleepless nights we worked together before deadlines, and all the fun we have had for the last three years.

Last but not least, my heartfelt gratitude to my parents, it is their selfless supports and confidence in me that help me to overcome the difficulties I have encountered during my Ph.D. study.

Junjie Zhang July 2019 @ UTS

Contents

Certific	ate .				
Acknow	vledgm	ent			
List of l	List of Figures				
List of [Fables				
List of 1	Publica	tions			
Abstrac	:t				
Chapte	r1 I	introduction			
1.1	Backg	ground			
1.2	Resear	rch Issues			
1.3	Resear	rch Contributions			
1.4	Thesis	S Structure			
Chapte	r 2 I	Related Works			
2.1	Summ	nary			
2.2	Gener	ic Image Annotation			
	2.2.1	Classification-Based			
	2.2.2	Voting-Based			
	2.2.3	Multi-Modality Design			
	2.2.4	Graphical Inference			
	2.2.5	Deep Neural Network-Based			
	2.2.6	Comparisons			
2.3	Annot	ation with Metadata			
	2.3.1	User-Tag Relevance Analysis			

	2.3.2	Other Metadata Types	20
Chapter	· 3 F	Regional Latent Semantic Dependencies	22
3.1	Introd	uction	22
3.2	The R	LSD Model	25
	3.2.1	Framework Overview	25
	3.2.2	Localising Multi-label Regions	26
	3.2.3	An LSTM-based Multi-Label Generator	29
	3.2.4	Max-pooling and Loss Function	32
	3.2.5	Initialisation and Pre-Training	33
3.3	Experi	iments	34
	3.3.1	Implementation Details	34
	3.3.2	Evaluation Metrics	35
	3.3.3	Baseline Models	36
	3.3.4	Results on the MS-COCO	38
	3.3.5	Results on the NUS-WIDE	41
	3.3.6	Results on the PASCAL VOC Datasets	42
3.4	Summ	ary	46
Chapter	:4 V	Weakly-Supervised Annotation & Tag Refinement	48
4.1	Introd	uction	48
4.2	The Pr	roposed Model	53
	4.2.1	Representative Region Selection	53
	4.2.2	Regional Neural Network	54
	4.2.3	Input Batch Selection & Visual Consistency	56
	4.2.4	Semantic Dependency	
	4.2.5	User-Error Sparsity	61
	4.2.6	Training and Prediction	62
4.3	Experi	iments	63
	4.3.1	Data Preprocessing	63
	4.3.2	Evaluation Metrics	64
	4.3.3	Baselines and Compared Methods	64

	4.3.4	Results on Image Annotation 6	(
	4.3.5	Results on Tag Refinement 6	58
	4.3.6	Ablation Analysis	']
	4.3.7	Visualisation of the Constraints	′∠
4.4	Summ	ary 7	'(
Chapte	r 5 A	Annotation via Collective Knowledge 7	' {
5.1	Introd	uction	8
5.2	Propo	sed Model	;]
	5.2.1	Model Overview	;]
	5.2.2	Visual Representation Learning 8	2
	5.2.3	Label Relevance Analysis & Semantic Summarisation 8	;∠
	5.2.4	Annotation via Collective Knowledge 8	6
	5.2.5	Training and Prediction	, 7
5.3	Exper	iments	38
	5.3.1	Data Preprocessing & Evaluation Metrics 8	38
	5.3.2	Implementation Details	ŞÇ
	5.3.3	Baselines and Compared Methods)(
	5.3.4	Results on Image Annotation)]
	5.3.5	Ablation Study)(
5.4	Summ	ary 9)7
Chapte	r 6 A	Annotation via Graph Co-Attention Networks 9)(
6.1	Introd	uction	٥
6.2	The M	IangoNet)2
	6.2.1	Neighbourhood Graph Co-Attention	
	6.2.2	Implementation Details){
6.3	Exper	iments){
	6.3.1	Datasets	
	6.3.2	Evaluation Metrics	
	6.3.3	Overall Performance	
	6.3.4	Ablation Study	

CONTENTS

6.4	6.3.5 Visualisation of Attention
Chapter	7 Conclusions and Future Work
7.1	Conclusions
7.2	Future Work
Bibliogr	aphy

List of Figures

1.1	An example of the image annotation. There are multiple objects:	
	grass, people and baseball in this image. From the fine-grained	
	to coarse, the image's scene categories are batter box, sports field	
	and outdoor. Bounding boxes are only for the illustration	2
1.2	The illustration of the main factors in the image annotation	3
1.3	The illustration of the thesis structure	9
2.1	The illustration of the classification-based methods. The labels	
	are represented as separate classifiers. When annotating the new	
	image, all the classifiers will be applied, and the fusion of all the	
	classifiers' outputs is the final annotation.	11
2.2	The illustration of the voting-based methods. The labels are trans-	
	ferred from the image neighbours within the training set via the	
	neighbour search	13
3.1	Example results of multi-label prediction from different models.	
	The left is the ground-truth, and the middle column shows the	
	results from baseline models, Multi-CNN and CNN+LSTM. The	
	right column displays the outputs of our proposed RLSD model,	
	including predicted multiple labels and selected region propos-	
	als. Compare to the baseline methods, our model produces much	
	richer predictions and is especially good at predicting small ob-	
	jects, such as 'bottle,' 'wine glass' and 'vase' etc	23

3.2	Our proposed Regional Latent Semantic Dependencies model. An	
	input image $3 \times H \times W$ is first processed through a CNN to ex-	
	tract convolutional features, which are further sent to an RPN-like	
	fully convolutional localisation layer. The localisation layer lo-	
	calises the M regions in an image that potentially contain mul-	
	tiple highly-dependent labels. These regions are encoded with a	
	fully-connected neural network and sent to the regional LSTM to	
	produce T timestep probability distributions over dataset labels L ,	
	which results in a shape $M \times T \times L$ tensor. Finally, a max-pooling	
	operation is carried out to fuse all the regional outputs as the final	
	prediction	25
3.3	The comparison results between the Top-15 regions generated by	
	MCG (left) and our localisation layer (right). Some of our gen-	
	erated regions contain multiple objects, for example, the gener-	
	ated regions contain the object of 'oven/microwave/kitchenwares',	
	'person/tennis racket,' and 'person/kite/car' altogether	30
3.4	The structure of LSTM	31
3.5	An illustration of proposed RLSD model for the test image. The	
	potential multi-label regions of the test image are generated by	
	localisation layer and further used to extract features and input to	
	shared LSTM. As we can see, the small-sized objects like 'wine	
	glass,' 'bottle' and 'vase' etc. can be included in the regions due	
	to our multi-label localisation network. The test is also performed	
	in an end-to-end fashion	33
3.6	The comparison results between the object bounding boxes (left)	
	and generated multi-label regions (right). Our generated regions	
	contain multiple objects, for example, the generated regions con-	
	tain the object of 'person/baseball/baseball bat,' 'cup/oven' and	
	'oven/fridge' altogether	36

3.7	Precision-Recall curves for the 'bird,' 'fire hydrant' and 'kite'	
	classes in the MS-COCO dataset, for our RLSD models and the	
	baseline models. The average precision @ ten is also given in the	
	figure	39
3.8	The relationship between recall and bounding-box area on the	
	MS-COCO dataset	40
3.9	Some example annotation results from the MS-COCO dataset	41
3.10	The statistics of training/validation set of VOC datasets	46
3.11	The visualisation of semantic dependencies for the VOC 2007 and	
	VOC 2012 datasets. The brighter the block is, the higher depen-	
	dency the corresponding label pair has	46
4.1	An example of the social image annotation and the tag refinement.	
	As we can see, the image annotation assigns tags that describe the	
	visual content to the image, while the tag refinement removes the	
	inaccurate tags from the user-provided set, and add relevant ones	
	to the image.	49

4.2	The proposed framework. Each image $i \in I$ is first extracted with	
	multiple region proposals; then representative regions are selected	
	by the grouping and merging. The Nearest Neighbor (NN) ap-	
	proach is performed at both the image level and regional level to	
	locate the region pairs for the network input. Each input mini-	
	batch for the regional neural network B_i is comprised of the im-	
	age i and its image neighbours, while the corresponding region	
	pairs are marked. After the regional level confidence scores are	
	obtained, the visual consistency and semantic dependency con-	
	straints are applied. Moreover, with the max-pooling operation,	
	the regional scores are fused as the final image confidence score,	
	where the user-error sparsity constraint is performed. The anno-	
	tation model is trained in an end-to-end fashion, while the tag	
	refinement is conducted during the training. When the new im-	
	age comes, the representative regions are first extracted, then the	
	image and the regions are sent to the regional neural network to	
	generate the tag prediction	50
4.3	The examples of images assigned to multiple tags. As we can	
	see, different tags such as 'motorbike,' 'building,' and 'dog' etc.	
	correspond to the different regions of the image, instead of the	
	whole image, which is the motivation that we explore the image	
	regional information for both tasks.	52
4.4	The representative region selection. We group proposals gener-	
	ated by GOP (left column) and merge the top proposals in each	
	group into one representative region (right column)	55
4.5	An illustration of the selection process for the positive region pairs.	
	Nearest neighbour is performed in twofold. First, the image can-	
	didates are selected at the image level; then we measure the visual	
	similarity between regions among image and its candidates at the	
	regional level	58

4.6	The example results of the image annotation and tag refinement.	
	The first two rows are the image annotation examples, while the	
	last two rows are the tag refinement results	69
4.7	The AP comparisons of the proposed model Regional-CNN+ L_{vse}	
	against baselines Multi-CNN and Regional-CNN of the image an-	
	notation on both datasets	70
4.8	The AP ratios of the proposed model Regional-CNN+ L_{vse} against	
	baselines Multi-CNN and Regional-CNN of the tag refinement on	
	both datasets	72
4.9	The visualisation of the visual consistency on three visually sim-	
	ilar region pairs. Each row under two region pairs stands for the	
	tag probability distributions with the size $2 \times C$, where $C = 444$	
	for the Mirflickr dataset	75
4.10	The visualisation of three semantic dependent tag pairs' region	
	distributions. As we can see, the high semantic dependent tag	
	pairs have similar annotation distributions. Each row stands for	
	the region distributions of the tag pair with the size 2×100	76
4.11	The visualisation of the user-error matrix with the size 68×444	76
5.1	Examples of the training image from Flickr dataset and the her-	
	itage image collection. As we can see, the labels of the heritage	
	image collection are more diverse and semantical	79
5.2	The visual ambiguous of the heritage image collection. All im-	
	ages are annotated with the label 'theatre.' However, the visual	
	appearance of them is quite different. Figure (a) is the exterior of	
	a theatre, Figure (b) is the interior of a theatre, Figure (c) is the	
	hall of a theatre, while Figure (d) is a group people taking a photo	
	outside a theatre.	79

5.3	The framework of the proposed model. At the training stage, we	
	first generate image pairs (i, i') for the visual representation learn-	
	ing based on the metadata similarity, in our case, the combination	
	of the description similarity d_{sim} and location similarity g_{sim} . Im-	
	age pairs are passed through the siamese network and trained with	
	the contrastive loss. Then we retrieve image neighbours and sum-	
	marise the semantic representation by adopting the weighted sum	
	based on the image pair similarity and label relevance. Both the	
	visual representation $G_X(i)$ and the semantic representation $G_S(i)$	
	are fed into the fully-connected network to compute hidden states	
	and further trained with the sigmoid cross-entropy loss	80
5.4	Examples of the description and the location of the heritage image	
	collection. As we can see, these metadata can help understand the	
	image at a semantical level	83
5.5	Some example annotation results on the heritage image collection.	93
5.6	(a) The first row is the PR-curves of the label 'festival' compared	
	with baselines and state-of-the-art methods. (b) The second row is	
	the PR-curves of the label 'Art Deco architecture' compared with	
	baselines and state-of-the-art methods. The average precision is	
	also given in the figure. Better view in color.	94
5.7	The comparisions of the average precision (AP) values between	
	the proposed model and baselines on all labels. The left one is the	
	AP values of our model against KNN baseline, while the right one	
	is our model against Multi-CNN baseline. Better view in color	95
5.8	The examples of training pairs for the metric learning based on the	
	metadata similarity. The first column is the query image with the	
	blue box, the second column is its positive pair with the green box,	
	and the third and fourth columns are negative ones with brown	
	boxes	96

5.9	Some examples of label suggestions retrieved from image neigh-	
	bours. We summarise these suggestions as the semantic represen-	
	tation	98
6.1	For the target images with the red boxes, they are hard to recognise	
	on their own. However, in the context of the neighbours with the	
	similar metadata, such as 'vehicle, vintage, Beetle' and 'church,	
	instrument, art', it is more clear that the target images are a car	
	and a pipe organ. Based on this motivation, we propose a neigh-	
	bourhood graph as 'neighbourhood watch' to assist the image an-	
	notation	100
6.2	The framework of the proposed model. The neighbourhood z of	
	the target image i is decided by measuring their metadata similari-	
	ties. Then we establish the neighbourhood graph using image rep-	
	resentations as nodes and correlations as edges. To accurately har-	
	vest visual clues from its neighbours, we introduce a co-attention	
	mechanism to guide the Graph Convolutional Network (GCN) and	
	obtain the graph representation, which is then concatenated with	
	the target global feature to generate the label confidence	101
6.3	The instance-level attention module we used to capture the re-	
	gional semantic correspondences between image content and as-	
	sociated labels	105
6.4	The co-attention attention module. The co-attention maps are the	
	semantic overlap of instance-level attention maps between the tar-	
	get image i and its neighbourhood z	106
6.5	The AP comparisons of the proposed MangoNet against the NCNN	
	model on the NUS-WIDE, Mirflickr and MS-COCO	115
6.6	The visualisations of the co-attention maps of the targets and their	
	neighbours. The first column is the target and its attention map,	
	the rest columns are the neighbours, where the neighbourhood size	
	m-3	117

List of Tables

3.1	Comparisons on the MS-COCO dataset for $k=3$. mAP@10	
	measures are additionally computed for comparison	38
3.2	Comparisons on the NUS-WIDE dataset on 81 concepts for $k=3$.	42
3.3	Comparisons of annotation results on the VOC 2012 dataset	43
3.4	Comparisons of annotation results (AP in %) on the VOC 2007	
	dataset. Both AlexNet and VGGNet have been used as the back-	
	bone model. The best results of AlexNet and VGGNet based mod-	
	els are noted in bold respectively	44
4.1	The statistics of the Mirfleikr and NUS-WIDE dataset after the	
	preprocessing, including the total image amount, the size of the	
	user-provided tag set and expert label set, and the number of user-	
	provided tags per image	63
4.2	The image annotation results on the Mirflickr dataset	67
4.3	The image annotation results on the NUS-WIDE dataset	67
4.4	The tag refinement results on the Mirflickr dataset	69
4.5	The tag refinement results on the NUS-WIDE dataset	71
4.6	The ablation results of the image annotation on the Mirflickr dataset.	73
4.7	The ablation results of the image annotation on the NUS-WIDE	
	dataset	73
4.8	The ablation results of the tag refinement on the Mirflickr dataset.	73
4.9	The ablation results of the tag refinement on the NUS-WIDE dataset.	73
4.10	The high-dependent tag pairs	74

LIST OF TABLES

5.1	Results of the Image Annotation
5.2	Results of the Ablation Study
6.1	Image annotation results compared with other state-of-the-art methods and our MangoNet on the NUS-WIDE, where m indicates the
	neighbourhood size used in our model
6.2	Image annotation results compared with other state-of-the-art meth-
	ods and our MangoNet on the Mirflickr, where m indicates the
	neighbourhood size used in our model
6.3	Image annotation results compared with other state-of-the-art meth-
	ods and our MangoNet on the MS-COCO, where m indicates the
	neighbourhood size used in our model
6.4	Ablation studies of our model on the NUS-WIDE
6.5	Ablation studies of our model on the Mirflickr
6.6	Ablation studies of our model on the MS-COCO

List of Publications

Papers Published

- Junjie Zhang, Qi Wu, Jian Zhang, Chunhua Shen, and Jianfeng Lu (2019), Mind Your Neighbours: Image Annotation with Metadata Neighbourhood Graph Co-Attention Networks. *in* IEEE International Conference on Computer Vision and Pattern Recognition (CVPR19).
- Huaxi Huang, Junjie Zhang, Jian Zhang, Qiang Wu, Jinsong Xu (2019), Compare More Nuanced: Pairwise Alignment Bilinear Network For Fewshot Fine-grained Learning. in IEEE International Conference on Multimedia and Expo (ICME19).
- **Junjie Zhang**, Qi Wu, Jian Zhang, Chunhua Shen, Jianfeng Lu and Qiang Wu (2019), Heritage image annotation via collective knowledge. *in* Pattern Recognition (PR), vol. 93, pp. 204-214.
- Junjie Zhang, Qi Wu, Chunhua Shen, Jian Zhang, and Jianfeng Lu (2018), Multi-label Image Classification with Regional Latent Semantic Dependencies. *in* IEEE Transactions on Multimedia (T-MM), vol. 20, no. 10, pp. 2801-2813.
- Junjie Zhang, Qi Wu, Chunhua Shen, Jian Zhang, Jianfeng Lu, and Anton van den Hengel (2018), Goal-Oriented Visual Question Generation via Intermediate Rewards. *in* The European Conference on Computer Vision (ECCV18), pp. 189-204.

- Junjie Zhang, Qi Wu, Jian Zhang, Chunhua Shen, and Jianfeng Lu (2018), Kill Two Birds with One Stone: Weakly-Supervised Neural Network for Image Annotation and Tag Refinement. *in* Proceedings of the AAAI Conference on Artificial Intelligence (AAAI18), pp. 7550-7557.
- **Junjie Zhang**, Jian Zhang, Qi Wu, Qiang Wu, Jinsong Xu, Jianfeng Lu, Robin Phua, Kate Curr, and Zhenmin Tang (2017), Historical Image Annotation by Exploring the Tag Relevance. *in* The 4th Asian Conference on Pattern Recognition (ACPR17), published online.
- **Junjie Zhang**, Jian Zhang, Jianfeng Lu, Chunhua Shen, Kate Curr, Robin Phua, Richard Neville, and Elise Edmonds (2016), SLNSW-UTS: A Historical Image Dataset for Image Multi-Labeling and Retrieval. *in* Proceedings of the Digital Image Computing: Techniques and Applications (DICTA16), pp. 1-6.

Abstract

Nowadays, images are generated at an explosive pace, which yields the urgent need for an efficient annotation method to assist people to understand them. By assigning multiple labels to an image, we can transfer the visual information to keywords, which are more convenient to index.

The key issue behind this topic is bridging the semantic gap existing between the image visual content and multiple semantic labels. Given a training set of images with manually annotated expert labels, there are two main factors to establish an efficient annotation model, namely the visual relevance between the image and labels, and the semantic dependency between the label pairs. Moreover, images often carry abundant metadata, these metadata can be as informative as the pixel contents and exploring the relevance between the image and metadata also plays an important role in the image annotation. This thesis summarises the works that have conducted on utilising these factors for the image annotation.

In Chapter 3, a Regional Latent Semantic Dependencies model is introduced for the generic image annotation, which effectively captures the latent semantic dependencies at the regional level. In Chapter 4, the weakly supervised annotation and tag refinement for social images are studied. User-provided tags are the most common metadata on the social network, even though they reveal the semantic meaning of the image visual content, it is well-known that they can be incomplete and imprecise to a certain extent. We propose to learn an image annotation model and refine the user-provided tags simultaneously in a weakly-supervised manner. In Chapter 5, the representation learning and image annotation for the diverse image set are studied. We uncover relationships between the image and

its neighbours by measuring similarities among their metadata and conduct the metric learning to obtain the representations of image contents; we also generate semantic representations for images given the collective semantic information from their neighbours. In Chapter 6, the image annotation problem is addressed by routinely checking its neighbours in a graph, which is constructed by the equipped meta information of the image. We propose a graph network to model the correlations between each target image and its neighbours. To accurately capture the visual clues from the neighbourhood, a co-attention mechanism is introduced to embed the target image and its neighbours as graph nodes. Chapter 7 concludes the thesis and outlines the scope of future work.