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ABSTRACT

MODELING AND CONTROL OF SMART STRUCTURES
EMBEDDED WITH MAGNETORHEOLOGICAL DEVICES

by Sayed Ahmed Royel

Dissertation supervised by: Associate Professor Quang Ha

Dr. Ricardo P. Aguilera

Engineering structures are the essence of supporting the development of soci-
ety. However, quite often do they suffer from hostile dynamic loadings or external
disturbances that may affect structural health or function. Modeling and control
techniques can be applied to resiliently preserve structural health and function with
a low energy cost, which is the main theme of the thesis. Smart structures em-
bedded with semi-active control devices offer a promising solution to the problem,
such as the magnetorheological (MR) damper (MRD), pin joint (MRP), and elas-
tomer base isolator (MRE). This study first aims at exploring the solutions to the
present problem in system modeling and controller design of MR based systems to
effectively damp out unwanted vibrations as well as control the embodied energy
level. Multi-variable hysteresis models for these structural members are developed,
capable of effectively working in a wide scale of loading amplitude and frequency.
The modeling objective is to illustrate the intrinsic nonlinearity with traceable re-
lationships between model parameters and control signals in order to realize the
field-controlled method for MR structure systems. Experimental data are obtained
from a long-stroke MRD, a recent prototype of MRP and an MRE under different
loading conditions for model identification and performance assessment. To achieve
robustness, a second-order sliding mode controller is designed and applied to the
MRE to provide a real-time feedback control of structures. The performance of

the proposed technique is evaluated in the simulation of a seismically excited three-



storey benchmark building model. To exploit the frequency domain advantage, this
study also focuses on the cyclic dissipation of vibration-induced energy in the smart
devices under a controlled magnetic field to analyze the energy relationships of the
smart devices in the structures. A frequency-shaped second-order sliding mode con-
troller (FS2SMC) is designed along with a low-pass filter to implement the desired
dynamic sliding surface. The proposed controller can shape the frequency charac-
teristics of the equivalent dynamics for the MR structure against induced vibrations,
and hence, dissipate the mechanical energy flow within the devices to prevent struc-
tural damage. The energy spectra of a 10-floor building subject to four benchmark
earthquakes are analyzed in terms of kinetic, damping, strain, and input energies
to illustrate the capability of an energy-efficient embedded structure. The merits
of FS2SMC in engineering structures can also be verified in a half-car model for
reducing the roll angle while adjusting the spectrum to prevent natural modes of

the structure under external excitations.
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