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ABSTRACT

MODELING AND CONTROL OF SMART STRUCTURES

EMBEDDED WITH MAGNETORHEOLOGICAL DEVICES

by Sayed Ahmed Royel

Associate Professor Quang HaDissertation supervised by:

Dr. Ricardo P. Aguilera

Engineering structures are the essence of supporting the development of soci-

ety. However, quite often do they suffer from hostile dynamic loadings or external

disturbances that may affect structural health or function. Modeling and control

techniques can be applied to resiliently preserve structural health and function with

a low energy cost, which is the main theme of the thesis. Smart structures em-

bedded with semi-active control devices offer a promising solution to the problem,

such as the magnetorheological (MR) damper (MRD), pin joint (MRP), and elas-

tomer base isolator (MRE). This study first aims at exploring the solutions to the

present problem in system modeling and controller design of MR based systems to

effectively damp out unwanted vibrations as well as control the embodied energy

level. Multi-variable hysteresis models for these structural members are developed,

capable of effectively working in a wide scale of loading amplitude and frequency.

The modeling objective is to illustrate the intrinsic nonlinearity with traceable re-

lationships between model parameters and control signals in order to realize the

field-controlled method for MR structure systems. Experimental data are obtained

from a long-stroke MRD, a recent prototype of MRP and an MRE under different

loading conditions for model identification and performance assessment. To achieve

robustness, a second-order sliding mode controller is designed and applied to the

MRE to provide a real-time feedback control of structures. The performance of

the proposed technique is evaluated in the simulation of a seismically excited three-

iii



storey benchmark building model. To exploit the frequency domain advantage, this

study also focuses on the cyclic dissipation of vibration-induced energy in the smart

devices under a controlled magnetic field to analyze the energy relationships of the

smart devices in the structures. A frequency-shaped second-order sliding mode con-

troller (FS2SMC) is designed along with a low-pass filter to implement the desired

dynamic sliding surface. The proposed controller can shape the frequency charac-

teristics of the equivalent dynamics for the MR structure against induced vibrations,

and hence, dissipate the mechanical energy flow within the devices to prevent struc-

tural damage. The energy spectra of a 10-floor building subject to four benchmark

earthquakes are analyzed in terms of kinetic, damping, strain, and input energies

to illustrate the capability of an energy-efficient embedded structure. The merits

of FS2SMC in engineering structures can also be verified in a half-car model for

reducing the roll angle while adjusting the spectrum to prevent natural modes of

the structure under external excitations.
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Chapter 1

Introduction

1.1 Background

Civil structures can serve as buildings, bridges, towers, stadiums, tunnels, dams,

roads, railways, or pipelines, see Figure 1.1 [1]. Civil infrastructures are the basis

for supporting the development of a society and a productive economy. However,

quite often do they suffer from harsh environments and severe dynamic loadings

that may affect the structural health or function. The failure of the structures could

be catastrophic and have subsequent social and psychological impacts. To enhance

the safety (strength and stability), serviceability (stiffness) and resilience of civil

engineering structures, structural vibration control and structural health monitoring

technologies have been developed in the past three or four decades [2]-[5].

The most common civil engineering structures are buildings. Life cycle cost

analysis for energy-aware buildings can be evaluated based on energy consumption,

assessment of environmental impact or natural hazards, and prediction of struc-

tural or non-structural damage [6, 7]. Various elements either surface bonded or

equipped with energy-efficient features of the building structures likely experience

different levels of damage subject to external dynamic loadings such as seismic events

or gusty winds, depending on the specific geographic region where the structures are

situated [8]. Thereby, it may increase future costs associated with post-event repair

or replacement to maintain structural health or reinstate an acceptable level. Stud-

ies have shown that cumulative damage cost can be higher than energy-efficient

features and accordingly payback time for building energy efficiency investment will
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ent damping, of the core structural system is relatively ambiguous until the building

is completed [12]-[15]. Alternatively, damping from external devices can be approx-

imated accurately, thanks to the extensive research conducted in the last decades,

which make them a competent solution for mitigating the structural vibration prob-

lems in any dynamic application. However, active devices require a large supply of

energy, for example in active mass dampers, and power supplies to the actuators

are not always guaranteed during an earthquake or when an unexpected dynamic

changes occur in the structure. Smart structures embedded with semi-active control

devices such as magnetorheological (MR) fluid damper (MRD) [16]-[22], MR elas-

tomer base isolator [23, 24], MR pin joint [25]-[27], offer a promising solution to the

problem.

Energy-dissipative semi-active devices

MR devices provide supplementary robust damping for the attenuation of vibra-

tions induced by excitation sources into the structure. Semi-active control systems

with smart devices can dissipate vibration energy into heat through the adjustment

of damping and stiffness characteristics of the system under a low-power control

signal and fail-safe operations. The controlled damping forces always oppose the

motion of the structure, hence, promoting stability, as well as reducing the conse-

quence of system uncertainties [12, 14]. The smart damping concept has been proven

to be an effective approach for energy-aware protection of engineering structures by

dissipating excess energy into heat through the fluid. This heat is then transferred

to the environment by convection and/or conduction [17],[28]-[30].

Various loadings and environmental conditions

The loads on a structure can be static (gravity) or dynamic (wind loads). Gen-

erally, dynamic loadings around civil structures can be classified as [3]
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1. Periodic signals : harmonic and non-harmonic, and

2. Non-periodic signals : short duration (blast) and long duration (earthquake).

Dynamic loads can also be categorized as

1. Deterministic: when the magnitude, point of application and variation of the

load with respect to time is known, and

2. Non-deterministic (or random or stochastic): if the variation of load with

respect to time is unknown.

The most common type of loading and environment conditions are [3, 5]:

1. Dead loads : the weight of structural members such as beams, columns, floor

slabs, ceilings, fixed service equipment, etc.

2. Live loads : all the loads on the structure that are not classified as dead loads,

for example, highway loads and railway loads on bridges.

3. Highway loads : when a bridge carries a variety of moving loads such as cars,

buses, and heavy vehicles.

4. Railway loads : when a bridge carries the non-stationary loads of railway vehi-

cles.

5. Wind loads : wind effects on the structures such as long-span bridges and

high-rise buildings.

6. Earthquake loads : the ground motion induced by a sudden release of strain

energy assembled in the crust and upper mantle (are called the lithosphere)

could generate a large inertia force (or seismic force) on a structure.
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7. Impact loads : when a load is applied over a very short period of time and has

a greater effect on the structure than the same load was applied statically.

8. Temperature effects : daily and seasonal environmental thermal effects on struc-

tural components

9. Corrosion: the deterioration of a metal (e.g. reinforcing steel) that results

from a reaction with the environment.

Energy distribution of single-support seismic input in structures

In quake-prone areas, building structures often undergo vibrations in response

to the ground motion caused by the seismic energy and fail to dissipate inelastic

energy due to excessive lateral motion, resulting in structural deformation [31, 32].

These excitations can be categorized into two types, namely

1. single-support excitation: all the masses undergo an identical ground motion,

and

2. multi-support excitation: ground motions are different at different supports.

The level of possible damage of individual structural members, e.g., beams, columns,

and roof/floor slabs can be determined by the transmitted external dynamic loading

into structural vibrations. The induced input energy (Ei) can then be decomposed

into different forms as mechanical output energy (OE), i.e. kinetic (Ek), damping

(Eζ), recoverable elastic strain (Es) and irrecoverable hysteretic dissipation (Eh) in

the structure during a loading event [31, 33].

As demonstrated schematically in Figure 1.2, the n degree-of-freedom (dof) sys-

tem is represented by a mass mk at the top of a column, where kk and ck denote

the stiffness and damping, respectively; subscript (k) refer to the designated floor.

Here, the rotation and vertical deflection are neglected. The system has n natural
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Figure 1.2 : Schematic diagram of the lumped mass distribution of an n-dof system with single-

support excitation; k = 1, 2, · · · , n.

frequencies and n modal vectors. xk = rk − xg, k = 1, 2, · · · , n, denotes the relative

displacement between the ground and each mass; rk describes the vibrational abso-

lute displacements of each floor; and xg is the absolute ground displacement. The

earthquake input energy (IE) transmitted into the system from the ground motion

can then be expressed through the conservation of energy relationship [34]:

Ek + Eζ + Es + Eh = Ei, (1.1)

where the kinetic energy (KE) reflects the work of the inertia force. The damping

energy (DE) is the work of the damping force. The elastic strain energy (SE)

represents the portion of the IE stored in the structure in the form of elastic strain.

The hysteretic energy (HE) is the energy dissipated through the hysteretic action

and is associated with the damage potential of the structure. The derivation of

(1.1) is given in Section 7.2, in which nonlinear effects of the n-dof structure are

neglected. Also, the floor is assumed to be axially rigid. However, both moving and

equivalent fixed-base system give the same relative displacement [31, 34].

Resonance phenomenon

Engineering structures can serve as buildings, bridges, vehicle, ships, or airplanes.

Most engineering structures have fixed natural frequencies. When a structure is ex-
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(a) The Millennium bridge. (b) Energy-dissipative dampers.

Figure 1.3 : The 325 m long London Millennium footbridge over the river Thames and renonance

phonomenon [35].

cited by external forces whose frequencies are close to the natural frequencies, the

effects of dynamic loadings are amplified and the system becomes unstable. To il-

lustrate this resonance phenomenon, we take the following incident as an example.

The London Millenium footbridge (see Figure 1.3) experienced an alarming swaying

motion on its opening day on 10 June 2000. The bridge started to wobble under

the wind- and pedestrian-induced movements. As a large crowd of people started

to adjust themselves to the bridge movement, they became synchronized, and the

bridge started to wobble even more. The synchronous lateral excitation experienced

on the bridge because some of its natural modes are similar to the sideways com-

ponent of pedestrian footsteps. The bridge was closed for almost two years while

modifications were made by adding 37 fluid-viscous dampers and 52 tuned mass

dampers to eliminate the horizontal and vertical motions, respectively [35].

1.2 Research objectives

• This study first aims at exploring the solutions to the present problem in

system modeling and controller design of MR based systems to effectively

damp out unwanted vibrations as well as control the embodied energy level.
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Our goal is to employ the hysteretic MR devices to dissipate the induced IE

Ei imparted to the structure by injecting a small control energy (CE) Ei for

magnetization. By controlling the capability of absorbing excitation energy via

the use of smart MR fluid yield stress, we could able to mitigate the overall

structural vibrations. A low-energy smart structure can then be achieved to

withstand dynamic loading source. To do so, we aim to

1. analyze the energy relationships of a building structure embedded with

smart dampers and

2. design a robustly stabilizing control law to resiliently preserve structural

health and function with a low energy cost during extreme events or

severe loadings.

• A drawback that hinders practical applications of these smart mechatronic de-

vices is the modeling of the complex hysteretic input-output (I/O) relationship

of the overall device characteristics. Therefore, the modeling objective here is

to

3. illustrate the intrinsic nonlinearity with traceable relationships between

model parameters and control signals in order to realize the field-controlled

method for MR based systems, and

4. facilitate the semi-active structural system analysis in the frequency do-

main by obtaining the frequency response functions of the structure.

1.3 Thesis organization

• Chapter 2: Literature Survey

This chapter presents a brief survey of the structural control systems, smart

materials and devices. The background materials and design methods of the
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sliding mode control and frequency-shaped control approaches are also given

in this chapter.

• Chapter 3: Magnetorheological Devices

In this chapter, the dissipation and energy-related aspects in the smart fluid

damper for analysis of low-energy resilient structures embedded with semi-

active control devices are investigated. This chapter also focuses to develop

multi-variable hysteresis models for smart structural members which are capa-

ble of effectively working in a wide scale of loading amplitude and frequency.

We herein considered two fluid based devices, namely the MR damper (MRD)

and MR pin joint (MRP), and a polymer medium device, namely MR elas-

tomer base isolator (MRE). The particle swarm optimization (PSO) algorithm

is employed to identify the optimal model parameters. The relationships be-

tween model parameters and applied magnetic fields are also explored.

• Chapter 4: Frequency-based modeling of MR devices

After introducing some background materials, the hysteresis modeling of MR

devices in the frequency domain by using the describing function (DF) method

are presented in Sections 4.3 to 4.6. Moreover, these models propose the

explicit relationships of the frequency-dependent DFs (gain and phase) for

mechatronic intelligent devices with their magnetization current, to facilitate

the MR based mechatronic system analysis in the frequency domain.

• Chapter 5: Second-order Sliding Mode Control of MR Smart Structure Systems

In this chapter, based on the proposed hysteresis model with current-dependent

parameters, a second-order sliding mode controller (2SMC) is designed and ap-

plied to the smart devices to provide a real-time feedback control of smart

structures. To deal with high nonlinearity in the hysteretic I/O relation-

ships and to achieve strong robustness of the control system against any dy-
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namic loading sources and other uncertainties, the sliding mode methodology

is adopted. The last sections of this chapter include verification and feasibility

of the proposed technique.

• Chapter 6: Frequency-Shaped Structural Control

The modal decomposition and frequency analysis of smart structures using

the DFs are reported in Section 6.2. In Section 6.3, the design method

of frequency-shaped sliding mode controller (FSSMC) and some simulation

results obtained with the proposed technique are discussed. Design of a

frequency-shaped second-order sliding mode controller (FS2SMC) is demon-

strated in Section 6.4 by means of exploiting second-order low-pass filter (LPF)

to model the dynamic sliding surface to shape the frequency characteristics of

the equivalent dynamics.

• Chapter 7: Low-energy Structure Embedded with Smart Dampers

This chapter is outlined as follows. After the introduction, the energy equa-

tions for a building structure embedded with smart devices are studied in

Section 7.2. Energy distribution of earthquake input energy in the structure

is derived using the absolute motion and relative motion. A frequency-shaped

second-order sliding mode controller (FS2SMC) is then proposed and designed

for buildings embedded with smart devices in Section 7.3 to inject a small

amount of control energy to dissipate vibration energy induced by external

disturbances to the structure. Section 7.4 presents the application and sim-

ulation results obtained with the proposed approach for a 10-floor building.

Section 7.5 presents a discussion on the energy flow in the structure embedded

with smart devices in the presence of external disturbances. A short summary

of the chapter is given in Section 7.6.

• Chapter 8: Thesis Contributions, Conclusions and Future Works
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This chapter presents a summary of the results drawn from this study, the

main contribution and recommendations for future research. Finally, the last

section of this dissertation includes appendices containing the relevant sup-

porting documents and bibliography.
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Chapter 2

Literature Survey

2.1 Smart Structures

Smart structures employ smart material actuators that allow the adjustment of

system parameters (damping or stiffness) as well as of system responses (shape or

strain) in a controlled manner. Various types of actuators and sensors, for example,

smart materials (piezoelectric, electrostrictive, magnetostrictive, or thermorespon-

sive materials), smart fluids (electro- or magneto-rheological fluids), shape memory

alloys, fiber optics, smart polymers and gels, are being considered for different ap-

plications [36]-[41]. They can be integrated with main structures by surface bonding

or embedding without causing any significant changes in the structural mass or stiff-

ness of the system. The most diverse applications of smart structures technology

range from space systems to fixed-wing and rotary-wing aircraft, civil and mechan-

ical structures, machine tools, automotive, and medical systems [36]-[38]. Their

applications to various systems are progressing to control vibration, noise, shock,

aeroelastic stability, damping, shape change, and stress distribution. Figure 2.1

defines various type of structure [37, 38]:

• Adaptive structures such as conventional aircraft wings with flaps and ailerons,

and rotor blades with servo-flaps, have distributed actuators to alter charac-

teristics in a prescribed manner, and may not have sensors.

• Sensory structures have distributed sensors to monitor the characteristics of

the structure (health monitoring). Sensors may detect mechanical properties
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(displacement strains), electromagnetic properties, temperature, and extent of

damage or failure.

• Controlled structures intersect both adaptive and sensory structures (see Fig-

ure 2.1). These structures contain actuators, sensors, and a feedback control

system to actively control the structural characteristics.

• Active structures are a subset of controlled structures. Integrated actuators

and sensors have load carrying capability (structural functionality).

• Smart or intelligent structures are a subset of active and controlled structures

as shown in Figure 2.1. Smart structures can automatically and intelligently

react to external dynamic loadings such as seismic events, strong winds, de-

structive waves and vibration shocks. They also has the capability to respond

to a changing internal environment such as damage or failure. A smart struc-

ture system is the integration of actuator, sensors, computing and signal pro-

cessing units with structural components. It is a distributed parameter system

that employs sensors and actuators at different locations on the structure and

command the actuators by analysing the sensors’ response using one or more

microprocessors, and bring the system to equilibrium. Figure 2.2 illustrates

the generalized functional diagram for the smart structure [36].

2.2 Structural Control Systems

Structural control systems can be grouped into four basic categories: (a) passive,

(b) active, (c) semi-active and (d) hybrid control systems, as listed in Table 2.1

[3, 4, 13],[42]-[44]. Passive systems may also be classified as: (a1) material based

dissipation systems (e.g. viscous and visco-elastic dampers), and (a2) additional

mass generating counteracting inertia forces (e.g. tuned mass dampers and tuned

liquid dampers). Passive control systems are simpler, less expensive but often less
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effective and less adaptive. Active control systems use devices capable of generating

counteracting external forces to the structure. However, a major drawback of the

active control system is their power failure during the earthquake. Hybrid control

systems are the combination of the previous two types (active and passive control

system). Semi-active control systems have been developed to combine the best

features of active and passive control systems with a prominent property of being

adjusted in real time without injecting energy into the controlled system. The power

supply to the actuators is not always guaranteed during the earthquake, thus semi-

active control is a preferable choice. In the following, structural control systems are

briefly presented.

2.2.1 Passive control systems

Passive systems employ passive energy-dissipating devices which respond to the

motion of structure to dissipate vibratory energy in the structural systems. Two

principles are utilized to dissipate vibratory energy: (i) convert kinetic energy to

heat energy and (ii) transfer energy among vibration modes. Passive control sys-

tems do not require an external power source, which may be interrupted during

earthquake, and no need to measure response and carry out feedback. Hence, they

are simple, less expensive, and their maintenance is relatively easy. However, the

limitations of these device methods are not being able to adapt structural changes,

varying usage patterns and loading conditions.

Example of passive systems including passive base isolation, viscoelastic dampers,

viscous fluid dampers, metallic yield dampers, friction dampers, tuned mass dampers

(TMDs) and tuned liquid dampers (TLDs). TMDs can be categorized as (a) sliding

type, (b) bearing mounted type and (c) pendulum type. Pendulum type TMDs can

be further classified as (c1) single pendulum type, (c2) multi-stepped pendulum type

and (c3) inverted pendulum type. TLDs can be grouped into two general categories:
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Table 2.1 : Classification of structural vibration control.

Structural vibration control

Intelligent control Passive control

Active Semi-active Hybrid Seismic isolation Energy dissipation

Active base isolation, Variable orifice damper, Hybrid mass damper, Sliding isolation, Hysteretic devices (such as

Active mass driver, Variable friction damper, Hybrid base isolation, Lead-Rubber bearings, metallic damper, friction damper),

Active bracing, Variable stiffness damper, Hybrid damper actu- Elastomeric bearings, Viscoelastic devices (such as solid

Other active control Controllable TMD, TLD, ator bracing control, Elastomeric & sliding damper, fluid damper),

systems ER dampers, bearings Re-centering devices,

MR dampers, Phase transformation damper,

MR elastomer devices, Dynamic vibration absorbers

SA impact damper, (such TMD, TLD),

Shape memory alloy Other energy dissipators

(SMA) dampers
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(a) tuned sloshing dampers (TSDs) and (b) tuned liquid column dampers (TLCDs).

2.2.2 Active control systems

The active control mechanisms have been developed to minimize the effect of

environmental loads. Active control systems require a certain amount of external

power or energy to drive the actuators in order to accomplish the control objective

and impart forces on the structure. However, power supplies to the actuators are not

always guaranteed during an earthquake or when an unexpected dynamic changes

occur in the structure. An active control system can measure and estimate the

response over the entire structure to determine appropriate control action. Example

of such strategies include active tendon systems, active bracing system, active tuned

mass damper/drive, active base isolation systems and active aerodynamic appendage

mechanism.

2.2.3 Semi-active control systems

Semi-active control systems have been developed to exploit the best features of

both passive and active control systems with a prominent property of being adjusted

in real time without injecting energy into the controlled system. The performance

of semi-active control system is bounded by passive and active control system. The

basic configuration of semi-active control system is similar to active control system,

except they have a unique device, which can represent both active and passive

device’s features. Therefore, semi-active control devices are frequently referred to

as controllable passive dampers. The semi-active control systems utilize the motion

of a structure to develop control forces through the adjustment of damping and/or

stiffness characteristics of the system under a low operation energy level. These

forces always oppose the motion of the structure, hence, promoting stability, as

well as reducing the consequence of the uncertainty of intrinsic damping [12, 14].

They have several advantages such as low operating power requirements, simplicity,
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is possibly achievable, although it is often also more complicated. Typically these

systems include hybrid mass damper systems, hybrid base isolation systems and

hybrid damper-actuator bracing systems.

2.2.5 Smart structure control systems

A smart structure system equipped with magnetorheologcal (MR) devices has the

potential to satisfy all requirements of low-cost, robustness and reliability against

various dynamic loading sources. The effects of dynamic sources such as those

induced by earthquakes and strong winds on civil engineering structures, considered

as external disturbances, as well as high nonlinearity of the MR devices due to

hysteresis and saturation due to their physical constraints of pose difficult issues for

structural control using these devices. To this end, effort has been paid to develop

various structural control algorithms. The structural control strategies applied to the

control of civil and mechanical engineering structures can be classified as [19],[46]-

[55]:

• Optimal control such as clipped optimal control, bang-bang control, linear

quadratic (LQ) regulator (LQR)/ Gaussian (LQG),

• Independent mode space control such as modal control based on state space

and modal control based on equation of motion,

• Robust control such as H∞ control, Lyapunov theory based control, sliding

mode control (SMC),

• Predictive control such as adaptive predictive control, model based predictive

control in which each control solution may be suitable only for specific type of

structure.
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2.3 Smart Materials and Magnetorheological Devices

2.3.1 Smart materials

Smart materials are the materials that receive, transmit, or process a stimulus

and respond by producing a useful effect that may include a signal that the mate-

rials are acting upon it, for example, strain, stress, temperature, electric field, mag-

netic field, hydrostatic pressure, different types of radiation, chemicals (including

pH stimuli), and other forms of stimuli. Typical examples of such intelligent materi-

als are piezoelectric materials, electrostrictive materials, magnetostrictive materials,

pH-sensitive materials, thermoresponsive materials, light-sensitive materials, elec-

trorheological fluids, magnetorheological fluids, shape memory alloys, smart poly-

mers, hydrogels, smart catalysts [39, 40, 45, 56]. One of the important features of

smart materials is their inclusion in smart structures. A summary of smart materials

is given in Table 2.2.

2.3.2 Magnetorheological devices

Magnetorheological (MR) material is a type of intelligent material with the be-

haviours and properties of rheology, which are able to be continuously, quickly and

reversibly adjusted when external magnetic field is applied. Based on this distinct

merit, the MR-based devices, such as MR squeeze film dampers (SFDs), MR vari-

able stiffness air springs, MR dampers (MRDs), MR pin joints (MRPs), and MR

absorbers (MRAs), have been developed as controllable smart components installed

in the engineering structures for vibration alleviation and mitigation when structures

are subjected to external hazard excitations, i.e. strong wind, earthquake, vibration

shock and destructive wave. As a novel smart material, MR elastomer (MRE) has

the benefits of both MR material and elastomer, i.e. quick response, controllable

and reversible mechanical property.
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Table 2.2 : Summary of smart materials.

Smart materials Comments

Piezoelectric − exhibit a linear relationship between electric and mechanical variables

Electrostrictive − show a quadratic relationship between mechanical stress and the square of electrical polarization

Magnetostrictive − response as material deformation when stimulated by a magnetic field

Elastorestrictive − mechanical equivalent of electrorestrictive and magnetorestrictive materials

− exhibit high hysteresis between stress and strain

Electrorheological − rheological or viscous properties of these fluids, which are usually uniform dispersions or

suspensions of particles within a fluid, are changed instantly through the application of an electric field

Magnetorheological − magnetic equivalent of electrorheological fluids

Shape memory alloys − able to remember and recover from large strains without permanent deformation, the most well-known

(SMAs) form of transformation behavior exploited in SMAs is thermally induced shape change

pH-sensitive − example includes the acids, bases, and indicators (change color as a function of pH

and the action is reversible)

Other smart materials − such as thermoresponsive, light-sensitive, smart polymers, smart gels, smart catalysts
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(a) (b)

Figure 2.5 : Smart MR fluid with (a) no magnetic field and (b) an applied magnetic field [62].

approximately tuned feedback controller to suppress structural vibrations induced

by any dynamic loading. The viscosity of the fluid is thus adjustable by altering the

electric current applied to the coil. The principle of operation of an MRP remains

the same as MRD. Semi-active MRPs also use smart MR fluid, which is a magnetic

analog of electrorheological (ER) fluid. MRP is a rotational structural member

compared to its family members, and can be considered as shear-mode rotational

damper. Hence, it can be employed for mitigating rotary deflections in structures.

Generally, the MRE is made of three principle ingredients: elastomer matrix, po-

larized magnetic particles and silicon oils. When the MRE is supplied with external

magnetic field, its mechanical properties, such as elasticity modulus and damping,

will be greatly improved. It is able to avoid the problems of poor stability, sedimen-

tation and particle wearing existing in MR fluid. Because of this inherent feature,

the MRE exhibits the huge potentiality in the field of vibration and shock mitigation

of mechanical or civil infrastructure.
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2.3.3 Mathematical models of MR devices

Although MR material and MR-based devices are significantly promising in the

field of structural vibration control, the major aporia that affects their practical

implementations is the modeling of their unique dynamics with high nonlinearity and

inherent hysteresis. In the past several decades, various numerical models have been

proposed to model hysteretic smart devices, which can be divided into quasi-static

and dynamic models. Even though quasi-static models can satisfactorily emulate

the relationship between force and displacement of damper, they are not competent

to depict the nonlinear force-velocity relationship of the device. This drawback can

be tackled by dynamic models. Up to now, several models have been proposed in

the literature based on various methods. Generally, these models are classified as

parametric and nonparametric models [19, 44, 57],[63]-[71]:

1. Parametric models : The models are expressed by an algebraic function whose

parameters are determined rheologically, and gained via the conclusive method

belongs to the parametric models. Typically examples of parametric mod-

els are Bingham models (nonlinear Bingham plastic model, modified Bing-

ham plastic model, Gamato and Filisko model, three-element model), Dahl

models (viscous Dahl model, modified Dahl model), Kelvin–Voigt model, Lu-

Gre model, Bouc-Wen models (simple Bouc-Wen model, modified Bouc-Wen

model, nonsymmetrical Bouc-Wen model, current dependent Bouc-Wen model,

current-frequency-amplitude dependent Bouc-Wen model), strain stiffening

model, bi-viscous models (hysteretic bi-viscous model, modified bi-viscous

model, lumped parametric bi-viscous model), viscoelastic-plastic model, static

hysteresis model, stiffness-viscosity-elasto-slide (SVES) model, temperature

phenomenal model with mass element, polynomial model, sigmoid function

model, equivalent model, hydromechanical model, and phase transition model.



25

2. Non-parametric models : The soft computing techniques contribute to the de-

velopment of non-parametric models, in which the dynamical behaviour of the

devices cannot be described by the specific mathematical expressions. Non-

parametric models are based on the performance of a specific device. Typi-

cally these models include orthogonal Chebyshev polynomials, neural networks

model, neuro-fuzzy model.

2.4 Sliding Mode Control

A challenging requirement for structural control systems remains strong robust-

ness in face of system uncertainties and external disturbances. For this, sliding mode

(SM) control (SMC) is known as a discontinuous robust control [72]-[82]. To develop

understanding about the fundamental mathematical concepts of SMC, some back-

ground information and common design methods of the SMC theory are presented

in the following.

2.4.1 Background

SMC is a specific type of variable structure control system (VSCS) [78, 79]. SMC

forcibly confines the system’s states to a user-chosen sliding surface (is called equiv-

alent dynamics) by varying the control structure with infite frequency on both sides

of the desired hyperplane in the state space. Hence, the ultimate trajectory does not

exist entirely within one control structure, instead it slides along the boundaries of

the control structures. The motion of the system as it slides along these boundaries

is called a SM and the geometrical locus consisting of the boundaries is called the

sliding (hyper) surface.

SMC alters a possibly higher-order problem into a first-order stabilization prob-

lem that of controlling the distance from the system state to the manifold so that

the distance is zero or as close as to that the actuators can obtain. The striking
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feature of SMC is its insensitivity to parametric uncertainty and disturbances during

the SM [72, 77].

At first, a sliding surface is designed such that the reduced order model has

convergence properties and independent of the model uncertainty. The nth order

sliding manifold can be defined as the static intersection in the state space by

σ(x) = Sx = xn +
n−1∑
k=1

ρkxk, x ∈ Rn, (2.1)

where the vector S = [ρ1, · · · , ρn−1, 1]. The parameters ρ1 to ρn−1 are chosen such

that the characteristic equation,

sn−1 + · · ·+ ρ2s+ ρ1 = 0,

has all roots with negative real parts where s is the Laplace operator [80]-[82]. For

example, if n = 3, then

σ(x) = ρ1x1 + ρ2x2 + x3, (2.2)

to satisfy the condition that the polynomial s2 + ρ2s+ ρ1 is Hurwitz, i.e., the eigen

values of σ(x) = s2 + ρ2s+ ρ1 = 0 should have a negative real part. Hence, we can

obtain s2 + 2λs + λ2 = 0 for a positive scalar λ > 0 in (s + λ)2 = 0 which gives

ρ2 = 2λ and ρ1 = λ2.

The vector S consist of coefficients that describe the sliding surface in terms of

the state vector x. The value of σ represents the distance of the point from the

sliding surface, therefore σ = 0 implies the point is on the sliding surface. Now from

(2.1), we have

σ(x) = ρ1x1 + ρ2x2 + · · ·+ ρn−1xn−1 + xn = 0

⇒ xn = −ρ1x1 − ρ2x2 − · · ·+ ρn−1xn−1

⇒ ẋn = −ρ1x2 − ρ2x3 − · · · − ρn−2xn−1 +
n−1∑
k=1

ρn−1σkxk.

Thus, the entire dynamics of the system is governed by the sliding surface parameters

S only, i.e., the system dynamics are independent of system parameters.
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Secondly, the control gain is constructed (can be obtained based on the general-

ized Lyapunov stability theory), which can use only the information on the bounds

of uncertain variables, to drive all trajectories on to the manifold in finite time and

remain on it thereafter. The average of the high-frequency switching induces the

control which ensures the conditon σ̇ = 0 [80]-[82]. Since the polynomial is Hur-

witz, once on the sliding manifold, the trajectories will go to zero with a transient

behavior characterized by the selected ρ1, . . . , ρn−1.

Filippov continuation method

The VSCS dynamics is characterized by differential equation with discontinuous

right-hand side. Filippov first proposed a solution for this type of system [83]. Since

sliding surface occurs on the discontinuity surface, the state motion vector lies on a

tangential surface, and according to Fillipov if the velocity vector on one side of the

sliding surface is f+ and on the other side of the surface is f−, then the resultant

vector f0 is formed by the convex sum of the two column vectors (f+, f−):

ẋ = f0(x, t)

f0 := αf+ + (1− α)f−, 0 < α < 1

(2.3)

where parameter α depends on the directions and magnitudes of the vectors (f+, f−)

and the gradient of the sliding surface σ, see Figure 2.6

SMC based on reaching law

The closed-loop system behavior under SMC can be categorized into two phases:

reaching phase and sliding phase [84]-[86]. The reaching phase drive system to

maintain a stable manifold and the sliding phase drive system guarantees slide to

equilibrium. Four types of reaching laws: general reaching law, constant rate reach-

ing law, exponential reaching law, and power rate reaching law are briefly presented

in the following.
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where the solution of the exponential term σ̇ = −κσ is σ = σ(t0)e−κ(t−t0). Hence,

when σ is large then the states approaches the switching manifold swiftly.

(R4.) Power rate reaching law :

σ̇ = −κ|σ|α sgn(σ), κ > 0, 0 < α < 1. (2.8)

When the state is far away from the switching manifold, the reaching law increases

the reaching speed, but when the state is near the manifold, it reduces the rate. The

result is a fast and low chattering reaching mode.

It is evident that the above four reaching laws (R1.) to (R4.) satisfy the sliding

condition σσ̇ < 0.

SMC based on quasi-sliding mode

In SMC, the ultimate trajectory does not exist entirely within one control struc-

ture, instead it slides along the boundaries of the control structures. Theoretically,

the trajectory is supposed to slide on the sliding manifold, but there are delays and

imperfections in the switching devices, and unmodeled high-frequency dynamics,

which lead to chattering.

Chattering is a small amplitude high-frequency oscillation which appears in the

neighborhood of the sliding manifold that results in low control accuracy, high heat

losses in electrical circuit and high wear of moving mechanical parts [80, 87]. It

can also excite unmodeled high-frequency dynamics which may degrade the system

performance and lead to unforeseen instabilities. Therefore, it is one of the main

concerns in SMC.

One way to reduce the chattering is to use the quasi-sliding mode method which

can make the state lie within a neighbourhood ε. Here, ε is called the boundary

layer and a small positive constant. Making the following substitution in the corre-

sponding discontinuous ones: sgn(σ) with a high-slope saturation function sat(σ/ε),
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Figure 2.7 : Approximations of sgn(·) nonlinearity; ε = [0.1, 0.3, 0.5, 0.7, 0.9]. In the limit ε → 0,

saturation, tangent and sigmoid functions approach to signum function.

or sgn(σ) with a hyperbolic tangent function tanh(σ/ε) or sgn(σ) with a sigmoid-like

function fε(σ), a continuous control law can be obtained in order to alleviate the

chattering phenomena by smoothing out the control discontinuity in a thin boundary

layer,

Bε = {‖σ‖ ≤ ε},

neighboring the switching surface [72, 80, 81]. A good approximation of sgn(·)

nonlinearity needs the use of small ε as shown in Figure 2.7.

(Q1.) The high-slope saturation function can be defined by

sat
(σ
ε

)
=


1, if σ

ε
> 1,

σ
ε
, if

∣∣σ
ε

∣∣ ≤ 1,

−1, if σ
ε
< −1,

(2.9)

where 1/ε is the slope of the linear portion of sat(·/ε). Outside the boundary layer,

the system dynamics are the same as the switching control and inside the boundary

layer, the linear feedback control is used.
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− SMC LPF System
u(t) τ(t)r(t) e(t) y(t)

Figure 2.8 : Closed-loop block diagram of the SMC system with LPF.

(Q2.) The sigmoid function is

fε(σ) =
σ

|σ|+ ε
, (2.10)

where ε is a small positive constant. In the limit ε→ 0, fε(·) approaches point-wise

to sgn(·).

(Q3.) The hyperbolic tangent function is

tanh(σ/ε) =
2 exp(σ/ε)− 1

2 exp(σ/ε) + 1
, ε > 0. (2.11)

The steepness of the hyperbolic tangent function is determined by ε. In the limit

ε→ 0, tanh(·/ε) approaches to sgn(·).

SMC based on low pass filter

To reduce the control chattering, sliding mode control system with low pass filter

(LPF) can be designed [82, 86]. A block diagram of the SMC system with LPF is

shown in Figure 2.8 where r(t), e(t), and y(t) are the reference, error, and output

signals, respectively; u(t) is the SMC output; τ(t) is the practical control input. for

example, the transfer function of the low pass filter can be given by

T (s) =
λ

s+ λ
=
τ(s)

U(s)
⇒ τ̇ + λτ = λu, (2.12)

where λ > 0, U(s) and τ(s) denote the Laplace transform of u(t) and τ(t), respec-

tively.
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Terminal sliding mode control

In conventional SMC, the system states reach equilibrium asymptotically. Thus

a nonlinear function or terminal attractor can be added into the design of the sliding

upper plane to construct a terminal sliding surface results in the tracking errors on

the sliding surface converge to zero in a finite time [88]. In the following, three types

of TSMCs: conventional terminal sliding mode control, fast terminal sliding mode

control, and nonsingular terminal sliding mode control, are presented.

Consider a two-dimensional, single-input uncertain nonlinear dynamic system of

the form

ẋ1 = x2,

ẋ2 = h(x) + g(x)u+ d(x, t),

(2.13)

where x ∈ R2 is the system state vector, u ∈ R is the control input, h(x) and

g(x) 6= 0 are some smooth nonlinear functions, and d(x, t) is the uncertainties and

disturbances. Assume further that

|d(x, t)| ≤ D, D > 0. (2.14)

(T1.) Conventional terminal sliding mode control(TSMC): The conventional

TSM can be described by the following first-order terminal sliding variable [89]:

σ = x2 + βx
q/p
1 , β > 0, (2.15)

where p and q are positive odd integers satisfying the condition p > q.

The derivative of (2.15) along the system dynamics (2.13) gives

σ̇ = ẋ2 +
βq

p
x
q
p
−1

1 ẋ1 = h(x) + g(x)u+ d(x, t) +
βq

p
x
q
p
−1

1 x2. (2.16)

Suppose that the control law is selected as

u = −g−1(x)
(
h(x) +

βq

p
x
q
p
−1

1 x2 + (D + µ) sgn(σ)
)

(2.17)
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where µ > 0, q
p
− 1 < 0. Thus, when x1 = 0 and x2 6= 0 a singular problem exits for

the conventional terminal controller. From (2.16), we have

σ̇ = d(x, t)− (D + µ) sgn(σ). (2.18)

Taking V = 1
2
σ2 as a Lyapunov function candidate, we have that

V̇ = σσ̇ = d(x, t)σ − (D + µ) sgn(σ)σ = d(x, t)σ − (D + µ)|σ| ≤ −µ|σ|. (2.19)

(T2.) Fast terminal sliding mode control (FTSMC): FTSMC can make the sys-

tem states converge to zero in a finite time [90]. Asymptotical convergence of states

under the normal sliding mode is overcome. The convergent characteristic of fast

terminal sliding mode control is superior to the conventional SMC. Furthermore,

there is no switch function in terminal sliding mode control, therefore, the chatter-

ing phenomenon is evitable [90].

For the system (2.13), the fast terminal sliding variable can be described by

adding a linear attractor αx1 into (2.15):

σ = x2 + αx1 + βx
q
p

1 , (2.20)

where α > 0, and β, p and q have been defined in (2.15). The variable σ satisfies

σ̇ = h(x) + g(x)u+ d(x, t) + αx2 +
βq

p
x
q
p
−1

1 x2. (2.21)

Then, for system (2.13), the FTSMC is designed as

u = −g−1(x)
(
h(x) + αx2 +

βq

p
x
q
p
−1

1 x2 + φσ + γσ
q
p

)
, (2.22)

where φ > 0, and γ > 0. Taking V = 1
2
σ2 as a Lyapunov function candidate, we

have

V̇ = σσ̇ = −φσ2 − γσ
q+p
p + d(x, t)σ. (2.23)

Here, p + q is an even number and −γσ
q
p + d(x, t)σ ≤ 0 satisfied, i.e. γ ≥ | 1

σq/p
|D.

Thus, V̇ ≤ 0.
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(T3.) Nonsingular terminal sliding mode control (NTSMC): For the system

(2.13), to deal with the singular problem of conventional TSMC, the nonsingular

terminal sliding variable is given by [91]

σ = x1 +
1

β
x
p
q

2 , (2.24)

where β, p and q have been defined in (2.15). Suppose that the NTSMC is designed

as

u = −g−1(x)
(
h(x) +

βq

p
x

2− p
q

2 + (D + µ) sgn(σ)
)
, (2.25)

where 1 < p
q
< 2, µ > 0.

The derivative of (2.24) along the system dynamics (2.13) satisfies

σ̇ = x2 +
p

βq
x
p
q
−1

2 ẋ2 = x2 +
p

βq
x
p
q
−1

2

(
h(x) + g(x)u+ d(x, t)

)
=

p

βq
x
p
q
−1

2

(
d(x, t)− (D + µ) sgn(σ)

)
.

(2.26)

Accordingly,

σσ̇ =
p

βq
x
p
q
−1

2

(
d(x, t)σ − (D + µ)|σ|

)
≤ −µ p

βq
x
p
q
−1

2 |σ| (2.27)

where x
p
q
−1

2 > 0 as 1 > (p
q
− 1) > 0 when x2 6= 0.

Global sliding mode control

Global sliding mode control (GSMC) eliminates the attaining motion phase and

guarantees that the whole system response is robust. Thus, the drawback of the

traditional sliding mode variable structure which has no robustness in the attaining

mode is overcome.

The GSMC law can be obtained by formulating a dynamic nonlinear sliding

surface equation. The global sliding variable can be designed in conjunction with

f(t) for the second-order system (2.13) as [92]

σ = ė+ ρe− f(t), ρ > 0, (2.28)
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where the tracking error is e = x−xd and desired trajectory is xd. f(t) is a function

to be chosen so as to attain at the sliding surface without a reaching phase. For

this, the following conditions need to be satisfied:

(C1 ) f(0) = ė0 + ρe0, e0 = e(t = 0),

(C2 ) f(t)→ 0 as t→∞,

(C3 ) f ′(t) exits and is bounded.

Here, conditions (C1 ), (C2 ) and (C3 ) represent the initial distance away from the

sliding surface, the asymptotic stability, and the existence of the sliding mode. Thus,

f(t) can be selected as f(t) = f(0)e−κt, where κ is a positive constant.

Dynamic sliding mode control

Dynamic sliding mode control (DSMC) can be obtained by constructing a switch-

ing function (σ0) in the normal sliding mode into a new dynamic switching function

(σ) [86]. The switching function is relative to the first- or higher-order derivative in

the control input. It can shift the discontinuous terms into the first- or higher-order

derivative in the control input. Hence, a continuous DSM control law is acquired

and the chattering phenomenon is mitigated adequately.

Consider a second-order uncertain nonlinear system

ẋ = h(x) + g(x)u+ d(t), (2.29)

where h(x) and g(x) 6= 0, ∀x ∈ R2, are known smooth functions, y = x1 is the

output and d(t) is the uncertainties. Assume that

|d(t)| ≤ D, |ḋ(t)| ≤ Dd.

Now define the sliding function and tracking error as σ0 = ė + ρe and e = y − yd,
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respectively, where ρ > 0. Then,

σ̇0 = ë+ ρė = ÿ − ÿd + ρė

⇒ σ̇0 = h(x) + g(x)u+ d(t)− ÿd + ρė.

(2.30)

A new dynamic sliding function is then constructed as

σ = σ̇0 + λσ0 = h(x) + g(x)u+ d(t)− ÿd + ρė+ λσ0 (2.31)

where λ > 0. For σ = 0, h(x) + g(x)u+ d(t)− ÿd + ρė+ λσ0 = 0 is a asymptotically

stable, accordingly, e→ 0 and ė→ 0.

Suppose that the dynamic controller is selected as

v = −g−1(x)
(
− d

dt
h(x) + (ρ+ λ)ÿd +

...
y d − u

( d
dt
g(x) + (ρ+ λ)g(x)

)
− (ρ+ λ)h(x)− λρė− µ sgn(σ)

)
,

(2.32)

where v = u̇ and µ > Dd + (ρ+ λ)D.

The derivatives of (2.31) along the system dynamics (2.29) gives

σ̇ =
d

dt
h(x) + u

d

dt
g(x) + g(x)u̇+ ḋ(t)−

...
y d + ρë+ λσ̇0

=
d

dt
h(x) + u

d

dt
g(x) + g(x)v + ḋ(t)−

...
y d + ρ

(
h(x) + g(x)u+ d(t)− ÿd

)
+ λ
(
h(x) + g(x)u+ d(t)− ÿd + ρė

)
=

d

dt
h(x)− (ρ+ λ)ÿd −

...
y d + ḋ(t) + (ρ+ λ)d(t) + (ρ+ λ)h(x) + g(x)v

+ u
( d
dt
g(x) + (ρ+ λ)g(x)

)
+ λρė

= ḋ(t) + (ρ+ λ)d(t)− µ sgn(σ).

(2.33)

Accordingly,

σσ̇ = σ
(
ḋ(t) + (ρ+ λ)d(t)− µ sgn(σ)

)
= σ

(
ḋ(t) + (ρ+ λ)d(t)

)
− µ|σ| ≤ σ

(
Dd + (ρ+ λ)D

)
− µ|σ| < 0.

(2.34)
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2.4.2 First-order sliding mode control

Consider an nth order nonlinear system of the form

ẋ1 = x2,

ẋ2 = x3,

...

ẋn−1 = xn,

ẋn = h(x) + g(x)u,

(2.35)

with x ∈ Rn being the state vector and u ∈ R the control input. Assume that h(x)

and g(x) are some smooth nonlinear functions and g(x) ≥ g0 > 0 for all x. The

control objective is for y(t) = ẋ1(t) to track a desired signal yd(t). Let e = y − yd

be the tracking error. The nth order sliding manifold can be defined by

σ(x) = Se = e(n−1) + ρn−1e
(n−2) + · · ·+ ρ2ė+ ρ1e = 0, (2.36)

with ρk, k = 1, · · · , n−1, real positive constants such that the characteristic equation

sn−1 +
∑n−1

k=1 ρks
k−1 = 0 is a Hurwitz polynomial, where s is the Laplace operator.

The manifold σ(x) = 0 has dimension (n− 1) and the objective of SMC is to steer

the trajectory onto this sliding manifold. If x is on the sliding surface defined by

σ = 0, then we have e(n−1) = −ρ1x1 − ρ2x2 − · · · − ρn−1xn−1. The derivatives of σ

satisfies the equation

σ̇ = e(n) + ρn−1e
(n−1) + · · ·+ ρ2ë+ ρ1ė

= h(x) + g(x)u− y(n)
d + ρn−1e

(n−1) + · · ·+ ρ2ë+ ρ1ė.

(2.37)

Suppose the unknown functions h and g satisfy the following bound

∣∣∣h(x)− y(n)
d + ρn−1e

(n−1) + · · ·+ ρ2ë+ ρ1ė

g(x)

∣∣∣ ≤ %(x, t), (2.38)
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for some known function %(x, t). Now let V = 1
2
σ2 be the Lyapunov function

candidate for (2.37). Differentiating V yields

V̇ = σσ̇ = σ
(
h(x)− y(n)

d + ρn−1e
(n−1) + · · ·+ ρ2ë+ ρ1ė

)
+ g(x)σu

≤ g(x)|σ|%(x, t) + g(x)σu

(2.39)

Suppose that the control law is selected as

u = −β(x, t) sgn(σ) = −
(
%(x, t) + η

)
sgn(σ), η > 0, (2.40)

which yields

V̇ ≤ g(x)|σ|%(x, t)− g(x)σ
(
%(x, t) + η

)
sgn(σ) = −g(x)η|σ| ≤ −g0η|σ|, (2.41)

where g0 is defined in (2.36).

Now define the function χ =
√

2V = |σ|, which satisfies the differential inequality

χ̇ ≤ −g0η. By integrating the differential inequality over the time interval 0 ≤ τ ≤ t,

we have

|σ(t)| ≤ |σ(0)| − g0ηt, (2.42)

which implies that the trajectory reaches the manifold σ = 0 in finite time. The

interesting feature of the control law (2.40) is its robustness with respect to h(x)

and g(x), and only need to know the upper bound of %(x, t).

2.4.3 Higher-order sliding mode control

The r-th order sliding mode (r-SM) can be determined by the set [72, 79],[93]-[98]

σ = σ̇ = · · · = σ(r−1) = 0, r = [r1, . . . , rn], (2.43)

where

(i) successive total time derivatives σ, . . . , σ(r−1) are continuous functions of x,
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(ii) σ = · · · = σ(r−1) = 0 is a nonempty integral set which consists locally of

Filippov’s trajectories [83], and

(iii) the Filippov set of admissible velocities at the r-sliding points contains more

than one vector.

The r-th derivative σ
(r1)
1 , σ

(r2)
2 , . . . , σ

(rn)
n are discontinuous or non existent as a single-

valued function of x due to some reason like trajectory nonuniqueness. The vector

r = [r1, . . . , rn] is called the sliding order. A SM is called stable if the corresponding

integral sliding set is stable. The motion on r-sliding set (2.43) is said to be the

2-SM when the sliding order is r = [2, . . . , 2] with σ̈ being discontinuous and σ, σ̇

being continuous functions of x.

Suppose the system is closed by a bounded feedback control prescribed by

uk = Uk(σk, σ̇k, . . . , σ
(rk−1)
k ) (2.44)

and associated with a differential inclusion (DI)

σ
(r)
k ∈ [−ϕk,+ϕk] + [κm(k), κM(k)]uk, (2.45)

understood in the Filippov’s sense, i.e. the right-hand vector set is enlarged at the

discontinuity points of (2.44) in order to satisfy certain convexity and semicontinuity

properties defined as below [80, 93, 99]:

A DI ẋ ∈ F (x), x ∈ Rn, is a Filippov DI if the vector set F (x) ⊆ Rn is nonempty,

closed, convex, locally bounded and upper-semicontinuous i.e.

lim
x→y

[sup{dist(p, F (y))|p ∈ F (x)}] = 0.

The origin is an equilibrium point when 0 ∈ F (x). Let p ∈ Rn and set M ⊆ Rn

then the distance is defined as dist(p,M) = inf{|p− a||a ∈M}.

The function Uk(σr−1) is a locally-bounded Borel-measurable function. Now,

next step is to find a feedback uk = Uk(σr−1) that all the trajectories of (2.44),
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(2.45) converge in finite time to the origin σr−1 = 0 of the r-sliding phase space

σk, σ̇k, . . . , σ
(rk−1)
k .

DI (2.45)
(
σ

(r)
k = [−ϕk, ϕk] + [κm(k), κM(k)]Uk with a locally-bounded Lebesgue-

measurable right-hand side is replaced by a Filippov DI
)

is called globally uniformly

asymptotically stable at zero, if

(i) it is Lyapunov stable and

(ii) for any R > 0, ε = ε(R) > 0, ∃T (R, ε) > 0 such that any trajectory starting

inside the ball BR, i.e. ‖σr−1(t0)‖ < R, enters into a smaller ball Bε after

a time period T which is independent of t0 and remains inside thereafter,

equivalently ‖σr−1(t)‖ ∈ Bε, ∀t ≥ t0 + T (R, ε). Thereby, Bε ⊆ BR in which

Bε = {q ∈ BR| ‖q(t)‖ < ε}, BR = {q ∈ Rn | ‖q(t0)‖ < R} and D ⊆ Rn.

According to [93]-[96], the stability of the r-sliding lies in if all the trajectories

in the phase plan σk, . . . , σ
(rk−1)
k which pass through a given continuity point of

Uk(σr−1) are confined between the properly chosen trajectories of

σ
(r)
k = ±ϕk + κM(k)Uk and σ

(r)
k = ±ϕk + κm(k)Uk. (2.46)

Thereby, the trajectories can be chosen as, if Uk(σr−1) > 0, then

σ
(r)
k = ϕk + κM(k)Uk and σ

(r)
k = −ϕk + κm(k)Uk. (2.47)

Similarly, when Uk(σr−1) < 0 then

σ
(r)
k = −ϕk + κM(k)Uk and σ

(r)
k = ϕk + κm(k)Uk. (2.48)

2.5 Frequency-Shaped Control

Engineering structures such as buildings and bridges are built with uncertain-

ties, e.g., the damping characteristics of a structural system is ambiguous until the
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structure is completed. Additionally, the construction materials of civil structures

subject to degradation over time. Hence, structural health monitoring and con-

trol techniques using the structural frequency response functions (FRFs) can be

incorporated into structures to enhance their performance, quality and safety [100]-

[102]. For instance, weakness or cracks in the building structure, or loosening of

structural components, may not be visible in the time domain signal but could ap-

pear as discrete frequency spikes in the frequency spectrum. On the other hand,

energy-dissipative MR devices can be embedded or surface bonded as components

in structural systems to improve their damping and stiffness characteristics under

a low energy cost. Moreover, for analysis of the energy flow, dynamic responses of

these devices are characterized by frequency-based techniques and excitations can

be represented in the frequency domain by their power spectral density functions

[21, 103]. The frequency domain approach to structural control allows for a roll-off

of the control action at high frequencies and specify the disturbance attenuation

over desired bands.

The frequency-shaping (FS) technique to the linear-quadratic (LQ) design was

first proposed in [104] with the cost functional expressed via the frequency vari-

able ω. To extend the SMC design to the frequency domain, frequency-shaped

(FS) SMC (FSSMC) and discrete-time FSSMC have been developed and applied

to various mechanical systems including active vibration control [105, 106], flexi-

ble robot manipulators [107]-[110], active suspension system [111], electrohydraulic

servo-motor [112], pickup heads in optical disk drives [113], hard disk drives [114]

and smart structure [21, 84, 115]. In FSSMC, the sliding surface is modeled by a

desired linear operator to suppress frequency components of the SM response in a

designated frequency band [87, 110]. According to [110], linear operators can be

interpreted as a low-pass filter (LPF) (either as a prefilter, similar to introducing

artificial actuator dynamics or as a postfilter, functioning like sensor dynamics) for
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shaping the system equivalence dynamics in the frequency domain. The idea has

been studied and extended by many researchers, e.g. [106, 116], and given the name

frequency-shaped sliding surface.

A discrete time approach to the frequency-shaping LQ control using the Par-

seval’s theorem was reported in [111] for active suspension system. A synthesis

method for flexible manipulator was proposed in [109]: (a) the terminal sliding

mode technique was applied to achieve small steady state error and to accelerate

the convergence of the sliding mode towards equilibrium and (b) frequency shaping

approach was employed to reduce the intrinsic resonance modes. An output feed-

back FSSMC was studied in [115] for damping out structural vibrations, where the

system states are implicitly obtained by measuring the output at a faster rate than

the control input. The works mentioned in Table 2.3, have not clearly explained

on the dissipation of vibration-induced energy in the controlled smart devices. In

[21], the frequency domain advantage is taken into account in the framework of

semi-active structural control to result in low-energy and resilient structures against

dynamic loadings such as earthquakes or gusty winds.
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Table 2.3 : Summary of frequency-shaped control methods.

Reference Control Application Comments

1980 FS technique using state robotic manipulator cost functional expressed

feedback to LQ design [104] via the frequency variable ω.

1988 FS LQ design [117] robotic manipulator reported a spectral factorization relationship

with FS LQ control problem

1989 discrete FS LQ design [111] active seat suspension developed a discrete time approach using

the Parseval’s theorem

1993 State feedback FSSM [110] robotic manipulator to attenuate the effect of unmodelled

high frequency dynamics

2000 FS and TSMC robotic manipulator to mitigate the inherent resonance modes

[109] and to achieve small steady state error

2002 FS technique with recursive linear system to eliminate the high frequency, high amplitude

backstepping algorithm chattering caused by large feedback gain

[116] properties of backstepping algorithm
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Reference Control Application Comments

2005 FSSMC [113] optical disk drives

2005 FSSMC [106] active vibration isolation (i) US Patent 2005/0256613 A1, (ii) takes into account

plant uncertainties and payload disturbances

(iii) showed FS sliding surface is equivalent

to a feedback-feedforward compensation problem

2009 Output feedback FSSM smart flexible states are obtained by measuring the output

[115] cantilever beam at a faster rate than the control input

2017 H∞ based FSSMC [114] hard disk drive discrete-time FSSMC for high-precision

systems with narrow band disturbances

2018 FS2SMC [21] smart structure addressed the energy flow in the building structures

for control and monitoring
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Chapter 3

Magnetorheological Devices

3.1 Introduction

Hysteretic magnetorheological (MR) based devices, such as MR damper (MRD),

MR pin joint (MRP) and MR elastomer isolator (MRE), are recognized as smart

devices for protection of engineering structures subject to external dynamic loadings

such as seismic events, strong winds, destructive waves and vibration shocks. This

is due to their advantageous features of controllable mechanical properties, quick re-

sponse, lower power consumption and fault-safe. Dampers with hysteretic properties

can be used to dissipate a large amount of input energy imparted to the structure

under the control from a magnetizing current. The embedded smart devices are

controlled to adjust mechanical parameters of the seismically or wind excited struc-

ture and allow for dissipation of the induced energy with a controllable resisting

force over a finite displacement. The heat energy is dissipated through the smart

fluid inside the damper housing and harmlessly transferred to the environment via

conduction and convection mechanisms. By controlling the capability of absorbing

excitation energy through the use of MR fluid yield stress to ultimately mitigate the

overall structural vibrations under external excitations, a low-energy smart struc-

ture can be achieved to withstand dynamic loading sources. Nevertheless, due to

the unique nonlinear nature of these devices, the major challenge is how to design

a robust model for structural vibration control. The experimental characterization

and cyclic energy dissipation of MR devices are emphasized in the following.
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Figure 3.1 : MR damper structure.

3.2 Magnetorheological Damper

To experimentally study the dissipation and energy-related aspects in the mag-

netorheological (MR) fluid damper (MRD) for analysis of low-energy resilient struc-

tures embedded with MRDs, the RD-8041-1 damper manufactured by LORD Cor-

poration is characterized by using a thermal camera. Figure 3.1 shows a schematic

diagram of the damper. The damper, which accepts a maximum input current of

2 A at 12 V dc, has a mass of 0.92 kg, an extended length of 24.8 cm and a ±3.7

cm stroke. The key properties of the RD-8041-1 MRD is given in Table 3.1. To

thoroughly understand the dynamic features of the MRD, a serious of experiments

are conducted in the laboratory.
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Table 3.1 : Parameters of the LORD RD-8041-1 MRD.

Typical properties

Mass 920 gm

Stroke 74 (±37) mm

Extended length 248 mm

Body diameter 42.1 mm

Shaft diameter 10 mm

Response time < 15 msec

Electrical properties

Input current i ∈ [0 2] A

Input voltage 12 VDC

Resistance 5 Ω (7 Ω) at 25◦C (71◦C)

3.2.1 Experimental setup

A dynamic machine, Instron ElectroPulsTM E10000, was used to provide si-

nusoidal signal to the RD-8041-1 damper, located in the Dynamic & Mechanics

of Solids Laboratory of the University of Technology Sydney (UTS) as pictorially

shown in Figure 3.2. A wide range of displacement waveforms including sine, trian-

gle, trapezoidal, step and pseudo-random can be employed to measure the dynamic

responses of an MRD using this test setup.

The damper was mounted between the effectors of the E10000 and moves along

the y axis. A wide range of excitation variables: harmonic displacements of the

damper rod of E = ±4, ±8, ±12, ±15 mm and frequencies f = 0.5, 1, 2, 3 Hz

were considered. This low frequency range was considered to represent the range

of essential dynamics of civil structure excitations. The voltage applied to the RD-
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Figure 3.2 : A photograph of the MRD RD-8041-1 test system.

8041-1 were held at constant levels as given in Table 3.2. These voltages correspond

to currents i ∈ [0 2] A with an increment of 0.25 A.

A Testo 875-2i thermal camera was utilized to monitor the temperature effect

which has certain influences on the MR fluid properties. During the experiments,

the damper was ON, stroking the damper piston under a constantly supplied current

for a period cause the increase of temperature (see Table 3.2). Since it will be more

effective to consider the magnetization current as the control input of MR device-

based mechatronic systems, instead of the conventional view of semiactive control

using the derivation of damping force.

There are 88 operating cases carried out with twice repetition and the sampling

rate was set at 1 kHz for all the tests. The instantaneous displacement and output

force were measured along the y axis, and imported into Excel worksheets through

the E10000 transducers: a position sensor and a bi-axial DynacellTM load cell with a
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Table 3.2 : x = E sin(2πt); E = 4, 8, 12, 15 mm, f = 1 Hz.

Voltage (V) 0 1.04 2.12 3.2 4.28 5.36 6.44 7.52 8.6

Current (A) 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

Temp. (◦C) 25.6 26.7 28.5 30 32.3 35.1 38 40.9 43.9

Test no. 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36

range of±10 kN, respectively, using the WaveMatrixTM user interface. An additional

load cell, KPA6110P model with a capacity of 1 ton, was installed in series with the

MRD and DynacellTM load cell. The experimental readings were filtered by a second-

order Butterworth filter. A central difference approximation method was applied to

obtain the velocity and acceleration responses from the measured displacement data.

3.2.2 Energy cycle of MR dampers

The damping capacity of smart structures embedded with MRDs depends on

the amount of energy dissipated in the devices as a result of their induced hysteretic

effect, during a typical vibration cycle while the MRDs operate at a constant mag-

netic field [17, 29]. The MRD dissipates its cyclic energy in the MR fluid via the

formation of a closed-loop mechanical lag in the force-displacement trajectory. Fig-

ure 3.3 shows that hysteresis occurring in the damper’s dynamic relation between

input-output (I/O) variables represents memory effects involving field-dependent

friction in the MR fluid suspension, leading to energy dissipation. Notably, in both

the force-displacement (Figure 3.3(a)) and force-velocity (Figure 3.3(b)) relation-

ships, hysteresis loops representing intrinsic nonlinearity and complex dynamics of

the damper are not zero-centred, which account for the effect of the accumulator

at the bottom of the MRD. Therefore, to eliminate the force bias/offset, the MRD
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(a) fMR vs x trajectories (b) fMR vs ẋ trajectories

Figure 3.3 : Measured RD-8041-1 hysteresis.

effective stiffness can be defined by

kMR =
f+

MR − f
−
MR

E+ − E−
,

where f+
MR is the measured force at the maximum positive displacement E+ and

f−MR is the measured force at the minimum negative displacement E−.

Let cMR, EMR, fMR, kMR, and ζMR denote the equivalent damping, dissipated

energy, output force function, effective stiffness and damping ratio of the device,

respectively. Given periodic displacement x = E sin(ωt) and velocity ẋ = Eω cos(ωt)

of amplitude E and angular frequency ω = 2πf , the energy dissipated by an MRD

in one vibration period can be given by the area enclosed within the hysteresis loop,

as shown for example in Figure 3.4.

The MRD dissipated energy can be expressed as

EMR =

∮
fMRdx =

∫ 2π
ω

0

fMRẋdt =

∫ 2π
ω

0

cMRẋ
2dt

= cMR

∫ 2π
ω

0

(Eω)2 cos2(ωt)dt =
cMR(Eω)2

2

∫ 2π
ω

0

(1− sin(2ωt))dt

=
cMR(Eω)2

2
· 2π

ω
− 0

= πcMRE
2ω = 2π2fcMRE

2,

(3.1)
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Figure 3.4 : Graphical representation of dissipated-energy per cycle at resonance.

where damping force function

fMR = cMRẋ = cMREω cos(ωt)

⇒ fMR = ±cMRω
√
E2 − x2

(3.2)

and with its conjugate variable, the displacement, lying on an ellipse

(
fMR

cMRωE
)2 + (

x

E
)2 = 1 (3.3)

depicted in Figure 3.4.

The loss coefficient or damping ratio ζMR of MRD can be defined as the ratio of

damping energy loss per radian divided by the strain energy:

ζMR =
2π2fcMRE

2

2π(kMRE2)
. (3.4)

Thus, we have

cMR =
kMRζMR

πf
. (3.5)

Using the concept of equivalent viscous damping and substituting cMR into (3.1)

gives

EMR = 2πkMRζMRE
2 = 2π2fcMRE

2. (3.6)
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housing is converted into heat, depending on the magnetic field strength and input

excitation variables (stroke and frequency). Thus, an increase in the magnetization

current i will result in a temperature rise in the fluid inside the MRD housing, as

depicted in Figures 3.6(a) and (b).

Figures 3.6(c) and (d) present the result of the heating tests for different ampli-

tudes and frequencies. As can be seen, the MRD RD-8041-1 is initially at the room

temperature of about θ = 25.6◦C. At the end of the test, temperature is increased.

The results of Figures 3.6(c) and (d) indicate that the heat generated inside the

damper not only depends on the applied magnetization current but also depends on

the oscillation amplitude and excitation frequency, respectively. In these cases, the

loading amplitude varies from 8 mm to 12 mm, frequency varies from 1 Hz to 2 Hz

and input current varies from 1 to 1.5 A.

Taking into account also the Joule effect of the coil resistance R, the power P of

the system can be given by

P = −fMR(t)ẋ− i2(t)R, (3.7)

where R = 5 Ω (7 Ω) at the ambient temperature (at 71◦C) and i ∈ [0 2]A for the

damper used in experiments.

The time responses of the energy and power (energy rate) obtained for the hys-

teresis loops of the conjugate force-displacement and force-velocity trajectories of

Figures 3.3(a) and (b) are shown in Figures 3.7(a) and (b), respectively. They in-

dicate that the force-displacement hysteresis progresses along clockwise trajectories

while the force-velocity hysteresis follows anticlockwise paths. It can be interpreted

from these figures that the MRD attached to a structure stores its elastic energy of

the structure via its spring component and when the structural motion and corre-

spondingly the MRD stroke is to reverse their direction, the damper would transfer

the energy back to the structure. The energy alterations can be seen at the enclosed
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(a) Identified temperature vs current (b) i = [1, 1.5] A

(c) E = [8, 12] mm (d) f = [1, 2] Hz

Figure 3.6 : Experimental temperature rise history within MRD due to harmonic wave motion

x = E sin(2πft).

area of quadrants II and IV in Figures 3.3(b) and 3.7(b), that is −fMR · ẋ. The

corresponding negative values occur in only a short duration,

∆tII + ∆tIV = 0.042 + 0.048 = 0.09 sec,

about 18% of one vibration period

T =
2π

ω
= 0.5 sec,

as shown in Figure 3.7(b). The cyclic dissipation and energy rate of the smart device

not only depend on the oscillation amplitude of the MRD stroke, but also vary with
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(a) One energy cycle, 2π/ω = 0.5 s (b) x = E sin(2× 2πt) mm, i = 2 A

(c) x = 8 sin(2× 2πt) mm (d) x = 8 sin(2πft) mm, i = 2 A

Figure 3.7 : MRD (a) dissipated energy and (b)-(d) energy rate during a vibration cycle operated

at a constant magnetic field: i ∈ [0 2] A, E = [4, 8, 12, 15] mm, f = [0.5, 1, 2, 3] Hz, R = 5 Ω and

θ ∈ [25.6 43.9]◦C.

respect to the applied magnetization current and excitation frequency, as shown in

Figures 3.7(c) and (d), respectively.

3.3 Magnetorheological Pin Joint

Figure 3.8 shows the corresponding design schematic of the MRP, see Figure

2.4(b). The smart pin joint mainly consists of five components: a rotary thin plate

inside the pin joint, a shaft connected to the plate to transfer the joint torque, two

uniform housings forming a hollow cavity, MR fluid between the housing and plate,
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Figure 3.8 : MR pin joint schematic.

and a circular coil producing the required magnetic field. The newly-developed

MRP operates in the shear mode, where two parallel plates are moving relative to

each other to incur a shear flow. Detailed theoretical modeling analysis, structural

parameters, and characterization test setup of the rotary pin joint considered in this

section can be found in [26, 27]. Between the plate and the housings is a gap of

approximately 1 mm, filled with the MR liquid MRF140CG. The liquid can provide

a yield stress of up to 60 kPa at a saturated magnetic flux density of B=1.0 T when

the MRP can produce a torque of up to 15 Nm at a saturated current of 2.0 A.

The magnetorheological pin joint (MRP) can be used as a rotational connector at

the column-beam connection in a structural frame as shown in Figure 3.9. Its output

torque can be adjusted from nearly zero joint moment (pinned) to full capacity

(locked), by controlling directly the magnetization current of the circular coil inside

the pin joint housing. The smart pin can behave as a free rotating hinge when not

magnetized or as a partially or fully fixed joint, hence, the rigidity of the structural

connection can be controlled from fully rigid and fully pinned as well as any state
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Figure 3.9 : An example of the MRP-embedded structure.

in between. The building structure’s natural frequency, therefore, can be shifted

further from the resonance region to avoid a structural collapse by resonance.

3.3.1 Experimental setup and device characteristics

In order to characterize the nonlinear hysteretic mechanism of the MRP, a series

of dynamic tests have been conducted using 10-tonne, 3 m × 3 m MTS uni-axial

shake table at the Structure Laboratory, University of Technology Sydney (UTS), to

provide sinusoidal excitations, shown in Figure 3.10 [25, 27]. During the tests, MRP

is fixed to a stand on the floor outside the shake table. Two steel plates fixed to the

housing of the device are firmly attached to the shake table by a steel rod. A load

cell (capacity of 300 N) and two linear position sensors (LPS) are used to measure

the torque, horizontal and vertical displacements of the tip of the MRP steel rod,

respectively. In the test, the smart device is driven with a harmonic excitation of

four amplitudes, E = 7.06, 17.65, 28.20, 35.20 mm, respectively, corresponding to

the maximum rotation angle of 2◦, 5◦, 8◦ and 10◦ in a range of frequencies, f = 1,

2, 3 Hz. A custom-designed current amplifier was used during the tests to supply
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Figure 3.10 : Test setup schematic for dynamic testing of MRP.

currents (i = 0, 0.5, 1, 1.5, 2 A) to the magnetic coil of the MRP, hence providing the

controlled magnetic field strengths. Data obtained are processed for the modeling

purpose. Readings from the attached load cell and two linear position sensors were

recorded by the proprietary data acquisition system of a shake table facility. To

completely capture the response of the device, the sampling rate was set at 2,048

Hz. The responses of velocity can be calculated from the response of displacement

using the differential computation method.

Figures 3.11(a) and (b) show the MRP T versus θ and T versus θ̇ trajectories

when f = 2 Hz frequency, E = 7.06 mm amplitude excitation and supplied with

various magnetization current values from 0 A to 2 A, respectively. It is observed

that the torque value gradually increases with the ascending magnetic fields. Figures

3.11(c) and (d) show the damping torque plot of the MRP with different applied

currents when it is under 28.2 mm amplitude and 1 Hz frequency harmonic loading.

It is noticeable that the torque versus shaft angle response in Figure 3.11(c) exhibits

highly nonlinear phenomenon while the hysteresis feature is illustrated in the torque

versus angular velocity response in Figure 3.11(d). Generally, the generated T is
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(a) f = 2 Hz, E = 7.06 mm (b) f = 2 Hz, E = 7.06 mm

(c) f = 1 Hz, E = 28.2 mm (d) f = 1 Hz, E = 28.2 mm

Figure 3.11 : Characteristics of MRP at i ∈ [0, 2] A.

related with the mechanical properties of the MRP. That is why the torque-angle

plot is elliptical and the torque-angular velocity loop is the sloped ellipse. When

the current value is 0 A, the viscous phenomenon of the device is obvious because of

elliptical moment-angular displacement response. Moreover, the slope of the torque-

angular velocity curve in the roll off area increases with the increasing magnetic

fields. As a result, in order to make full use of this novel device, an accurate model

should be developed to describe these features.
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3.3.2 Static hysteresis model

A static hysteresis model is proposed in this section to describe the highly-

nonlinear hysteretic relationship between the torque and angular velocity in an MRP.

In the proposed model, a hyperbolic tangent function is considered for portraying

the S-shaped curve and modeling the hysteresis cycle of the MRP torque-angular

velocity response. The model contains a hyperbolic function and a Gaussian func-

tion, respectively, representing the average hysteresis and the hysteresis thickness.

Then, the resulting hysteresis is obtained from the summation of these two curves,

namely the mean curve and thickness curve of the hysteresis.

For MRP hysteresis modeling, the experimental reading of MRP damping torque

T is depicted against angular velocity θ̇ at i = 1.5 A, f = 2 Hz with the maximum

rotational angle of 10◦ or amplitude E = 35.20 mm in Figure 3.12(a). This hysteresis

cycle can be described by two curves, namely the upper curve T1 when dθ̇
dt
≥ 0 and

the lower curve T2 when dθ̇
dt
< 0. Then the mean value of the hysteresis can be

achieved by taking the average of every vertical sector in the hysteresis loop.

X̄i =
1

n

n∑
i=1

(T1i + T2i), (3.8)

where i is the index of the angular velocity of the hysteresis curves, T1i and T2i

are the corresponding smart MRP torques determined by the angular displacement

polarity.

The calculated mean is further described by a hyperbolic tangent curve, which

contains only three parameters, as can be seen in Figure 3.12(b), proposed as

H(θ) = α + β tanh(γθ̇), (3.9)

where α, β and γ are the parameters to be identified.

The thickness of the hysteresis can be estimated by taking the mean difference

between the two upper/lower traces and the mean of the hysteresis [118]. Figure
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(a) Hysteresis cycle (b) Hysteresis mean curve

(c) Hysteresis thickness curve (d) i ∈ [0, 2] A from lower to upper cycle

Figure 3.12 : (a)-(c) MRP hysteresis cycle, mean and thickness curve at i = 1.5 A, (d) a family of

hysteresis by using the proposed model at f = 2 Hz, E = 35.20 mm.

3.12(c) illustrates the thickness of the hysteresis. The hysteresis thickness can now

be written by

Di =
1

n

n∑
i=1

(|T1i − X̄i|+ |T2i − X̄i|). (3.10)

A Gaussian curve is adopted here in order to capture the thickness of the hys-

teresis more precisely [118]. The Gaussian curve can be defined as

G(θ) = ϕ exp(
−θ̇2

2σ2
), (3.11)

where ϕ and σ stand for the vertical scaling factor of the hysteresis and the width

of the hysteresis, respectively.
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Figure 3.13 : A family of hysteresis by using the proposed model at i ∈ [0, 2] A, f = 3 Hz,

E = 28.20 mm.

Now, by adding and subtracting the two components, (3.9) and (3.11), respec-

tively, the upper hysteresis curve T1(θ) and the lower hysteresis curve T2(θ) can be

obtained. The overall hysteresis loop can be built up by the aggregation of these

components, H(θ) and G(θ), as plotted in Figure 3.12(d). The proposed MRP

hysteresis model can be formulated in the form

T (θ) =

 T1(θ) : H(θ) +G(θ) if θ̈ ≥ 0

T2(θ) : H(θ)−G(θ) if θ̈ < 0

=

 α + β tanh(γθ̇) + ϕe
−θ̇2
2σ2 if θ̈ ≥ 0

α + β tanh(γθ̇)− ϕe
−θ̇2
2σ2 if θ̈ < 0.

(3.12)

A set of five parameters should be identified for the proposed model of MR

pin joint and the set of parameters is Ω = [α, β, γ, ϕ, σ]. Figure 3.13 shows

the comparison of hysteresis cycles from experimental and simulated data at a 3

Hz excitation with a lateral reciprocal displacement of 28.20 mm and five different

magnetization current values from 0 to 2 A.
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Figure 3.14 : Schematic of model identification.

3.3.3 Model identification using immune particle swarm optimization

The structure for model identification of the MRP is shown in Figure 3.14. The

model parameter identification can be considered as solving a minimization opti-

mization problem, in which the root mean square error (RMSE) is adopted as the

objective function:

YRMSE =

√√√√ 1

n

n∑
i=1

[
ye(i)− yp(i)

]2
, (3.13)

where ye(i), yp(i) and n represent the experimental data, predicted data and number

of the experimental data, respectively.

The above problem can be solved by the optimization algorithm such as particle

swarm optimization (PSO). In the beginning, each particle in the swarm is assigned

its own position and velocity. Then, constantly updating information of searching,

the whole swarm can quickly arrive at the source in the limited iterations. The

specific mathematical expressions of velocity and position updates of i-th particle

are given as follows [119]:

vk+1
i ← wvki + c1r1(pi − xki ) + c2r2(pg − xki ), (3.14)

xk+1
i ← xki + vk+1

i , (3.15)

where w, c1 and c2 respectively denote the inertia weight factor and acceleration
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coefficients, which are usually set as the constants; r1 and r2 are two random numbers

in the range of [0, 1]; pi and pg denote the individual optimal position of i-th particle

and the global optimal position of the whole swarm, respectively.

When the algorithm meets a termination criterion such as maximum iteration

number or minimum adaptive threshold, the optimization process stops. Although

the PSO has the benefits of simple procedure and easy implementation, its main

problem remains being easy to fall into the local optimum. Especially in the later

stage of optimization iteration, the convergence rate becomes relatively slow, result-

ing to the low accuracy of identification results.

Here, to deal with the problem of premature convergence, the biological immune

mechanism is applied to the particle update in the standard PSO. Generally, an-

tibody diversity and immune memory are the main features of an immune system

[120]. To guarantee the diversity, the antibodies, which have the low concentration

and high affinity with the antigen, are prone to be promoted. In contrast, the an-

tibodies with high concentration and low affinity will be restrained. Besides, the

immune memory is to reserve part of the antibodies that react to the invading anti-

gen. When the same kind of antigen invades again, the corresponding memory cells

will be activated to generate a large number of antibodies. If these two features can

be incorporated into the standard PSO, the global search ability of the PSO can be

greatly improved in term of a solution to the local optimum problem. If the antibody

(particle) has a small concentration, it will be selected with high probability. Or else,

a small probability is to be chosen. This operation is able to guarantee the coverage

of the antibody (particle) and maintain the individual particles with higher fitness

in the meantime, avoiding the premature convergence. The detailed procedure of

immune particle swarm optimization is composed of the following steps:

(Step 1.) Set the PSO parameters: learning factor c1 = c2 = 1.496, inertia
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weight w = 0.7298, maximum iteration MaxT = 300 and particle number N = 50.

(Step 2.) Initialize the optimization problem and randomly generate N particles

(antibodies) xi = [α, β, γ, σ, ϕ] with the velocity vi to form the particle swarm;

i = 1, 2, · · · , N .

(Step 3.) Generate the immune memory particles (antibodies): calculate and

record the fitness values of individuals in the current swarm as the immune memory

particle, and judge whether it meets the stopping rule. If the stopping rule is

satisfied, move to Step 7. Otherwise, execute Step 4.

(Step 4.) Randomly generate N new particles by PSO algorithm and M new

antibodies by immune algorithm.

(Step 5.) Let xi and ξ(xi) denote the i-th particle and corresponding fitness

value. Now, calculate the selection probabilities p of N +M particles according to

P (xi) =

N+M∑
j=1

|ξ(xi)− ξ(xj)|

N+M∑
i=1

N+M∑
j=1

|ξ(xi)− ξ(xj)|
, (3.16)

and choose N particles with high probabilities to form new swarm.

(Step 6.) Update the particle swarm: compare the new swarm with the immune

memory particles and substitute the particles with higher fitness for the previous

ones.

(Step 7.) Check whether the maximum iteration is obtained, and stop the pro-

gram if it is satisfied. Otherwise, move to Step 2.

3.3.4 Identification results and analysis

In the following parameter identification results are included to validate the

effectiveness of the proposed model. Based on the experimental data reported in

previous section, the proposed hybrid model can be identified using IPSO. Figures
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3.15(a) and (b) give the comparison between experimental measurements and the

predicted torques from the proposed model when i ∈ [0.5, 2] A, E = 7.06 mm and

f = 3 Hz. It is noticed that the model can provide the satisfactory agreements with

the experimental data from the load cell. Besides, it can be found that the captured

torque exhibits the obvious increase with the addition of the applied current. The

ascending magnetic field will result in the expansion of the area and slope in the

hysteresis responses. Here, the proposed model can depict this phenomenon very

well.

Figures 3.15(c) and (d) show the experimental and predicted torque-angular dis-

placement / angular velocity cycles under a 2 Hz sinusoidal excitation with different

amplitudes at i = 1.5 A. It is noticeable that all the responses are in the irregular

rectangular shape with obtuse turns at the top left and bottom right corners. In

addition, an obvious phenomenon can be found that the peak moment of the de-

vice output mainly depends on the magnetic field applied and the angular velocity

has little influence on it. The results of Figures 3.15(c) and (d) confirm that the

dynamic responses of the MRP in different excitation amplitudes are perfectly mod-

elled and the current-dependence feature can also be reasonably portrayed by the

hybrid model.

The comparison between experimental data and prediction from the model with

various excitation frequencies (f ∈ [1, 3] Hz) is illustrated in Figures 3.15(e) and

(f). It is clearly seen that when the excitation frequencies are set at 1 Hz and 2

Hz, the torque-angular velocity responses exhibit the peanut shape hysteresis loops.

Moreover, the slope and enclosed area of the torque-angular displacement responses

almost keep unchanged with the increasing load frequency. The three groups of

comparisons verify the performance of the proposed model to depict these features.

To evaluate the superiority of this model over another existing model for the
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Figure 3.16 : RMSE comparison of the proposed and hyperbolic hysteresis models.

MRP, the comparison with the static hyperbolic hysteresis model has been under-

taken in the following. The hyperbolic hysteresis model can be formulated as

T = cθ̇ + kθ + αz + T0,

z = tanh
(
βθ̇ + δ sgn(θ)

)
,

(3.17)

where T is the MRP output torque, θ and θ̇ are shaft angle and rotational velocity,

respectively. Coefficients c and k are viscous and stiffness; α is the hysteresis scale

factor; internal variable z represents the hysteresis, determined by β and δ. The

numerical values of the model parameters are given in Appendix A.3.

Figure 3.16 illustrates the RMSE comparison of the proposed model and hyper-

bolic hysteresis model at f = 2 Hz with the maximum rotational angle of 2◦ or

E = 7.06 mm. It is obviously seen that when no current or at a low current (i < 1

A) applied to the device, the rotational hyperbolic hysteresis model has a smaller

RMS error than the proposed hybrid model. However, when the current is elevated

to above 1 A, the proposed model is superior to the other one in the comparison of

RMS error.
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Figure 3.17 : Convergence comparison of two types of PSO.

Eventually, to assess the ability of the IPSO in the dynamic modeling of MR pin

joint, the standard PSO is adopted for algorithm performance comparison. To make

a fair judgment for two types of PSO, all basic PSO parameters are set as the same

values. The test data are selected with the loading condition of 2 Hz frequency, 7.06

mm amplitude and 1.5 A current level. Figure 3.17 demonstrates the variation of

fitness with the increasing iteration for the two algorithms. Although the standard

PSO has the faster convergence rate than the IPSO, it results in a premature con-

vergence. Unlike the standard PSO, the IPSO has a higher identification accuracy

and can prevent the algorithm from falling into the local optimum.

3.4 Magnetorheological Elastomer Base Isolator

Based on the advantages of the magnetorheological elastomer (MRE) material, a

new adaptive base isolator was designed by [23, 121, 122] according to the laminated

structure of rubber bearing, in which the traditional rubber component is replaced

by thin MRE and steel plates so that the shear modulus of the device is able to be

varied according to external energized magnetic fields [24, 103],[123]-[126]. Figure
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Figure 3.18 : MRE base isolator schematic.

3.18 shows the corresponding design schematic of the real product, see Figure 2.4(c).

It can be seen from the figure that, the device design is achieved via the replacement

of conventional rubbers with MREs. The core part of the device is the formation of

the laminated configuration via alternative vulcanization of MRE sheets and steel

plates. There are a total of 25 layers of soft MRE sheets with 120 mm diameter and

1 mm thickness, and 26 layers of steel plates with the same diameter and thickness.

The steel sheets are used to provide the isolator with load-carrying capacity in the

vertical direction, i.e. weight for the structure.

For the base isolation system, the vibration control performance is mostly de-

pendent on the lateral stiffness of the shear mode device [23]

k =
GsA

nht
, (3.18)

where Gs is the shear modulus of elasticity of MR elastomer material, A is the cross-

section area of the MR elastomer layers, ht is the thickness of the elastomer layers

and n is the number of elastomer layers in the device. For the squeeze mode MRE,

the compressive stiffness of the device can be defined by [23]

k =
EsA

nht
, (3.19)

where Es is the compression modulus of the MRE material.
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To ensure the best vibration isolation performance, the lateral stiffness should

be carefully calculated and selected. Moreover, a solenoid, made of nonmagnetic

support and electromagnetic coil, is deployed outside of the laminated bearing com-

ponent to produce the constant magnetic field after supplied with DC current. The

maximal permissible lateral displacement of the MRE base isolator is 15 mm. Thus

without the applied current, the vertical loading support ability of the device is 50 kg.

And the axial load carrying capacity will increase with the ascending applied current

and descending lateral displacement. Because the axial load carrying capacity is the

function of shear modulus of the material and the thickness of the cross-sectional

thickness, it can be designed based on the practical application requirement.

3.4.1 Experimental setup and device characteristics

Figure 3.19 displays the experimental setup for device performance testing. A

hydraulic vibration table is used to provide the horizontal loading signals for the

device, which is fixed on the table and moves with the movement of the vibration

table. The displacement sensor, internally connected with the platform of the vi-

bration system, is used to obtain the displacement responses of the device. A force

sensor, connected with the top of the isolator, is used to measure the force responses

generated. The DC power is used to energize the magnetic coils of the device.

In the test, a large range of excitations with different loading frequencies, am-

plitudes and applied magnetic fields are selected to drive the isolator. In this work,

three types of driven frequencies of 1 Hz, 2 Hz and 4 Hz and three amplitudes of 2

mm, 4 mm and 8 mm are chosen together with four applied current levels of 0 A, 1

A, 2 A and 3 A corresponding to different magnetic fields. To assure that the MRE

is tested in the steady condition, more than three cycles of responses (shear force

and displacement) are captured for each excitation case. The sampling frequency

is set as 256 Hz. To guarantee the stable capacity of the isolator, over 10 cycles of
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(a) Force-displacement responses (b) Effective stiffness

Figure 3.20 : MRE’s testing results under x = 8 sin(2× 2πt) mm.

3.4.2 Hyperbolic hysteresis model

Unlike other complex MRE models with differential equations, we propose a

relatively simple mathematical model to capture the nonlinear and hysteretic force-

displacement responses of the device. A component-wise added method is applied

which includes a viscos dashpot component, a linear spring and a strain stiffening

element. We consider a hyperbolic sine function spring to portray the phenomenon

of stiffening hardening with the increasing current, and two linear functions to depict

the viscos-elastic feature. The proposed hysteresis model can be formulated as

F = c0ẋ+ k0x+ αz + F0, z =
1− e−2βx

2e−βx
, (3.20)

where c0 and k0 denote the viscous and stiffness parameters, respectively; α denotes

the scale coefficient to control the tendency of strain stiffening; β is the parameter

to trim the hysteresis loop; F0 denotes the force offset of the device and its value

can be obtained by calculating the mean value of shear force in one sampling cycle.

Compared with the Bouc-Wen model, the proposed hyperbolic hysteresis model

has fewer model parameters to be identified. In addition, the proposed model has

much simpler mathematical expression to demonstrate the hysteresis component
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than Bouc-Wen model, because there is no any highly nonlinear differential equation

in the expression of the proposed model. It is generally known that the numerical

integration methods such as Euler method or Runge-Kutta method are employed

to solve the differential equation in the Bouc-Wen model. However, these meth-

ods belong to the recursive algorithms, which may bring the iteration errors during

the calculation process and result in more calculation time meanwhile. As a conse-

quence, the proposed model should have higher accuracy, at least in theory, which

is beneficial to the controller development.

3.4.3 Model identification using fruit fly optimization algorithm

The following describes identification of the model parameters according to the

measured force-displacement and force-velocity responses of each loading case. Since

the proposed model is highly nonlinear in which the parameters are difficult to

search by trials, the process of the parameter identification is considered as solving

a minimization optimization problem. The key issue of the optimization problem

is the selection of the fitness function, which has a significant impact on the final

recognition results. The root mean square error (RMSE) between the experimental

data and predictions from the proposed model in a sampling cycle is employed as

the fitness for parameter identification:

obj(Ω) =

√√√√ 1

N

N∑
i=1

[
F exp
i − c0ẋi − k0xi −

α(1− e−2βxi)

2e−βxi
− F0

]2

, (3.21)

where Ω = [c0, k0, α, β] is the model parameter set to be identified; N is the total

number of the experimental data in one sampling cycle; xi, ẋi and F exp
i denote the

collected displacement, velocity and shear force of the device at ith sampling time

point, respectively. If the value of obj(Ω) approximates to zero, the corresponding

result Ω is treated as the optimal solution of the problem.

In the next step, the fruit fly optimization algorithm (FFOA) [127], based on
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interactive evolutionary computation method simulated by the food search behavior

of fruit fly swarm, is adopted to deal with above optimization problem. Due to

the superiority of smell and vision organs, the FFOA can reach the global optimum

very quickly and has a better recognition performance over other commonly used

swarm algorithms [127]. The procedure of FFOA to identify the model of MRE base

isolator can be composed of the following steps:

Step 1. Determine the optimization problem and algorithm parameters: popu-

lation size Np and maximal iteration number Ni.

Step 2. Initialize the position of fruit fly swarm (xx, yy).

Step 3. Randomly assign the orientation and scope for food search by the per-

sonal fruit fly based on smell organ, expressed as

xi = xx+ xr, yi = yy + yr, (3.22)

Step 4. Because the information on food source is unknown, the range between

ith fly coordinate and the original point (0, 0) is calculated first, denoted as di. Then

calculate the reciprocal of di as the model parameter set Si to be identified according

to the following equations

di =
√
xi + yi, Ωi =

1

di
, (3.23)

Step 5. Put the Ωi into the fitness function Obj(Ωi) to calculate the smell con-

centration value (smelli) of ith fruit fly. After obtaining all the smell concentration

values of the swarm, the fruit fly with lowest smell concentration will be picked out

and recorded in the system together with concentration value and corresponding

coordinate

smelli = Obj(Ωi), [smell, coordinate = min(smelli)], (3.24)

Step 6. Record the optimal concentration value and corresponding coordinate.

In the meantime, the overall swarm flies towards that optimal position.
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Figure 3.21 : Flow chart of FFOA to identify the hyperbolic hysteresis model.

Step 7. Repeat the Step 2 to Step 5. If the calculated optimal concentration value

is lower than the record, update the record through replacing it with the lower value.

Otherwise, the record is unchanged. If the iteration number arrives at the maximal

iteration, terminate the algorithm. Figure 3.21 illustrates the implementation of

FFOA to calculate the parameter values of hyperbolic hysteresis model for MRE

base isolator.
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Figure 3.22 : Iteration process of parameter identifiction using FFOA.

3.4.4 Identification results and analysis

The algorithm parameters are set as: Np = 50 and Ni = 300. Figure 3.22(a)

describes one example of the flight path of fruit fly swarm for the parameter k0 using

FFOA when loading condition is f = 4 Hz and E = 2 mm. The result demonstrates

that this flying path of the fruit fly swarm is relatively steady without any big

cornering. The whole swarm can directly fly towards the food source and quickly

arrive at that position. Figure 3.22(b) displays the convergence rate of the FFOA

during the process of parameter identification. It is obviously seen that after 300

evolution iterations, the convergence rate is able to be obtained at the generation

of 20 with the coordinate of (0.04401, 0.04306), and the corresponding parameter

values of k0 = 16.3818. The identification results for all loading conditions are given

in Table 3.3.

To demonstrate the effectiveness of the proposed model to describe the dynamic

behaviours of the device, several comparative studies are conducted according to

different loading conditions. The fMR vs x responses of MRE base isolator under

the 2 mm amplitude harmonic excitations and 1 A current level are portrayed in

Figure 3.23(a) with predictions from the proposed model, while Figure 3.23(b) gives
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the corresponding results of fMR vs ẋ responses. All the plots are drawn at 1 Hz, 2

Hz and 3 Hz. It seems that three loops in the fMR vs x responses overlap together,

which directly demonstrates that the effective stiffness and the maximal shear force

are independent of the exciting frequency. Unlike fMR vs x responses, the loops

in Figure 3.23(b) have the obvious increments of nonlinear behaviours with the

ascending frequency. According to the comparison results, the predictions from the

proposed model perfectly agree with the experimental data under different frequency

excitations.

Figure 3.23(c) gives a group of comparison between predicted shear force and

experimental data when loading the device with the 4 mm amplitude and 2 Hz fre-

quency excitations. It is clearly seen that the proposed model accurately illustrates

the strain stiffening phenomenon of the device with the increasing current level.

Figure 3.23(d) shows the measured and predicted force-displacement loops acquired

through loading the device with the 1 Hz frequency excitation and 3 A applied cur-

rent. In this case, the loading amplitude varies from 2 mm to 8 mm. An obvious

feature to be noticed in this comparison is Mullins effect, in which the increasing

excitation amplitude will result in the slight reduction of the effective stiffness. The

results also demonstrate the capacity of the proposed model to capture this unique

phenomenon of the device.

In order to further demonstrate the superiority of the proposed model over other

existing MRE models, it is also compared with the classical Bouc-Wen model in

terms of fitting curve, modeling error and running time. Similarly, the Bouc-Wen

model is identified using the same experimental data, objective function, optimiza-

tion algorithm (FFOA) and algorithm parameters as the proposed hyperbolic hys-

teresis model. Figure 3.23(e) gives the predicted responses from the Bouc-Wen

model in the loading condition of the 4 Hz excitation with 3 A current level. The

comparison results show that the Bouc-Wen model can provide the perfect agree-
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Table 3.3 : Identification results for all the excitation conditions.

Excitation
Parameter

i (A)

f (Hz) E (mm) 0 A 1 A 2 A 3 A

1 Hz

2 mm

k0 4.0958 8.2243 13.1275 23.2931

c0 0.3537 2.1711 3.7312 4.2844

α0 14.7934 15.2078 26.4769 29.0083

β0 0.0622 0.8185 0.8817 0.8720

4 mm

k0 2.9999 7.8168 11.8441 19.0549

c0 0.3329 1.5603 2.5673 3.0085

α0 4.4035 12.5352 29.8296 23.7437

β0 0.3036 0.5271 0.4771 0.5692

8 mm

k0 2.3289 2.7041 1.4534 15.011

c0 0.3062 1.181 1.9238 2.2723

α0 14.4578 24.4383 22.1404 21.4932

β0 0.1292 0.2838 0.3889 0.3532

2 Hz

2 mm

k0 1.6444 18.4213 19.049 27.973

c0 0.2258 1.1576 1.9599 2.2876

α0 8.8277 23.8813 13.6024 24.0823

β0 0.4337 0.2823 1.1128 0.8684

4 mm

k0 2.6855 10.6519 14.9709 16.5911

c0 0.2127 0.8358 1.3552 1.5876

α0 11.8971 2.8526 17.5807 39.0569

β0 0.2063 0.8528 0.5698 0.4494

8 mm

k0 1.6707 9.8401 7.3621 13.9311

c0 0.1956 0.6410 1.0154 1.2077

α0 8.0351 1.8535 19.772 19.0687

β0 0.2562 0.5285 0.3659 0.3742

4 Hz

2 mm

k0 2.7132 16.3818 21.0926 39.5461

c0 0.1464 0.6477 1.0629 1.2206

α0 5.5715 3.7949 31.8038 2.8777

β0 0.6492 1.2273 0.6403 1.7722

4 mm

k0 5.3159 14.9349 17.1666 27.248

c0 0.1384 0.4726 0.7372 0.8559

α0 5.0829 8.9217 6.6962 7.7418

β0 0.2159 0.3741 0.7907 0.7415

8 mm

k0 5.4541 5.1195 7.7478 12.457

c0 0.1277 0.3664 0.5604 0.6561

α0 2.8212 8.6349 21.760 30.503

β0 0.1833 0.3952 0.3472 0.3169
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(e) fMR vs x, f = 4 Hz, i = 3 A
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(f) fMR vs ẋ, f = 4 Hz, i = 3 A

Figure 3.23 : x = E sin(2πft); i ∈ [0 3] A, f ∈ [1 4] Hz, E ∈ [2 8] mm.

ments with the experimental data under the condition of small amplitudes (2 mm

and 4 mm). However, when the loading amplitude E ≥ 8 mm, the Bouc-Wen model

becomes less efficient as shown in Figure 3.23(f).
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The RMS errors between shear forces acquired from the measurements and pre-

dictions from both Bouc-Wen and proposed models based on identified parameters

are described in Figures 3.24(a) and (b). When no current or low current level is

applied to the isolator, two models have the similar RMSEs. Nevertheless, with the

increase of the current level, the proposed model shows the higher identification ac-

curacy than the Bouc-Wen model. Figures 3.24(c) and (d) show the running time of

both models for the parameter identification under different loading conditions. For

each case, the running time descends with the increasing frequency. This is mainly

because the complete hysteresis loops with different loading frequencies are made

up of different numbers of sampling points. Besides, for the same loading condition,

the Bouc-Wen model requires longer running time than the proposed model due to

the high nonlinearity in the model together with more parameters to be identified.

These results demonstrate that the proposed model is more accurate and efficient

for modeling MRE.

The parameters identified from the proposed model with different loading con-

ditions are grouped in accordance with applied current levels. The least square

(LS) method is used to calculate these coefficients and the corresponding results are

given in Appendix A.2. Finally, a generalized hyperbolic hysteresis model is built,

the expression of which is given as follows

F = c0(i)ẋ+ k0(i)x+ α(i) · 1− e−2β(i)x

2e−β(i)x
+ F0. (3.25)

To evaluate the performance of this generalized field-dependent model, compar-

ative loops are shown in Figure 3.25, in which the measurements are obtained by

loading device with the random excitation with maximal input amplitude of 4 mm

and 1 A applied current. The comparison results demonstrate that the nonlinear

behavior of the device is perfectly captured.
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Figure 3.24 : RMSE and running time of model identification using FFOA.

3.5 Summary

This chapter has presented the experimental characterization and cyclic energy

dissipation of a laboratory MRD for analysis of low-energy structures integrated

with smart dampers. This work also developed novel multi-variable hysteresis mod-

els for semi-active structural members, namely smart pin joint using MR fluid and

MRE. The curve fitting method is utilized through the combination of the hyper-

bolic function and Gaussian function for the torque-angular velocity responses of

the MRP. For the model parameter identification, the IPSO is implemented due

to its ability to deal with the premature convergence problem. Experimental data

from a rotary pin joint are used to evaluate the performance of the proposed model.
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Figure 3.25 : Under random excitation and 1 A current level.

The results show that this model is effective in modeling the hysteretic and non-

linear responses of the device with high accuracy. Furthermore, the immune PSO

algorithm can avoid the local optimal solution in the process of parameter identi-

fication. A new hysteresis model has also been proposed to characterize the MRE

base isolator, which is developed for seismic mitigation of building structures via

semi-active control. This newly designed model is constituted by a nonlinear spring

and a Voigt component connected in a parallel way with the benefits of fewer pa-

rameters and simpler expression without any differential equations, compared with

classical Bouc-Wen model. Then, based on the experimental data, the model pa-

rameters are identified using FFOA, which can be summarized as the functions of

applied current.
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Chapter 4

Frequency-based modeling of MR devices

4.1 Introduction

One way to deal with a nonlinear system is to linearize it. The standard approach

is small-signal linearization, which requires taking the derivative of each nonlinear

term and using that slope as the gain of a linear term. However, this method can

only illustrates the effects of small variations about the linearization point.

The describing function (DF) technique or the harmonic balance method is a

mathematical approach for the design and analysis of systems containing single

nonlinearity [81],[128]-[130]. The idea of the DF approach is to replace each nonlinear

element with a (quasi) linear descriptor or DF whose gain is a function of input

amplitude. As a function of the input excitation variables (stroke and frequency),

the DF can be represented in three-dimension (3D) to interpret special properties

of nonlinear systems and to allow for a design using frequency characteristics [131].

The DF methodology has been adopted to compute estimates of the amplitude and

frequency of the harmonics in a smart actuator control system [132].

The hysteresis model can be considered as representations of nonlinear back-

lash, whose DFs have been extensively investigated in [130]. In this chapter, the

DF approach was applied to represent hysteresis by a gain and a phase. The DFs

gain and phase are allowed to be amplitude E, frequency f , and current i depen-

dent. From the characterizing data, obtained in the previous chapter, a look-up

table (LUT) is formed to computationally obtain its DF showing the complicated

hysteretic rheological process with respect to the excitation field. The Curve Fitting
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− Nonlinearity G(jω)
y(t)r(t) x(t) c(t)

Figure 4.1 : Nonlinear feedback system for DF analysis.

Toolbox (cftool) in MATLAB/Simulink is utilized to determine the parameters of

the proposed DF model. The fractional-order describing function (FDF) technique

[128, 129] has also been applied to improve the fitting accuracy of these models.

4.2 Describing Function

Consider the nonlinear feedback system having one nonlinear element, a linear

system with transfer function G(s), the output c(t) and unit feedback, see Figure

4.1 [81, 128]. The reference r(t) is set to zero. Suppose that a sinusoidal signal,

x(t) = E cosωt, as input of the nonlinear element which is to be linearized. The

output of the nonlinear element is a non-sinusoidal function:

y(t) = g(E cosωt), (4.1)

where E and ω = 2πf represent the amplitude and the angular frequency, respec-

tively. However, y(t) is periodic with the same period as the input and including

higher-frequency harmonics besides the fundamental harmonic component. The pe-

riodic function y(t) can be expanded by using the Fourier series:

y(t) =
∞∑
n=1

Yn cos(nωt+ φn), (4.2)

in which Yn and φn; n ∈ [1∞) are respectively the amplitude and the phase shift of

the n-th harmonic. In the DF analysis, it is assumed that all the higher-frequency

harmonics Yn cos(nωt + φn); n ∈ [2 ∞) can be neglected as compared with the

fundamental component Y1 cos(ωt+φ1). This assumption is often valid not only be-

cause the higher harmonics have smaller amplitude compared to the first harmonic,
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but also most of the systems have low-pass properties, i.e., |G(jω)| � |G(jnω)| for

n ∈ [2 ∞).

The DF or sinusoidal DF can be defined as the complex ratio of the fundamental

component of the nonlinear element by the sinusoidal input. This is given by

DF (E,ω) =
Y1(E,ω)ejφ1(E,ω)

E
, (4.3)

including a gain |DF (E,ω)| = N(E,ω) and a phase ∠DF (E,ω) = φ1(E,ω). Gener-

ally, the DF is a function of two variables, i.e., DF (E,ω) when the nonlinear element

involves energy (storage or dissipation). Otherwise, the DF is single-valued, only

amplitude dependent. The hysteresis of MRD depends also on the magnetization

current i. Hence, the DF is amplitude, frequency and current dependent yielding

gain N(E,ω, i) and phase φ(E,ω, i). For two nonlinear elements connected in paral-

lel, the DF can be calculated by the sum of the two individual DF, that is DF1+DF2.

If two nonlinear elements are connected in series, then the DF is obtained by the

corresponding DF denoted by DF12 where DF12 6= DF1 ×DF2.

In the case that the nonlinearity is too complicated for an analytical form of (4.3),

like the hysteresis of MRD addressed in this paper, the DF can be determined by

simulation or numerical integration method. A MATLAB/Simulink computational

diagram [131] can be used to implement the DF defined by

DF (E,ω) =
1

πE

∫ 2π

0

g(Ecosωt)e−jωtdωt, (4.4)

where the current-dependent nonlinear relationship is available in a lookup table

(LUT) obtained from characterization tests.

4.3 MRD Describing Function Model

Data recorded from characterization tests (reported in Section 3.2) are used in

the computational implementation (4.4) to plot the 3D dependence of gain and phase



87

(a) i = 1.25 A (b) i = 1.5 A

(c) i = 1.75 A (d) i = 2 A

Figure 4.2 : DF gain for MRD hysteresis.

DFs. The magnitude and phase DFs for RD-8041-1 MRD are plotted in Figures 4.2

and 4.3 at different driven currents. In general, the gain ND(E, f, i) decreases as

the amplitude E and/or frequency f increases. On the other hand, the DF gain of

MRD increases with the magnetization i within its operational range. Since the DF

is a complex quantity, i.e. NDe
jφD , DF of MRD exhibits a phase shift φD as shown

in Figure 4.3.

To examine the influence of the external magnetic field on the smart device

hysteresis, a family of the gain DFs against amplitude is plotted over the range of

current i at f=2 Hz, as given in Figure 4.4. It is shown that at the damping force

at the output increases substantially with an applied current in the interval [0.25 2]
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(a) i = 1.25 A (b) i = 1.5 A

(c) i = 1.75 A (d) i = 2 A

Figure 4.3 : DF phase for MRD hysteresis.

A at a damper stroke less than 12 mm in amplitude. A rational approximation

technique yields the following expressions:

ND(E, f, i) =
n0 + n1i+ n2i

2

E +m0 +m1f
=

0.102 + 2.23i− 1.08i2

E − 0.33 + 0.04f
,

φD(E, f, i) =
q0 + q1i+ q2i

2

E + p0 + p1f
=
−0.7 + 7.6i− 2.9i2

E + 1.9− 0.08f
,

(4.5)

where i ∈ [0 2] A, f ∈ [0.1 3] Hz and displacement amplitude E ∈ [0.1 20] mm.

The goodness-of-fit for these parametric models are judged via R2 and root-mean

square of the error (RMSE) as given in Table 4.1.
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Figure 4.4 : ND with different currents.

4.4 MRP Describing Function Model

Here, the sinusoidal input is the angular displacement excited by the shake table,

and the output is the torque. From experimental data (reported in Section 3.3), the

gain and phase DFs of the MRP are shown respectively in Figures 4.5(a) and (b).

The input amplitude is normalized at 1.5◦ on the rotary shaft, corresponding to a

5.3 mm displacement of the plate motion. The gain and phase DFs of the MRP

are generally decreasing with respect to the input amplitude. For the gain DF of

hysteresis, the excitation frequency appears to have a minor effect on N(E, f, i) as

well as φ(E, f, i).

A family of the DF gain against amplitude with various magnetization currents

is shown in Figure 4.5(c), where the DF gain, and hence damping capability of

the smart pint joint, is quite uniformly dependent on the applied current in the

operating range of less than 2.5 A. The results obtained indicate that the gain for

the damping torque increases about 5 Nm/rad according to an increment of 0.5 A

of the applied current at a sinusoidal excitation of amplitude 1.5◦ (E = 1 on Figure
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(a) MRP DF gain (b) MRP DF phase

(c) NP with different currents.

Figure 4.5 : Hysteresis DFs for smart pin joint.

4.5(c)). By curve fitting, the following gain (Nm per degree) and phase (in rad)

describing functions, expressed explicitly of amplitude E, frequency f and current

i, can be obtained with goodness-of-fit statistics listed in Table 4.1:

NP (E, f, i) =
n0 + n1i+ n2i

2

E +m0 +m1f
=

0.5 + 5.01i+ 0.291i2

E − 0.028 + 0.027f
,

φP (E, f, i) =
q0 + q1i+ q2i

2

E + p0 + p1f
=

1.82 + 1.16i+ 0.08i2

E + 0.08 + 0.14f
,

(4.6)

where i ∈ [0 3] A, f ∈ [0.1 3] Hz, and angular amplitude EP ∈ [0.25◦ 4.5◦].

4.5 MRE Describing Function Model

The prototypical MRE hysteresis DFs can be plotted using experimental data

reported in Section 3.4, similarly as for the MRD and MRP. Figures 4.6(a) and
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(a) MRE DF gain (b) MRE DF phase

(c) NE with different currents (d) φE with different currents

Figure 4.6 : Hysteresis DFs for MRE base isolator.

(b) present respectively the DFs gain and phase of the MRE hysteresis, where the

amplitude is normalized at 8 mm per unit and the frequency is in Hz, and the

magnetization current i = 2 A, corresponding to a magnetic flux density of around

0.28 T. The gain DF exhibiting a typical hyperbolic relation: the lower the amplitude

the higher the gain. Within a reasonable range of magnetic field (0.2 T to 0.5

T), a high structural stiffness results from a significant increase of the MRE shear

modulus. Consequently, the gain and phase DFs smoothly decrease with respect to

the excitation amplitude. To examine the influence of the external magnetic field

on the MRE hysteresis, the DFs gain and phase are plotted over a range of current

i, as shown in Figures 4.6(c) and (d). The results shown are rather consistent with
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Table 4.1 : Goodness-of-fit statistics.

DFs and FDF phase R2 RMSE

ND(E, f, i) 0.9503 0.1193

φD(E, f, i) 0.9083 0.8725

NP (E, f, i) 0.9981 0.2872

φP (E, f, i) 0.9245 0.3945

NE(E, f, i) 0.9512 0.2156

φE(E, f, i) 0.9039 0.2873

φD(α,E, f, i); α = 0.91 0.9533 0.1172

φP (α,E, f, i); α = 0.95 0.9746 0.0767

φE(α,E, f, i); α = 0.98 0.9747 0.0845

those of MRD and MRP hysteresis. The following approximations of NE(E, f, i) and

φE(E, f, i) are obtained as the gain and phase DFs for the smart device hysteresis

by curve-fitting:

NE(E, f, i) =
n0 + n1i+ n2i

2

E +m0 +m1f
=

0.25− 0.16i+ 0.058i2

E + 0.06− 0.02f
,

φE(E, f, i) =
q0 + q1i+ q2i

2

E + p0 + p1f
=

1.2 + 0.06i− 0.013i2

E − 0.086 + 0.01f
,

(4.7)

where i ∈ [0 3] A, f ∈ [0.1 5] Hz, and displacement amplitude EE ∈ [0.5 12] mm.

The level of accuracy is determined by R2 and RMSE as given in Table 4.1.

4.6 Fractional-Order DF and Comparison

From the fitness level given in Table 4.1, the DF gain of MR devices appear

to achieve a better approximation for their characterized nonlinearity than the DF

phase. Since the DF approach is an approximate technique, fractional calculus can

be applied here as a mathematical tool to improve the accuracy of the approximated
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frequency response of the nonlinearity using DFs. According to [128, 129], the

integration in definition (4.4) can be generalized to a non-integer order α by

DF (α,E, f, i) =
[
DF (E, f, i)

]α
, 0 < α ≤ 1. (4.8)

By applying a one-dimensional (1D) search for the DF phase of the MR devices,

we obtain the fractional order α for φD(E, f, i), φP (E, f, i) and φE(E, f, i) with

improved goodness-fit statistics, in terms of R2 and RMSE, as summarized in Table

4.1.

The proposed DFs are obtained based on our static models for MR device hys-

teresis. To show their validity, the DFs obtained are compared with the well-known

hysteresis models. These include the Bouc-Wen and LuGre models, whose param-

eters are identified by using a genetic algorithm proposed in [67], and the static

model obtained in [27]. Figure 4.7 shows the proposed gain DF (4.6) for MRP at

several values of magnetization current in comparison, carried out considering the

frequency responses, with those mentioned dynamic and static models for hysteresis.

It can be seen that these curves are not much different, but the gain DF from the

proposed model and the static model is slightly higher than that from Bouc-Wen

and LuGre models since internal dynamics in the MR devices are not considered in

our approach.

4.7 Summary

This chapter has presented the frequency based hysteresis modeling of smart

devices, including the damper, pin joint and elastomer base isolator. Characteriza-

tion data obtained display the current-dependent hysteretic relationships between

the damping torque (force) and the rotary (linear) displacement. The describing

function approach is applied to interpret this intrinsic current-dependent hysteretic

dynamics of these devices by a gain and a phase. Approximate closed forms of
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Figure 4.7 : Comparison of gain DFs for MRP hysteresis.

the DF gain and DF phase as functions of amplitude, frequency and current are

then proposed using curve-fitting technique, to facilitate the semi-active structural

system analysis in the frequency domain.
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Chapter 5

Second-order Sliding Mode Control of Smart

Structures Using MR Devices

5.1 Introduction

Magnetorheological (MR) material and corresponding devices have attracted

widespread attention for their promising application in damping of structural vibra-

tions and controlling the embodied energy level. The energy-dissipative MR device

considered herein is a highly adaptive base isolator based on MR elastomer (MRE)

material. Using the current-dependent model, developed in Chapter 3, a semi-

active controller based on second-order sliding mode control (2SMC or SOSMC) is

designed and utilized to provide a real-time feedback control of the device for struc-

tural vibration mitigation. The sliding mode methodology is adopted here to deal

with intrinsic nonlinearity in the device’s dynamic relation between I/O variables

and achieve strong robustness of the control system against any dynamic loading

sources and other uncertainties. A three-storey building model equipped with two

field-controlled MR devices subjected to four benchmark earthquakes: EI-Centro,

Kobe, Hachinohe and Northridge, is then used to validate the performance of the

controller designed according to the proposed model. The results show that both

inter-storey shift and acceleration are minimized therefore verifying the capability

of the proposed method in vibration control for civil structures.
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5.2 System Model

The n-degree-of-freedom (dof) smart structure integrated with energy-dissipative

MREs can be portrayed as an n-storey building structure. The structural sketch of

the building structure of mass M , lateral stiffness K, and viscous damping C config-

ured with two identified adaptively tuned MREs is shown in Figure 5.1. The current-

dependent MRE devices are rigidly installed underneath the base floor. Thus, the

augmented model is an (n + 1)-dof system. We assume that the structural motion

is sufficiently moderate that nonlinear effects can be neglected, the acceleration dis-

turbance and its time derivative are bounded ∀t ≥ 0, and x, ẋ, ẍ are available for

on-line measurement.

Now, the floor motion equation can be written as

mbr̈b + cb(ṙb − ẋg)− c1(ṙ1 − ṙb) + kb(rb − xg)− k1(r1 − yb) = fb, (5.1)

where rb is the absolute displacement of the base floor with respect to an inertial

frame, xg denotes the displacement of the ground that is induced by seismic-like

ground acceleration ẍg. Let xk = rk − xg, k = b, 1, . . . , n describe the relative

displacements between the ground and each mass, and contain the dof of the system.

Thus, the motion equations of the structure can be written as

Sb : mbẍb + (cb + c1)ẋb − c1ẋ1 + (kb + k1)xb − k1x1 = fb −mbẍg

S1 : m1ẍ1 − c1ẋb + (c1 + c2)ẋ1 − c2ẋ2 − k1xb + (k1 + k2)x1 − k2x2 = −m1ẍg

Sk : mkẍk − ckẋk−1 + (ck + ck+1)ẋk − ck+1ẋk+1 − kkxk−1

+ (kk + kk+1)xk − kk+1xk+1 = −mkẍg

Sn : mnẍn − cnẋn−1 + cnẋn − knxn−1 + knxn = −mnẍg.

(5.2)

The motion equations of the system can be rewritten in the following matrix form

Mẍ+ Cẋ+Kx = ΓfΣ −Mẍg, x ∈ Rn+1, (5.3)
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Figure 5.1 : Smart building integrated with MRE base isolators.

where M,C and K denote the mass, damping and stiffness matrices of the system

structure, respectively, and can be given by

M =



mb 0 0 · · · 0

0 m1 0 · · · 0

0 0 m2 · · · 0

...
...

...
. . .

...

0 0 0 · · · mn


= MT > 0,
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C =



cb + c1 −c1 0 · · · · · · · · · 0

−c1 c1 + c2 −c2 0 · · · · · · 0

0 −c2 c2 + c3 −c3
. . . · · · 0

... 0 −c3
. . . . . . . . .

...

...
...

. . . . . . . . . −cn−1 0

...
...

...
. . . −cn−1 cn−1 + cn −cn

0 0 0 · · · 0 −cn cn



= CT ≥ 0,

and

K =



kb + k1 −k1 0 · · · · · · · · · 0

−k1 k1 + k2 −k2 0 · · · · · · 0

0 −k2 k2 + k3 −k3
. . . · · · 0

... 0 −k3
. . . . . . . . .

...

...
...

. . . . . . . . . −kn−1 0

...
...

...
. . . −kn−1 kn−1 + kn −kn

0 0 0 · · · 0 −kn kn



= KT > 0.

fΣ ∈ Rn denotes the total controllable MRE damping force vector. Γ ∈ Rn×n is a

factor matrix taking into account the location and number of MRE isolators in the

structure. The MRE base isolator hyperbolic hysteresis model is

fe = ceẋb + kexb + α sinh(βexb), (5.4)

where ce = ce0 + ce1i, ke = ke0 + ke1i, αe = αe0 + αe1i and βe = βe0 + βe1i [124].

Since the mass matrix is non-singular, (5.3) can be described by

q̇ = Aq + b(q, i) +D, (5.5)

where q = [x ẋ]T is a state vector, A represents the 2(n + 1) × 2(n + 1) system

matrix depending on the damping and stiffness of the structure, b(q, i) is the non-

affine function, and D is the 2(n + 1) × 1 disturbance matrix composed of model
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uncertainties and external excitation. The first element of stiffness and damping

matrices are kb + k1 + 2ke0 and cb + c1 + 2ce0, respectively, and all remaining entries

are same as that in the matrices K and C.

5.3 SOSMC Design

The standard sliding surface which is the intersection of the hyperplanes defined

in the plant states can be written as

σ = ρxb + ẋb, (5.6)

where ρ > 0 is a design constant to be chosen to guarantee the closed-loop stability

of the system (5.5). The first and second derivative of (5.6) along the trajectories

of (5.5) give

σ̇(t) = ρẋb + ẍb, σ̈(t) = ρẍb +
...
x b.

Now, the base floor equation of the system can be rewritten as

mbẍb + (cb + c1)ẋb − c1ẋ1 + (kb + k1)xb − k1x1 = −2(ce0 + ce1i)ẋb

− 2(ke0 + ke1i)xb − 2(αe0 + αe1i) sinh
(
(βe0 + βe1i)xb

)
−mbẍg.

(5.7)

In the following, the control signal is defined as the time rate of applied current

variation to the base isolated building model. We have

mb
...
x b = − (cb + c1 + 2ce0)ẍb + c1ẍ1 − (kb + k1 + 2ke0)ẋb + k1ẋ1

− 2(ce1ẍb + ke1ẋb)i− 2(αe0 + αe1i) cosh
(
βexb

)
βeẋb

− 2
(
ce1ẋb + ke1xb + αe1 sinh

(
(βe0 + βe1i)xb

)
+ αe cosh

(
(βe0 + βe1i)xb

)
βe1xb

)di
dt
−mbẍg.

(5.8)

Hence, the second-order sliding variable is achieved as

σ̈ = Φ(t, xb, i) + Ψ(t, xb, i)
di

dt
, (5.9)
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where

Φ(t, xb, i) = −m−1
b

(
(cb + c1 + 2ce0)ẍb − c1ẍ1 + (kb + k1 + 2ke0)ẋb−

k1ẋ1 + 2(ce1ẍb + ke1ẋb)i+ 2(αe0 + αe1i) cosh
(
βexb

)
βeẋb+

λ
(
(cb + c1 + 2ce0)ẋb − c1ẋ1 + (kb + k1 + 2ke0)xb − k1x1+

2(ce1ẋb + ke1ẋb)i+ 2αe sinh(βexb)
))
− ...
x g − λẍg,

(5.10)

and

Ψ(t, xb, i) = − 2m−1
b

(
(αe0 + αe1i) cosh

(
βexb

)
βe1xb + ce1ẋb+

ke1xb + αe1 sinh
(
βexb

))
.

(5.11)

Denoting u = di
dt

as the rate of change of MRE current and ∇ = ∂
∂u

, the following

standard expression will be acquired:

σ̈ = Φ(t, xb, i) + Ψ(t, xb, i)u,

Φ(t, xb, i) = σ̈|u=0, Ψ(t, xb, i) = ∇σ̈ 6= 0,

(5.12)

where Φ and Ψ meet the following global boundary condition with the concrete

values of τ , ϑm and ϑM :

−τ ≤ Φ(t, xb, i) ≤ τ, ∀t > 0,

0 < ϑm ≤ Ψ(t, xb, i) ≤ ϑM.

(5.13)

Equations (5.12) and (5.13) provide the following differential inclusion (DI) trajec-

tories to zero for the finite-time convergence:

σ̈ ∈ [−τ, τ ] + [ϑm, ϑM ]u. (5.14)

Then, there exists a 2SMC, i.e.

u =
di

dt
= φ(σ, σ̇), (5.15)

to steer the sliding function σ and its time derivative σ̇ to 0 asymptotically. Since the

DI (5.14), understood in the Filipov sense, insensitive to the original system (5.5),

such the controller is obviously robust with respect to any perturbations preserving.
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The actual current command to the MRE base isolator is bounded within the

range of 0 ≤ i ≤ iM. According to [22, 59], the control current κ(t) can be achieved

by integrating the feedback control signal u(t). Here, a quasi-continuous controller

is adopted, given as follows:

u(t) =


min[ε, max(−ε,−ξ( σ̇

|σ|
1
2

+ µ sgn(s)))], σ 6= 0, κ(t) ≤ iM,

−ε sgn(σ̇), σ = 0, κ(t) ≤ iM,

0, κ(t) > iM.

(5.16)

where ε, ξ and µ are positive constants and satisfy

ρϑm − τ >
µ2

2
, ξµ > ρ.

The control law (5.16) allows to increase the value of ξ to get closer to the parabola

ṡ+ |s| 12µ sgn(s) = 0 without increasing the control magnitude.

Here, due to power constraint and magnetic saturation, the force range of the

smart devices is bounded by the maximum force at 2 A and the residual force at 0

A:

i =

∫
udt. (5.17)

Thereby, the integral state may be inconsistent with the smart device input. We

here use a back-information antiwindup technique, in which the difference between

the saturated and unsaturated output (control signal) is used to generate a feedback

signal to act on the integrator input.

5.4 Simulation Results and Discussion

As an application example, a benchmark three-storey building model of mass M ,

lateral stiffness K, and viscous damping C configured with two identical MRE base

isolators is considered. The current-dependent MRE devices are rigidly installed
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underneath the base floor. The three-storey scaled building model parameters are

M =


98.3 0 0

0 98.3 0

0 0 98.3

 kg, C =


175 −50 0

−50 100 −50

0 −50 50

Ns/m,

K =


12 −6.84 0

−6.84 13.8 −6.84

0 −6.84 6.84

× 105N/m.

(5.18)

Numerical values of the model parameters as functions of the applied current i are

given in the following:

ce = ce0 + ce1i = 339.6 + 576.7i,

ke = ke0 + ke1i = 3343.1 + 5816.1i,

αe = αe0 + αe1i = 8.11 + 4.981i,

βe = βe0 + βe1i = 0.3463 + 0.1322i.

To verify the effectiveness of the designed second order sliding mode controller,

four benchmark earthquakes are also adopted to excite the smart structure in sim-

ulations, i.e., EI-Centro 1940, Hachinohe 1968, Northridge 1994 and Kobe 1995.

Among four earthquake excitations, the former two are representatives of far-field

earthquakes with medium ground movements while the latter two are near-field,

more grievous seismic events. To make sure the fundamental frequency of smart

structure with the main seismic frequency spectrum, the magnitude of four earth-

quake records are scaled down by 0.5. Accordingly, the passive structure responses

would be greatly reinforcement so that the performance of the proposed method

would be better verified.

Figure 5.2 illustrates time-history control signal changes of MRE base isolators

during the seismic excitations. It is noticeable that all the applied currents contin-

uously vary between 0 A and 2.5 A, which meets the maximum current limitation



103

(a) El-Centro (b) Hachinohe

(c) Northridge (d) Kobe

Figure 5.2 : Applied current signals under four earthquake excitations.

requirement (i = 3 A). It is mainly because the coils in the isolator will generate a

massive source of heat when the isolator is supplied with varied currents, leading to

unstable performance of the device.

Floor acceleration is one of the most important responses to represent the effec-

tiveness of earthquake proof of the proposed smart isolation system. Generally, the

floor acceleration ascends with the increasing of building level due to the first-mode

of the structure subjected to the seismic excitations. As a result, the floor acceler-

ation continuously ascends with the increase of structure level, which means that

the maximum acceleration always happens at the top level of the structure. Hence,

the acceleration change when the acceleration of the third floor arrives at its peak
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in terms of two indices at all floors. These comparisons sufficiently prove that the

MRE base isolator together with semi-active control based on proposed model has

a promising application prospect in protection and vibration mitigation of building

structure.

5.5 Summary

A second-order sliding mode controller, based on the field-dependent model, is

proposed to implement semi-active control of MRE isolator. To evaluate its effec-

tiveness, a numerical study was conducted using a three-storey benchmark build-

ing model as well as four commonly used seismic excitations. The analysis results

showed that the controlled smart structure using the proposed method outperforms

the passive structure in terms of floor acceleration and inter-storey drift.
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Chapter 6

Frequency-Shaped Structural Control

6.1 Introduction

The dynamic behavior of the structures are characterized by their frequency

response functions (FRFs). External dynamic loadings such as seismic events, strong

winds and vibration shocks can also be represented in the frequency domain by

their power spectral density functions. Thus, frequency domain control approaches

allow the designer to deal with these representations of the structural model and

excitation, and roll off the control action at high frequencies as well as to specify

the disturbance attenuation over the desired frequency range during control design.

While structural FRFs are important for structural control and health monitor-

ing [102], they have a limitation due to inherent nonlinearity of the smart devices

embedded in the structure. Therefore, the describing function (DF) model (devel-

oped in Chapter 4) is utilized and frequency shaped sliding mode control (FSSMC)

is developed to achieve structural resilience and sustainability against nonlineari-

ties, modeling uncertainties and disturbances from dynamic loadings. Simulations

are reported for a three-story building model integrated with two identical current-

dependent magnetorheological (MR) dampers (MRDs) subject to one dimensional

quake-induced vibration to investigate lateral dynamic responses as produced by

earthquakes or strong winds.

In the second part of this chapter, design of a frequency-shaped second-order

sliding mode controller (FS2SMC) is demonstrated. The second-order sliding mode

control method has been adopted here to directly adjust the structural frequency
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response and improve robustness performance. The sliding surface is obtained by

exploiting a second-order low-pass filter (LPF) to shape the frequency characteristics

of the equivalent dynamics. The proposed technique is numerically verified in a half-

car model (HCM) with inbuilt active hydraulically interconnected suspension (HIS)

system for reducing the roll angle while adjusting the spectrum to prevent natural

modes of the structure under external excitations.

6.2 Modeling in the Frequency Domain

Following describes the modeling of current-driven MR device integrated smart

structures in the frequency domain. At first, we diagonalized the system matrices

via a modal decomposition to obtain a set of n second-order systems in modal

coordinates. Then, current-dependent DFs of MR devices are adopted to configure

FRFs of displacement.

6.2.1 Modal decomposition

Coupled motion equations

Consider an n degree-of-freedom (dof) structure embedded with n intelligent

energy-dissipation devices. The smart structure integrated with auxiliary robust

damping devices can be depicted typically in a building structure as shown in Figure

6.1. The n dof structure has n natural frequencies and n modal vectors. The

equations of motion of the system can always be arranged as a set of n coupled

second-order ordinary differential equations (ODEs) in the shear mode by

Mẍ(t) + Cẋ(t) +Kx(t) = ΓfMR(x, i) + fd(t), (6.1)

with zero initial condition x(t0) = 0. Here, x(t) = [x1, x2, . . . , xn]T is an n vector

with xk(t) being the structure displacement of a designated level unit; subscript

(k) refer to the designated floor/unit. ẋ and ẍ are respectively the velocity and
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acceleration array both with n elements. M,C and K are respectively, the mass,

damping and stiffness matrices of dimension n× n and can be given by

M = diag (mk) = MT > 0; k = 1, 2, . . . , n,

C =



c1 + c2 −c2 0 · · · · · · 0

−c2 c2 + c3 −c3 0 · · · 0

0 −c3 c3 + c4
. . . . . .

...

... 0
. . . . . . . . . 0

...
...

. . . −cn−1 cn−1 + cn −cn

0 0 0 0 −cn cn


= CT ≥ 0,

and

K =



k1 + k2 −k2 0 · · · · · · 0

−k2 k2 + k3 −k3 0 · · · 0

0 −k3 k3 + k4
. . . . . .

...

... 0
. . . . . . . . . 0

...
...

. . . −kn−1 kn−1 + kn −kn

0 0 0 0 −kn kn


= KT > 0,

where coefficients mk, ck and kk are the k-th unit lumped mass, lateral damping

and stiffness, respectively. Factor matrix

Γ =



ϑγ1 0 0 · · · 0

0 ϑγ2 0 · · · 0

0 0 ϑγ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · ϑγn


∈ Rn×n,

represents the location and number of the auxiliary intelligent devices in the struc-

ture. ϑ denotes the number of smart devices mounted on each unit and γk = 1

(or 0) if the device is (or is not) attached at the designated unit; k = 1, 2, . . . , n.
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Figure 6.1 : Schematic diagram of the smart structure integrated with auxiliary robust damping

devices.

fMR(x, i) ∈ Rn is the damping force vector due to the nonlinear MR device. fd(t) is

the disturbance array with n elements from external dynamic loadings.

Suppose the model (6.1) satisfies the following assumptions:

(A7.1.) the structure’s M is invertible and M−1K has a set of n linearly inde-

pendent eigenvectors υ1, υ2, . . . , υn, i.e., all the n eigenvalues λk(M
−1K), 1 ≤ k ≤ n,

are distinct and positive.

(A7.2.) x ∈ Rn, ẋ ∈ Rn and ẍ ∈ Rn are available for on-line measurement and

(A7.3.) the unknown dynamic disturbance fd(t) and its time-derivative are
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bounded for t ∈ [t0 ∞),

Since the mass matrix is a nonsingular matrix, we multiply (6.1) from the left

by M inverse results in

ẍ+M−1Cẋ+M−1Kx = M−1ΓfMR +M−1fd. (6.2)

The matrix M−1K can be diagonalized as

k1+k2
m1

−k2
m1

0 · · · · · · · · · 0

−k2
m2

k2+k3
m2

−k3
m2

0 · · · · · · 0

0 −k3
m3

k3+k4
m3

−k4
m3

. . . · · · 0

... 0 −k4
m4

. . . . . . . . .
...

...
...

. . . . . . . . . −kn−1

mn−2
0

...
...

...
. . . −kn−1

mn−1

kn−1+kn
mn−1

−kn
mn−1

0 0 0 · · · 0 −kn
mn

kn
mn



= ΦΛΦ−1, (6.3)

where the orthogonal matrix Φ ∈ Rn×n is the column-wise concatenation of the

mode-shape or eigenvectors and the diagonal matrix Λ ∈ Rn×n is listing the n

squared frequencies. The modal transformation matrix Φ and diagonal frequency

matrix Λ are given by

Φ =


· · ·

υ1 υ2 · · · υn

· · ·

 =



υ11 υ12 · · · υ1n

υ21 υ22 · · · υ2n

...
...

. . .
...

υn1 υn2 · · · υnn


,

Λ =



λ1 0 0 · · · 0

0 λ2 0 · · · 0

0 0 λ3 · · · 0

...
...

...
. . .

...

0 0 0 · · · λn


=



ω2
1 0 0 · · · 0

0 ω2
2 0 · · · 0

0 0 ω2
3 · · · 0

...
...

...
. . .

...

0 0 0 · · · ω2
n


,

where ωk is the umdamped (C = 0n×n) natural frequency of the k-th mode.
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Modal coordinates & decoupled second-order ODEs

Since the set of eigenvectors occupies the n-dimensional space of x(t), therefor

x(t) can be expressed as a weighted linear combination of the natural mode vectors:



x1

x2

...

xn


=



υ11 υ12 · · · υ1n

υ21 υ22 · · · υ2n

...
...

. . .
...

υn1 υn2 · · · υnn





q1

q2

...

qn


,

⇒ x =
n∑
k=1

υkqk = Φq,

∴ q(t) = Φ−1x(t),

(6.4)

where q(t) = [q1, q2, . . . , qn]T is an n vector of the modal coordinate.

Substituting (6.4) into (6.2) yields

Φq̈ +M−1CΦq̇ + ΦΛΦ−1Φq = M−1ΓfMR +M−1fd

⇒ q̈ + Φ−1M−1CΦq̇ + Λq = ΩfMR + Φ−1M−1fd,

(6.5)

where Φ−1M−1ΓfMR = ΩfMR is denoted as the modal control u.

The damping matrix Φ−1M−1CΦ can be assembled by a matrix that is propor-

tional to mass and stiffness,

C = αM + βK,

known as Rayleigh or proportional damping [31, 33]. Real scalars α and β are related

to damping ratios and frequencies by

ζk =
α

2ωk
+
βωk

2
,

where ζk is the damping ratio of the k-th mode of vibration. The principal diagonals

entry of the damping matrix are

Φ−1M−1CΦ(kk) = 2ζkωk
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and the modal coupling kr-th elements are assumed as

Φ−1M−1CΦ(kr) = µkr, r 6= k, 1 ≤ (k, r) ≤ n.

Applying modal transformation, a set of n second-order motion equations de-

coupled from (6.1) of 2n-th order can be obtained for each mode k:

q̈k + 2ζkωkq̇k +
n∑

r=1,r 6=k

µkrq̇r + ω2
kqk = uk + dk, (6.6)

where dk represents the k-th elements of the disturbance force vector:

dk = Φ−1M−1fd = Φ−1M−1ΦΦ−1fd =
[

diag (1/mk)
]
Φ−1fd. (6.7)

6.2.2 Frequency response function

In this section, the hysteretic MR device is replaced by its obtained DF: magni-

tude N(E, f, i) and phase φ(E, f, i). We encapsulate the DF model into the system

dynamics to obtain responses of MR device-based smart structure in the frequency

domain.

Describing function matrix

The MR device hysteresis DFs gain and phase construct a matrix DFMR ∈ Cn×n:

DFMR =



ϑγ1N1e
jφ1 ε12 ε13 · · · ε1n

ε21 ϑγ2N2e
jφ2 ε23 · · · ε2n

ε31 ε32 ϑγ3N3e
jφ3 · · · ε3n

...
...

...
. . .

...

εn1 εn2 εn3 · · · ϑγnNne
jφn


,

whose principal diagonal terms

DFMR(kk) = ϑγkNke
jφk

referred to each dof of the structure and off-diagonal components

DFMR(kr) = εkr ≥ 0, r 6= k, 1 ≤ (k, r) ≤ n,
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represent inter-storey, between the k-th and (k−1)-th storeys, damping from smart

devices mounted at other storeys. Notably,

εkr ∈ [0 ϑγkNke
jφk ]

are generally much less than or equal to the k-th diagonal term. Since the damping

capability is always predominant at the level where these devices are installed, the

DFMR can be considered as diagonally dominant listing only terms ϑγkNke
jφk and

some of the coupling effect from the residual modes due to modal decomposition

errors can be reduced implicitly by encompassing it as a part of disturbance dk

(6.7).

Transfer function matrix

When the applied excitation harmonic with an angular frequency ω, the con-

trolled MR devices can be modelled in the frequency domain as DFMRQ(jω) ∈ Cn

ΓfMR(q, i)→



ϑγ1N1e
jφ1 ε12 ε13 · · · ε1n

ε21 ϑγ2N2e
jφ2 ε23 · · · ε2n

ε31 ε32 ϑγ3N3e
jφ3 · · · ε3n

...
...

...
. . .

...

εn1 εn2 εn3 · · · ϑγnNne
jφn





q1(jω)

q2(jω)

q3(jω)

...

qn(jω)


.

(6.8)

Thus, [
− ω2 + 2jωζkωk + ω2

k

]
qk(jω) +

n∑
r=1,r 6=k

µkrjωqr(jω) = −

[ϑγkNke
jφk

mk

qk(jω) +
n∑

r=1,r 6=k

εkr
mk

qr(jω)
]

+ ΥFd(jω),

(6.9)

where Φ−1M−1 is denoted by Υ.
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Equation (6.9) can be written as[
− ω2 + 2jωζkωk + ω2

k +
ϑγkNke

jφk

mk

]
Φ−1xk(jω)

+
[ n∑
r=1,r 6=k

µkrjω +
n∑

r=1,r 6=k

εkr
mk

]
Φ−1xr(jω) = ΥFd(jω).

(6.10)

The frequency response function (FRF) matrix of displacement Fd(jω)→ X(jω)

can be derived from the relation

X(jω) = H(jω)Fd(jω),

where H(jω) is the FRF matrix of displacement.

Taking the assumption of Rayleigh damping [31, 33] yields:[
diag

(
ω2
k − ω2 + 2jωζkωk +

ϑγkNke
jφk

mk

)]
Φ−1X(jω) = ΥFd(jω). (6.11)

Hence,

H(jω) = Φ
[

diag
(
ω2
k − ω2 + 2jωζkωk +

ϑγkNke
jφk

mk

)]−1

Υ

⇒ H(jω) =

Φ



1

ω2
1−ω2+2jζ1ωω1+

ϑγ1N1e
jφ1

m1

0 · · · 0

0 1

ω2
2−ω2+2jζ2ωω2+

ϑγ2N2e
jφ2

m2

. . .
...

... 0
. . . 0

0 · · · 0 1

ω2
n−ω2+2jζnωωn+ϑγnNnejφn

mn


Υ.

(6.12)

Algebraic manipulation of (6.12) gives

H(jω) =
n∑
k=1

ΦkΥ
T
k

ω2
k − ω2 + 2jωζkωk + ϑγkNke

jφk

mk

. (6.13)

Similarly as of nonlinearities, to configure FRFs for velocity and acceleration as

in (6.13), velocity and acceleration need to be considered as input to the nonlinearity

to obtain DFs of MR devices [103].
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6.3 FSSMC of MR Smart Structure Systems

6.3.1 FSSMC design

To illustrate the control design methodology for the set of n second-order motion

equations (6.6) decoupled from (6.1) of 2n-th order, the following two-dimensional,

single-input nonlinear system is now considered:

ż = h(z) + g(z)u, g(z) ≥ g0 > 0, (6.14)

where h(·) and g(·), ∀z ∈ R2, are some smooth nonlinear functions, g0 is a lower

bound on the function g, and u ∈ R is the control input. Our main goal is to

design a robustly stabilizing control law. In other words, the control u = U(z1, z2)

is supposed to constrains the trajectories to the manifold (or surface) σ ≡ 0 in finite

time, i.e. limt→∞ z1, z2 = 0.

The standard (σ̇ is discontinuous and σ is continuous functions of z) sliding

variable can be expressed by a first-order form

σ = Sz = ρz1 + z2, S = [ρ 1], t ≥ 0, (6.15)

where ρ satisfies the Hurwitz condition, i.e. ρ > 0. Suppose that sliding motion is

generated in the system at ts > 0. Hence, on this manifold σ ≡ 0, the governing

motion can be written as

ż1 + ρz1 = 0, ∀t ≥ ts > 0. (6.16)

A solution of (6.16) and its derivative are

z1(t) = z1(ts)e
−ρ(t−ts),

⇒ ż1(t) = z2(t) = −ρz1(ts)e
−ρ(t−ts),

in which the rate of convergence can be controlled by choice of a finite positive

constant ρ, e.g., if the k-th stiffness and damping of an n-dof structure are known,

and denoted respectively by kk and ck, then ρk = kk/ck; k ∈ [1, n].
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The dynamic sliding variable is designed with a linear operator L(·) which has

the interpretation of a low-pass filter (LPF) [106]:

σ = L(s)z = L(s)z1 + z2, L(s) = [L(s) 1], t ≥ 0, (6.17)

where L(s) = b1s+b0
a1s+a0

and s is the Laplace operator. The coefficients of the bilinear

transfer function are real constants, where the coefficients of the denominator a0

and a1 are positive. This is

σ =
b1s+ b0

a1s+ a0

z1 + z2. (6.18)

Accordingly, the algebraic manipulation of (6.18) yields

a1σ̇ + a0σ = (b1s+ b0)z1 + a1ż2 + a0z2

⇒σ̇ =
(b1s+ b0)z1

a1

+ ż2 +
a0

a1

(z2 − σ)

⇒σ̇ =
(b1s+ b0)z1

a1

+ h(z) + g(z)u− a0

a1

( b1s+ b0

a1s+ a0

)
z1

⇒σ̇ =
s(b1s+ b0)z1

a1s+ a0

+ h(z) + g(z)u.

Therefore,

σ̇ = L(s)z = sL(s)z1 + h(z) + g(z)u, ∀z ∈ R2, t ≥ 0. (6.19)

Suppose that tR is the attaining time from σ(0) 6= 0 to σ = 0:

σ = L(s)z1 + z2 = 0, t ≥ tR. (6.20)

Now, the best approximation û of the continuous control law that achieves σ̇ = 0

can be obtained as

û = −sL(s)z1 + ĥ(z)

ĝ(z)
, (6.21)

where ĝ(z) and ĥ(z) are the estimations of the g(z) and h(z), respectively.

A discontinuous term now can be added to pull the system to the surface as

equivalent control uE = û is valid only on the sliding surface. Adding a reaching
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control input uR to (6.21) guarantees that the plant dynamics reach the sliding

surface in finite time regardless the presence of uncertainty or nonlinearity.

Substituting u = uE +uR = −ĝ(z)−1
[
sL(s)z1 + ĥ(z)

]
+uR into (6.19) results in

σ̇ = h(z) + sL(s)z1 + g(z)
[
− ĥ(z) + sL(s)z1

ĝ(z)
+ uR

]
= h(z)− g(z)

ĝ(z)
ĥ(z) + sL(s)z1

[
1− g(x)

ĝ(z)

]
+ g(x)uR

= ξ(z) + g(x)uR,

(6.22)

where ξ(z) denotes the perturbation term by

ξ(z) := h(z)− g(z)

ĝ(z)
ĥ(z) + sL(s)z1

[
1− g(x)

ĝ(z)

]
.

Assume further that ξ(z) satisfies the following bound∣∣∣ξ(z)

g(z)

∣∣∣ ≤ %(z) (6.23)

for some known positive definite function %(z). Taking

V =
1

2
σ2, (6.24)

a Lyapunov function candidate for σ̇ = sL(s)z1 + h(z) + g(z)u, we have that

V̇ = σσ̇ = σ
[
ξ(z) + g(z)uR

]
≤ g(z)|σ|%(z) + g(z)σuR. (6.25)

To achieve the control objective, the robust signal uR is selected as

uR = −β(z) sgn(σ), (6.26)

with

β(z) ≥ %(z) + η, η > 0, (6.27)

so that the term g(z)σuR is negative and dominates over the residual (positive) term

g(z)|σ|%(z) when σ 6= 0, and the net results to force |σ| to reach zero. Finally, the

control structure is obtained as

u = −sL(s)z1 + ĥ(z)

ĝ(z)
− β(z) sgn(σ). (6.28)
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Substituting (6.26) into (6.25) results in

V̇ ≤ g(z)|σ|%(z)− g(z)β(z)σ sgn(σ)

≤ g(z)|σ|%(z)− g(z)(%(z) + η)|σ|

≤ −g(x)η|σ ≤ −g0η|σ|,

(6.29)

where g0 is defined in (6.14). Now define the function

χ =
√

2V = |σ|, (6.30)

which satisfies the differential inequality

χ̇ ≤ −g0η. (6.31)

By integrating the differential inequality over the time interval 0 ≤ τ ≤ t, we obtain

√
V (t) ≤

√
V (0)− g0ηt√

2
. (6.32)

Thus V (t) reaches zero in a finite time tR that is bounded by

tR ≤
√

2V (0)

g0η
. (6.33)

During the sliding phase, the motion is completely independent of g(z) and h(z),

and we only need the information of the upper bound %(z) which is likely to be

smaller than an upper bound on the whole function. As a result, the amplitude of

the switching component will be reduced in which η is a positive tuning parameter

to be chosen to obtain a desired closed-loop performance.

6.3.2 Application to smart building structures

In the following, the proposed FSSMC strategy is applied to the kth mode of

the MRD-embedded structures (6.1) in second-order form (6.6).
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We design the sliding surface from (6.18) and (6.19)

σk = Lk(s)qk + q̇k =
b1s+ b0

a1s+ a0

qk + q̇k,

⇒ σ̇k =
(b1s+ b0)qk

a1

+ q̈k +
a0

a1

(q̇k − σk)

⇒ σ̇k =
(b1s+ b0)qk

a1

+ q̈k −
a0

a1

( b1s+ b0

a1s+ a0

)
qk

⇒ σ̇k =
s(b1s+ b0)qk
a1s+ a0

+ q̈k = sLk(s)qk + q̈k.

(6.34)

Recall the plant model (6.6) in modal coordinates

q̈k + 2ζkωkq̇k +
n∑

r=1,r 6=k

µkrq̇r + ω2
kqk = uk + dk. (6.35)

We derive the the equivalent control ûk that achieves σ̇k = 0:

ûk =
[
ω̂2
k − sLk(s)

]
qk + 2ζ̂kω̂kq̇k +

n∑
r=1,r 6=k

µ̂krq̇r − d̂k, (6.36)

where ω̂k, ζ̂k, d̂k, and µ̂kr are, respectively, desired values chosen for the kth modal

frequency, modal damping, disturbance, and modal coupling from the damping ma-

trix.

Now, we can obtain the FSSMC using (6.28) as

u =
[
ω̂2
k − sLk(s)

]
qk + 2ζ̂kω̂kq̇k +

n∑
r=1,r 6=k

µ̂krq̇r − d̂k − βk sgn(σ). (6.37)

Here, the control law (6.37) results in the Lyapunov function (6.24) decreases all the

time in which βk ≥ %k + ηk is selected as large enough to guarantee the condition

(6.29).

6.3.3 Simulation results and discussion

In this section, a three-storey (each storey with SDoF: one displacement) building

model of mass M = MT > 0, viscous damping C = CT > 0, and lateral stiffness

K = KT > 0 is considered as an application example. Two identical semiactive
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control devices are rigidly placed on the first floor. Numerical values of the structural

model parameters are given in Appendix A.1.

For the case of the three-storey building model that satisfies assumptions (A7.1.)

- (A7.3.), we can write from (6.3):
k1+k2
m1

−k2
m1

0

−k2
m2

k2+k3
m2

−k3
m2

0 −k3
m3

k3
m3

 = ΦΛΦ−1.

The obtained mode shape vectors are

υ1 = [−0.3738,−0.5907,−0.7151]T,

υ2 = [0.7556, 0.2532,−0.6041]T, υ3 = [−0.5379, 0.7661,−0.3517]T.

The Λ, Υ, Ω, and damping matrices are

Λ =


1211.1 0 0

0 9875.4 0

0 0 22118

 ,Υ =


−0.0038 −0.006 −0.0073

0.0077 0.0026 −0.0061

−0.0055 0.0078 −0.0036

 ,

Ω =


−0.0038 0 0

0.0077 0 0

−0.0055 0 0

 ,Φ−1M−1CΦ =


0.2095 −0.2494 0.1826

−0.2494 1.2283 −0.3626

0.1826 −0.3626 1.8685

 .
The obtained modal frequencies ωk/2π = 5.53, 15.8, 23.65 Hz and damping ratios

ζk = 0.0189, 0.0389, 0.0395. The FRF matrix is given by

H(jω) = Φ


δ11 0 0

0 δ22 0

0 0 δ33

Υ,

where

δ11 =
1

ω2
1 − ω2 + 2jζ1ωω1 + Nejφ

49.15

,

δ22 =
1

ω2
2 − ω2 + 2jζ2ωω2

, δ33 =
1

ω2
3 − ω2 + 2jζ3ωω3

.
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Figure 6.2 : Hankel singular values of the resulting system.

Figure 6.3 : Open-loop singular value plot for H(jω).

The Hankel singular value (HSV) plot shown in Figure 6.2 suggests that there

are two dominant modes in this system where most of its energy stored in the

first and second states (each state represents a displacement or its rate of change).

However, we take into account the contributions of the remaining modes as well for

the controller design and implementation to the three-dof system.
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Figure 6.3 illustrates the amplitude of input-output gain of the whole system as

a function of frequency. Transfer functions (TFs) from input to the first, second

and third floors displacement are shown in Figures 6.4(a), (b) and (c), respectively.

These frequency responses confirm that the significant dynamics of the system rest

in the frequency range of 5 to 24 Hz while the magnitude drops in the high-frequency

ranges, and it remains almost similar in the low-frequency ranges.

We design the controller based on modal decomposition and a frequency shaped

sliding surface for vibration suppression of the intelligent structure. We take b1 = 0

in (6.34), L1(s) = (b1s + b0)/(a1s + a0), to place the zero at infinity. Hence (6.34)

becomes

σ1 =
b0

a1s+ a0

q1 + q̇1,

where a1 = 1, a0 = 2ζ1ω1 = 1.313 and b0 = 5.51. We select κ1 = 0.2,
∑n

r=1 µ̂1r = 0,

and replace sgn(σ1) by a sigmoid-like function σ1
(|σ1|+0.005)

.

Since uk = ΩfMR(k), reciprocally, the damping force can be computed as fMR(k) =

Ω−1uk. To derive a magnetization current i corresponding to a damping force fMR,

an approximate expression is obtained

ik = p0 + p1fMR(k) + p2f
2
MR(k), (6.38)

whose coefficients p0 = 0.127, p1 = −0.00094, p2 = 0.0000021 are determined by the

cftool (see Figure 6.6). The quality of the resulting fit is evaluated using R2 and

RMSE. The current resulting from (6.38) supplied to excitation coils of MRD is

constrained between a known interval i ∈ [0 iM], iM = 2 A, that is

i =

 |ik| |ik| < iM

0 |ik| ≥ iM.
(6.39)

To demonstrate the effectiveness of the designed controller, the ground seismic

acceleration of four benchmark earthquakes (two far field: El-Centro & Hachinohe
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(a) First floor

(b) Second floor

(c) Third floor

Figure 6.4 : TF from input to the floors displacements.
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(a) El-Centro 1940 (b) Hachinohe 1968

(c) Northridge 1994 (d) Kobe 1995

Figure 6.5 : Illustration of the quake-prone frequency range.

Figure 6.6 : Damper current corresponding to average peak force.
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Figure 6.7 : Time responses of x1(t): first floor (top), x2(t): second floor (middle) and x3(t): third

floor (bottom) with FSSM control (red-solid) and without (green-dot) control.

and two near field: Northridge & Kobe) record are used to excite the resulting

smart structure in simulations. The power spectra of these earthquakes are shown

in Figure 6.5 to illustrate the quake-prone frequency range.

Figure 6.7 shows the time responses of the system at zero initial conditions with

and without control under a 50% scale down record of the El-Centro earthquake

where its active frequency range is shown in Figure 6.5(a). From the uncontrolled

time responses, two approximate displacement readings for the first, second and

third floors are respectively −0.00263 m to 0.0026 m, −0.0041 m to 0.00409 m,

and −0.00489 m to 0.00493 m at 4.3 sec and 6.9 sec. The controlled approximate

readings for the first, second and third floors are respectively −0.00053 m to 0.00052

m, −0.0008 m to 0.00072 m, and −0.0009 m to 0.00091 m at 4.3 sec and 6.9 sec. A

negative polarity represents right-to-left movement of the structure.
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6.4 FS2SMC for Smart Suspension Systems

Smart structures can find many applications in vehicle suspensions, offshore plat-

forms, or built infrastructure such as buildings and bridges. To further verify the

merits of the proposed control strategy in engineering structure, described in the

previous section, a four-dof half car model (HCM) with inbuilt active hydraulically

interconnected suspension (HIS) system available at the University of Technology

Sydney (UTS) Laboratory is considered in this section as an example of an applica-

tion. The HCM simulates vehicle lateral dynamics and roll angle response to lateral

acceleration. The active HIS system is a promising candidate for rollover prevention

of heavy vehicles, driverless cars, and unmanned ground vehicles (UGVs), which

is one of the prominent priorities in vehicle safety and handling control. During

turning maneuver, when the car body inclines, a differential pressure results in the

HIS system producing a counter roll moment to oppose that of the centrifugal force.

Autonomous driverless cars and UGVs are becoming a reality, thanks to the

robotics community. These vehicles can be used in complex envrionments and off-

road navigation, and are subject to nonlinear dynamic forces and moments because

of complex terrain behavior and uneven traversing surface [133, 134]. Due to un-

structured terrain irregularities and size of the wheeled off-road vehicles, they can be

considered among the primary sources of energy dissipation and pollutant emission;

they should overcome as well as their performing tasks. Having discussed the mer-

its of frequency shaped sliding mode control in Section 2.5 and Section 6.3, in the

following a frequency-shaped second-order sliding mode controller (FS2SMC) is de-

veloped to directly adjust the structural frequency response and improve robustness

performance.
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6.4.1 FS2SMC design

We consider the following two-dimensional, single-input nonlinear system to il-

lustrate the control design methodology:

ẋ = h(x) + g(x)u, (6.40)

where h(x) and g(x) ≥ g0 > 0, ∀x ∈ R2, are some smooth nonlinear functions, and

u ∈ R is the control input. Our main goal is to design a robustly stabilizing control

law u = U(x1, x2).

We design the dynamic sliding surface (is a type of dynamic manifold) with a

second-order LPF:

σ =
b0

s2 + a1s+ a0

x1 + x2, (6.41)

since we want to make the rolloff of |L(jω)|, ω ∈ [0,∞) large for large ω. The

choice L(s) = b0
s2+a1s+a0

gives us a |L(jω)| with 2-pole rolloff (asymptotic slope of

−40 dB/decade) at high frequencies.

Then, from (6.41) we obtain

σ̈ + σ(a1s+ a0) = ẍ2 + x2(a1s+ a0) + b0x1

⇒σ̈ = ẍ2 − (a1s+ a0)
( b0

s2 + a1s+ a0

)
x1 + b0x1

⇒σ̈ =
∂h

∂x
(h+ gu) +

∂g

∂x
(h+ gu)u+ g(x)u̇+ b0x1

(
1− a1s+ a0

s2 + a1s+ a0

)
⇒σ̈ = H(x, u) + g(x)v + b0x1

( s2

s2 + a1s+ a0

)
⇒σ̈ = H(x, u) + s2L(s)x1 + g(x)v,

(6.42)

where H(x, u) = ∂h
∂x

(h+gu)+ ∂g
∂x

(h+gu)u and v = u̇ is prescribed as the new control

[135]. Let ĝ and Ĥ be nominal models of g and H, respectively. Taking

v̂ = −ĝ(x)−1
[
Ĥ + s2L(s)x1

]
+ vR (6.43)
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results in

σ̈ = H + s2L(s)x1 + g(x)
[
− Ĥ + s2L(s)x1

ĝ(x)
+ vR

]
= H − g(x)

ĝ(x)
Ĥ + s2L(s)x1

[
1− g(x)

ĝ(x)

]
+ g(x)vR

= δ(x) + g(x)vR,

(6.44)

where δ(x) denotes the perturbation term by δ(x) := H− g(x)
ĝ(x)

Ĥ+s2L(s)x1

[
1− g(x)

ĝ(x)

]
.

Suppose δ(x) satisfies the inequality

∣∣g(x)−1δ(x)
∣∣ ≤ %(x) (6.45)

for some known function %(x).

We consider a Lyapunov function candidate V = 1
2
σ̇2 for σ̈ = H(x, u)+s2L(s)x1+

g(x)v. Taking into account the inequality (6.45), the time derivative of V can be

computed as

V̇ = σ̇σ̈ = σ̇
[
δ(x) + g(x)vR

]
≤ g(x)|σ̇|%(x) + g(x)σ̇vR. (6.46)

To achieve our goal, we take vR as

vR = −β(x) sgn(σ̇)− κσ̇, κ > 0, (6.47)

with β(x) ≥ %(x)+η, η > 0, so that the term g(x)σ̇vR is negative and dominates over

the residual (positive) term g(x)|σ̇|%(x) when σ̇ 6= 0, and the net results (negative)

to force |σ̇| to reach zero in finite term. Finally, the controller is obtained as

v = −ĝ(x)−1
[
Ĥ + s2L(s)x1

]
− β(x) sgn(σ̇)− κσ̇. (6.48)

Substituting (6.47) into (6.46) results in

V̇ ≤ g(x)|σ̇|%(x)− g(x)β(x)σ̇ sgn(σ̇)− g(x)κσ̇2

≤ g(x)|σ̇|%(x)− g(x)(%(x) + η)|σ̇| − g(x)κσ̇2

≤ −g(x)η|σ̇| − g(x)κσ̇2 ≤ −g0η|σ̇| − g0κσ̇
2

≤ −g0κσ̇
2 = −2g0κV,

(6.49)
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where g0 is defined in (6.40). By separating the variables and integrating the differ-

ential inequality over the time interval t0 ≤ τ ≤ t, we obtain

V (t) ≤ V (t0)e−2κg0(t−t0). (6.50)

According to the above inequality, we see that V (t) will tend to zero exponentially

in which the exponential decay rate is determined by the parameter κ. In (6.49),

we established

σ̇σ̈ ≤ −g0η|σ̇| − g0κσ̇
2. (6.51)

Since g0κσ̇
2 ≥ 0, an η-reachability condition has been established and a sliding

motion will take place. By neglecting the nonlinear term in (6.51) yields

d

dt
|σ̇(t)| ≤ −g0κ|σ̇(t)|, (6.52)

which implies that

|σ̇(t)| ≤ |σ̇(t0)|e−κg0(t−t0). (6.53)

Here, |σ̇(t0)| represents the initial distance away from the sliding surface, and κ is

the decay rate at which the sliding surface is attained.

During the sliding phase, the motion is completely independent of g and H, and

we only need the information of the upper bound %(x) which is likely to be smaller

than an upper bound on the whole function. As a result, the amplitude of the

switching component, %(x) + η to −%(x) − η, will be reduced. The parameters η

and κ are positive tuning parameters to be chosen to obtain a desired closed-loop

performance.

6.4.2 Vehicle suspension structure control

The proposed FS2SMC technique is now applied to a four-dof HCM with an

inbuilt active HIS system, see Figures 6.8(a) and (b). Input and output variables

of the system are, respectively, u = va and y = [z1, z2, zs, θ]
T. va is the hydraulic
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fluid volumetric displacement produced by the actuator. z1, z2, z3, z4 denote left and

right deflections of the tire and sprung mass, respectively. The body bounce and

roll angle can be given as zs = z3+z4
2

and θ = z4−z3
2l

, respectively.

Using the Lagrange principle or Newton’s law, the equations of motion can be

described by

Mz̈ + Cż +Kz = Buu+Wdfd, (6.54)

where z = [z1, z2, z3, z4]T, u = [f1, f2]T, fd = [fd1, fd2, ac]
T. f1, f2 represent the

forces produced by the active HIS. Two road disturbance inputs and the centrifugal

acceleration are denoted by fd1, fd2 and ac, respectively. The inertia, damping,

stiffness, active HIS input and the disturbances input are, respectively, given by

M =



mu 0 0 0

0 mu 0 0

0 0
ms+

Is
l2

4

ms− Is
l2

4

0 0
ms− Is

l2

4

ms+
Is
l2

4


kg,

C =



cs 0 −cs 0

0 cs 0 −cs

−cs 0 cs 0

0 −cs 0 cs


Ns/m,

K =



ks + kt 0 −ks 0

0 ks + kt 0 −ks0

−ks 0 ks 0

0 −ks 0 ks


N/m,

Bu =



−1 0

0 −1

1 0

0 1


, Wd =



kt 0 0

0 kt 0

0 0 −mshg
l

0 0 mshg
l


.
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(a) Schematic diagram of a HCM

(b) HCM integrated with HIS system

Figure 6.8 : The forces produced by the active HIS, two road disturbance inputs, centrifugal

acceleration, body bounce and roll angle are f1, f2, fd1, fd2, ac, zs = z3+z4
2 and θ = z4−z3

2l ,

respectively. Input variable u = va is the hydraulic fluid volumetric displacement produced by

the actuator.
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The HIS output is given by

u = Mhz̈ + Chż +Khz +Mhav̈a + Chav̇a +Khava, (6.55)

where Mh, Ch, and Kh are the fluid inertia, damping and stiffness matrices, respec-

tively, associated with the passive behavior of the HIS system. Mha, Cha, and Kha

are, respectively, the fluid inertia, damping and stiffness matrices associated with

the hydraulic actuator input.

Neglecting the higher-order terms of the actuator input in (6.55), we have

u = Mhz̈ + Chż +Khz +Khava. (6.56)

Substituing (6.56) into (6.54) results in

(M −Mh)z̈ + (C − Ch)ż + (K −Kh)z = Khava +Wdfd. (6.57)

where the inertia, damping and stiffness matrices of the combined system are, re-

spectively, given by

M = M −Mh, C = C − Ch, K = K −Kh. (6.58)

The state variables (x1, x2) := (z, ż) transform the combined system (6.57) into

the form

ẋ = Ax+Bu+Wfd,

y = Cx,

(6.59)

where

A =

 04×4 I4×4

−M−1K −M−1C

 ,
B = M−1Kha, W = M−1Wd,

C =



−1 0 1 0 0 0 0 0

0 −1 0 1 0 0 0 0

0 0 1/2 1/2 0 0 0 0

0 0 −1/(2l) 1/(2l) 0 0 0 0


.
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Figure 6.9 : Front view photograph of the combined system.

6.4.3 Simulation results

The following cases are taken into account in the simulation study:

(C1.) the HCM with active suspension control using the proposed FS2SMC,

(C2.) the HCM with passive HIS (without any hydraulic actuation), and

(C3.) the conventional HCM (without any suspension modifications).

The HCM parameters are identified as follows: the vehicle body (sprung) mass,

wheel (unsprung) mass and rotational inertia are ms = 475 kg, mu = 35 kg and

Is = 120 kgm2, respectively; the suspesion spring and tire stiffness are ks = 20

and kt = 172 kN/m, respectively, and the suspesion damping is cs = 240 Ns/m.

The distance between the roll center and the center of gravity (CoG) is hg = 0.5

m, and the wheel track width is 2l = 0.7 m. The active HIS system parameters

are adopted from [136]. A photograph of the integrated system, available at the
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University of Technology Sydney (UTS) Laboratory, is shown in Figure 6.9. Then

the inertia, damping, stiffness, active HIS input and the disturbances input matrices

are, respectively, given by

M =



35 0 0 0

0 35 0 0

0 0 179.97 57.53

0 0 57.53 179.97


kg,

C =



240 0 −240 0

0 240 0 −240

−240 0 240 0

0 −240 0 240


Ns/m,

K =



192000 0 −20000 0

0 192000 0 −20000

−20000 0 20000 0

0 −20000 0 20000


N/m,

Bu =



−1 0

0 −1

1 0

0 1


, Wd =



172000 0 0

0 172000 0

0 0 −340

0 0 340


.

To compute the passive HIS, we set the hydraulic actuator input va = 0 in (6.59).

We take η = 0.25 and a Butterworth filter

σ =
1

s2 + 1.4142s+ 1
θ + θ̇,

to design the sliding variable and FS2SMC.

To determine the resonant frequencies and mode shapes of the combined struc-

ture, we diagonalized the matrix M−1K as M−1K = ΦΛΦ−1, where the orthogonal
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(a) Roll angle (b) Actuator displacement

Figure 6.10 : Under lateral acceleration 3 sin(1.392× 2πt) m/s2.

matrix Φ is formed from the associated eigenvectors and the diagonal frequency

matrix Λ is listing the eigenvalues, λ(M−1K). The principal diagonals entry of

the damping matrix are Φ−1M−1CΦ = 2ζωn. The obtained modal frequencies and

damping ratios are, respectively, 1.392, 2.476, 11.808, 12.33 Hz and 0.041, 0.1841,

1.789, 9.0352.

The responses of the integrated system under harmonic excitation (consider as

a disturbance) at zero initial conditions for three cases (C1 ) - (C3 ) are shown in

Figure 6.10 (a). We observe that the roll angle in the FS2SMC case (blue-solid)

is greatly attenuated compare to conventional suspension (black-dash) and passive

HIS system (red-dot).

Figure 6.10(b) shows the actuator volumetric displacement

va =

∫
v(t)dt,

where a back-information antiwindup concept is employed, i.e. the difference be-

tween the saturated and the unsaturated output (control signal) is used to generate

a feedback signal to act on the integrator input.

The roll angle spectrum of the system, excited at low frequency 0.5 Hz and
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(a) Lateral acceleration 3 sin(0.5× 2πt) m/s2

(b) 3 sin(1.392× 2πt) m/s2

(c) 3 sin(2.476× 2πt) m/s2

Figure 6.11 : Roll angle spectrums of the integrated system.
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resonant frequencies 1.392 Hz and 2.476 Hz, are shown in Figures 6.11(a), (b) and

(c), respectively. From these figures, we observe that the resonant frequencies are

shifted further to prevent natural modes of the system to be excited.

6.4.4 Discussion

Although frequency-shaped sliding control has the advantage of attenuating the

effect of high-frequency unmodeled dynamics [110], making the following substitu-

tion in the corresponding discontinuous ones with their equivalence: sgn(σ̇) with

sat( σ̇
ε
), sgn(σ̇) with tanh( σ̇

ε
), sgn(σ̇) with σ̇

|σ̇|+ε , a continuous control law can be ob-

tained in order to alleviate the chattering phenomena by smoothing out the control

discontinuity in a thin boundary layer, Bε = {‖σ̇‖ ≤ ε}, neighboring the switching

surface [73, 82, 106]. Here, we substitute the signum nonlinearity by sat(σ̇/ε):

vR = −(%+ η) sat(σ̇/ε)− κσ̇, (6.60)

in which a good approximation of sgn(·) nonlinearity may need a small ε.

Outside the boundary layer, the system dynamics are the same as the switching

control

v = vE + vR, ‖σ̇‖ ≥ ε. (6.61)

Inside the boundary layer

σ̇(t) = sL(s)θ + θ̈ = φ(t) ≤ ε

⇒ θ(t) =
1

sL(s) + s2
φ(t),

(6.62)

which represents the system dynamics of θ(t) under φ(t). Due to the boundary layer

interpolation, after transients the roll angle error is bounded by

|eθ(t)|φ = |
∫ t

0

f(τ)φ(t− τ)dτ | ≤ ε

∫ ∞
0

f(τ)dτ = ε‖f(t)‖1, (6.63)

where f(t) is the impulse response of 1
sL(s)+s2

(see Figure 6.12).
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− sL(s) +

φ(t)

1
s2

w θ̈θR eθ θ(t)

Figure 6.12 : Feedback system defined by FS2SM; L(s) = 1
s2+1.4142s+1 but extensions to more

orders with an equal number of poles and zeros (or less zeros) can also be made.

(a) ε = 0.05◦

‖f(t)‖1
, κ = 5

(b) ε = 0.5◦

‖f(t)‖1
, κ = 0.5

Figure 6.13 : Actuator velocity due to a (a) thin boundary and (b) thick boundary under lateral

acceleration 3 sin(0.5× 2πt) m/s2; η = 0.25.

Figures 6.13(a) and 6.14(a) illustrate that

vR = −(%+ η) sat(σ̇/ε)− κσ̇
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(a) ε = 0.05◦

‖f(t)‖1
, κ = 5

(b) ε = 0.5◦

‖f(t)‖1
, κ = 0.5

Figure 6.14 : Actuator force due to a (a) thin boundary and (b) thick boundary under lateral

acceleration 3 sin(0.5× 2πt) m/s2; η = 0.25.

is over-calculated during computer simulation because of thin boundary layer

ε =
0.05◦

‖f(t)‖1

, κ = 5, η = 0.25.

By increasing the boundary layer thickness

ε =
0.5◦

‖f(t)‖1

, κ = 0.5, η = 0.25,

we can achieve smooth responses in term of chattering amplitude attenuation as

shown in Figures 6.13(b) and 6.14(b).

According to [72, 80], while dealing with uncertain systems, it may not possible

to vanish the uncertain terms at the equilibrium but can bring the trajectories
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(a) ε = 0.05◦

‖f(t)‖1
, κ = 5 (b) ε = 0.5◦

‖f(t)‖1
, κ = 0.5

Figure 6.15 : Phase portrait.

arbitrarily close to it. This is known as practical stabilization. Hence, ultimate

boundedness of trajectories to within an ε, κ-dependent neighborhood of the origin

is guaranteed as shown in Figures 6.15(a) and (b). Figure 6.15(a) show that the

peak error due to a thin boundary layer, ε = 0.05◦

‖f(t)‖1 , κ = 5:

|eθ(t)|φ = | − θ(t)|φ = ε‖f(t)‖1 < 0.2◦,

results in an elliptical trajectories with major and minor axes 0.4◦ and 0.04◦, respec-

tively. In Figure 6.15(b), ultimately the phase portrait is an enclosed ellipse with

major and minor axes 2.2◦ and 0.7◦, respectively, together with the thick boundary

(ε = 0.5◦

‖f(t)‖1 , κ = 0.5) for σ̇ around zero.

We see that (6.62) is equivalent to a feedback control problem as shown in Figure

6.12 and it can also be rearranged in linear fractional transformation (LFT) form

(see Figure 6.16) as

 θ

eθ

 =

G(s)︷ ︸︸ ︷ 1
s2

0 1
s2

− 1
s2

1 − 1
s2




φ

θR

w

 , (6.64)

where G(s) is the generalized plant and w = sL(s)eθ. Hence, the commonly-used
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frequency band. The system’s closed loop performances demonstrate that the pro-

posed control scheme is able to not only reduce the roll angle, but also to shape its

spectrum, owing to the inclusion of a filter in the frequency domain. This makes

the active HIS system more useful for control performance improvements of heavy

vehicles, driverless cars, and UGVs.
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Chapter 7

Low-Energy Structures Embedded with Smart

Dampers

7.1 Introduction

Having discussed the frequency domain advantages (in Section 2.5 and Chapter

6) and cyclic energy dissipation in smart dampers (in Section 3.2), in this chapter

the emphasis now shifts to the problem of energy balance in an MR based building

structure subject to hostile dynamic loadings or external disturbances. Magnetorhe-

ological (MR) devices are widely used for energy-efficient protection of engineering

structures to effectively withstand severe dynamic loadings. The smart device con-

sidered herein is the MR fluid damper (MRD), a semi-active device. The MRD can

be controlled to adjust the damping and stiffness characteristics of the system under

a low-power control signal, as well as fail-safe operations while a large amount of

energy induced from external disturbance is dissipated in the fluid.

The level of possible damage of individual structural members, for example,

beams, columns and roof/floor slabs can be determined by the transmitted exter-

nal dynamic loading into structural vibrations. The earthquake input energy (IE)

transmitted into a building from the ground motion can be decomposed into dif-

ferent forms: kinetic energy (KE), elastic strain energy (SE) and damping energy

(DE). Here, two methods for computing the IE have been applied with one based

on the absolute motion and the other on relative motion.

In the second part of this chapter, a frequency-shaped second-order sliding mode

control (FS2SMC) is designed along with a low-pass filter (LPF) to implement the
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desired dynamic sliding surface. The control signal exploits an equivalent control

containing a frequency shaping filter and a robust signal to drive the system dynam-

ics to the desired mechanical modes shifted away from the resonance region. For

analysis of the energy flow in the smart structure, the mechanical output energy, in-

cluding relative KE, DE, SE and the electrical control energy (CE) for magnetization

are used as metrics for comparison.

Simulation results for a 10-floor building model equipped with current-controlled

MRDs, subject to horizontal seismic excitations validate the proposed technique for

low-energy structures with smart devices. The frequency responses of the hysteretic

damper and combined structure are represented by its obtained describing functions

(DFs) and modal decomposition, respectively, to facilitate the semi-active structural

system analysis in the frequency domain. The closed-loop performance and compar-

ison in terms of energy signals indicate that the proposed method allows not only to

reduce induced vibrations and input energy, but also its spectrum can be adjusted

to prevent natural modes of the structure under external excitations.

7.2 Energy balance equations of buildings with smart de-

vices

Given an n degree-of-freedom (dof) shear structure of mass M , stiffness K, and

viscous damping C, embedded with n MRDs subjected to dynamic loading sources

with acceleration vector ẍg, the governing equation can be described by

Mẍ+ Cẋ+Kx = ΓfMR(x, i)−Mẍg, (7.1)

where x = r − xg denotes the relative displacement between the ground and each

mass and contain the dof of the system as shown in Figure 7.1. Here, r describe the

vibrational absolute displacements of each floor with respect to a reference frame

xx− yy. xg represents the absolute ground displacement with respect to an inertial
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Figure 7.1 : Smart building integrated with energy-dissipative devices; xdk = xk, k = 1, 2, · · · , n.

frame xx− yy′. The intelligent devices are rigidly mounted to the fixtures between

each floor. The midpoint of each damper coincides with the intersection of axes xx

and yy, i.e. the MRD’s stroke xdk = xk for the k-th floor; 1 ≤ k ≤ n. Γ ∈ Rn×n is

a factor matrix taking into account the location and number of MRDs. fMR(x, i) is

the controllable damping force vector.

Suppose the model (7.1) satisfies the following assumptions:

(A8.1.) the structure’s M is invertible and M−1K has a set of n linearly indepen-

dent eigenvectors υ1, υ2, . . . , υn, i.e., all the eigenvalues λk(M
−1K), k = 1, 2, · · · , n,

are distinct and positive.

(A8.2.) the unknown dynamic disturbance fd(t) = −Mẍg and its time-derivative
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are bounded for t ∈ [0 ∞),

(A8.3.) zero initial conditions, i.e., x(t0) = 0, ṙ(t0) = 0, and

(A8.4.) x = [x1, . . . , xn]T, ẋ = [ẋ1, . . . , ẋn]T and ẍ = [ẍ1, . . . , ẍn]T are available

for on-line measurement.

7.2.1 Relative energy balance equation

By integrating both sides of (7.1) over the structural response path from t0 (when

the ground motion excitation starts) to t, we obtain∫ x(t)

x(t0)

ẍTMdx+

∫ x(t)

x(t0)

ẋTCdx+

∫ x(t)

x(t0)

xTKdx =

∫ x(t)

x(t0)

(ΓfMR)Tdx−
∫ x(t)

x(t0)

ẍT
gMdx

⇒
∫ x(t)

x(t0)

ẋTMdẋ+

∫ t

t0

ẋTCẋdt+

∫ x(t)

x(t0)

xTKdx =

∫ t

t0

fT
MRΓTẋdt−

∫ t

t0

ẍT
gMẋdt

⇒ 1

2
ẋTMẋ+

∫ t

t0

ẋTCẋdt+
1

2
xTKx =

∫ t

t0

fT
MRΓTẋdt−

∫ t

t0

ẍT
gMẋdt,

where dx = ẋdt. Thus,

Ek + Eζ + Es = EMR − Ei, (7.2)

where the relative kinetic energy (KE):

Ek =
1

2
ẋTMẋ,

the relative damping energy (DE):

Eζ =

∫ t

t0

ẋTCẋdt,

the relative strain energy (SE):

Es =
1

2
xTKx,

and the relative input energy (IE):

Ei =

∫ t

t0

ẍT
gMẋdt.

The MRD dissipated energy is given by

EMR =

∫ t

t0

fT
MRΓTẋdt.
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7.2.2 Absolute energy balance equation

The absolute KE and IE, respectively, can also be defined by

E ′k =
1

2
ṙTMṙ

and

E ′i =

∫ t

t0

r̈TMẋgdt,

where r is the vibrational absolute (or total) displacement, ṙ is absolute velocity

and r̈ denotes the absolute acceleration such that

r = x+ xg, ṙ = ẋ+ ẋg, r̈ = ẍ+ ẍg.

The residual absolute energy terms can be derived similarly as (7.2).The absolute

energy equation is then expressed as

E ′k + Eζ + Es = EMR − E ′i. (7.3)

7.3 FS2SMC of low-energy structures

After having established the energy relations of a building structure embedded

with smart dampers, we now proceed with the robust control design to inject a small

amount of control energy to dissipate vibration energy induced by external distur-

bances to the structure. To directly adjust the structural frequency response and

to improve robustness performance, the second-order sliding mode control (2SMC)

method is adopted here to achieve resilience of smart structures. Indeed, by in-

corporating the frequency response functions (FRFs) of the embedded devices, the

control design can be proceeded in the frequency domain to facilitate the low-energy

structure analysis. Thus, in the following a frequency-shaped (FS) second-order slid-

ing mode controller (FS2SMC) is developed and applied to the structural model of

buildings embedded with intelligent dissipation devices.
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7.3.1 Energy-aware design

It can be shown that the nonlinear non-affine dynamic system (7.1) of a single-

input embedded smart structure can be rendered to an n-th order nonlinear system

of the form [21]

ż = h(z) + g(z, u), (7.4)

where z ∈ Rn is the state, u ∈ R is the control input, h(·) and g(·, ·) ≥ g0 > 0

are some smooth nonlinear functions. Our goal is to design a robustly stabilizing

control u = U(z) that steers the trajectories onto the manifold (or surface) σ ≡ 0

in finite time.

In order to dynamically shape the frequency response of the equivalent dynamics,

the sliding function is cast by using a dynamic linear operator L(s), a function of s.

The dynamic sliding surface is designed with a second-order LPF as

σ = L(s)z =
n−1∑
k=1

L(s)zk + zn, (7.5)

where L(s) = [L(s), . . . , L(s), 1], for example, to get a steeper rolloff of |L(jω)|,

ω ∈ [0,∞) for large values of ω. Herein, L(s) = b0
s2+a1s+a0

gives a |L(jω)| with an

asymptotic slope of −40 dB/decade above cut-off frequency.

The algebraic manipulation of (7.5) gives

σ =
b0

s2 + a1s+ a0

z1 + · · ·+ b0

s2 + a1s+ a0

xn−1 + zn

⇒σ̈ + σ(a1s+ a0) = b0

(
z1 + · · ·+ zn−1

)
+ z̈n + xn(a1s+ a0)

⇒σ̈ = b0

n−1∑
k=1

zk + z̈n − (a1s+ a0)
(
σ − zn

)
⇒σ̈ = b0

n−1∑
k=1

zk + z̈n − (a1s+ a0)
( b0

∑n−1
k=1 zk

s2 + a1s+ a0

)
⇒σ̈ = b0

( s2

s2 + a1s+ a0

) n−1∑
k=1

zk +
∂h

∂z
ż +

∂g

∂z
ż + g(z)u̇.
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Now, we have

σ̈ = s2L(s)z1 + · · ·+ s2L(s)zn−1 +H(z, u) + g(z)v, (7.6)

where H = ∂h
∂z
ż + ∂g

∂z
ż and v = u̇ is denoted as the new control variable [135].

Let ĝ and Ĥ be nominal models of g and H, respectively. Taking

v = −s
2L(s)z1 + · · ·+ s2L(s)zn−1 + Ĥ

ĝ
+ vR

results in

σ̈ =
n−1∑
k=1

s2L(s)zk +H − g(z)

ĝ(z)

n−1∑
k=1

s2L(s)zk −
g(z)

ĝ(z)
Ĥ + g(z)vR

= H − g(z)

ĝ(z)
Ĥ +

n−1∑
k=1

s2L(s)zk

[
1− g(z)

ĝ(z)

]
+ g(z)vR

= δ(z) + g(z)vR,

(7.7)

where δ(z) := H − g(z)
ĝ(z)

Ĥ +
∑n−1

k=1 s
2L(s)zk

[
1− g(z)

ĝ(z)

]
.

Suppose the perturbation term δ(z) satisfies the inequality

∣∣∣δ(z)

g(z)

∣∣∣ ≤ %(z) (7.8)

for some known positive definite function %(z).

With V = 1
2
σ̇2 chosen as a Lyapunov function candidate for (7.6), the time

derivative of V can be computed as

V̇ = σ̇σ̈ = σ̇
[
δ(z) + g(z)vR

]
≤ g(z)|σ̇|%(z) + g(z)σ̇vR. (7.9)

To achieve the control objective, the robust signal vR is selected as

vR = −β(z) sgn(σ̇)− κσ̇, κ > 0, (7.10)

with

β(z) ≥ %(z) + η, η > 0,
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so that the term g(z)σ̇vR is negative and dominates over the residual term g(z)|σ̇|%(x)

when σ̇ 6= 0, giving the net results to force |σ̇| to reach zero. Finally, we have

v = −s
2L(s)z1 + · · ·+ s2L(s)zn−1 + Ĥ

ĝ(z)
− β(z) sgn(σ̇)− κσ̇. (7.11)

Substituting (7.10) into (7.9) yields

V̇ ≤ g(z)|σ̇|%(z)− g(x)β(z)σ̇ sgn(σ̇)− g(z)κσ̇2

≤ g(z)|σ̇|%(z)− g(z)
(
%(z) + η

)
|σ̇| − g(z)κσ̇2 = −g(z)η|σ̇| − g(z)κσ̇2

≤ −g0η|σ̇| − g0κσ̇
2 ≤ −g0κσ̇

2 = −2g0κV.

(7.12)

where g0 is defined in (7.4). By separating the variables and integrating the differ-

ential inequality over the time interval t0 ≤ τ ≤ t, we obtain

V (t) ≤ V (t0)e−2κg0(t−t0). (7.13)

Thus, V (t) will tend to zero exponentially where κ is the decay rate at which the

sliding surface is attained. From (7.9) and (7.12), we obtain

σ̇σ̈ ≤ −g0η|σ̇| − g0κσ̇
2. (7.14)

Since g0κσ̇
2 ≥ 0, and by neglecting the nonlinear term, we also have

d

dt
|σ̇(t)| ≤ −g0κ|σ̇(t)| ⇒ |σ̇(t)| ≤ |σ̇(t0)|e−κg0(t−t0) (7.15)

to substantially reduce the amplitude of the switching term in the control and hence,

the commonly encountered chattering problem associated with sliding mode control.

7.3.2 Smart structural control

To further implement the proposed FS2SMC strategy (stated in the previous sec-

tion) to low-energy MRD-embedded structures, a modal transformation (described

in Section 6.2.1 of the previous chapter) is first applied to the structure dynamics,

e.g. of a multi-floor building. Take the transformation [106],[137],

x =
n∑
k=1

υkqk(t) = Φq, (7.16)
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where

Φ =


· · ·

υ1 υ2 · · · υn

· · ·

 =



υ11 υ12 · · · υ1n

υ21 υ22 · · · υ2n

...
...

. . .
...

υn1 υn2 · · · υnn


is called the modal transformation matrix (MTM); −→υ is the mode shape or eigen-

vectors; and q = [q1, q2, . . . , qn]T is the real-valued modal coordinate vector.

Then, we can obtain a set of n second-order motion equations decoupled from

(7.1) for each mode, m ∈ [1, n], as:

q̈m + 2ζmωmq̇m +
n∑

r=1,r 6=m

µmrq̇r + ω2
mqm = um + dm, (7.17)

where ωm, ζm, um, qm, dm, and µmr are respectively the m-th modal frequency,

damping ratio, entry of the modal control,

u = Φ−1M−1ΓfMR = ΩfMR, (7.18)

modal coordinate, disturbance component and the mrth modal coupling term of the

damping matrix. Here, Ω = Φ−1M−1ΓfMR is called the mode participation matrix

(MPM).

From (7.5) and (7.6), the following frequency-shaped sliding function is designed:

σm =
b0

s2 + a1s+ a0

qm + q̇m = Lm(s)qm + q̇m

⇒ σ̈m = s2Lm(s)qm − 2ζmωmq̈m −
n∑

r=1,r 6=m

µmrq̈r − ω2
mq̇m + vm + ḋm,

(7.19)

where vm = u̇m is the new control instead of the modal control um.

We derive the equivalent control v̂m to achieve σ̈m = 0 as follows

v̂m = ω̂2
mq̇m + 2ζ̂mω̂mq̈m +

n∑
r=1,r 6=m

µ̂mrq̈r − ˆ̇dm − s2Lm(s)qm, (7.20)



153

where ω̂m, ζ̂m,
ˆ̇dm, and µ̂mr are desired values chosen for the m-th modal frequency,

modal damping, first derivative of the disturbance, and modal coupling from the

damping matrix, respectively.

By applying the control law (7.11) for vm = v̂m + vRm, we obtain the following

FS2SMC:

vm = ω̂2
mq̇m+2ζ̂mω̂mq̈m+

n∑
r=1

µ̂mrq̈r−s2Lm(s)qm− ˆ̇dm−βm sgn(σ̇m)−κmσ̇m, (7.21)

that can ensure the condition

σ̇mσ̈m ≤ −ηm|σ̇m| − κmσ̇2
m

as in (7.12), by taking βm = %m + ηm sufficiently large.

7.4 Application and simulation

In this section, the FS2SMC designed in Section 7.3.2 is applied to a 10-storey

shear building model [138] with identical values for floor mass mk, damping ck, and

stiffness kk of each floor. This structure is assumed to be satisfied assumptions

(A8.1.) - (A8.4.) with the following equation:

Mẍ+ Cẋ+Kx = ΓfMR + fd, (7.22)

where the positive-definite mass (in kg), damping (in Ns/m) and stiffness (in N/m)

matrices are respectively given by

M =



360000 0 0 · · · 0

0 360000 0 · · · 0

0 0 360000 · · · 0

...
...

...
. . .

...

0 0 0 · · · 360000


∈ R10×10,
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C =



12.4 −6.2 0 0 0 0 0 0 0 0

−6.2 12.4 −6.2 0 0 0 0 0 0 0

0 −6.2 12.4 −6.2 0 0 0 0 0 0

0 0 −6.2 12.4 −6.2 0 0 0 0 0

0 0 0 −6.2 12.4 −6.2 0 0 0 0

0 0 0 0 −6.2 12.4 −6.2 0 0 0

0 0 0 0 0 −6.2 12.4 −6.2 0 0

0 0 0 0 0 0 −6.2 12.4 −6.2 0

0 0 0 0 0 0 0 −6.2 12.4 −6.2

0 0 0 0 0 0 0 0 −6.2 6.2



× 106,

and

K =



1300 −650 0 0 0 0 0 0 0 0

−650 1300 −650 0 0 0 0 0 0 0

0 −650 1300 −650 0 0 0 0 0 0

0 0 −650 1300 −650 0 0 0 0 0

0 0 0 −650 1300 −650 0 0 0 0

0 0 0 0 −650 1300 −650 0 0 0

0 0 0 0 0 −650 1300 −650 0 0

0 0 0 0 0 0 −650 1300 −650 0

0 0 0 0 0 0 0 −650 1300 −650

0 0 0 0 0 0 0 0 −650 650



×106.

Notably, using full-scale MRDs [18], one can reach an output damping force of 182.1

kN and a controllable force of 164.38 kN in conjunction with appropriate control

strategy.
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7.4.1 Modal decomposition and control design

Since the mass matrix

M = diag (mk) = MT > 0, k = 1, 2, . . . , 10,

is nonsingular, (7.22) is written for this case as

ẍ+M−1Cẋ+M−1Kx = M−1ΓfMR +M−1fd, x ∈ R10, (7.23)

where

M−1K =



k1+k2
m1

−k2
m1

0 · · · · · · 0

−k2
m2

k2+k3
m2

−k3
m2

0 · · · ...

0 −k3
m3

. . . . . . . . .
...

... 0
. . . . . . −k9

m8
0

...
...

. . . −k9
m9

k9+k10
m9

−k10
m9

0 · · · · · · 0 −k10
m10

k10
m10


= ΦΛΦ−1 ∈ R10×10;

Λ =



40.33 0 0 0 0 0 0 0 0 0

0 357.61 0 0 0 0 0 0 0 0

0 0 963.98 0 0 0 0 0 0 0

0 0 0 1805.56 0 0 0 0 0 0

0 0 0 0 2807.56 0 0 0 0 0

0 0 0 0 0 3880.97 0 0 0 0

0 0 0 0 0 0 4930.39 0 0 0

0 0 0 0 0 0 0 5862.60 0 0

0 0 0 0 0 0 0 0 6594.75 0

0 0 0 0 0 0 0 0 0 7061.79
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is formed from the eigenvalues of M−1K. The orthogonal matrix Φ is formed from

the associated eigenvectors:

υ1 = [0.065, 0.129, 0.189, 0.246, 0.297, 0.341, 0.378, 0.406, 0.426, 0.435]T,

υ2 = [−0.189,−0.341,−0.426,−0.426,−0.341,−0.189, 0, 0.189, 0.341, 0.426]T,

υ3 = [−0.297− 0.435− 0.341− 0.0650.2460.4260.3780.129− 0.189− 0.406]T,

υ4 = [0.378, 0.378, 0,−0.378,−0.378, 0, 0.378, 0.378, 0,−0.378]T,

υ5 = [−0.426,−0.189, 0.341, 0.341,−0.189,−0.426, 0, 0.426, 0.189,−0.341]T,

υ6 = [0.435,−0.065,−0.426, 0.129, 0.406,−0.189,−0.378, 0.246, 0.341,−0.297]T,

υ7 = [−0.406, 0.297, 0.189,−0.435, 0.129, 0.341,−0.378,−0.065, 0.426,−0.246]T,

υ8 = [0.341,−0.426, 0.189, 0.189,−0.426, 0.341, 0,−0.341, 0.426,−0.189]T,

υ9 = [0.246,−0.406, 0.426,−0.297, 0.065, 0.189,−0.378, 0.435,−0.341, 0.129]T,

υ10 = [−0.129, 0.246,−0.341, 0.406,−0.435, 0.426,−0.378, 0.297,−0.189, 0.065]T.

The diagonal and modal coupling terms of the damping matrix, i.e. 2ζkωk and

µkr, can be respectively obtained, for r 6= k with no dampers attached, as

ωk
2π

= 1.01, 3.01, 4.94, 6.76, 8.43, 9.91, 11.18, 12.19, 12.93, 13.37 Hz (see Figure 7.2),

ζk = 0.19, 0.57, 0.93, 1.27, 1.59, 1.87, 2.1, 2.29, 2.43, 2.52.

The off-diagonal damping is bounded by

µkr ∈ [−1.27× 10−14, 2.39× 10−14].

Hence, the off-diagonal damping is taken as the lower bound of the diagonal ele-

ments, i.e.

µkr = min(2ζkωk) = 0.38,

while designing the FS2SMC.
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Figure 7.2 : Singular value plot of H(jω).

Under a harmonic excitation at an angular frequency ω, the controlled smart

devices ΓfMR(q, i) can be modelled in the frequency domain as DFMRQ(jω) ∈ C10:

ΓfMR(q, i)→



γ1N1e
jφ1 ε1,2 ε1,3 · · · ε1,10

ε2,1 γ2N2e
jφ2 ε2,3 · · · ε2,10

ε3,1 ε3,2 γ3N3e
jφ3 · · · ε3,10

...
...

...
. . .

...

ε10,1 ε10,2 ε10,3 · · · γ10N10e
jφ10





q1(jω)

q2(jω)

q3(jω)

...

q10(jω)


,

where

εk,r ∈ [0 γkNke
jφk ]; k 6= r, 1 ≤ (k, r) ≤ 10,

denotes inter-floor damping from the MRDs mounted between the k-th and (k− 1)-

th floors and γk is a factor taking into account the placement and number of MRDs.
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Thus, [
− ω2 + 2jωζkωk + ω2

k

]
qk(jω) +

10∑
r=1,r 6=k

µkrjωqr(jω) = −

[γkNke
jφk

mk

qk(jω) +
10∑

r=1,r 6=k

εkr
mk

qr(jω)
]

+ ΥFd(jω), Υ = Φ−1M−1,

(7.24)

Equation (7.24) can be rewritten as[
− ω2 + 2jωζkωk + ω2

k +
γkNke

jφk

mk

]
Φ−1xk(jω)

+
[ 10∑
r=1,r 6=k

µkrjω +
10∑

r=1,r 6=k

εkr
mk

]
Φ−1xr(jω) = ΥFd(jω).

(7.25)

Since the damping capability always takes its strongest effect at the level where the

MRDs are installed, DFMR can be considered as diagonally dominant, thus including

only terms γkNke
jφk . Other the coupling terms from the residual modes and modal

decomposition errors can be lumped to disturbance dk.

Taking the assumption of Rayleigh damping [31, 33], the frequency response

function (FRF) matrix, H(jω), of the smart structure is therefore obtained as

H(jω) =

Φ



1

ω2
1−ω2+2jζ1ωω1+

γ1N1e
jφ1

m1

0 · · · 0

0 1

ω2
2−ω2+2jζ2ωω2+

γ2N2e
jφ2

m2

. . .
...

... 0
. . . 0

0 · · · 0 1

ω2
10−ω2+2jζ10ωω10+

γ10N10e
jφ10

m10


Υ.

(7.26)

The transfer function of the DF model is approximated as

Nke
jφk ' Nk(1 + τks), (7.27)

where the MRD equivalent time constant,

τk =
φ0k

ωkN0k

, (7.28)
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plant FRF

disturbance

IMTM FS2SMC
xk qk

IMPMcurrent driver

low-level power source

∫
(·)dt

ukfMR(k)

xR

ik vk

Figure 7.3 : Closed-loop block diagram of the modal FS2SMC of the smart structure.

is estimated at normalized values of amplitude E = 1, current i = 1 and first modal

frequency ω1 = 1. Hence, the FRF of the smart structure is

H(jω) =
10∑
k=1

ΦkΥ
T
k

ω2
k − ω2 + γkNk

mk
+ jω

(
2ζkωk + γkNkτk

mk

) . (7.29)

The amplitude of input-output gain of the system as a function of frequency (ω/2π)

is shown in Figure 7.2.

In our design, the controller parameters are chosen as κk = 10, ηk = 1.25 and

L(s) is a Butterworth filter, i.e. L(s) = 1
s2+1.4142s+1

. Notably, for the control law

(7.21), a boundary layer [81] may be used in lieu of the signum function to smooth

the response if necessary.

From the modal control, i.e.

uk =

∫
vk(t)dt, (7.30)

the damping force can be computed as

fMR(k) = Ω−1uk, (7.31)

in which Ω−1 is the inverse mode participation matrix (IMPM). The controllable

force range should be constrained by the maximum capacity, iM and the residual
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force at zero current in the passive control case. For example, the relation between

magnetization current and damping force has the following form:

ik =

 |p0 + p1fMR(k) + p2f
2
MR(k)|, |ik| < iM,

0, |ik| ≥ iM,
(7.32)

where p0 = 0.127, p1 = −0.00094 and p2 = 0.0000021 for the RD-8041-1 at iM = 2

A. A schematic block diagram of the modal FS2SMC procedure for the multi-dof

smart structure system is shown in Figure 7.3 where as q(t) = Φ−1x(t); Φ−1 is the

inverse modal transformation matrix (IMTM).

7.4.2 Simulation results

In the simulation, four benchmark earthquake records (El-Centro 1940, Hachi-

nohe 1968, Northridge 1994, Kobe 1995) are considered to excite the system as ex-

ternal disturbances. We normalized the structural dynamics and all quake records

to a maximum acceleration level of 0.3g so that we have

xdk = xk < 15 mm

corresponding to the operational stroke and capacity of the experimental dampers

RD-8041-1. Extensive simulation was conducted with the scaled-down four bench-

mark quake records.

Typical results are shown in Figure 7.4 for the first floor’s phase portrait of the

uncontrolled and closed-loop motion under 0.3g record of the El-Centro earthquake.

Also, the spectrum of the first, fourth, sixth, eight and top floor modes for the

controlled case is depicted in Figure 7.5. It can be seen that not only a significant

reduction in displacement and velocity trajectories are observed with the proposed

controller, but also the system resonant frequencies are shifted further due to the

proposed FS2SMC to avoid building collapse from frequency resonance.

Feasibility of the proposed controller is verified via the time responses of the

controlled current signals, which are positive and constrained to 2 A, of the MRDs
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Figure 7.4 : Closed-loop and open-loop phase portrait.

Figure 7.5 : The spectrum of the first, fourth, sixth, eight and top floor modes for the controlled

case.

attached to the first and top floors, as plotted in Figure 7.6. Under the frequency

shaped robust control strategy, not only seismic vibrations can be effectively sup-

pressed but also the structural control responses involved can be kept at a low-energy

level. Indeed, the conjugate force-displacement trajectory of the MRD under the
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Figure 7.6 : MRD current.

Figure 7.7 : MRD force-displacement trajectory

scaled-down seismic disturbance is depicted in Figure 7.7, in which

xd1 = x1

and

fMR(1) = Ω−1u1.



163

The associated kinetic, damping, strain and input energy processes are analyzed in

the next section.

7.5 Discussion

Since internal forces within an engineering structure can be derived using relative

displacements and velocities, we herein compute the input energy (IE) in terms of

the relative motion as stated in the Section 7.2.1.

For analysis of the energy flow in the smart structure, we present in Figures

7.8 and 7.9 the relative kinetic energy (KE), damping energy (DE), strain energy

(SE), and IE signals with respect to displacement and velocity under 0.3g record

of the El-Centro earthquake in both uncontrolled and controlled cases, respectively.

Generally, from zero initial conditions,

xk(t0) = ṙk(t0) = 0,

output energy (OE) components, i.e., Ek, Eζ , Es, and Ei begin to increase from

zero when t ∈ [t0 ∞) under a horizontal ground motion excitation ẍg starting at t0.

In the uncontrolled case, the input energy received from the external disturbance

transmitted through the foundation of the smart structural system. The induced

energy signal distributes to the kinetic, passive damping, and strain energy of the

structure as mechanical OE, i.e. Ek, Eζ , Es and consequently, may exceed a permis-

sible threshold causing structural damage when the magnitude of seismic input is

too large. Indeed, due to excessive lateral motion results in structural inability to

dissipate the intrinsic Ek, Eζ , Es, constituted from the transmitted Ei signal, which

may eventually lead to serious structural damage.

For the controlled case, the reference is ideally set at xR = 0 with

L(s) =
1

s2 + 1.4142s+ 1
, κk = 10, and ηk = 1.25.
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(a) Open-loop Ek (b) Open-loop Eζ

(c) Open-loop Es (d) Open-loop Ei

Figure 7.8 : Uncontrolled relative energy signals under seismic disturbance, Ei → Ek, Eζ , Es.

By controlling the capability of absorbing excitation energy via the use of MR fluid

yield stress to ultimately mitigate the overall structural vibrations under seismic

disturbances, a low-energy smart structure can be achieved to withstand dynamic

loading source. Figure 7.9 of the flow of energy under current control of the embed-

ded MRDs attached to the structure, i.e. Ek, Eζ , Es and the control energy Ec under

the proposed control, where it can be seen that a small control electrical energy for

magnetizing the fluid in the smart devices can substantially reduce the mechanical

energy components in the presence of hostile loading sources.

Thus, in semi-active control with FS2SMC, by injecting a control energy (CE) for

magnetization, the MRDs can dissipate a large amount of seismic energy imparted
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(a) Controlled kinetic energy Ek (b) Controlled damping energy Eζ

(c) Controlled strain energy Es (d) Controlled trajectory including Ec

Figure 7.9 : Controlled relative energy signals under seismic disturbance for: Ek, Eζ , Es → Ei.

to the building structure. Under the robustly controlled magnetic field, the resulting

damping force over a finite displacement of MRDs can adjust mechanical parameters

of the seismically excited structure and dissipates the induced IE into heat through

the MR fluid itself. This heat is, in turns, transferred to the environment via

conduction and convection mechanisms. A schematic diagram of the energy flow

in the multi-dof smart structure system under external excitation by a dynamic

loading source is illustrated in Figure 7.10.

We now show effectiveness of the proposed FS2SMC by comparing its perfor-

mance, in terms of output energies, with a Lyapunov-based control (LC) scheme,

designed by employing an optimization algorithm to search for a suitable current
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Table 7.1 : Peak relative energy responses (J) under various seismic disturbances.

El-Centro Hachinohe

UC LC FS2SMC UC LC FS2SMC

Ek 161.9×103 534.144 406.81 53.48×103 137.89 106.9

Es 126.1×103 8580.7 6042.7 56.01×103 2779.7 1985.5

Eζ 17.1×103 1865.8 1863.9 6628.9 534.89 509.42

Ec - 8815.1 6296.5 - 3065.3 2114.1

Northridge Kobe

UC LC FS2SMC UC LC FS2SMC

Ek 380.3×103 2893.8 2261.2 926.97×103 1695.4 1280.2

Es 293.8×103 34143.9 29691 924.15×103 40834.9 34089

Eζ 38.06×103 11528 9606.4 112.11×103 9211.3 7676

Ec - 39074.3 31011 - 45789 35232

the incorporation of the frequency-depending relationships of force-displacement

and force-velocity of the smart devices into the system model and control design,

and hence, the ability to effectively shape the frequency responses of the overall

smart structure, the proposed controller can adjust the embodied energy to alter

its spectrum in a desired bandwidth, roll off from the resonance region to limit the

peak value of the mechanical and transmitted input energy terms, resulting in a low-

energy structure while avoiding natural modes of the integrated structural system

in dealing with any external loading source.

7.6 Summary

We have presented a frequency domain-based method for modeling and control

of low-energy structures embedded with smart devices to mitigate the structural vi-
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brations and dissipate the energy induced under external excitations. The controlled

smart devices, here magnetorheological fluid dampers, are represented by describ-

ing functions of amplitude, frequency and control signal. The overall frequency

response of the structure is obtained via a modal transformation. A frequency-

shaped second-order sliding mode control is then proposed to achieve the control

objective of maintaining structural resilience against any dynamic loading sources

at a low control energy level. The control signal is a combination of an equiva-

lent control containing a frequency shaping filter, and a robust control to drive the

system dynamics to the desired mechanical modes shifted away from the resonance

region. Experimental characterization of a laboratory MRD as well as a seismic

building structure simulation have been conducted. The structural responses of a

10-floor building subject to benchmark earthquakes and comparison results on ki-

netic, damping, strain and input energies have indicated effectiveness and feasibility

of the proposed method.
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Chapter 8

Thesis Contributions, Conclusions and Future

Works

This chapter presents a summary of the results drawn from this study, thesis con-

tributions and future works.

8.1 Summary

Experimental characterization and cyclic energy dissipation of a laboratory mag-

netorheological (MR) damper (MRD) have been conducted for analysis of low-energy

resilient structures integrated with smart dampers in Chapter 3. This work has pre-

sented multi-variable hysteresis models for semi-active structural members, namely

MR pin joint (MRP) and MR elastomer base isolator (MRE). At first, the unique

responses of MR devices are analyzed through a large quantity of experimental

testing under various loading conditions. Then, the modeling and characterization

are presented to show the current-dependent hysteretic relationships between the

damping force (torque) and the linear (rotary) displacement. Model identification is

considered here as solving a minimization optimization problem, and realized using

the PSO algorithm. Furthermore, the relationships between model parameters and

applied magnetic fields are also explored for the control application.

In Chapter 4, the problem of hysteresis in mechatronic smart devices such as

MRD, MRP and MRE, in the frequency domain has been addressed. The describing

function (DF) approach is applied to represent the nonlinear element of a smart

device hysteresis by a gain and a phase. Approximate closed forms of the DFs gain



170

and phase as functions of amplitude, frequency and current are obtained by using

curve-fitting technique, to facilitate the semi-active structural system analysis in the

frequency domain.

A second-order sliding mode controller is designed in Chapter 5, to provide a

real-time feedback control of MR devices for structural vibration mitigation. The

effectiveness and feasibility of the controller for vibration control in building struc-

tures are discussed. Response comparisons of top floor acceleration, inter-storey

drift and peak acceleration at each floor between passive and controlled structures

are stated to evaluate the performance of the proposed technique in the simulation

of a seismically excited three-storey benchmark building model.

In Chapter 6, the frequency domain-based method has been presented for model-

ing and control of structures embedded with smart devices to mitigate the structural

vibrations and dissipate the energy induced under external excitations. Frequency-

shaped sliding mode controllers are designed along with low-pass filters to implement

the desired dynamic sliding surface and shape the frequency characteristics of the

equivalent dynamics. The control signal exploits an equivalent control containing

a frequency shaping filter and a robust signal to drive the system dynamics to the

desired mechanical modes shifted away from the resonance region. The half-car

model (HCM) with active suspension control using the proposed technique, HCM

with passive HIS, and conventional HCM systems are taken into account in the

simulation at zero initial conditions.

The energy equations for a building structure embedded with smart devices are

established in Chapter 7. Two methods are used for deriving the input energy: one

based on the absolute motion and the other on relative motion. A frequency-shaped

second-order sliding mode controller (FS2SMC) is then proposed and designed for

buildings embedded with dampers to inject a small amount of control energy to dissi-
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pate vibration energy induced by external disturbances to the structure. The energy

spectra of of a 10-floor building, subject to benchmark earthquakes, are compared

between the uncontrolled case, Lyapynov-based control and proposed FS2SMC to il-

lustrate the capability of a low-energy smart structure in suppressing quake-induced

vibrations.

8.2 Thesis contributions

The contributions of this study are summarized as follows:

• Novel hysteresis models for MR fluid and elastomer based devices, namely

MR damper (MRD), MR pin joint (MRP) and MR elastomer base isolator

(MRE), have been proposed to describe the highly-nonlinear hysteretic rela-

tionship between input/output variables [25, 124]. These models are capable

of effectively working in a wide scale of exciting variables. The relationships

between the applied current and model parameters are also established for the

current-controlled method for MR device integrated smart structures.

• New frequency-based hysteresis models for MR devices using the describing

function (DF) method have been developed to obtain the overall structural

frequency responses via a modal transformation for control and analysis of

hysteretic behaviors in MR device-based smart structures [103]. Analysis and

experimental validation of the energy dissipation process in the MR fluid of

smart dampers in moving towards low-energy resilient structures embedded

with MR devices have been also presented [21].

• A second-order sliding mode controller (2SMC) in conjunction with the field-

dependent model is proposed to implement the semi-active control of MR de-

vices. To extend sliding mode control (SMC) design to the frequency domain,

frequency-shaped (FS) SMC (FSSMC) and FS2SMC have been developed.
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These controllers are applied to various mechanical systems including active

suspension [139] and smart structure systems [21, 59, 124, 137] to achieve the

control objective of maintaining structural resilience against dynamic loadings

under a low-power control signal and fail-safe operations.

8.3 Future works

The studies presented in this thesis were aimed to apply modeling and control

techniques to resiliently preserve structural health and function with a low energy

cost during extreme events or severe loadings. Following works in the energy-aware

design of smart structure systems can be explored:

• While developing the design approach for energy-aware protection of MR

based systems, the structural motion and ground floor were assumed to re-

main linear elastic and axially rigid, respectively. The effect of nonlinear and

hysteretic structures, bi-directional and rotational ground motions should be

investigated. For instance, soil-structure systems exhibit complex nonlinear

hysteretic behavior. Consider the (n + 2)-dof soil-structure system of mass

M and height H embedded with n MR devices subjected to dynamic loading

sources with acceleration vector ẍg of the form

Mẍ+ g(x, ẋ, xb, ẋb, θ, θ̇) = ΓfMR(x, i)−Mẍg, (8.1)

where g(·) represents the nonlinear restoring force vector including viscous

damping effects and hysteretic behavior; xb is the horizontal translation of the

base with respect to a reference frame; and θ denotes the rotation of the base

or rocking of the foundation around the axis perpendicular to the horizontal

direction. Here, the horizontal displacement of the system r can be given by

r = x+ xg +Hθ + xb. (8.2)
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Similarly as of (1.1) and (7.2), the energy equation can be expressed as

Ek + Eζ + Es + Eh = EMR − Ei. (8.3)

• Response analysis for multi-support earthquake excitation should be further

considered in assessing the damage potential and developing an energy-based

control approach for low-energy structures embedded with smart devices.

Refer to Section 3.2.3, it was shown that the dissipated cyclic energy by a

smart damper is converted into heat, depending on the applied magnetization

current, oscillation amplitude and excitation frequency. Hence, further studies

would be highly desired to derive a closed-form expression for the temperature

rise in controllable fluid dampers from a different type of input excitations

under fluctuating magnetic field.

• The proposed FS2SMC was numerically verified in the simulation of a half-

car model (HCM) with inbuilt active hydraulically interconnected suspension

(HIS) system. Experimental validation of the proposed technique for vehicle

suspension systems should be conducted as schematically depicted in Figure

8.1.

The proposed FSSMC methodology is beneficial for specific applications where

the system’s natural frequencies and some frequency bandwidth must be avoided

to prevent a structural failure. The control schedule can also be applied

wherein a fixed switching frequency is preferred to reduce the embodied energy

losses. The controller can be designed along with a notch filter to implement

the desired dynamic sliding surface.
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(a) HCM integrated with MRDs

(b) CAD design schematic of Figure 6.9

Figure 8.1 : Semi-active suspension system.
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Appendix A

Structure Model & MR Device Parameters

A.1. Building Structure Parameter:

The structural parameters of the 10-storey shear building model [138] are

Parameter Description Value Unit

mk=1,2,...,10 mass 360 ton

ck=1,2,...,10 damping 6.2 MNs/m

kk=1,2,...,10 stiffness 650 MN/m

The structural parameters of the three-storey building model [58] are

Floor mk (kg) ck (Ns/m) kk (kN/m)

1 98.3 125 516

2 98.3 50 684

3 98.3 50 684

A.2. MRE Model Parameter:

fe = ceẋ+ kex+ αe sinh(βex), (A.1)

where numerical values of the model parameters as functions of i are

ce = ce0 + ce1i = 339.6 + 576.7i Ns/m,

ke = ke0 + ke1i = 3343.1 + 5816.1i N/m,

αe = αe0 + αe1i = 8.11 + 4.981i,

βe = βe0 + βe1i = 0.3463 + 0.1322i.

(A.2)
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A.3. MRP Model Parameter:

Tp = cpθ̇ + kpθ + αpzp + Tp0, zp = tanh(βpθ̇ + δp sgn θ), (A.3)

where numerical values of the model parameters as functions of i are

cp = cp0 + cp1i = 0.055 + 3.11i,

kp = kp0 + kp1i = −5.3 + 60.3i,

αp = αp0 + αp1i+ αp1i
2 = 0.8 + 6.2i− 0.6i2,

βp = βp0 + βp1i+ βp2i
2 = 11.11 + 5.33i− 2.1i2,

δp = δp0 + δp1i = 0.457 + 0.32i,

Tp0 = Tp00 + Tp01 = −0.16 + 0.009ii = 0.457 + 0.32i.

(A.4)
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(a) αp

(b) βp

(c) cp

(d) Tp0

(e) kp (f) δp

Figure A.1 : MRP model parameter identification results (solid) and polynomial fitted results

(dash).
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Appendix B

Half-car Test Rig Identification

B.1. Half-car Test Rig Identification:

Let ys, yt, and f represent the suspension displacement, tire displacement and

applied force, respectively.

Raw measurements

Force (N) Left side (mm) Right side (mm)

f ys1 ys2 yt1 yt2 ys1 ys2 yt1 yt2

0 82 86 30 33 89 84 31 31

250 100 99 29 31 102 97 30 30

500 113 113 28 30 117 112 28 28

750 126 126 26 29 129 124 27 26

1000 140 139 24 27 143 138 25 25

Relative measurements Average Actual

Left side (mm) Right side (mm) (mm) (mm)

dys1 dys2 dyt1 dyt2 dys1 dys2 dyt1 dyt2 dys dyt Ys Yt

0 0 0 0 0 0 0 0 0 0 0 0

18 13 -1 -2 13 13 -1 -1 14.25 -1.25 13 1.25

31 27 -2 -3 28 28 -3 -3 28.5 -2.75 25.75 2.75

44 40 -4 -4 40 40 -4 -5 41 -4.25 36.75 4.25

58 53 -6 -6 54 54 -6 -6 54.75 -6 48.75 6
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The suspension spring stiffness is calculated as

ks =
1

0.0493
=

f

Ys
= 20.28 kN/m,

Tire stiffness is obtained as

ks =
1

0.0058
=

f

Yt
= 172.41 kN/m.

Hence, stiffness is

k =
kskt
ks + kt

= 18146 N/m.
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B.2. Step Input Response & HCM Parameter:

t (sec) x (mm) | exp(1− x)| T/2 (sec)

0 0 1 0.35

0.35 1.83 0.83 0.36

0.71 0.31 0.69 0.37

1.08 1.57 0.57 0.37

1.45 0.51 0.49 0.36

1.81 1.40 0.4 0.37

2.18 0.67 0.33 0.36

2.54 1.26 0.26 0.36

2.9 0.82 0.18 0.36

3.26 1.11 0.11 0.36

3.62 0.94 0.06 0.36

ẍ+
c

m
ẋ+

k

m
x = 0

∴ r1,2 = − c

2m
±
√
c2 − 4mk

4m2
= − c

2m
± j
√
k

m
−
( c

2m

)2
= −γ + jω

x(t) = Ae−ζωn sin(ωn
√

1− ζ2t) = Ae−ζωn sin(ωt)

⇒x(t) = exp(−γt) = exp(−0.507t), γ =
c

2m
= ζωn.

Now, we have

γ = 0.507 1/sec, T/2 = 0.36 sec, ω =
2π

T
= 8.726 rad/sec,

ωn =
√
ω2 + γ2 =

√
8.7262 + 0.5072 = 8.741 rad/sec,

m =
k

ω2
n

= 237.5 kg,

ms = 2m = 475 kg,

cs = 2msγ = 240.84 Ns/m.
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The HCM parameters are identified as

Parameter Description Value Unit

m quarter car (sprung) mass 237.5 kg

ms vehicle body (sprung) mass 475 kg

mu wheel (unsprung) mass 35 kg

Is rotational inertia 120 kgm2

ks suspension spring stiffness 20 kN/m

kt tire stiffness 172 kN/m

cs suspension damping 240 Ns/m

The HIS system parameters are adopted from [136].
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Appendix C

Testo 875-2i Report

C.1 . Testo 875-2i Report on Heating Effect of RD-8041-1 MR Damper



Heating of MR Damper

Company

Device
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E-Mail: sayed.royel@uts.edu.au

Phone: 0431412691

2808788Serial No.:Testo 875-2i

Sayed Royel

Measuring Site:

Experimental study on heat generation and dissipation of MRDTask

University of Technology Sydney

1/6Page

CB11.B4.105 Dynamics & Mechanics Lab
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Heating of MR Damper
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Heating of MR Damper
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Heating of MR Damper
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