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A Model for Inferring Market Preferences from Online Retail Product 

Information Matrices 

 

Abstract 

This research extends information display board methods, currently employed to study 

information processing patterns in laboratory settings, to a field based setting that also yields 

managerially useful estimates of market preferences. A new model is proposed based on 

statistical, behavioral, and economic theories, which integrates three decisions consumers must 

make in this context: which product-attribute to inspect next, when to stop processing, and 

which, if any, product to purchase. Several theoretical options are considered on how to model 

product attribute selection and how to treat uninspected attributes. The modeling options are 

empirically tested employing datasets collected at a popular e-tailer’s website, while customers 

were making product evaluation and purchase decisions. Subsequent to identifying the best 

model, we show how the resulting attribute preference estimates can be managerially employed 

to improve customer targeting of abandoned shopping carts, for follow up communications 

aimed at improving sales conversions.  

Keywords: Choice Models; Information Processing; E-Commerce; Sequential Search; 

Expected Utility. 
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A large number of retailer websites (i.e., Apple, Nikon, Dell, Ford, Best Buy, etc.) 

organize or have a feature that allows customers to organize product-attribute information at the 

point-of-purchase in the matrix form reminiscent of information display boards (IDBs) widely 

employed in lab-based information processing research (see Figure 1). In this research, we 

update the IDB methodology to an online format and propose and estimate an econometric 

model that infers attribute importance weights from consumers making durable goods purchases 

at a vertically-integrated e-tailer’s website. Product information matrices require shoppers to 

make a sequence of decisions: (i) which product-attribute to inspect next, (ii) when to stop 

processing information, and (iii) which, if any, product to purchase. Our model-based, multi-

disciplinary approach incorporates statistical, behavioral, and economic theories to estimate 

attribute importance weights using data from this sequence of three decisions.  

Determining the relative importance of product attributes is one of the canonical 

problems in marketing management. However, as Feit, Beltramo, and Feinberg (2010) discuss, 

both market and lab based techniques to measure preferences have their shortcomings. 

Specifically, while market data comes from consumers making actual decisions, it often lacks the 

variability in attribute levels needed to estimate attribute preference weights. On the other hand, 

survey and lab based methods such as conjoint analysis provide the necessary variation in 

product attributes, but produce inconsistencies between predictions and actual market outcomes, 

suggesting that respondents may not make “hypothetical survey choices exactly as they make 

purchase decisions” (pp. 785-786). Our research attempts to overcome these shortcomings by 

showing how IDB data collected by e-tailers outside the lab and with relatively little attribute 

level variation, can still yield meaningful market preferences for attributes provided consumer 

decisions are modeled in an integrated manner. We anticipate that the proposed method will be 
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of most interest to e-tailers vertically integrated with manufacturers. However, the ease of 

implementing the online IDB make it attractive for other e-tailers to collect this information to 

collaborate with their suppliers on product design, pricing, and advertising 

IDBs have been extensively used to study how consumers process product attribute 

information (e.g., see Payne, Bettman, and Johnson 1993 and Bettman, Luce, and Payne 1998 for 

reviews) but have not been used to infer product attribute weights. Yang, Toubia, and De Jong 

(2015) and Meißner, Musalem, and Huber (2016) have shown how using eye-tracking 

technology and modeling the information processing of subjects can be used to improve holdout 

sample predictions in a laboratory based conjoint study. However, they rely on specialized 

equipment, experimental methods, and do not test their model’s predictions with actual market 

outcomes. The current research uses data from shoppers who made a single visit to an e-tailer’s 

website and models their information processing and choices on an online IDB. The proposed 

method is not necessarily a substitute for other lab based studies, but it does leverage data that 

can uniquely be collected at the point-of-purchase by e-tailers. 

Consumers can learn about products and their attribute-levels from a variety of sources 

through both active and passive learning over a period of time. We assume that the cumulative 

effect of all past learning and search can be summarized at a point in time by a consumer’s 

current preferences for particular attributes and current expected level and range of attribute 

values in the market. So for instance, someone shopping for a car would know the relative 

importance (to them) of horsepower, fuel economy, price, etc. and might expect that the fuel 

economy for subcompact cars to range from 30 to 35 miles per gallon, say. We do not model the 

consumer’s learning process over time or the source of their preferences; we assume that the data 

to model this would be unavailable to most e-tailers. Rather, we propose a model in which 



4 

 

 

consumer information processing is driven by their ex-ante expectations of the level and range of 

attribute values and the costs and benefits of various actions. 

The data collected for this work comes from the retail website of a firm that showed 

shoppers the names of products and attributes, as in the first row and column of Figure 1, but 

concealed the product-attribute values in the remaining cells. Shoppers then clicked on cells to 

reveal the product-attribute levels and were given the option of purchasing one of the products. 

We develop an integrated, utility-based econometric model for the three required IDB decisions, 

i.e., which cell to open, whether or not to continue acquiring additional information, and which 

product to buy. To model the decision of which cell to open we must quantify the benefit of 

hitherto unopened cells. In our base model, the benefit is quantified using a standard expected 

value approach, which integrates over the potential values that an attribute level might take. We 

term this as the Expected Value model. However, some researchers (e.g., Miller 1993) have 

questioned the validity of representing consumer beliefs via parametric distributions, which are 

essential for expected value calculations. Therefore, we also develop a new, non-parametric 

approach, which we term as the Max-Min model. This model draws on the work of Jaccard, 

Knox, and Brinberg (1979) and Jaccard, Brinberg, and Ackerman (1986) by relying only on 

estimating the end points of the belief distribution. Finally, we propose a third model, termed as 

the Hybrid model, in which the proximity of an unopened cell also influences the benefit of 

opening it. These model elements are also incorporated into the decision of when to stop opening 

cells in the IDB and to move on and make a final product selection.  

As repeatedly demonstrated in behavioral work, consumers typically do not inspect all 

product-attributes available to them in an IDB (e.g., Sheluga, Jaccard, and Jacoby 1979). Are 

these product-attributes unimportant to the consumer and ignored? Does a consumer rely on a 
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prior value of this product-attribute? Using the previous literature as a starting point (e.g., 

Bettman, Luce, and Payne 1998; Branco, Sun, and Villas-Boas 2012; Meyer 1982), we test three 

plausible approaches to assigning values of uninspected cells: a) using the mean of the actual 

attribute levels (Actual Mean), b) setting the unseen attribute level to zero, i.e., unseen attributes 

do not impact the decision (Not Used), and c) estimating the inferred attribute level via a model 

parameter (Inferred Mean). In Table 1, we summarize the differing model variants for 

determining product-attribute selection and values of unseen product-attributes.  

Over all datasets we find that the combination of the Inferred Mean method for handling 

unseen attribute levels and the Max-Min method for cell opening works best. Our results include 

attribute importance weights which would typically only be available from laboratory based 

conjoint analysis for consumer durable products as well as information on the market’s expected 

value and range of attributes. These parameters can help e-tailers address issues related to new 

product design, advertising, promotion, and follow up communications. For instance, when the 

inferred maximum and minimum values of an attribute exceed those actually found in the 

marketplace this indicates greater uncertainty about this attribute: highlighting this attribute on 

websites or in follow-up advertisements may help to educate consumers. In addition, we 

illustrate how the model can be used to target customers who visited the IDB enabled website 

who were most likely to make a purchase and which item they are more likely to purchase; this 

provides a method of following up on “abandoned shopping carts,” a problem familiar to most e-

tailers. We know of no other methods that provide these insights using revealed preference data. 

BACKGROUND 

The literature on information processing is vast and, in this section, we briefly review only those 

studies that have a direct bearing on our research. The economic modeling literature takes a 
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formal cost-benefit approach wherein decision makers compare the expected value of additional 

information to the cost of acquiring it. Hagerty and Aaker (1984) model how consumers process 

information by operationalizing the marginal benefit of further search via the expected value of 

sample information (EVSI) and proposing a stopping rule based on comparing the EVSI to the 

cost of obtaining additional information. The EVSI is dependent on prior beliefs and the 

sequence in which information is inspected. Hagerty and Aaker require that consumers’ prior 

expectations for the value of each product’s attribute level be described by a multivariate normal 

distribution. Hagerty and Aaker test their model using parameter estimates obtained from an 

initial survey and evaluate how well the EVSI model predicts the subsequent IDB information 

acquisition activity of their subjects. We develop our cost-benefit models based on Hagerty and 

Aaker, but significantly expand upon their model by permitting our models and empirical 

implementation to handle both nominal and continuous attributes, and to estimate market level 

attribute importance from observed behavior alone, without the need to augment with lab data. 

 Yang, Toubia, and De Jong (2015) use eye-tracking software in an experimental conjoint 

analysis with repeated observations per person to infer consumer preferences. They find that 

incorporating the sequence of eye movements, which represent consumer information 

acquisition, improves hold-out sample fit and reduces the number of profiles that respondents 

need to rate. Implementing their model on websites will be problematic for e-tailers because 1) it 

requires all attributes to be categorical, 2) requires consumers to believe that all attribute levels 

are equally likely, and 3) requires shoppers to use computers with eye-tracking cameras/software 

installed. Of course their work has the usual benefits of lab-based methods, i.e., the ability to 

incorporate hypothetical attributes/levels and to capture heterogeneity in attribute preferences. 

Overall, we see our approach as complementary but distinct from Yang, Toubia, and De Jong 
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(2015). Our work is distinctive because it relies on a different information acquisition method 

(IDB vs. eye-tracking), uses product data with very different characteristics (duplicate attribute 

levels vs. experimental design) that is more applicable to real-world purchasing scenarios, and 

requires a novel modeling approach. Our work is complementary because it also shows that 

consumer attribute preferences can be estimated more accurately by tracking and modeling 

consumers’ endogenous information acquisition. We are the first to show that the benefits of 

attribute preference measurement can be achieved in real-world retail setting using IDB data.  

The behavioral information processing literature based on laboratory studies using IDBs 

primarily focuses on describing consumers’ information processing and choice behaviors. 

Among others, Payne, Bettman, and Johnson (1993), Bettman, Luce, and Payne (1998), and 

Dhar and Nowlis (2004) find that consumers’ process information in three basic ways; (1) by 

alternative; (2) by attribute and (3) a combination of alternative- and attribute-processing. 

Behavioral researchers have found these patterns to be pervasive, supporting the notion of 

constructive choice processes, and to vary systematically depending on the stage and type of 

choice task (Bettman and Park 1980; Biehal and Chakravarti 1986). For example, Biehal and 

Chakravarti (1986) argue that if memory is “brand-organized” then the initial processing of 

information will be brand or alternative (column) based as opposed to attribute (row) based. Our 

models advance this literature by incorporating attribute and alternative based processing into an 

overall cost-benefit approach. 

Other behavioral approaches to information processing have a bearing on our proposed 

models. Simonson, Huber, and Payne (1988) collect data similar to the method of Hagerty and 

Aaker (1984) and find that prior certainty, attribute importance, and an overall measure of brand 

attractiveness have a significant impact on the sequence of information processed. Meyer (1982) 
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models the probability that information on an alternative will be accessed at a given time, and 

how expectations with respect to attribute values are updated over the information acquisition 

sequence. Meyer (1982) tests his descriptive model in two controlled experiments, and unlike 

our research, does not model consumers’ purchasing decision. However, he notes the importance 

of “assess(ing) the degree to which it (the model) can predict individual behavior in complex 

settings” (p. 120).  

Other research on the same dataset employed for the current study highlights the 

differences in methodology and the contribution of this research. Mintz, Currim, and Jeliazkov 

(2013) use a process framework and categorize the degree to which each shopper uses an overall 

pattern of “attribute” or “alternative” based information acquisition. Mintz, Currim, and 

Jeliazkov (2013) relate the “pattern” of information acquisition to whether consumers’ buy or 

don’t buy one of the products. By comparison, the model primitives in this research are 

shoppers’ preferences and expected level and range of attribute levels, which are revealed in 

each step of the information acquisition process. While Mintz, Currim, and Jeliazkov (2013) 

reduce the process to a descriptive scalar measure (e.g. degree of attribute based processing) and 

does not provide attribute importance weights, this research proposes a cost-benefit/behavioral 

structure used to infer preferences and market expectations. Currim, Mintz, and Siddarth (2015) 

describe product choice as a function of the revealed product attributes as opposed to all the 

information available. They demonstrate that it is important to consider what information is 

accessed in an IDB when predicting choice. However, since shoppers do not inspect product-

attribute levels at random, the product attribute-weights measured by Currim, Mintz, and 

Siddarth (2015) suffer an endogeneity bias and cannot be relied upon for management decision 

making. In contrast, the method proposed in this research overcomes the endogeneity bias by 
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jointly modeling information acquisition and product choice. In summary, neither Mintz, Currim, 

and Jeliazkov (2013) nor Currim, Mintz, and Siddarth (2015) consider the full range of decisions 

made by shoppers at the point of purchase and consequently do not provide useful measures of 

attribute importance. 

Our model infers preferences and elements of consumers’ prior information using an 

(updated) IDB methodology. In that prior research has focused almost exclusively on lab based 

studies, how do we know the IDB method is valid in actual choice situations? First, past research 

by Johnson, Meyer, and Ghose (1989) and Johnson, Payne, and Bettman (1988) show that 

subjects display similar information processing, choices, and eye movements compared to 

subjects who are not using IDB computerized decision process tracers. Thus, there is evidence 

that requiring shoppers to “click” on information in the IDB does not alter their shopping 

behavior. Second, our research uses hold-out samples of consumers in actual buying situations 

and test the predictions of the model against actual shopping behavior. Third, Lehmann and 

Moore (1980) demonstrated in a longitudinal study using actual purchases (healthy bread) that 

information acquisition via an IDB conformed to theoretical predictions of how much 

information would be accessed as well as which specific product-attributes would be inspected. 

Thus, as argued by Aschemann-Witzel and Hamm (2011), consumers’ greater familiarity with 

these IDB formats and the strong theoretical and laboratory based results suggest field based 

research using IDB’s will yield useful managerial insights.  

In summary, our study differs from past research in that it yields attribute importance 

weights by formulating an integrated model of which attribute to inspect next, when to stop, and 

which alternative to choose in an actual point-of-purchase situation where product attributes are 

not experimentally manipulated and prior information about consumers is incomplete. 
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DATA 

We introduce the data collection method at this point as a template for how e-tailers can collect 

the data and to motivate the econometric model in the next section. The data was collected by 

Internet Technology Group, Inc. (ITGi) for an online study of consumer behavior at a well-

known electronic retail-manufacturer’s website. Due to confidentiality agreements, the name or 

exact nature of the product cannot be revealed. However, the product is a consumer durable with 

the types and number of features similar to what might be found in a computer, tablet, e-reader, 

or camera. The data collection procedure is discussed next followed by descriptive statistics. 

Data Collection 

Unlike previous IDB studies, the data does not come from a lab-based study but represents 

information processing and purchases of real shoppers. The retailer installed the Decision Board 

Platform (Mintz et al. 1997) on its website for a consecutive 50 hour period over a weekend. 

Similar to the classic Mouselab IDB used in many previous lab studies (e.g., Payne, Bettman, 

and Johnson 1993), this platform recorded shoppers’ sequence of product-attribute information 

acquisition and their final choice. As shown in Figure 2, three products were available in column 

format with each product’s model number and price shown in the first row.
1
 Cells containing 

information on eleven other product attributes for each alternative appeared in corresponding 

rows below, but these values were concealed until the consumer clicked and revealed the value 

of that attribute level. Similar to the “Choose” command button in the mock-up, a prominent 

“Customize and Buy” command button was located at the bottom of each column.
2 
If a customer 

clicked on the “Customize and Buy” button, they were taken to a secure server where they 

entered shipping location and credit card information, which for legal reasons is unavailable to 
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us. No other data on consumers’ prior knowledge or demographics was collected by the 

company, typical of internet-based retail settings. 

The data was collected from 895 shoppers who selected one of three distinct price tiers 

(i.e., high, medium, or low) and were directed to different websites that featured three products 

and eleven attributes. To control for heterogeneity between these market segments, we analyze 

these datasets separately. We first present a detailed description and results for the high priced 

market segment. To underscore the generalizability of the method and results, we also present 

selected model based results for the other two segments when reviewing the empirical 

application. Table 2 indicates which attributes were continuous and discrete, and the ordinal 

ranking of their attribute levels. Every shopper saw the same product-attribute matrix in which 

products 1 and 3 were the lower-priced alternatives and product 2 had a higher price. Attributes 

10a and 10b were revealed together when a cell in row 10 was clicked; these were elements of 

the physical dimensions of the product (e.g., height and weight), which were not perfectly 

correlated across the alternatives (i.e., the lightest product was not the shortest). The products 

shown were real, not hypothetical, and, as a result, attribute-levels for six of the attributes (A2, 

A4, A6, A7, A8, and A9) were the same for all products; further, for several other attributes 

these levels were the same for two of the three products. Despite these overlaps, a careful 

inspection reveals that the highest priced alternative, product 2, does not dominate on all the 

attributes because it is missing the desirable discrete attributes 3 and 11.  

Descriptive Statistics 

Data from the higher priced market segment consists of point-of-purchase information 

processing data from 136 shoppers. As shown in the right hand side of Figure 2, the data from 

each shopper provides the following information: the sequence of product-attribute levels 
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inspected, the last cell accessed, and which one of the three products or the “no purchase” 

alternative was chosen. We only include those observations in which the customer accessed more 

than one cell. The products, attributes, and website layout were chosen by the e-tailer. 

As reported in panel A of Table 3, 58 of the 136 shoppers (43%) “customized and 

bought,” with 27 customers purchasing product 2 (20%), the most expensive product, and 13 and 

18 shoppers, respectively, purchasing the two equally priced products 1 (10%) and 3 (13%). 

Only 7% of shoppers accessed all the information in the Decision Board (panel B lower right 

corner), with the average shopper accessing 11.54 of the 33 cells (panel A). Those who 

“customized and bought” accessed more cells than those who did not (13.62 vs. 9.99), however 

inter-shopper variation was high (standard deviation 9.24). 68% of shoppers accessed 

information on all three products, 9% for two products and 23% for a single product (not listed in 

table).  

As expected and as reported in panel B of Table 3, shoppers accessed attributes in the top 

rows more often than those in the bottom rows; A1 was accessed most often (89% of shoppers 

accessed A1 for at least one of the products, see column labeled “Overall”), A3 second most 

(70%), and A10 least (40%). 50% of the shoppers accessed five or fewer rows, 15% accessed 6-

10 rows, and only 35% of shoppers accessed all 11 rows (not listed in table). Panel B also reports 

the percentage of shoppers who clicked on each individual cell in the IDB and shows that most 

shoppers only accessed a subset of the information available to them in what would be 

considered a relatively high price, high involvement type of purchase.  

MODEL 

Our model is intended to provide managerially useful estimates of attribute importance from 

consumers in an actual purchasing situation. We assume that shoppers learn about products from 
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a variety of sources at different points in time and that this knowledge can be represented by 

shoppers’ attribute importance and their expected level and range of product-attribute values. 

The product attribute weights {b} and the expected distribution of product attribute levels and 

ranges (represented by f(xk) and {Maxk, Mink}) are model primitives that we infer from the data 

by modeling the information acquisition process including which product-attributes to inspect, 

when to stop acquiring additional information, and which product, if any, to select.  

Base Model  

Modeling IDB data presents two major challenges: (1) how to represent the value of acquiring 

new information and (2) how to handle attribute levels that were not inspected. We begin by 

describing a model that incorporates an expected value calculation of processing benefits and 

uses the average values of the actual attribute levels to represent the ex-ante values of product-

attributes not inspected. An outline of the estimation procedure is included and full details are 

provided in the Online Technical Appendix. We then describe alternative models that 

incorporate other behavioral mechanisms for the two processes.  

Consumers process information for and reveal product-attribute levels by clicking on 

cells in an online point-of-purchase IDB; products are in columns and attributes are in rows. We 

assume that consumers have ex-ante expectations for the levels of the product-attributes, 

represented by 
jkx for product j and attribute k. As a consumer inspects product-attributes, she 

discovers xjk, the actual value of attribute k for product j. Let the vector 
ijx represent the 

combination of revealed and ex-ante expected values for product j for person i. Before inspecting 

any product-attributes 
ijx = 

jx . When a product-attribute level is revealed, xjk replaces 
jkx in the 

vector 
ijx and this vector therefore corresponds to consumer i’s unique information processing 
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pattern. The vector 
ijx includes an intercept term that represents the product name or any other 

additional information that is revealed prior to search, in our case the product name and price. 

The first component of the model specifies how consumers make the final choice 

between product alternatives. As is standard in the discrete choice literature, we assume that the 

final product decision is based on a linear compensatory indirect utility function. The indirect 

utility that consumer i expects from product j is given as: 

' .
ij

f

ij ijV x        (1) 

Here 
f

ijx  represents the final vector of product-attribute levels for product j that consumer i has 

revealed. The error term ε represents additional uncertainty about any remaining attributes and/or 

other factors related to the product, e.g., the performance of the product in particular usage 

situations, durability, quality, etc. If the consumer makes a product choice without inspecting any 

product-attribute levels at the point-of-purchase, his choice is based on '

j ijx  . As the 

consumer sequentially inspects product-attribute levels, indirect utility is given by '

ij ijx  at 

each step of the process.  

Let f

iX  represent the final matrix of product-attributes across alternatives, in a particular 

choice set used by a consumer and εi the stacked vector of εij. The consumer’s ultimate decision 

problem is to choose the alternative corresponding to '( )f

i iMax X  . When εij is distributed 

i.i.d. standard extreme value, the expected maximum utility across alternatives is given as (see 

Anderson, de Palma, and Thisse 1992): 

 ( ' ) ln 'exp 'f f

i i iE Max X X               ,   (2) 

where ι is a vector of ones and λ is Euler’s constant.  
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 We now consider the benefit to the consumer of inspecting or processing more 

information as part of their decision process. A consumer will acquire additional information if it 

leads to a “better” final decision. In this case, we operationalize “better” as the change in the 

expected maximum utility, equation (2). At any step of the process, let n

iX  represent the matrix 

of product-attribute levels currently being used by the consumer after n cells have been opened
3
 

and n

iX  the state of the matrix if one additional cell is opened. The benefit of revealing the 

contents of this new cell, xjk, is given by ( ' ) ( ' )n n

i i i iE Max X E Max X             , which 

in turn can be written as: 

   ln 'exp ' ln 'exp ' .n n

i iX X              (3) 

Per equation (3), opening a new cell in the IDB will yield an incremental expected maximum 

utility, χ. Note that this value can be positive or negative depending on the value of xjk in the 

opened cell; xjk can be less than that what was expected resulting in a negative value for χ. 

Consumers acquire information about products and attribute levels from many different 

sources at different points in time and bring that information with them to the point-of-purchase. 

While we do not model that extended search process, if their prior information is complete and 

known with certainty, we would not see any additional information acquisition at the point-of-

purchase. Consistent with economic models of product search (e.g., Moorthy, Ratchford, and 

Talukdar 1997), we assume that consumers prior knowledge and uncertainty about the values of 

the product-attribute levels xjk can be represented via the parametric distribution  jkf x . Then, 

the expected benefit of inspecting the cell with attribute k for product j is: 

   ln 'exp ' ( ) ln 'exp ' .n n n

ijk i jk jk iX f x dx X               (4) 
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The quantity 
n

ijk 
 can be calculated for every product-attribute level which has not already been 

inspected by the consumer and this quantity is used to decide if any additional information 

processing will be undertaken, and if so, which product-attribute level will be inspected next. 

Numerical analysis shows that the value in (4) is positive when the ex-ante value of xjk is the 

expected value or average 
jkx ; under other assumptions one could calculate the absolute value. 

We assume the cost of processing information in the point-of-purchase IDB is constant for each 

inspected cell and is not included in equation (4), but influences the decision to continue 

processing, as discussed below. The quantity in equation (4) plays the same role as the EVSI of 

Hagerty and Aaker (1984), but can accommodate any parametric distribution, not just the 

multivariate normal, thus accommodating both continuous and discrete attributes. 

We finalize the model specification by formally stating the decisions faced by the 

consumer. Because, all consumers in our study inspected at least one product attribute level, the 

first decision made is which product attribute level to inspect. Mathematically, the consumer 

inspects xjk if 
n

ijk 
 is max{

n

ijk 
} for all j and k values. Like Hagerty and Aaker (1984), we assume 

that consumers will continue to inspect product-attributes as long as the expected gain exceeds 

some threshold, τ, which represents the cognitive cost of acquiring and processing additional 

information. In other words, consumers will continue to inspect product-attributes as long as: 

    { } ,n

ijkMax           (5) 

where the set { }n

ijk 
 excludes cells that have already been inspected. We use the superscript “n+” 

and the subscript i to emphasize that the value of 
n

ijk 
 depends on which other product-attribute 

levels have already been inspected, i.e., the n previous selections made by individual i. Finally, 

letting f

iX  represent the final attribute matrix containing all the inspected attribute levels and a 
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column representing the “none” or outside good, then the chosen alternative is the one which 

corresponds to ( ' )f

i iMax X  . 

Equation (4) calculates the benefit of processing additional information as the expected 

value of revealing a particular product-attribute compared to the current state of knowledge. This 

formulation is similar to the “directed cognition model” of Gabaix et al. (2006). Unseen product-

attributes, i.e., the product-attribute levels not revealed by the consumer in the IDB, are 

represented by the ex-ante expected values 
jkx .  

Model Estimation. The data contains three pieces of information corresponding to the 

model elements described above: (i) which product-attribute level to inspect next, (ii) whether or 

not to continue inspecting product-attribute levels, and (iii) which product to choose. We assume 

that idiosyncratic shocks attend to not only the final product choice, but also to information 

processing decisions. This provides a straightforward way to model the multinomial or binary 

outcomes of the information processing model. The actual observations of these events allows 

for the specification and estimation of the statistical models. 

Let 
n

ijkx 
 be a candidate product-attribute level (i.e., the cell in the IDB). It is assumed the 

consumer makes a stochastic choice based on 
n

ijk ijkn    where η is an i.i.d. extreme value error 

term with scale 1 and the subscript n indicates the n
th

 product-attribute level accessed. The 

consumer chooses which attribute level to inspect next based on max{
n

ijk ijkn   } for all j and k; 

and the probability of this multinomial outcome is given by: 

 

1 1

exp
Pr( 1) ,

exp

n

ijkn

ijk J K
n

ijk

j k
j M k M

x










 
 

   

  
      (6) 

where M is the set of product-attribute levels already inspected.  
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Let
n

ic  = 1 if individual i continues to inspect product-attribute information at step n. 

Then 
n

ic  = 1 if the largest value of 
n

ijk 
 is greater than some threshold. Specifically, if 

,

max n

ijk in

j k M

  



    then information processing continues. Assume the idiosyncratic shock νin is 

distributed i.i.d. extreme value with scale l then: 

  ,

,

exp max

Pr 1

1 exp max

n

ijk

j k Mn

i

n

ijk

j k M

c

 

 









 
    

  
 

     
 

   .    (7) 

Given the previous assumptions about ε, the final choice probability is given by: 

'

1
'

1

exp
Pr(y 1)

exp

ij

ij

f

ij J
f

j

x

x








 
  

 
 

 ,       (8) 

where the J+1
th

 product corresponds to the “no-purchase” option. The deterministic component 

of utility for the outside good is set to zero.  

For each individual, Ni attribute levels are inspected. Let 
n

ix    correspond to the cell 

inspection probability given in (6) for the n
th

 cell opened, 
n

ic    correspond to the probability of 

continuing to inspect cells given in (7), 1 n

ic    the probability to quit, and 
j

iy   the final choice 

probability, given in (8). The likelihood function for an individual is given by: 

1

1

1
i

i i

N
N Nn n j

i i i i i i

n

x c x c y




 
                  

 
  .    (9) 

Assume a shopper inspected 11 product-attribute levels. Then the terms 
1

1

iN
n n

i i

n

x c




        refer to the 

first 10 cells opened and the decision to keep opening cells, and the terms 1i iN N

i ix c        refer to 

the 11
th

 cell opened and the decision to stop opening cells. Bayesian Markov Chain Monte Carlo 
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(MCMC) methods are used to obtain draws from the posteriors of all model parameters. In 

addition to the vector of importance weights β and the scalar stopping threshold τ, the parameters 

for f(xjk) must be estimated or specified. Because all the products in the current study represent 

the same brand in a particular price category, we assume f(xjk) = f(xk), i.e., the a priori 

distribution of the likely levels of an attribute are the same across products. However, this 

assumption may need to be revised in situations in which the products represent different brands 

or are from different price tiers. 

 Our data contain both continuous and discrete attributes. For continuous attributes, we 

assume xk is distributed log-normal 2( , )k k  . Following the example of De los Santos, Hortaçsu, 

and Wildenbeest (2012), we use the actual distribution of product-attribute levels in the choice 

set and calculate E[xk]= kx , the arithmetic mean. The value of 
2

k  is estimated from the data. For 

discrete attributes, f(xk) is assumed to be Bernoulli with parameter θk = 0.5. The MCMC chain 

then produces a posterior distribution of the discrete values of xk. Orthogonal coding is used for 

discrete attributes; i.e., for a discrete attribute with two levels, its presence is coded by 0.5 and its 

absence is coded by −0.5. The product name and price are revealed to all consumers at the start 

of the data collection process and dummy variable coding is used to represent these model 

intercepts. The integration in equation (4) is implemented numerically. 

Details of the estimation procedure appear in the Online Technical Appendix. Priors are 

diffuse but proper, and a standard Metropolis-Hastings algorithm is used to draw parameter 

values from their posteriors. The algorithm follows procedures detailed in Rossi, Allenby, and 

McCulloch (2005). Estimation of the remaining models are variations on the components 

outlined here and will therefore not be repeated. The most computationally challenging part of 
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the estimation procedure is calculating the set { }n

ijk   for each individual, for each attribute-level 

revealed. In a product-attribute matrix that has 3 products and 11 attributes (discussed in 

previous section), at time 0 the set { }n

ijk  contains 33 items, and after the first attribute level is 

revealed it contains 32 items, and so on. Having a computationally tractable expression for the 

value of revealing a particular attribute-level (e.g., equation (4)) is essential to estimating this 

class of models with real data involving multiple products and attributes and hundreds of 

consumers. Yang, Toubia, and De Jong (2015) have a similar expression in their model but it is 

made tractable by assuming all attributes are discrete, Hagerty and Aaker (1984) simplify their 

analysis by assuming all attributes are continuous; with data on real products we must consider 

both discrete and continuous attributes. 

The intuition for model identification lies in the fact that although consumers were 

presented the same IDB, each consumer had a unique sequence in opening product-attributes, 

opened a different number of product attributes, and used a unique set of product-attributes to 

make the final product selection. Consumers revealed different subsets of the product-attribute 

levels creating variation in the f

iX matrix; because of this variation across consumers, the 

attribute importance weights β can be identified using just the final product choice portion of the 

model, as in Currim, Mintz, and Siddarth (2015). Recall that after the first product-attribute level 

is revealed, each consumer has a unique set of { }n

ijk  . For a given cell position specified by j and 

k, the value of n

ijk   will change as additional product-attribute levels are revealed, so that 

( 1)n n

ijk ijk    . Because of this, the { }n

ijk   are not confounded with the row or column order of the 

product-attributes in the IDB. Fixing kx  and changing 2

k  implies a different sequence of 
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revealed product-attributes for each respondent. The parameters β and { 2

k } cannot be 

simultaneously changed in equation (6), keeping the likelihood constant because only β 

contributes to the likelihood in equation (8). Changing the stopping parameter τ implies a 

different number of inspected attributes and again since β and { 2

k } cannot be simultaneously 

changed without changing the other components of the likelihood, τ is uniquely identified by 

equation (7). Simulation experiments available from the authors demonstrate that the parameter 

values are identified and can be recovered using data sets analogous to those used in the 

empirical example. 

Product-Attribute Selection  

In the base model, the benefit of continuing to process information or to inspect a particular 

product-attribute level is the difference between the expected maximum utility of inspecting 

candidate cell 
n

ijkx 
 and the expected maximum utility of making the final choice using the 

current set of revealed product-attributes. This is captured in equation (4) which requires 

specifying the distribution of xk and integrating over the possible values of xjk; we refer to this as 

the “Expected Value” approach to product-attribute selection. In addition to statistical and 

economic theory, Meyer (1982) shows in an experimental setting that the probability that an 

alternative will be inspected is a function of both the expected utility and the uncertainty about 

the alternative. However, Miller (1993) suggests that the assumption that consumers necessarily 

manifest that information in the form of a probability distribution function is “less tenable.”  

 We look to the behavioral literature for an alternative method of computing the benefit of 

processing additional information that retains the level and dispersion of expected utility, but 

does not rely on parametric assumptions and is computationally less demanding. Jaccard, 
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Brinberg, and Ackerman (1986) propose a “Subjective Probability Measure” for attribute 

importance. Using their example, a subject is asked to rate on an 11 point scale how willing they 

would be to consider a car that was “inexpensive.” They are then asked how willing they would 

be to consider a car that was “expensive.” An index of importance is formed by taking the 

difference between the willingness to consider the car when the attribute “price” is at its highest 

level versus its lowest level. See Jaccard, Knox, and Brinberg (1979) for the logic and relation of 

this measure to different behavioral theories. This difference between the focal measure 

(consideration) when the attribute is at its highest versus lowest level motivates the following 

change to the model. 

Let Mink represent the lowest value that attribute k is expected to take and Maxk represent 

the corresponding highest value. Using the Maxk and Mink, equation (4) is recast as: 

   ( ) ( )' 'ln 'exp ln 'exp .jk jkn Max n Minn

ijk i iX X    
       

     
   (10) 

Thus, instead of integrating over the unknown values of xjk, the benefit of inspecting a 

cell is given by the difference in expected maximum utility when the attribute level is at its a 

priori expected highest value and when it is at its lowest. Instead of “consideration” from the 

Jaccard, Brinberg, and Ackerman (1986) example, our focal measure is “expected maximum 

utility.” The level of expected utility is reflected in the values of Maxk and Mink while the range, 

Maxk – Mink, represents the uncertainty in the attribute levels. When a consumer is more 

uncertain about an attribute, there will be a relatively larger difference between Maxk and Mink, 

resulting in a higher value for 
n

ijk 
 which increases the probability that cell j,k will be inspected. 

In other words, when a consumer is uncertain about what she is going to get, there is a lot of 

benefit for her to acquire additional information. In contrast, when a consumer is relatively 
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certain about an attribute, Maxk and Mink will be relatively close, 
n

ijk 
 will be relatively small, 

and the probability that cell j,k is inspected will decrease. We refer to this as the “Max – Min” 

method of product-attribute selection. 

For discrete attributes, Maxjk is set equal to the attribute being “present” and Minjk is set 

equal to the attribute being “not present” in product j. When higher values of an attribute are 

expected to decrease indirect utility, i.e., βk < 0, then the first two terms in equation (10) are 

reversed. When the analyst does not know whether higher or lower values will be preferred, n

ijk   

can be based on the absolute value of the difference. Equation (10) has a closed form which 

facilitates model estimation.  

 In terms of the model likelihood function, equation (10) simply replaces equation (4) in 

the calculation of 
n

ijk 
 and the remainder of the model is unchanged. Instead of specifying a 

particular f(xk) such as the log-normal and estimating the coefficient of variation for continuous 

variables, we estimate Maxk and Mink. The Online Technical Appendix contains full details. To 

facilitate estimation, we take Maxk and Mink to be symmetric around kx  but find that within a 

broad range, the results are not sensitive to different assumed kx . We restrict Mink ≥ 0.  

Theory, past research, and empirical patterns in the data suggest that a consumer may 

select a particular product-attribute level based on its proximity to the previously opened cell, 

i.e., whether it is in the same row (attribute based processing in our data), column (alternative 

based processing), or diagonal (mixed processing) to the previous selection. Gabaix et al.'s 

(2006) experimental data was analyzed by Sanjurjo (2014) and, consistent with the behavioral 

literature, he found strong tendencies for row, column, and “typewriter” processing in an IDB; he 

referred to these patterns as “spatial biases.” One way to capture this information acquisition 
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process is via a distance metric that permits product-attributes closer to the last revealed cell to 

be preferred. Let 
r

ijkDist  and 
c

ijkDist  represent the row and column distance from the last item 

revealed; this is a “city block” type distance measure.
4
 The next product-attribute accessed is that 

j,k combination that satisfies: 

( )n r c

ijk r ijk c ijkMax Dist Dist     .     (11) 

In equation (11), holding 
n

ijk 
 constant, cells which are closer to the currently opened cell are 

preferred to those that are further away. The relative magnitudes of ϕr and ϕc determine whether 

row (attribute) or column (alternative) proximity is more important. In our empirical analysis, we 

will combine the Max - Min calculation of equation (10) with the distance metric in equation 

(11) and refer to this as the “Hybrid” method of determining product-attribute selection. 

Unseen Product-Attributes  

In the base model, if a particular product-attribute was not inspected by a consumer, it is 

assumed that the mean kx  for that product-attribute is used by the consumer. An analogous 

assumption is used in Yang, Toubia, and De Jong’s (2015) conjoint analysis. Meyer (1982) 

provides some experimental support for this by showing that consumers treat completely 

unknown alternatives as if they had the average utility of products in the market. We refer to this 

assumption as using the “Actual Mean” to represent unseen product-attributes. 

 We calculate kx as the arithmetic mean of the actual values xjk for continuous attributes in 

the choice set. While this has precedence in the information processing literature and it seems to 

be a reasonable assumption, there is no guarantee in any setting that the actual mean matches 

consumers’ expectations. We therefore explore two different options for representing unseen 

product-attributes. The first is that consumers simply do not use product-attributes that they do 
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not inspect in the IDB. This is consistent with the finding that consumers limit cognitive effort 

and focus on only a subset of information to make decisions (see Bettman, Luce, and Payne 

1998). Using our notation from earlier, before any product-cells are inspected, the vector
ijx = 0. 

When a product attribute level is revealed, xjk replaces the appropriate 0 in the vector 
ijx . Unseen 

attributes are simply not included in the calculation of the indirect utility. We will refer to unseen 

product-attributes being “Not Used” when the appropriate elements of 
ijx = 0 when product-

attributes are not inspected.
5
 

 The “Actual Mean” method of dealing with unseen product-attributes relies quite heavily 

on the specified value of kx  since it appears in the indirect utility function. The “Not Used” 

method requires the assumption that consumers use attribute levels for deciding the benefit of 

inspecting product-attributes, but then ignore the attributes in the final product choice; we would 

like to avoid these assumptions. Therefore, we build on Branco, Sun, and Villas-Boas (2012) and 

propose a, third, expectation deviation method of handling unseen product-attributes. Thus far, 

the intercept term in the model simply represents the product label or information listed in each 

column of the IDB that is seen by every shopper at the beginning of the task; however, we now 

want to redefine the meaning of the intercept to include the “expected value” of the attributes. 

Consider a product class with only two attributes, with indirect utility specified as: 

   0 1 1 1 2 2 2 .x

ij j j ijV x x x x              (12) 

Here 0

x  is the indirect utility when the product-attribute levels all equal their expected values.  

This suggests a new parameterization of the indirect utility function. Let dijk = 1 when product-

attribute j,k has not been inspected by consumer i and dijk = 0 if it has. Then: 

*

0 1 1 1 2 2 2 1 1 2 2(1 ) (1 ) .ij j ij j ij ij ij ijV x d x d d d                (13) 
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In this model k theoretically equals 
k kx , but there are no restrictions on δk or bk and both are 

estimated simultaneously from the data. Here we can again assume that if a product-attribute is 

not inspected that xjk = kx  but we do not need to specify kx , it is estimated from the data via the 

parameter δk. To the extent that 
k k  yields plausible values of 

kx , it supports the veracity of 

the model. We will refer to this method of handling unseen product-attributes as “Inferred 

Mean.” Additional details on the derivation are contained in the technical appendix. Table 1 

summarizes the main modeling elements and the different variations that will be tested using our 

empirical data.  

RESULTS 

We have data from three different market segments: high priced, medium priced, and low priced. 

In order to control for parameter heterogeneity, separate models were estimated for each  market 

segment. As in the Data section, we will focus on the high priced market segment and then show 

that similar results were obtained in the other two segments. A total of 110 consumer responses 

were used to calibrate the models listed in the top of Table 4; 26 responses were reserved for 

hold-out testing. For all models, the MCMC chains were run for 50,000 iterations with a thinned 

sample of every 10
th

 from the last 25,000 used to estimate the posterior moments of the 

parameters. The β’s associated with Attributes A1 – A9 and A11 were expected to be positive 

and equation (10) was used to calculate n

ijk   for the Max-Min and Hybrid models. Attributes 10a 

and 10b describe physical aspects of the product and it is unclear if larger or smaller values 

would be desired for this class of product; therefore, the absolute value of equation (10) was used 

for these two attributes. For the Expected Value models, in order to ensure comparability to the 

Max-Min and Hybrid models, the β’s associated with Attributes A1 – A9 and A11 were 
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restricted to be >0. Table 4 describes the models and contains each model’s fit statistics, while 

Table 5 provides the posterior means and posterior standard deviations for parameters from 

selected models. 

Model Comparisons  

A broad set of model combinations from Table 1 were estimated with choices guided by the 

logical consistency of the model alternatives and preliminary results. In-sample fit is measured 

by the log marginal density (LMD), calculated using the Gelfand and Dey (1994) importance 

sampler and includes a penalty for the number of parameters. The LMD favors the model with 

the largest value, which is model 8, the Hybrid product-attribute selection process and the 

Inferred Mean method of handling unseen attributes. The out-of-sample fit is measured by 

computing the log likelihood of the observed data for the 26 consumers in the hold-out sample 

using a random sample of 2,500 draws of the parameters from the posterior distribution, and then 

calculating the average. This measure favors the model with the largest value, which again is 

model 8. 

 Focusing on the first four rows of Table 4, we can contrast the performance of the 

Expected Value versus the Max-Min method of calculating the benefits of additional information 

processing. In each comparable model, the Max-Min methodology has a better in-sample and 

out-of-sample fit than the Expected Value methodology. The Max-Min model fits the data better 

and offers significant computational savings. The Hybrid model modifies Max-Min (see equation 

(11)) by penalizing cells in the IDB which are farther away from the last inspected cell. Results 

in the upper panel of Table 4 show that for otherwise comparable models, the Hybrid model has 

both better in-sample and out-of-sample fit than the Max-Min model (Models 3 vs. 6, 4 vs. 7, 
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and 5 vs. 8). These results suggest that the proximity of cells has an important role in 

determining the information processing of consumers in point-of-purchase IDBs. 

 In the three comparable models on how to handle unseen product-attributes, models with 

the Not Used assumption fit the in-sample and out-of-sample data better than models with the 

Actual Mean assumption. However, the Inferred Mean method, which includes parameters that 

account for the product category attribute means, fit the data the best. These results offer support 

for the substantive conclusion that consumers rely on prior information and provide a mechanism 

for modeling this when data on consumers’ prior beliefs is not available. 

 In summary, when deciding which product-attribute levels to inspect, both the change in 

expected maximum utility and the location of the cell in relation to the last cell inspected are 

important. Also, when evaluating the overall products, consumers use a prior value for product-

attributes which are not inspected in the IDB. Methodologically, the results show using a Max-

Min type of calculation for the anticipated benefit of information processing is effective 

compared to the computationally more demanding Expected Value calculation. Further, the 

proposed Inferred Mean method of representing consumers’ prior values for product-attributes is 

viable in situations with limited consumer data. This analysis was replicated for the medium 

priced (177 consumers; 149 estimation and 28 validation sample) and low priced (582 

consumers; 522 estimation and 60 validation sample) market segments  for the best fitting 

models (models 7 and 8), and the results match the pattern seen in the high priced market 

segment. Model fit statistics are reported at the bottom of Table 4. 

Parameter Estimates  

Table 5 contains parameter estimates for selected models for the high priced market segment. In 

addition to the models already described, a model which used only the final product choices to 
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calibrate the β’s was also estimated. In this model, the decision of which product-attribute to 

inspect next and the when to stop inspecting attributes is random
6
 and only the opened product-

attribute levels were used to calibrate the final choice model. Table 4 shows that the in-sample 

and out-of-sample fit for the model which did not consider consumers’ information processing 

(Model 9) was worse than all other models considered. Table 5 shows that all the posterior 

estimates of β for the “random” model included 0 in their 95% highest posterior densities (i.e., 

were not statistically significant) except for the product intercepts. By contrast, virtually all the 

estimates of the β’s in models 7 and 8 which model consumers’ information processing are 

statistically significant and have the expected sign (i.e., greater values of each attributes should 

be preferred except attributes A10a and A10b, which were height and weight dimensions, and it 

is unknown whether consumers preferred larger and heavier products). Only the β for A10a in 

Model 8 is not statistically significant. Nine of the eleven estimates of δ from Model 8 are 

statistically significant; because attributes A10a and A10b are opened at the same time, only a 

single value of δ could be estimated. Managerial applications of these parameter estimates will 

be discussed in the next section. 

In models 7 and 8, both the row ϕr and column ϕc coefficients of the Hybrid model are 

significant at the 0.05 level. The value for the row coefficient is greater than the value for the 

column coefficient (0.85 vs. 0.56 in model 7, 0.85 vs. 0.40 in model 8), which indicates that 

consumers were more likely to process by alternative (column) than by attribute (row). This 

contrasts with the empirical findings of Simonson, Huber, and Payne (1988) and Yang, Toubia, 

and De Jong (2015) who found a greater propensity for attribute level processing in their 

laboratory based choice tasks; but supports the empirical findings in the two-stage literature (e.g., 

Bettman and Park 1980, Gensch 1987, Hauser and Wernerfelt 1990, Payne 1976), which suggest 
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that alternative-based processing is expected over attribute-based processing just before a choice. 

As noted earlier, Biehal and Chakravarti (1986) suggest that consumers may switch from brand 

or alternative (column) to attribute (row) based processing in the midst of accessing information 

from the IDB; this would imply dynamic values of ϕr and ϕc, a topic we leave for further 

research.
7
 

The posterior means of the Maxk and Mink are listed for models 7 and 8. In estimating the 

Max-Min model, the Mink value was constrained to be greater than or equal to 0 because it 

would not make sense to have negative values for these attributes. The results show that for A1, 

A10a, and A10b that Mink was not significantly different from 0. Importantly, the upper limit 

Maxk is not constrained and none of these parameter estimates are unreasonable given the actual 

value of the attributes.  

In summary, these results show that the information processing models (models 7 and 8) 

produce better parameter estimates than models which just use the final choice data (model 9) to 

estimate market level preferences. These results also show that the models can be estimated 

using just the revealed sequence of product-attribute levels and final choices from an actual 

market setting.  

Managerial Application of Models  

Here we briefly explore two managerially relevant applications of model 8 which incorporate the 

Hybrid product-attribute selection and the Inferred Mean approach to handling unseen product-

attributes. One of the interesting aspects of the Inferred Mean method is that theoretically, 

k k kx   where kx is some prior value for attribute k that consumers use when product-attribute 

k is not opened for a particular product. This implies that k k kx    and we can estimate the 

market’s expected value for attribute k. The last column of Table 5 performs this calculation 
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using the posterior means of βk and δk from the data. Since orthogonal coding was used for the 

discrete attributes, k k  = 0.5 indicates that the market expected that attribute to be part of the 

product offering while k k  = −0.5 indicates the opposite. However, since no constraints were 

placed on the estimates of δ it should not be surprising that k k  does not exactly equal 0.5 or 

−0.5; we will interpret the sign of k k  as indicating the market’s expectations. Attributes A2 

and A7 – A9 were all expected to be part of the product offering in the high priced market. 

Attribute A3 was not expected to be included. Attribute A11 was a special one-time promotion 

that would have been unknown to consumers, this may explain why δ11 was not statistically 

significant, but directionally, the market did not expect this attribute. For the three continuous 

attributes that we can measure unambiguously, the implied values of kx  (0.73, 65.70, and 13.50) 

are plausible given the product and are within the range of Mink and Maxk estimated for model 8. 

These results show that the model can provide estimates of the market expectations for the 

different attributes. Together with the values of {Maxk, Mink}, these results can highlight where 

market expectations are different from actual product offerings or consumers are especially 

uncertain of the values of product attributes, leading to specific advertising messages or point-of-

purchase education on e-tailers’ websites. For instance, since our results also indicated that the 

proximity of cells matter, e-tailers may want to “cluster” attributes with high uncertainty closer 

together in a product information matrix in order to simplify the consumer’s task and improve 

the probability that the information is processed.  

Second, our method addresses a common problem in online marketing, poor conversion 

rates. Our model provides recommendations for prioritizing who should receive follow-up 

communications via either e-mail or retargeting display ads and which product should be 
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featured for each individual, based on actual information processing on the firm’s IDB enabled 

website. In our hold-out sample of 26 shoppers, 16 did not purchase one of the three products. 

Table 6 provides the purchase probabilities from model 8 for each of the three products for each 

of these shoppers, with results sorted in terms of those most likely to buy one of the three 

products. This provides managers diagnostics for which shoppers had greater probabilities of 

purchasing and for which products they are most interested. Despite the common model 

parameters, consumers have different purchase probabilities as a result of their unique 

information acquisition patterns. Managers can compute a cut-off via an expected value 

calculation to determine who should receive follow-up information; for instance, in our example 

it may not be profitable for managers to follow-up with shoppers 9 – 16 because their forecasted 

purchase probability is relatively low.
8
 It is important to note that because our method computes 

attribute importance weights, it gives different recommendations than one which simply counts 

the number of product-attributes revealed and targets shoppers based on that metric. Specifically, 

both shoppers 2 and 4 revealed 11 product-attribute levels, but they have very different purchase 

probabilities. Among the 10 consumers in the hold-out sample who did choose one of the three 

products, using the maximum predicted probability correctly identified the chosen product in 9 

out of the 10 cases. 

CONCLUSION 

This research models information processing of an IDB at the point-of-purchase from consumers 

in actual purchasing situations while they were shopping on a popular manufacturer’s retail 

website. Unlike previous studies using IDB data, by building an integrated model of the 

consumer information processing decisions, we can infer attribute importance weights, βk, the 

ex-ante expected values of attributes, δk/βk , and a measure of uncertainty in the values of the 
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attributes Maxk and Mink, all in the face of realistically small variation in attribute levels. We find 

that our behaviorally inspired (Maxk - Mink) method of measuring the benefit of information 

acquisition does better in our data set than an analogous expected value calculation. Using the 

actual average value of attribute levels to represent unseen product attributes does worse than 

assuming those attributes are not used in product choice; however, inferring the ex-ante value 

dominates both these approaches. Similar to past research, we find that the row and column 

proximity of attributes in the IDB is important in determining which product-attribute will be 

inspected next. 

  This research contributes to management practice since the proposed method has 

minimal information requirements and can be implemented by e-tailers in actual purchase 

situations, as demonstrated in this research. Online shoppers can be randomly selected and 

diverted to websites where product-attribute information is revealed on-demand. Estimating 

attribute importance weights that account for the inherent endogeneity in information processing 

is an important managerial contribution of this research. This method will be of most interest to 

vertically integrated e-tailers or e-tailers looking to collaborate with their suppliers on new 

product design, advertising, promotion, etc. This method also provides diagnostics to help 

managers prioritize follow-up communications towards consumers who were most likely to 

purchase based on their current visit to a retailer’s IDB enabled website (see Table 6). Because 

consumers have different sequences of information processing as well as different final sets of 

revealed product-attributes, the model can overcome the difficulties of not having an 

experimentally designed product matrix. Across consumers, not everyone reveals all the 

information in the IDB, and the differences create variation that allows for parameter estimates, 

even for attributes with identical levels across attributes.  
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Compared to previous eye-tracking and conjoint academic studies, the consumers in this 

research were making actual purchase decisions and the data collection technique is uniquely 

suited to e-tailers. This research suggests several other avenues of additional research. First, we 

do not model the “upstream” information search and processing (ISP) that occurs prior to 

arriving at the e-tailer’s IDB. We argue that at a given moment in time, the cumulative effect of 

consumers’ “upstream” activities can be represented by their current preferences (attribute 

importance weights), their current expected values of attributes, and their expected range of 

those attributes and we use the data to recover these parameters. But how do consumers’ form 

their expectations and how much time do they spend searching for information across different 

media? This extended search process will be a function of shopper specific characteristics 

(opportunity cost of time, prior purchase experience, risk tolerance, etc.) and the mix of “search” 

and “experience” attributes in the product. The decision context must be expanded to include the 

decision to buy a product, not buy a product now but continue to search, or exit the market 

altogether, while accounting for different types of interactions across a variety of platforms.
9
 

Bronnenberg, Kim, and Mela (2016) provide some initial findings about the online search 

process using aggregated product purchase data. Whereas our model is appropriate for inferring 

market level values of {b} and {Maxk, Mink} at a point in time, it does not capture the full ISP 

process. Such models will have to use tracking data from multiple sources, online and off-line, 

but this is increasingly possible, subject to the limitation of consumers’ privacy concerns. 

 Another important area for additional research is modeling heterogeneity. In infrequently 

purchased categories it is rare to observe multiple purchases from the same consumer in point-of-

purchase data. This makes it difficult to accurately estimate distributions of heterogeneity. One 

option would be to make parameters such as *

0  or δ functions of demographic information. 



35 

 

 

Google uses browser history and IP addresses to infer a range of demographics from web 

browsers; this information could be incorporated without altering the current data collection 

methodology. In addition, finite mixture models or Dirichlet process priors could be used with 

the current data collection procedure. Incorporating heterogeneity into the Expected Value model 

may not be computationally feasible but should be practical in the Max-Min and Hybrid models: 

we leave the testing of these models to future research.  

 Two other extensions are worth noting. First, as posited by Biehal and Chakravarti 

(1986), consumers may change their decision processing procedure within a decision task and/or 

different situational factors may give rise to different choice procedures. As noted earlier, it may 

be worthwhile to investigate a dynamic parameterization of ϕr and ϕc or different measures of 

brand or alternative (column) and attribute (row) processing. Second, although we have argued 

that the current data collection method is well suited to e-tailers and that experimental evidence 

suggests it does not change shopping and decision patterns, the proposed models could be used 

and validated with services such as YouEye that offer online eye-tracking via panelists webcams.  

 Marketing research has always been interdisciplinary and this study extends that tradition 

by developing and applying new models with roots in economics and psychology. Importantly, 

this research shows that theoretical and lab based results can be inferred and tested in an actual 

purchase situation. The new models can be used by management in applied situations as 

demonstrated and hopefully will be used as a basis for additional academic and commercial 

research.  



36 

 

 

Footnotes 
 
1
 In the actual implementation, additional information such as lens type shown in Figure 2 was not 

displayed in the first row of the IDB. 
 

2
 The retailer decided to implement the “Customize and Buy” option rather than go with the Decision 

Board’s default “Choose” button. 

 
3
 This includes the product-attribute levels already revealed and the ex-ante values for product-attributes 

which have not been opened. 

 
4
 We also tested a “Euclidean” distance metric but the city block metric produced better in-sample and 

out-of-sample fit. 

 
5 
If a consumer is using a non-compensatory choice process, such as eliminations by aspects, then there 

may be no reason to open a particular cell. We thank an anonymous reviewer for this alternative 

explanation of why consumers might not inspect a particular product-attribute. 

 
6 The probability of inspecting a product-attribute was equal to 1/(N-ni) where N is the total number of 

product-attributes (N=33) and ni is the number of cells opened so far by consumer i; the probability is one 

divided by the number of product-attributes currently unopened in the IDB. The probability of stopping 

was ½ after each cell was inspected. 

 
7 
It is interesting to note that in Figure 2, the consumer processes the first 15 cells by row (attributes) and 

then switches to processing by column (brand) for the last three cells, selecting the product associated 

with those last three cells. As noted by an anonymous reviewer, this is consistent with the process 

suggested by Biehal and Chakravarti (1986).    

 
8
 Shoppers 13 – 16 each opened the same 3 cells in the first row of the information display board. 

 
9
 We thank an anonymous reviewer for drawing this distinction between the extended ISP process and our 

modeling efforts. 
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Figure 1. Online Shopping Example at Best Buy 
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Figure 2. Decision Board Example 

 

Sequence of Cells Accessed 
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Table 1. Summary of Model and Alternatives 

Product-Attribute Selection 

Which cell in the IDB will be opened next? 

Expected Value The benefit to acquire product-attribute information is the change 

in the expected maximum utility. Need to integrate over the 

potential values of the candidate product-attribute. 

 

Max - Min The benefit to acquire product-attribute information is the 

difference between the expected maximum utility, when the 

candidate product-attribute is at its maximum versus at its 

minimum expected value. 

 

Hybrid The benefit to acquire product-attribute information includes the 

proximity of cells in the IDB: closer cells are preferred to cells 

which are farther away. 

 

Unseen Product-Attributes 

If a cell in the IDB is not opened, does the consumer use that product-attribute? If so, what 

value is used for that product-attribute? 

Actual Mean If a product-attribute is not seen by a consumer, she uses a prior 

value: kx  calculated from the actual product attributes. 

 

Not Used If a product-attribute is not seen by a consumer, she simply does 

not use that product-attribute in the final product choice decision. 

 

Inferred Mean If a product-attribute is not seen by a consumer, she uses a prior 

value: k k kx  are estimated as part of the model. 
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Table 2. Matrix of Information Presented to Shoppers  

Attribute Row 
Continuous or 

Discrete Variable 

Product 1 
(Level) 

Product 2 
(Level) 

Product 3 
(Level) 

Price N/A Continuous 1 2 1 

A1 1 Continuous 1 2 1 

A2 2 Discrete 1 1 1 

A3 3 Discrete 2 1 2 

A4 4 Continuous 1 1 1 

A5 5 Continuous 2 3 1 

A6 6 Discrete 1 1 1 

A7 7 Discrete 1 1 1 

A8 8 Discrete 1 1 1 

A9 9 Discrete 1 1 1 

A10a 
10 

Continuous 1 3 2 

A10b Continuous 2 3 1 

A11 11 Discrete 1 1 2 

Prices and alternative (model) names were available to shoppers without clicking a cell; 

Attribute 10a and 10b were accessed by clicking the same cell; Level 1 indicates lowest values 

and level 3 indicates highest values for the attributes, for example, level 1 for price indicates a 

lower price, level 1 for attribute 10a indicates a shorter alternative, and level 1 for attribute 10b 

indicates a lighter alternative. 
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Table 3. Descriptive Statistics – High Priced Market Segment 

Panel A. Number of Cells Accessed by Shoppers based on Customize and Buy (C&B) Decision 

Number of 

Cells Accessed 
Total Shoppers No C&B C&B Product 1 C&B Product 2 C&B Product 3 

 Count % Count % Count % Count % Count % 

Average 11.54 9.99 16.08 13.33 12.28 

St. Dev. 9.24 8.36 11.49 9.97 9.19 

Median 9 7 14 11 11 

2-4 Cells 38 28% 26 33% 2 15% 6 22% 4 22% 

5-9 Cells 33 24% 19 24% 2 15% 3 11% 3 17% 

10-15 Cells 28 21% 15 19% 3 23% 10 37% 6 33% 

16+ Cells 37 27% 18 23% 6 46% 8 30% 5 28% 

Total  136 --- 78 57% 13 10% 27 20% 18 13% 

 

Panel B. Percentage of Shoppers Accessing Different Cells  

Attribute Product 1 Product 2 Product 3 Overall 

A1 60% 73% 68% 89% 

A2 35% 44% 38% 68% 

A3 41% 46% 40% 70% 

A4 32% 39% 36% 60% 

A5 28% 35% 32% 54% 

A6 22% 32% 27% 49% 

A7 21% 32% 26% 47% 

A8 27% 32% 32% 48% 

A9 24% 34% 29% 48% 

A10 21% 26% 23% 40% 

A11 30% 35% 32% 48% 

Overall 79% 85% 82% 7% 
In Panel B, the “Overall” column should be interpreted as follows: 89% of shoppers inspected attribute A1 for one of the three products (upper right-hand 

corner); the “Overall” row indicates that 79% of shoppers inspected at least one attribute for Product 1 (lower left-hand corner). 7% of shoppers inspected all the 

product-attribute levels (lower right-hand corner).
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Table 4. Model Fit Statistics 

High Price Market Segment, In-sample N=110, Out-of-sample N=26 

Model  
Product-Attribute 

Selection 

Unseen Product-

Attributes 

 

LMD 

Out-of-

sample 

1 Expected Value Actual Mean −4385.9 −956.5 

2 Expected Value Not Used −4317.6 −949.4 

     

3 Max-Min Actual Mean −4350.3 −920.0 

4 Max-Min Not Used −4037.0 −801.3 

5 Max-Min Inferred Mean −3924.3 −800.1 

     

6 Hybrid Actual Mean −3225.1 −662.9 

7 Hybrid Not Used −3126.7 −607.8 

8 Hybrid Inferred Mean −3055.0 −598.7 

 

9 Random Not Used −5025.9 −1060.1 

     

Medium Price Market Segment, In-sample N= 149, Out-sample N=28 

Model  
Product-Attribute 

Selection 

Unseen Product-

Attributes 

 

LMD 

Out-of-

sample 

7 Hybrid Not Used −4388.6 −876.7 

8 Hybrid Inferred Mean −4258.5 −857.1 

     

Low Price Market Segment, In-sample N=522, Out-of-sample N=60 

Model  
Product-Attribute 

Selection 

Unseen Product-

Attributes 

 

LMD 

Out-of-

sample 

7 Hybrid Not Used −14192.9 −1690.6 

8 Hybrid Inferred Mean −13380.0 −1622.7 
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Table 5. Selected Parameter Estimates 

 
Model 9 –  

Random, Not Used  

Model 7 – Hybrid, 

Not Used 

Model 8 – Hybrid,  

Inferred Mean 

β’s for Product 

Attributes 
   (std. dev.)   (std. dev.)   (std. dev.)   (std. dev.) 


  

A1  0.241 (0.36) 2.112 (0.13) 1.475 (0.38) 1.078 (0.65) 0.73 

A2  1.672 (1.26) 1.651 (0.04) 4.984 (1.07) 1.810 (0.61) 0.36 

A3  0.266 (0.81) 1.561 (0.03) 1.317 (0.17) −0.893 (0.23) −0.67 

A4  −0.015 (0.01) 0.018 (0.00) 0.112 (0.03) 7.334 (2.16) 65.70 

A5  0.035 (0.05) 0.045 (0.00) 0.337 (0.13) 4.554 (1.92) 13.50 

A6 −0.028 (1.26) 1.489 (0.03) 4.352 (1.22) 1.739 (0.75) 0.40 

A7  2.098 (1.92) 1.585 (0.03) 4.476 (1.47) 1.687 (0.88) 0.37 

A8  1.627 (1.57) 1.689 (0.03) 6.190 (1.63) 3.034 (0.87) 0.49 

A9  −0.452 (1.82) 1.568 (0.03) 4.966 (1.63) 2.702 (0.95) 0.54 

A10a  1.940 (2.39) −3.390 (0.52) −0.208 (0.93) 
1.504 (1.30) 

 

A10b  −0.349 (0.54) 0.586 (0.02) 0.294 (0.04) 

A11  −1.025 (0.83) 1.699 (0.05) 1.383 (0.29) −0.721 (0.42) −0.52 

Product 1 −3.024 (0.54) −6.628 (0.43) −27.510 (1.81) -- --- --- 

Product 2 −2.753 (0.61) −6.535 (0.46) −27.282 (1.81) --- --- --- 

Product 3 −2.860 (0.58) −7.054 (0.52) −27.621 (1.81) --- --- --- 

          

Information Processing 

Parameters 
      

   

τ --- --- −2.749 (0.01) −2.405 (0.13) --- --- --- 

ϕ (Row) --- --- 0.847 (0.00) 0.850 (0.03) --- --- --- 

ϕ (Column) --- --- 0.564 (0.00) 0.402 (0.05) --- --- --- 

          

Continuous Variables 

Endpoints  
  kMin   kMax  kMin  kMax  

   

A1 --- --- 2.01 3.01 0.26 2.88 --- --- --- 

A4 --- --- 25.57 94.42 43.94 76.06 --- --- --- 

A5 --- --- 1.51 28.06 11.08 18.42 --- --- --- 

A10a --- --- 0.52 1.82 0.47 2.04 --- --- --- 

A10b --- --- 2.20 9.25 2.36 9.07 --- --- --- 

Parameter estimates in bold indicate that the 95% highest posterior density did not include 0, i.e., the parameter is significant at the 95% level.
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Table 6. Hold-out Sample Predicted Probabilities 

 
Predicted Probability 

Shopper ID Prod 1 Prod 2 Prod 3 None 

1 0.219 0.106 0.514 0.161 

2 0.006 0.008 0.750 0.236 

3 0.193 0.093 0.451 0.262 

4 0.186 0.074 0.267 0.473 

5 0.381 0.019 0.014 0.587 

6 0.241 0.074 0.046 0.640 

7 0.080 0.191 0.072 0.657 

8 0.017 0.303 0.015 0.665 

9 0.085 0.126 0.066 0.723 

10 0.124 0.091 0.056 0.729 

11 0.157 0.063 0.012 0.768 

12 0.020 0.188 0.018 0.773 

13 0.063 0.092 0.057 0.788 

14 0.063 0.092 0.057 0.788 

15 0.063 0.092 0.057 0.788 

16 0.063 0.092 0.057 0.788 
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Online Technical Appendix for Estimation Algorithms  

The estimation algorithms will be given in detail for model 4 in Table 4, a model using the Max-

Min method of determining the benefit of processing additional information, and assuming 

unopened product attributes are not used in the final product evaluation. Modifications for the 

Expected Value will also be detailed. Modifications for the Hybrid and Inferred Mean models 

are straightforward.  

Max-Min, Not Used 

We begin with the Max-Min, Not Used model (model 4 in Table 4) to setup key concepts and to 

provide an understanding of the basic structure of the algorithm. Three discrete pieces of 

information are available in the data set for each consumer: a sequence of choices of which 

product-attribute to inspect, a sequence of decisions on whether to continue processing new 

information or stop, and finally which of the three products to select for customization and 

purchase or the “none” option. Equations (6), (7), and (8) give the probabilities and equation (9) 

summarizes the likelihood function for individual i. Let K index the total number of attributes 

and K’ index the number of continuous attributes. The parameters and their priors are specified 

as: 

βk ~ N(0, 100) for k=1,…,K 

τ ~ N(0,100) 

(Max)

kx ~ N(0, 100) for k’=1,…,K’ 

(Min)

kx ~ TN(0,100, 0<
(Min)

kx ) for k’=1,…,K’ 

Where N(μ, σ
2
) signifies a normal distribution with mean μ and variance σ

2
, and TN(μ, σ

2
, c<x) 

is a corresponding truncated normal distribution with a lower truncation point c. Let the symbol 

“-“ represent the remaining elements of a set such that {βk-} indicates all members of the set 

excluding βk. 

 

Random-walk Metropolis-Hastings steps are used to sequentially draw parameters from their 

posterior distributions. 

1. Generate βk|{βk-},
(Max) (Min)

' '{ , }k kx x , τ for k=1,…,K 
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Let 
( )p

k  represent the proposed new draw and 
(o)

k represent the current or old draw. Form 

( )p

k =
(o)

k + η where η is a draw from N(0, 
2

k ), where 
2

k  is adjusted during the burn-in 

period to assure proper mixing with a target rejection rate of 50%. 

For i=1, …, I and ni = 1, …, Ni, where ni indexes the sequence of revealed attribute 

levels for person i and Ni is the total number of revealed product-attributes, initialize 

iX  = 0 and then: 

a) Compute the values of in

ijk 
 per equation (10) for all product-attributes which 

have not been revealed so far. 

b) Compute the choice probability for the revealed product-attribute given by 

equation (6). 

c) If ni<Ni, compute the probability of continuing to process information given 

by equation (7). 

i) Update the matrix 
n

iX  with the revealed product-attribute level xjk. 

ii) Return to step a) 

d) If ni=Ni, compute the probability of not continuing to process information as 

one minus the quantity calculated in equation (7). 

e) If ni=Ni, compute the final product choice probability given by equation (8). 

Repeating steps a) – e) for 
( )p

k  and 
(o)

k for each individual gives rise to the individual level 

likelihood functions 
( )p

il  and 
(o)

il specified by equation (10). After repeating this over the sample 

of consumers, one can accept or reject the scalar 
( )p

k with probability: 

 

 

2
( ) ( )

1

2
(o) (o)

1

1
exp 0

2 100
: ,1

1
exp 0

2 100

I
p p

i k

i

I

i k

i

l

Min

l









  
    

  
  

      




  

2. Generate τ| {βk}, 
(Max) (Min)

' '{ , }k kx x  

Let τ
(p) 

represent the proposed new draw and τ
(o) 

represent the current or old draw. Form τ
(p) 

= 

τ
(o) 

+ η where η is a draw from N(0, 
2

  ), where 
2

  is adjusted during the burn-in period to 

assure proper mixing with a target rejection rate of 50%. 



3 

 

Repeat steps a) – e) from step 1. Accept the new draw τ
(p)

 with probability: 

   

 

 

2
( ) ( )

1

2
(o) (o)

1

1
exp 0

2 100
: ,1

1
exp 0

2 100

I
p p

i

i

I

i

i

l

Min

l









  
    

  
  

      




 

3. Generate 
(Max) (Min)

' ',k kx x | {βk}, 
(Max) (Min)

' '{ , }k kx x  , τ for k’=1,…,K’ 

The values of 
(Max)

'kx and 
(Min)

'kx are drawn jointly and are centered on the actual mean value of 

the attribute levels across the products. Let 'kx  represent the actual mean value of the 

continuous attribute k’ as calculated from the product attribute matrix. Let 
( )

'

o

kr equal the 

range, 
(Max)[o]

'kx - 
(Min)[o]

'kx . Form 
(Max)[p]

'kx = 'kx + 0.5*(
( )

'

o

kr + η) and 
(Min)[p]

'kx = 'kx - 0.5*(
( )

'

o

kr + η), 

where η is a draw from N(0, 
2

'k  ) and where 
2

'k  is adjusted during the burn-in period to 

assure proper mixing with a target rejection rate of 50%. If 
(Min)[p]

'kx <0, then set 
(Min)[p]

'kx =0. 

Repeat steps a) – e) from step 1. Accept the new draws of 
(Max)[p]

'kx and 
(Min)[p]

'kx with 

probability: 

   

   

2 2
( ) (Max)[p] (Min)[p]

' '

1

2 2
(o) (Max)[o] (Min)[o]

' '

1

1 1
exp 0 exp 0

2 100 2 100
: ,1

1 1
exp 0 exp 0

2 100 2 100

I
p

i k k

i

I

i k k

i

l x x

Min

l x x





    
         

     
    

              




. 

Note that the normalizing constant for the truncated normal prior on 
(Min)

'kx cancels out in the 

calculation of the acceptance probability. 

 

All parameters are drawn individually except for A10a and A10b which are drawn together 

since they are revealed at the same time. Attribute A10a has its own values of βk and 

(Max) (Min)

' ',k kx x  as does Attribute A10b. However, when calculating step 1a there is only one 

value of in

ijk 
 which determines the expected value of jointly revealing A10a and A10b. 

 

For models using the Actual Mean, initial values in the matrix iX  are set equal to mean value for 

each continuous product attribute, calculated from the actual product attribute matrix. For 
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discrete attributes, 
kx  = 0.5 or 

kx = -0.5 each with probability 0.5. Let K* index the discrete 

attributes. On each iteration of the MCMC chain: 

4. Generate 
*kx | { }kx 

{βk},
(Max) (Min)

' '{ , }k kx x , τ for k*=1,…,K* 

Let 
 0.5*xk

il


 represent the likelihood for individual i evaluated at 
*kx  = 0.5 and 

 0.5*xk

il


represent 

the likelihood for individual i evaluated at 
*kx = -0.5. Then choose 

*kx  = 0.5 with probability: 

*

* *

(x 0.5)

1

(x 0.5) (x 0.5)

1 1

k

k k

I

i

i

I I

i i

i i

l

l l





 

 

 
 
 
 

 
 



 
 

Otherwise 
*kx = -0.5. This is an example of a Griddy-Gibbs with two possible values and an 

equal prior probability on each. 

 

For models using the Inferred Mean method, as detailed in the text, iX  is comprised of vectors 

jkx  of length 2K. The first K rows of iX are initialized to 0 and the next K+1 to 2K rows are set 

equal to 1. In the algorithm above, expand the vector β to be length 2K and updates to all 

parameters follow as detailed above. Change step 1.c.i. to the following: 

i) When a consumer inspects the cell corresponding to product j and attribute 

k, the value xjk replaces the corresponding 0 for 
ijkx  and in the second half 

of 
ijx , the value of 

ijk Kx 
is switched from 1 to 0. 

Expected Value, Not Used 

The major changes to the Expected Value, Not Used model (model 2 in Table 4) are drawing the 

parameters for the prior distributions of xk and evaluating the value of 
n

ijk 
 in equation (4). The 

parameters and their priors are specified as: 

ln(βk )~ N(0, 100) for k=1,…,9 and 11 

βk ~ N(0, 100) for k=10 and product intercepts 

τ ~ N(0,100) 

kx ~ log normal(μk, 
2

k  ) for continuous attributes 

CV(xk) ~ U(0, 5) 
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kx ~ Bernoulli (0.5) for discrete attributes 

Although we assume continuous kx ~ log normal(μk, 
2

k  ), we found it easier to specify and 

estimate the model in terms of E(xk) and CV(xk), the coefficient of variation. In particular, the 

model mixed much more efficiently by drawing CV(xk). We assume E(xk) = 
kx , the mean of the 

actual product attributes. 

 

Random-walk Metropolis-Hastings steps are again used to sequentially draw parameters from 

their posterior distributions. 

1. Generate CV(xk)|{CV(xk-)}, {E(xk)} {βk},τ for k’=1,…,K’ 

Let 
( )CV( )p

kx  represent the proposed new draw and 
(o)CV( )kx represent the current or old 

draw. Draw 
( )CV( )p

kx from a uniform U(0,5) distribution. 

a.  Given ( )kE x  and 
( )CV( )p

kx compute 
( )Var( )p

kx as: 

2
( ) ( )Var( ) ( ) ( )p p

k k kx E x CV x     

b. Given ( )kE x and 
( )Var( )p

kx  compute 
2( )p

k for the lognormal distribution as: 

2ln ( ) ( )
2( )

2ln ( )

Var( )
ln

k

k

E x p
p k

k E x

e x

e


 
  

  

  

c. Given ( )kE x and 
2( )p

k compute 
( )p

k for the lognormal distribution as: 

2( )
( ) ln ( )

2

p
p k

k kE x


       

Step a. is from the definition of the coefficient of variation; steps b. and c. are from the definition 

of the lognormal distribution.  

For i=1, …, I and ni = 1, …, Ni, where ni indexes the sequence of revealed attribute 

levels for person i and Ni is the total number of revealed product-attributes: 

a) The value of 
n

ijk 
 from equation (4) is estimated via simulation for all product-

attributes which have not been revealed so far. For m=1,...,M: 
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i) Draw ( ')m

kx  from N( ( )p

k , 2( )p

k ), and compute 
'

( )
m
kxm

kx e  for continuous 

attributes. Draw ( ')m

kx  from Bernoulli(0.5) for discrete attributes, where 

( ')m

kx  = 0.5 with probability 0.5 and ( ')m

kx  = -0.5 with probability 0.5. 

ii) Compute  ( )Z ln 'exp 'm n

iX      where the draw of 
( )m

kx is inserted into 

the appropriate row and column of 
n

iX 
. 

iii) Compute 
(m)

1

1ˆ
M

m

Z Z
M 

    

iv) Compute  ˆˆ ln 'exp 'n n

ijk iZ X         following equation (4). 

The value ˆn

ijk 
 is used to compute individual level likelihoods following the same procedures 

b) – e) from the Max-Min, Not Used model algorithm, step 1. The draws of 
( ')m

kx  are done 

using a modified latin hypercube sampling scheme with M=20; other values of M were 

evaluated using simulated data and values greater than 20 offered no substantive 

improvement in parameter estimates. Accept the new draw 
( )CV( )p

kx  with probability: 

  

( )

1

(o)

1

: ,1

I
p

i

i

I

i

i

l

Min

l





 
 
 
 
 
 




 

Note that the likelihood is not weighted by the prior because 
( )( )p

xCV x  is drawn directly from its 

prior distribution.  

 

Draws of other parameters and modifications for Actual Mean follow those outlined earlier. 
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Online Technical Appendix for Inferred Mean Method for Unseen Product-Attributes 

 

The “Actual Mean” method of dealing with unseen product-attributes relies quite heavily on the 

specified value of 
kx  since it appears in the indirect utility function. The “Not Used” method 

requires the potentially problematic assumption that consumers use different information sets for 

deciding the benefit of inspecting product-attributes compared to the final product choice; we 

would like to avoid these assumptions. We build on Branco, Sun, and Villas-Boas (2012) and 

propose an expectation deviation method of handling unseen product-attributes. In our model, 

there is an intercept term which represents the product labeled for each column in the IDB. 

Consider a product class with only two attributes, then the indirect utility is given by: 

* *

0 1 1 2 2 .x

ij j j ijV x x             (TA3) 

Here the product-attribute values 
*

jkx represent deviations from the expected values 
kx  and β0 is 

the indirect utility when the product-attribute levels all equal their expected values. If we assume 

that for unseen product-attribute levels that xjk = 
kx , then before any product-attribute levels are 

inspected, Vij = 0

x + εij. Rewriting (TA3) in expectation deviation format and expanding 0

x we 

get: 

    *

0 1 1 2 2 1 1 1 2 2 2 .ij j j ijV x x x x x x                (TA4) 

Here 
*

0 0 1 1 2 2.
x x x       When product-attribute 1 is inspected and product attribute 2 is not, 

we get: 

   *

0 1 1 2 2 1 1 1 2 2 2

*

0 2 2 1 1 .

ij j j ij

ij j ij

V x x x x x x

V x x

     

   

       

   

   (TA5) 

This result suggests a new parameterization of the indirect utility function. Let dijk = 1 when 

product-attribute j,k has not been inspected by consumer i and dijk = 0 if it has. Then: 

*

0 1 1 1 2 2 2 1 1 2 2(1 ) (1 ) .ij j ij j ij ij ij ijV x d x d d d                (TA6) 

In this model k k kx  . Here we can again assume that if a product-attribute is not inspected 

that xjk = kx  but we do not need to specify kx , it is estimated in the parameter δk. We will refer to 

this method of handling unseen product-attributes as “Inferred Mean.” 
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The Inferred Mean method requires expanding the parameter vector β by K, the number of 

attributes in the product choice set, in order to estimate δ. In terms of our model set-up, the 

vector 
ijx  is now of length 2K. Before any cells are inspected in the IDB, the first 1, …, K 

elements of 
ijx are set equal to 0 while the last K+1, …, 2K elements are set equal to 1, with 

these last elements representing the binary variables in equation (13). When a consumer inspects 

the cell corresponding to product j and attribute k, the value xjk replaces the corresponding 0 for 

ijkx  and in the second half of 
ijx , the value of 

ijk Kx 
is switched from 1 to 0. The sequence of 

product-attributes revealed by a consumer and the differences between the final set of product-

attributes across consumers identifies the binary variables in equation (13). The remainder of the 

model set-up does not change. 
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