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1 Introduction

Mutual funds are important investment vehicles.1 In order to evaluate the performance of

financial markets it is crucial to understand how investors choose between these funds. An

important puzzle in mutual fund choice is the large and persistent spread in fees between

different funds, which apparently is not eliminated by competition between these funds. Elton

et al. (2004) and Hortaçsu and Syverson (2004), for example, show that substantial price

dispersion between essentially homogeneous S&P500 index funds exists, with a large amount of

cash flowing into funds with excessively high fees. Elton et al. (2004) explain this dispersion in

fees by the presence of uninformed consumers together with the absence of arbitrage possibilities

for index funds, whereas Hortaçsu and Syverson (2004) suggest it is caused by a combination

of non-portfolio fund differentiation and search costs. In a recent study Cooper et al. (2018)

show that fee dispersion extends to the entire US equity industry and has grown over time –

which they attribute in part to an increase of novice investors into the industry – leading to

substantial welfare losses.2 In fact, Carhart (1997) and Gil-Bazo and Ruiz-Verdú (2009) find

that the fees charged by funds are negatively related to fund returns (net of fees). Gil-Bazo

and Ruiz-Verdú (2009) explain this by strategic fee-setting of the funds, where funds with low

returns target performance-insensitive investors and demand high fees.3

Apart from the variation in the size of the fees, there also exist differences in the structure

of the fees that may have an impact on how investors select mutual funds. Two types of

fees that are commonly used are front-end loads (back-end loads) which are fixed commissions

that have to be paid when an investor enters (exits) the fund, and operating expenses fees or

management fees that represent the costs for operating the fund and that, as opposed to the

front-end and back-end loads, need to be paid by the investor periodically. Barber et al. (2005)

find that the flow of money into mutual funds is negatively correlated with the front-end load,

but not correlated with the operating expenses fee. They argue that people pay more attention

to the front-end load because it is more salient and transparent. Khorana and Servaes (2012),

however, find that fund families that charge a (front-end) load have larger market shares than

funds charging operating expenses, which they explain by the fact that loads – often used for

marketing and distribution purposes – reduce search costs, and make it more difficult to leave

the fund. Related to this, Chordia (1996) constructs a model that shows that funds may use

1According to Investment Company Institute (2018) the value of assets invested in mutual funds in the US
was about 22.1 trillion US dollars in 2017, which is more than US GDP in 2017. Moreover, mutual funds are
particularly important for household finance. In 2017 a total of 45.4% of US households owned funds, and the
median value of mutual fund assets owned per household was 120, 000 US dollars.

2Khorana et al. (2009) provide a comprehensive investigation on mutual fund fees and find a large dispersion
of fees between different countries, which is difficult to explain by the difference in returns to the investors.

3Also see Gil-Bazo and Ruiz-Verdú (2008), who develop a model with asymmetric information and sophisti-
cated as well as unsophisticated investors. In their model low-quality funds cater to unsophisticated investors
and charge excessive fees.
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front-end and back-end loads to ‘lock investors in’ by discouraging them from changing funds.

In this paper we present a laboratory experiment aimed at shedding more light on the

role that fees play in mutual fund choice. In each period of our individual decision making

experiment, subjects choose between investing their wealth in one of two experimental funds

(A and B), and they have to do this for three blocks of fifteen periods each. The subjects know

the return generating processes and fees of the funds, observe past returns of both funds, and

are explicitly informed that past realized returns do not affect future returns. We construct

eight treatments, where the main difference between the treatments is the fee structure. In

particular, in treatments N and NRe neither of the funds charges a fee, in treatments OB and

ORe
B (OA) fund B (fund A) charges a small operating expenses fee, and in treatments FB and

FRe
B (FA) fund B (fund A) charges a front-end load. Our experiment is designed in such a

way that, although the decision problem is framed differently – with the front-end loads much

more salient than the operating expenses fees – subjects essentially face the same choice in

each treatment. That is, the expected return (net of fees) of investing in fund B is the same

in each treatment, and higher than that of investing in fund A (where it is also the same for

each treatment). If subjects take fees into account correctly, their investment behavior should

be independent of the treatment. To control for a possible effect of the realized returns on the

investment decision, we use the same realizations of returns in all treatments. Moreover, in the

‘reverse order’ treatments (NRe, ORe
B and FRe

B ) we swap the realized returns of the first two

blocks to control for the effect of experience.4

The advantage of our laboratory experiment is that we have full control over the gross

returns of the mutual funds, and over the fees they charge. Since subjects are informed about

the return generating process and fees for each available fund, any effect that the fees have

on subjects’ decisions cannot be attributed to asymmetric information, uninformed subjects,

or search costs. Moreover, there is no non-portfolio differentiation between the funds. The

experiment therefore allows us to investigate to what extent subjects take fees into account

when the decision environment is transparent, and whether front-end loads lead subjects to be

locked into one of the funds.

We report three major findings. First, when we increase gross returns for fund B and intro-

duce a small operating expenses fee, such that net returns for fund B are unaffected, aggregate

investment in fund B goes up slightly, although the effect is not statistically significant. How-

4Note that we implement a between-subjects design for our experiment, where at most one of the funds
presented to a subject charges a fee. Alternatively, we could have chosen a within-subjects design by, for
example, presenting each subject with a number of different funds that have the same expected gross returns,
but fees of different size, to see whether subjects manage to minimize fees. Such a design would be similar to
the one used in Choi et al. (2010). However, they present prospectuses of existing S&P 500 index funds to their
subjects. Our hypothetical funds are much more stylized, and only characterized by their expected gross returns
and the fee they charge. When designing our experiment we expected that a within-subjects design with these
stylized funds would make the task for subjects too easy, and therefore chose a between-subjects design.
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ever, introducing an operating expenses fee for fund A (together with increasing gross returns

for fund A by exactly the same amount) does have a substantial, and significant, positive effect

on aggregate investment in fund A. It suggests that even in the very transparent decision

environment of our experiment, subjects have a tendency to ignore the operating expenses fee

and make investment decisions on the basis of gross, instead of net, returns.

Second, we find substantial differences between subjects’ investment behavior in the front-

end load treatments vis-a-vis the operating expenses treatments. Most, but not all, subjects

understand they should not pay the front-end load more than once. These subjects typically

get locked into the fund that charges a front-end load. Remarkably, this is also the case when

that fund has the lowest expected net returns. On the other hand, a front-end load for the

inferior fund leads more subjects to stay away from that fund. This may be because the salience

of the fee forces these subjects to exert more cognitive effort. Overall, the variation in earnings

is much higher and average earnings are lower in the front-end load treatments. This is mainly

due to the subjects that pay the front-end load more than once and therefore end up with very

low payoffs.

Third, even if subjects are explicitly informed that past returns do not convey any infor-

mation about future returns, their behavior can, to a certain extent, be explained by return

chasing. That is, the subjects are more likely to choose a fund that had the highest gross re-

turn in the previous period. Furthermore, we find evidence that subjects learn to make better

decisions as they gain experience with the decision environment.

To the best of our knowledge, only limited experimental research on the relation between fee

structure and fund choice has been done. An early contribution is Wilcox (2003), who presents

active mutual fund investors with the choice between different (hypothetical) mutual funds

characterized by, among others, names of actual mutual funds, loads, operating expenses fees,

and 1- and 10-year past returns. Wilcox (2003) shows that investors pay too much attention

to past performance and to the front-end load, and too little to the operating expenses fee.

Surprisingly, this bias in decision making increases with the wealth and education level of the

investor, and with the investor’s results on a financial literacy quiz. Choi et al. (2010) design a

field experiment where subjects hypothetically allocate $10, 000 between four existing S&P500

index funds, on the basis of the prospectuses of these funds, which also contain information

about fees and past return rates. The index funds are chosen such that the ones with the higher

fees have the higher annualized historical returns, which is due to differences in the launching

dates of the funds. Although people should ignore the past return information, and allocate

all their money to the fund with the lowest fee, many of them fail to do so and rely more

on the annualized past returns of the funds. Ehm et al. (2014) employ a large scale survey

to investigate how people choose between two hypothetical funds that only differ in the fee
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structure: one fund charges a performance fee (meaning that the fund charges a fraction of

the gains, instead of a fraction of the total asset value) whereas the other charges an operating

expenses fee. They find that people have a higher propensity to choose funds that charge a

performance fee, and thereby do not minimize fees, and explain this by loss aversion.

Our experimental design differs in several important aspects from these three earlier studies.

First, in our experiment subjects have to make sequential decisions about the same funds,

allowing us to study the emergence of ‘lock-in’ effects in the presence of a front-end load.

Second, there are differences in monetary incentives. Subjects in Wilcox (2003) and Ehm et al.

(2014) are not monetary incentivized, whereas in Choi et al. (2010) the incentives are more

substantial than in our experiment. Finally, most subjects in the other experiments have at

least some individual experience with investing in the stock market, whereas our subjects are

university students, which typically do not have that experience.

Our results are also related to the empirical and experimental literature on how past per-

formance, although not conveying additional information, affects investors’ choices. Sirri and

Tufano (1998), Choi et al. (2009) and Asparouhova et al. (2015) show that past fund perfor-

mance is an important determinant of mutual fund investors’ choices.5 Furthermore, when

represented with a random time series, experimental subjects have a tendency to either over-

estimate the probability that a random streak of successes will end (the gambler’s fallacy) or

to underestimate that probability (the hot hand effect), see, e.g., Bloomfield and Hales (2002);

Asparouhova et al. (2009); Offerman and Sonnemans (2004); Yuan et al. (2014); Stöckl et al.

(2015); Powdthavee and Riyanto (2015).

The remainder of the paper is organized as follows. Section 2 describes our experimental

design. We formulate testable hypotheses in Section 3, and discuss the experimental results

in Section 4. Section 5 concludes. Appendix A contains the experimental instructions. In

Appendix B we collect test statistics and other additional information. The Online Appendices

contain the control questions and additional figures.

5There is a debate about whether there is persistence in the performance of mutual funds, for example
because the fund manager is capable of consistently selecting high performing stocks. The general view is that
such a persistency does not exist and that, after controlling for risk and trading costs, the typical manager is
unable to consistently generate excess returns (see Carhart, 1997). In addition, Jain and Wu (2000) find that
funds that advertise higher past returns attract more money, but do not perform significantly better than other
funds in the periods following the advertisement. Hendricks et al. (1993) and Zheng (1999) find that there
may be a hot hand effect in fund performance in the short run, but that in the long run there is no significant
difference between funds that performed well in the recent past and other funds.
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2 Experimental Design

The experiment took place on December 8 and 9, 2011 and on November 14-17, 2017 at

LESSAC, the experimental laboratory of the Burgundy School of Business in Dijon (France). In

total 381 subjects participated in eight treatments.6 All subjects are first year master students

at the Burgundy School of Business, with no prior experience with laboratory experiments on a

related topic. These students had two years of training in economics, statistics and mathemat-

ics before passing the exam to enter the school, and they took many other courses in business

economics after entering the school.7 Subjects could choose to have instructions in English or

in French. The duration of a typical session was 90 minutes.

2.1 Subjects’ Task

The experiment is an individual choice experiment, divided in three blocks of 15 periods each.8

At the beginning of each block the subject is given an initial wealth of M0 = 1000 points. In

each period t of that block the subject has to decide where to invest its accumulated wealth

Mt: either he/she invests all his/her wealth in fund A, or in fund B, or does not invest at all.

The wealth in the subsequent period of that block, Mt+1, is determined by the exogenously

given stochastic return of the chosen fund (with Mt+1 = Mt if the subject decided not to invest

his/her wealth in either fund A or fund B). The starting wealth is reset to M0 = 1000 at

the beginning of each block. The difference between the blocks lies in the realizations of the

stochastic processes generating the returns of two funds, as will be explained in Section 2.4.

As in other contributions in the field (for instance, Wilcox, 2003 and Ehm et al., 2014),

we do not allow subjects to divide their wealth between the different funds. If diversification

is possible, a subject’s optimal investment strategy will depend on his/her risk attitude, and

the subject’s decision problem becomes much more complicated.9 If subjects cannot diversify,

6The treatments are discussed in detail in Section 2.3. The last column of Table 1 shows the number of
subjects for each treatment. The difference in the number of subjects per treatment is due to variations in the
show-up rate.

7The students tend to be quite good. From a population of about 4, 000 students that participate in an
entrance exam, the Burgundy School of Business has the right to select about 450, with grades between 14/20
and 17/20. Students with a grade higher than 17/20 go to HEC Paris, for instance.

8After running the first sessions of the experiment in December 2011, we discovered an unfortunate error
in the experimental software. In particular, the returns for fund A in the third block were not consistent with
the prices. Since subjects could see both (see Figure 2 below) some of them may have become confused by
the discrepancies, although it seems that no subject identified the inconsistencies (indeed, the differences are
small and difficult to spot without additional calculations). Nevertheless, we decided not to use the data from
the third block from the 2011 sessions and confine the analysis to the first two blocks only. (Note that the
programming mistake cannot have had an impact on subjects’ behavior in these first two blocks.) The error in
the experimental software was corrected for the sessions that we ran in 2017.

9A substantial fraction of subjects might respond by dividing their wealth more or less evenly between the
two funds (see, e.g., Choi et al., 2010, where such a strategy, which is clearly suboptimal in their design, is also

7



their decision problem is simpler, with a unique and unambiguous optimal investment strategy

(always invest in fund B, see below), which is independent of the subjects’ risk attitude. This

makes it much more straightforward to interpret the experimental results.10

At the end of the experiment the subjects are paid according to their final wealth from one

of the three blocks, where each block has the same probability of being chosen.11 Appendix A

provides the experimental instructions. Before the subjects start the experiment, they answer

several control questions on paper to make sure that they understand the experiment. We

start the experiment only when all subjects have answered all control questions correctly. The

control questions and correct answers can be found in Online Appendix C.1. At the end of

each experimental session run in 2017 we asked subjects to take the Cognitive Reflection Test

(CRT), as described in Frederick (2005). The results will be discussed briefly in Section 4.3.

2.2 Mutual Funds: Returns and Fees

Consider the (open-end) mutual fund X with a price per share of PX,t at time t. This price

evolves according to PX,t = (1 + gX + εX,t)PX,t−1, where gX > 0 is a positive growth constant

and {εX,t} is a white noise process, where εX,t can take on only two values: ε > 0 or −ε, with

equal probability. The (gross) return of fund X is then given by

RX,t =
PX,t
PX,t−1

= 1 + gX + εX,t =


1 + gX + ε with probability 1

2

1 + gX − ε with probability 1
2

.

Because εX,t equals zero in expectation, the expected one-period return at the beginning of

period t (that is, before PX,t is known) is given by Et[RX,t] = 1 + gX . More generally – and for

now abstracting from any fees to be paid – the τ -period expected return at time t of investing

one unit of money is given by

Et

[
R

(τ)
X,t

]
= Et

[
PX,t−1+τ
PX,t−1

]
=

τ∑
s=0

(
τ

s

)
1

2τ
(
1 + gX + ε

)s(
1 + gX − ε

)τ−s
= (1 + gX)τ .

For the experimental design we consider two funds, X = A,B, with growth constants gA and gB,

respectively. The random components εA,t and εB,t are independent but identically distributed

used by some subjects). Also note that, when diversification is possible, it becomes more difficult for subjects
to compute actual fees, in particular in the front-end load treatments.

10In fact, Brocas et al. (2015) use an experimental design quite similar to ours (their subjects make 10
sequential investment decisions between two funds, for 15 different blocks, but in their case subjects are allowed
to diversify) to measure risk attitudes of their subjects, by fitting investment choices to a HARA (Hyperbolic
Absolute Risk Aversion) utility function.

11The experimenter throws a dice separately for each subject. The subject is then paid according to his/her
final wealth in the first (second, third) block if the dice shows 1 or 2 (3 or 4, 5 or 6).
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(in particular, the absolute size of the random components is equal to ε for both funds). We

impose that ε < gA and ε < gB, which means that, independent of the realizations of εA,t and

εB,t, the prices of shares of both funds are monotonically increasing over time.

In our baseline treatments N and NRe, where no fees are charged, we also impose that

gA < gB. It implies that expected τ -period returns for fund B are higher than for fund A (for

any τ ≥ 1). The optimal decision in which fund to invest in general follows from an evaluation

of the return and risk profiles of the two funds (see Brocas et al., 2015, for the derivation of the

optimal investment strategy when preferences are represented by the very general Hyperbolic

Absolute Risk Aversion utility function). However, given the assumptions we make on εA,t and

εB,t, the realized return is strictly positive and the variance in returns is exactly the same for

both funds. Hence, independent of risk preferences, the rational investor will choose the fund

with the highest expected return, which in this case is fund B. By requiring that gA+ε > gB−ε,
there is a positive probability that the realized return of fund A is higher than that of fund

B. However, since past realized returns do not convey any additional information about future

returns this does not affect the optimal investment strategy. Note that boundedly rational

investors who do respond to past realized returns might now and then switch to fund A.

We consider two types of fees. The first type is an operating expenses fee (sometimes

called a management fee). It is a periodic payment that represents the costs for running

the fund and providing service to its shareholders. It corresponds to a fraction γX of the

investment to be paid each period as a fee. Thus, the operating expenses fee in period t

is γXPX,t−1 per share. The (one-period) return for fund X, net of this fee, then becomes

RO,X,t = 1 + gX − γX + εX,t = 1 + g′X + εX,t, with g′X = gX − γX . The expected τ -period return

is

Et

[
R

(τ)
O,X,t

]
= (1 + gX − γX)τ .

The operating expenses are paid for fund B in treatments OB and ORe
B , and for fund A in

treatment OA. The expenses are chosen in such way that the net returns of the funds are the

same as in treatment N.

The second type of fee is a purchase commission, or a so-called front-end load. The investor

pays a fixed percentage FX of his/her investment Mt as a commission when investing in fund

X. With the remainder of his/her investment, (1 − FX)Mt, shares of the mutual fund are

purchased. The front-end load only has to be paid upon purchasing the shares. However, if the

investor sells his/her shares of the front-end load fund, but at a later time wants to buy shares

of this mutual fund again, he/she also has to pay the front-end load again.12 The expected

12For some mutual funds, front-end loads are reduced if the investment in the fund is above a certain threshold,
but we will not consider that in our experiment. Similarly, back-end loads (also known as deferred sales charges)
may decrease when the length of the investment in the fund increases.
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Fund A Fund B Number of

Treatment gA γA FA E1

[
R

(14)
A,1

]
− 1 gB γB FB E1

[
R

(14)
B,1

]
− 1 Subjects

N 3% − − 51.26% 4% − − 73.17% 22 (2011), 30
OB 3% − − 51.26% 5% 1% − 73.17% 19 (2011), 22
FB 3% − − 51.26% 5% − 13% 72.25% 35 (2011), 21

NRe 3% − − 51.26% 4% − − 73.17% 47
ORe

B 3% − − 51.26% 5% 1% − 73.17% 44
FRe

B 3% − − 51.26% 5% − 13% 72.25% 48

OA 5% 2% − 51.26% 4% − − 73.17% 58
FA 5% − 24% 50.48% 4% − − 73.17% 35

Table 1: Overview of the experimental design. All data are from the sessions in 2017, unless
noted otherwise.

τ -period return from investing in mutual fund X at time t follows as

Et

[
R

(τ)
F,X,t

]
= (1− FX) Et

[
R

(τ)
X,t

]
= (1− FX)(1 + gX)τ .

The front-end load is paid for fund B in treatments FB and FRe
B , and for fund A in treatment

FA. The load is such that the net expected return of investing in the fund from the beginning

is the same as in treatment N.

2.3 Treatments

Every subject participates in one treatment only. In each treatment subjects could increase

their wealth by investing in one of the two funds, A or B, in three separate blocks of 15 decision

periods each, as described in Section 2.1. We use the same return realizations in all treatments,

but the realizations are different between the three blocks. Treatments NRe, ORe
B , and FRe

B

differ from treatments N, OB, and FB, respectively, only by the order in which the first two

blocks are presented to the subjects. Table 1 summarizes the design. In addition, we take

ε = 2%.

For the baseline treatments N and NRe, none of the two funds requires a fee. The growth

constants are set to gA = 3% and gB = 4%. As ε = 2%, it implies that the realized return of

fund A is going to be either 1% or 5%, and the realized return of fund B is going to be either

2% or 6%. There is a 25% probability that the realized return of investing in fund A is higher

than that of investing in fund B, i.e., when εA,t = 2% and εB,t = −2%. Investing in fund B in

every period gives an expected (net) return of about 73%, whereas the net expected return of

always investing in fund A is around 51%.13

13Note that, although subjects need to make an investment decision for 15 consecutive periods there will only
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For the operating expenses treatments OB, ORe
B , and OA, there is an operating expenses fee

for one of the funds. For treatments OB and ORe
B the growth constants are equal to gA = 3%

and gB = 5%, with an operating expenses fee for fund B equal to γB = 1%. For treatment OA

the growth constants are equal to gA = 5% and gB = 4% with an operating expenses fee for

fund A equal to γA = 2%. Effectively, therefore, realized net returns of investing in fund A and

B are exactly the same in treatments OB, OA, N, and (subject to the swap of the first two

blocks) in ORe
B and NRe, with expected net returns of investing in fund B (4%) always higher

than those for investing in fund A (3%). Note that gross expected returns for investing in fund

A are higher than for fund B in treatment OA, but lower in treatments N, NRe, OB and ORe
B .

In the front-end load treatments FB, FRe
B , and FA, a front-end load has to be paid for

investing in one of the funds. For treatments FB and FRe
B we take gA = 3% and gB = 5%,

and choose a front-end load for fund B of FB = 13%. For these values, the expected return

of investing in fund B from the beginning of the block in treatments FB and FRe
B is (roughly)

equal to the expected return of investing in fund B for the other treatments. For treatment FA

we take (as for treatment OA) growth rates of gA = 5% and gB = 4% and a front-end load for

fund A of FA = 24%. Again, for these values the expected return of investing in fund A from

the beginning of the block is (roughly) equal to the expected return of investing in fund A for

the other treatments.14 Note however that, whereas for the baseline and operating expenses

treatments it is always optimal to switch from investing in fund A to investing in fund B, this

is not the case for the front-end load treatments. For treatments FB and FRe
B this is only

worthwhile if enough periods remain to ‘earn back’ the front-end load. In particular, switching

from fund A to fund B later than period 7 decreases expected returns.15 For treatment FA,

on the other hand, it is always optimal to stay with fund A, once the front-end load has been

paid.

be 14 return rates. It can be easily checked that investing in fund B for all periods gives at least a net return
of 32.0% (when all price shocks are negative) and at most a net return of 126.1% (when all price shocks are
positive). The corresponding numbers for fund A are 15.0% and 98.0%, respectively. Moreover, the return of
always investing in fund A is going to be higher than the return of always investing in fund B only if fund A
experiences at least four more positive price shocks than fund B does.

14To be precise: for the expected returns of fund B to be exactly the same in treatments FB and FRe
B as

in the other treatments, the constant FB has to satisfy (1 − FB)(1 + gB)T = (1 + gB − γB)T . For gB = 0.05,
γB = 0.01 and T = 14 this gives F ∗B ≈ 0.1254. We select FB = 0.13, as this is the closest integer (in percentage
points) to F ∗B . In the same way, we find F ∗A ≈ 0.2360 for treatment FA, which we round to FA = 0.24. Note
that the difference between expected returns for funds A and B in the different treatments is very small (see
Table 1).

15It can be easily checked that 0.87 × 1.05t ≥ 1.03t if and only if t ≥ t∗ ≈ 7.24 and choosing fund B (and
paying the front-end load) can only be profitable (in expectation) when at least 8 periods remain.
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Figure 1: Generated time series in Blocks 1 and 2 for treatments N, OB and FB. Left : Gross
returns. Right : Prices. Fund A returns are the same in the three treatments. Fund B returns
in treatments OB and FB are one percentage point higher than returns in treatment N. Prices
are generated using the returns with initial values 60 and 50 for funds A and B, respectively.
The same time series are used in treatments NRe, ORe

B and FRe
B for the second and first block,

respectively.

2.4 Blocks

For each treatment the chosen parameters (gA, gB, γA, γB, FA, FB) are the same in all three

blocks. The only difference between blocks in the same treatment is that we use different seeds

for generating the white noise processes, εA,t and εB,t, and, hence, prices and returns. Within

each block we use the same realization of the shocks in all treatments. Thus any difference we

observe between treatments can be attributed to differences in the fee structure (and not in the

return realizations). On the other hand, the difference between blocks within each treatment

can be attributed to experience or to the difference in the return realizations.

Figure 1 shows the generated time series for Blocks 1 (top panels) and 2 (bottom panels)
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Figure 2: An example of the computer screen for treatment OB.

in treatments N, OB, and FB.16 The left panels show the realized returns for funds A and B.

The right panels display the prices resulting from these returns, also shown to the subjects (see

Figure 2), where we set the initial price of funds A and B equal to 60 and 50, respectively.17

For treatments NRe, ORe
B , and FRe

B the order of these time series is reversed: in those treat-

ments subjects experience the relevant time series in the lower panels of Figure 1 in their first

block, and the relevant time series in the upper panels in their second block. Unless specified

differently, for the remainder of this paper Block 1 denotes the first block of time series used

in the ‘regular’ treatments and simultaneously denotes the second block of time series used in

the reversed order treatments (and similarly for Block 2).

In the first two blocks all subjects experienced exactly the same realizations of the shocks

(but, as explained above, not in the same order for every treatment). For the third block we

generated 10 additional sets of time series for fund A and fund B to get more variation in the

underlying time series. Subjects in each treatment were allocated approximately evenly over

these different time series in the third block.18

16Figure 8 in Online Appendix D compares in an analogous way the time series for the first two blocks in
treatments N, OA, and FA.

17We chose the initial price of fund A to be higher than that of fund B because then (given the higher expected
return of the latter) prices of the two funds stay relatively close to each other over the 15 periods of the block.
We cannot exclude a priori that the chosen values of the initial prices have an effect on subjects’ choices, but
since we use the same initial prices for each block and each treatment they cannot explain differences between
blocks or treatments.

18We only used the third block for the sessions that were run in 2017, see footnote 8. This means that the
total number of subjects for which we use decisions from Block 3 over the eight treatments is 305. The time
series of realized returns for Block 3 are presented in Figs. 9 and 10 in Online Appendix D.
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Each subject has full information about the price generating mechanisms. In the beginning

of each block subjects start with an empty screen and make their first choice. Then, as the

experiment evolves, subjects are shown a table with past realized returns and the corresponding

past prices. They can also see the graph with the time series of past prices and the current

net value of their portfolio.19 Figure 2 provides a typical example of the experimental screen.20

The subjects make a choice between investing in fund A, fund B or neither of them in the

decision box in the upper part of the screen.

Table 2 characterizes potential returns in different blocks under different behaviors. For

Block 3 we report the average of possible returns over 10 time series. The third and fourth

columns show the returns from investing for all 15 periods in fund A or fund B, respectively.

By construction of the experiment, these returns are similar in all treatments and exactly the

same in the treatments with no front-end load. Due to the randomness in the realized returns,

the return for always investing in fund A is slightly less than the expected return of 51.26%

in all blocks. The return for always investing in fund B is higher than the expected return of

73.17% in Block 1, lower than the expected return in Block 2, and close to the expected return

(on average) in Block 3.21 The next two columns show the ex post minimum and maximum

possible total return a subject could earn (assuming the subject invests in every period).22 The

last column shows the return from the “return chasing” strategy of investing in the fund that

had the highest realized (gross) return in the previous period.23 For all treatments (except OA

and FA) in any period there is a 25% probability that the gross return on fund A is higher than

that on fund B and, although this provides no information about future return differences, it

may induce subjects to switch to (or remain with) fund A – which is clearly not the (ex ante)

optimal investment strategy. In the treatments with front-end load the return chasing strategy

gives very low returns, because with this strategy the front-end load will typically be paid more

than once. On the other hand, the difference between always investing in fund B and chasing

19Alternatively we could have depicted returns instead of prices in the graph. We chose prices in order to
make the realization of returns not too salient. Note that the table on the computer screen presents past prices
as well as past returns for both funds, making the information in the graph effectively redundant. See Glaser
et al. (2018) for an overview of the use of price and return graphs for mutual funds, and an analysis on how
this information affects investors’ expectations.

20Figure 2 (with superimposed comments) is shown to the subjects in treatments OB and ORe
B as part of the

instructions. The time series shown in this figure differs from those used in the experiment. The screens in the
other treatments are similar to that shown in Figure 2 and adjusted accordingly. Specifically, in treatments N
and NRe the fee information is absent; in treatment OA the fee information of 2% is displayed for fund A; in
treatment FB, the information for fund B reads ‘fee=13%’, and in treatment FA the information for fund A
reads ‘fee=24%’.

21The number of positive shocks for fund A are 6 in Block 1 and 7 in Block 2. For fund B these numbers are
9 and 4, respectively. For the time series used in Block 3 the average number of positive price shocks for funds
A and B are 6.1 and 7.0 respectively.

22In treatments N, OB, and OA, such a subject would (by sheer bad or good luck) each period choose the
fund that will have the lowest or highest realized return in that period. In treatments FB and FA the total
return is maximal when the front-end load is paid at most once, and it is minimal when the front-end load is
paid seven times, i.e., when a subject switches between funds A and B as often as possible.

23The calculations assume that in the first period fund B is chosen.
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Block Treatment Always Always Minimum Maximum “Return
A B possible possible chasing”

1
N, OB 45.11% 86.53% 36.94% 97.67% 82.96%

FB 45.11% 85.42% −37.39% 85.49% 55.23%

(2 for NRe, ORe
B , FRe

B )
OA 45.11% 86.53% 36.94% 97.67% 53.83%
FA 44.48% 86.53% −73.96% 86.53% −40.14%

2
N, OB 50.86% 53.90% 26.78% 83.13% 50.92%

FB 50.86% 53.26% −39.64% 56.24% 7.37%

(1 for NRe, ORe
B , FRe

B )
OA 50.86% 53.90% 26.78% 83.13% 43.77%
FA 50.09% 53.90% −74.96% 53.90% −21.98%

3

N, OB 47.14% 72.92% 34.46% 89.15% 64.59%
FB 47.14% 72.02% −37.07% 72.68% 14.78%
OA 47.14% 72.92% 34.46% 89.15% 53.00%
FA 46.46% 72.92% −74.73% 72.92% −13.24%

Table 2: Realized returns in different treatments and blocks for different types of behavior. For
Block 3 the (unweighted) average for 10 time series is shown.

returns is not very large in treatments N and OB. In fact, in Block 1 there are only two periods

in which fund A does better than fund B, so the strategies lead to very similar behavior. In

Block 2 there are 6 periods when fund A has a higher return, and in three of them, the return of

fund A will be larger again in the following period. Finally, the return chasing strategy leads to

substantially lower returns than optimal in treatment OA, where the gross returns are higher

for fund A than for fund B with a probability of 75% (even if net returns are higher only with

a probability of 25%).

3 Hypotheses

We designed our experiment such that in each treatment subjects essentially face the same

choice between funds, with expected net returns for each fund the same across all treatments

(provided that that fund is chosen from the beginning). Therefore one might conjecture that

aggregate investment behavior is independent of the treatment, and that the fee structure will

have no impact on choice behavior. This leads to the following set of hypotheses, which we will

test in Section 4.

First, there should not be a significant difference between treatments where an operating

expenses fee is imposed by one of the funds, and treatments where no fees are charged. Although

the choice problem is framed differently in the two types of treatments, expected and realized

net returns of both funds are exactly the same in these treatments.

Hypothesis 1. There is not a significant difference in subjects’ frequency of choosing fund B

(against A) and subjects’ earnings between treatments OB, OA, and N. Likewise, there is not
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a significant difference between treatments ORe
B and NRe.

If we do find a statistically significant difference between some of these treatments, it can be

attributed to the way the returns of the funds are presented. We confront this hypothesis with

the data in Section 4.2.

Similarly, we do not expect to see a difference between the treatments with an operating

expenses fee and a front-end load.

Hypothesis 2. There is not a significant difference in subjects’ frequency of choosing fund B

(against A) and subjects’ earnings between treatments FB and OB, between treatments FRe
B and

ORe
B , and between treatments FA and OA.

Contrary to the comparison between treatments without fees and treatments with operating

expenses fees, there exist explanations other than framing for a possible significant difference

between front-end load treatments and treatments with an operating expenses fee.

On the one hand, for treatments that do not involve a front-end load it is straightforward to

understand which of the two funds generates a higher expected net return (4% for B is clearly

higher than 3% for A). However, in treatments with a front-end load the comparison between

the two funds requires a non-trivial computation, which may lead to uncertainty for the subject

about how to evaluate the fund that charges a front-end load.24 Moreover, the front-end loads

in treatments FB, FRe
B , and FA are much higher, and therefore much more salient, than the

operating expenses fees in treatments OB, ORe
B , and OA, respectively. These two effects might

lead to under-investment in fund B in treatments FB and FRe
B with respect to the operating

expenses fee treatments, and a larger investment in fund B in treatment FA than in OA. On

the other hand, the fact that the front-end load has to be paid every time that the subject

starts to invest in the front-end load fund implies that switching back and forth between funds

is much more costly in the front-end load treatments than in the operating expenses treatments.

In that sense, the front-end load may serve as a commitment device and force the subject to

exert more effort into thinking about the investment decision at the start of the experiment,

or at the start of a new block. This might increase the fraction of subjects choosing fund B in

treatments FB and FRe
B , and steer more subjects away from fund A in treatment FA. We test

Hypothesis 2 and discuss the cognitive effort and commitment device explanations in Section

4.3.

The final hypothesis focuses on the comparison between different blocks in the same treat-

ment. Although the actual realizations of returns are different between blocks, subjects’ de-

24See Bossaerts et al. (2018), who study the effect of the computational complexity of valuating securities on
market prices.
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cisions should be driven by expected, instead of realized, returns. This gives the following

hypothesis.

Hypothesis 3. The frequencies of choosing fund B (against A) are not significantly different

between blocks in the same treatment.

There are two possible explanations for a rejection of this hypothesis. First, although realized

returns do not convey additional information about future returns, the subjects may respond

to realized returns anyway: if the relative performance of fund A is better in one block than

in some other block, subjects may choose fund A more often in the former. For example, the

return realizations for our Blocks 1 and 2, although generated by the same data generating

process, are quite different, with fund B outperforming fund A in 12 of the 14 periods in Block

1 and in only eight of the 14 periods in Block 2. If (some) subjects exhibit “return chasing

behavior” we might expect a lower frequency of choices for fund B in Block 2 than in Block 1.

Second, as subjects gain more experience with the decision environment they may learn to

make better decisions. Under learning we would expect that the fraction of choices for fund

B will be higher in the third block than in the second block, and higher in the second block

than in the first block. To analyze this effect we can use the treatments with a reversed order

of blocks. For example, the second block of treatment NRe uses the same time series as the

first block of treatment N. Hence, a significantly higher frequency of choices for fund B in the

second block of NRe than in the first block of N would suggest that experience or learning may

explain (part of) the difference between blocks in the same treatment. In Section 4.4 we test

Hypothesis 3 and analyze learning and return chasing.

4 Experimental Results

In this section we present and analyze the experimental data. We will have a first look at

the data in Section 4.1 and subsequently compare the operating expenses treatments with the

treatments without fees in Section 4.2 and the front-end load treatments with the operating

expenses treatments in Section 4.3. Finally, in Section 4.4 we discuss the differences between

blocks.

4.1 An Overview of the Experimental Data

Figure 3 shows, for different treatments, the histograms of the number of choices for fund B,

i.e., how often subjects invest in fund B during a block. Table 3 shows the mean and median
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Figure 3: Histograms of the number of choices for fund B in different treatments. The solid
vertical line shows the median and the dashed vertical line shows the mean.

of this number for each block and treatment, along with some other variables that we will

discuss later in this section. Note that the number of times a subject can choose B in a block
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Treatment Block
Fraction of Choosing Median of Number of
A B Neither B-choices Earnings Efficiency Switches Observations

N

Block 1 6.40 8.37 0.23 8 1629.27 0.87 5 52
Block 2 7.54 7.44 0.02 7 1523.99 0.99 5 52
Blocks 3 4.90 10.10 0.00 10 1598.99 0.93 4 30
All 6.51 8.40 0.10 8 1560.02 0.94 5 134

OB

Block 1 5.22 9.59 0.20 10 1693.17 0.91 3 41
Block 2 7.27 7.61 0.12 8 1494.96 0.97 4 41
Blocks 3 4.64 10.18 0.18 10.5 1677.67 0.97 5 22
All 5.90 8.93 0.16 9.5 1568.96 0.95 4 104

FB

Block 1 4.63 10.13 0.25 11 1559.43 0.84 1 56
Block 2 6.79 8.04 0.18 7 1474.74 0.96 1 56
Blocks 3 7.00 7.95 0.05 8 1502.25 0.87 1 21
All 5.91 8.90 0.19 9 1502.25 0.88 1 133

NRe

Block 2 7.04 7.68 0.28 8 1509.19 0.98 5 47
Block 1 4.68 10.19 0.13 11 1727.17 0.93 4 47
Blocks 3 4.45 10.53 0.02 11 1630.20 0.95 4 47
All 5.39 9.47 0.14 10 1598.39 0.95 5 141

ORe
B

Block 2 7.09 7.86 0.05 7 1523.84 0.99 5 44
Block 1 4.61 10.39 0.00 10 1709.93 0.92 5 44
Blocks 3 2.91 12.09 0.00 13 1661.22 0.99 2.5 44
All 4.87 10.11 0.02 10 1644.79 0.97 4.5 132

FRe
B

Block 2 7.25 7.48 0.27 7 1387.86 0.91 1 48
Block 1 3.96 10.83 0.21 13 1715.61 0.93 1 48
Blocks 3 2.65 12.17 0.19 14 1637.86 0.98 1 48
All 4.62 10.16 0.22 11.5 1532.59 0.94 1 144

OA

Block 1 8.02 6.50 0.48 6.5 1552.70 0.83 6.5 58
Block 2 8.12 6.69 0.19 6 1494.38 0.97 6 58
Blocks 3 8.31 6.59 0.10 6 1583.30 0.89 6 58
All 8.15 6.59 0.26 6 1538.35 0.91 6 174

FA

Block 1 8.26 6.49 0.26 6 1444.82 0.77 1 35
Block 2 6.94 8.00 0.06 8 1472.47 0.96 1 35
Blocks 3 7.86 7.06 0.09 6 1444.82 0.83 1 35
All 7.69 7.18 0.13 6 1444.82 0.82 1 105

Table 3: Number of individual choices (averaged over subjects), medians of choices for fund B,
earnings, efficiencies, and switches for different treatments and blocks.

lies between 0 and 15. For Figure 3 we pool the experimental data over blocks in the same

treatment, so that the number of observations equals the number of subjects in a treatment

times the number of blocks in which they make decisions – see the last column of Table 3 for

the number of observations in each treatment. Moreover, for Figure 3 we also pool the data

from treatments N and NRe, from treatments OB and ORe
B , and from treatments FB and FRe

B ,

respectively.25 The solid and dashed vertical lines in each histogram show the median and

mean number of choices for fund B, respectively. Note that it is quite rare that a subject does

not invest in either of the two funds, as can be seen in the fifth column of Table 3, which is

unsurprising as returns for both funds are strictly positive (with the possible exception of the

fund for which a front-end load has to be paid).

Several interesting observations come to the fore when we look at the data presented in

Figure 3 and Table 3. First, for all treatments there is a substantial dispersion in how often

25Online Appendix D contains the histograms of the number of choices for fund B for every block and every
treatment separately.
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subjects choose fund B, and in none of the treatments the mean or median number of choices

for fund B equals 15, which it would be under rational choice. Instead, from Table 3 we see

that for most treatments and blocks the mean and median of the number of choices for fund B

are between 7.5 and 11 (they are the highest for Block 3 of treatment FRe
B , where they are 12.17

and 14, respectively). Second, although the histograms for the treatments without a fee and

those with an operating expenses fee for fund B are quite similar, the histogram for treatment

OA seems to be shifted to the left somewhat. A similar picture emerges when comparing the

histogram for treatments FB and FRe
B with the histogram for treatment FA. This suggests

that subjects in treatments where fund A charges a fee tend to choose fund B less often than

subjects do in the other treatments. In fact, Table 3 shows that subjects in treatments OA

and FA choose the suboptimal fund A more often than fund B.26 Third, we find a distinct

difference when comparing the histograms of number of choices for fund B between the front-

end load treatments and the other treatments, with the variation in that number much larger

in the front-end load treatments. Moreover, the mode of the histograms for the front-end load

treatments is at 15, whereas the mode of the other treatments typically lies between 6 and 10.

Finally, from Table 3 we see that for the treatments without fees, or the treatments with a fee

for fund B, there is a consistent difference between behavior in the different blocks. On the

one hand, the mean and median of the number of choices for fund B are highest in Block 3

for five of these six treatments, which is consistent with learning of subjects between blocks.

On the other hand, for all these six treatments the mean and the median of number of choices

for fund B is lower for the time series of returns used in Block 2 (where fund A does relatively

well) than for the time series used in Block 1, which is consistent with return chasing.

Figure 3 and Table 3 therefore suggest that there exist differences in subjects’ behavior

between blocks as well as between treatments. In Figure 4 we illustrate how these differences

translate into the performance of subjects by plotting the cumulative empirical distribution of

subjects’ earnings in each treatment. Earnings are lower in the front-end load treatments: for

about 23% of the observations in these treatments earnings in a block are below 1300 points,

which almost never happens in the other treatments. Earnings in treatment OA also tend to

be lower than those in the remaining four treatments (N, NRe, and, in particular, OB and

ORe
B ).27 On the other hand, there are also more observations in treatments FB and FRe

B where

earnings are very high (e.g., more than 1800 points in a block) than in the other treatments.

Specific realizations of the returns may have a substantial effect on earnings (see Table 2).

26The mean and median of the B-choices is less than 7.5 in all but one of the six blocks of treatments OA

and FA. (For only four of the other 18 blocks the mean and/or median of B-choices is lower than 7.5.)
27This is consistent with the seventh column of Table 3 which shows the median of the earnings per block

for each treatment. This median is the lowest in the front-end load treatments and treatment OA. The mean
earnings (not reported in Table 3) tell the same story: averaged over the three blocks and over treatments,
earnings correspond to returns of 1472.2 in the front-end load treatments, 1547.6 in treatment OA, and 1611.7
in the other four treatments.
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Figure 4: The empirical cumulative distribution of earnings.

To correct for this, we normalize the earnings by dividing the realized number of points every

subject gets in each block by the realized number of points under ex-ante optimal behavior

of investing in B every period in the block. We will refer to these normalized earnings as

efficiencies.28 The histograms of efficiencies are shown in Figure 5.29 Consistent with our earlier

findings the histogram for the treatments without fees (N and NRe) is similar to the histogram

for the treatments with an operating expenses fee for fund B (OB and ORe
B ). For treatment

OA efficiencies tend to be lower, whereas for the front-end load treatments the dispersion

in efficiencies is much larger than in the other treatments, with a substantial fraction of the

efficiencies below 0.70 (whereas almost all efficiencies in the other treatments are higher than

0.70). Note that the histograms for the treatments without a fee, or with a fee for fund B, have

a clear mode at 1, whereas the histogram for treatment OA does not exhibit an obvious mode.

The histogram for treatment FA does have a mode at 1, but also a second mode at 0.7.

The rest of the paper is devoted to testing the hypotheses formulated in Section 3. We will

apply two types of statistical tests. First, we use the Mann–Whitney–Wilcoxon (MWW) test

at subject level. This test allows us to determine the statistical significance of the differences

between treatments in, for example, the number of times subjects invest in fund B and in

subjects’ earnings. The p-values of the MWW test for various hypotheses are collected in

Table 7 of Appendix B. Second, we use the Kolmogorov–Smirnov (KS) test to evaluate whether

28Note that this efficiency can be larger than 1 due to particular realizations of the returns.
29See Fig. 18 in Online Appendix D for the corresponding CDFs of efficiencies. This CDF of efficiencies is

quite similar to the CDF of earnings from Fig. 4.
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Figure 5: Histograms of efficiencies in different treatments.

distributions are statistically different or not. The p-values for the KS test can be found in

Table 8 of Appendix B. We set the significance level at 5% for all tests.

4.2 Operating Expenses Fees and Gross Return Illusion

Visual inspection of Figures 3 and 5 suggests that behavior of subjects is not strongly affected

when operating expenses fees have to be paid for fund B. There is a larger difference when
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the operating expenses have to be paid for fund A. This is confirmed by a closer look at

Table 3. The mean and median of the number of choices for fund B is slightly lower in each

block of treatment N than in the corresponding block of OB, but substantially higher than in

the corresponding block of treatment OA. Similarly, the mean number of choices for fund B is

higher in treatment ORe
B than in treatment NRe for each block (although this is not true for

the median).

The results of both the MWW and the KS test are consistent with this impression. When

we specifically look at the number of choices for fund B, we find a significant difference when

treatment OA is compared with either treatment OB or treatment N. The differences between

treatments OB and N and between treatments ORe
B and NRe are not significant. We get

the same results if we compare subjects’ earnings and efficiencies between treatments (except

for the difference in efficiencies between treatments ORe
B and NRe, which is significant – see

Tables 7 and 8 in Appendix B, where we pool the data from the three blocks, for p-values of

these tests). Thus we partly reject Hypothesis 1.

Result 1. We find a significant difference in subjects’ behavior between treatment OA on the

one hand, and treatments N and OB on the other hand. Differences between treatments N and

OB are not significant, and neither are the differences between treatments NRe and ORe
B .

This result suggests that subjects, to some extent, ignore the operating expenses fee and are

driven by gross, instead of net, returns. Recall that, for each of these treatments, expected net

returns are 3% and 4% for funds A and B, respectively. Increasing expected gross return for a

fund to exactly offset an operating expenses fee, increases the number of choices for that fund

(fund B in treatments OB and ORe
B and fund A in treatment OA). The effect for OA is much

larger than for treatments OB and ORe
B , where the effect is not significant. This is consistent

with the fact that the operating expenses fee is twice as large in treatment OA. Moreover,

ignoring the operating expenses fee in treatment OB or ORe
B does not change the ordering in

the funds (fund B is preferred over fund A both on the basis of expected net returns – 4%

versus 3% – and on the basis of expected gross returns – 5% versus 3%). However, ignoring

the operating expenses fee in treatment OA reverses the ordering of the funds (fund A now

has an expected gross return 5% which is higher than 4% return of fund B, although in terms

of expected net returns fund B is still more attractive). This gross return illusion may explain

why we find a significant difference when an operating expenses fee has to be paid for fund A.30

30An alternative explanation may be that subjects interpret a (higher) fee for a fund as a signal of higher
quality of that fund. Our current design is not very well suited to separate such a higher price means higher
quality illusion from gross return illusion, although one would expect that the former also manifests itself in a
significant difference between treatments OB(ORe

B ) and N(NRe).
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4.3 Front-End Loads and Lock-in

From Figure 3 we see that the means and medians of the number of choices for fund B in

the front-end load treatments (FB, FRe
B , FA) are similar to those of their operating expenses

counterparts (OB, ORe
B , and OA, respectively), although the distributions of these choices are

quite different. Indeed, the KS test reveals significant differences in the distributions between

each front-end load treatment and the corresponding operating expenses treatment, whereas

the MWW test finds no significant differences between the median number of choices for fund

B. In contrast, median earnings and efficiencies in the front-end load treatments are lower

than in the corresponding operating expenses treatments (see Table 3) and these differences

are statistically significant (see Tables 7 and 8 in Appendix B). This apparent contradiction

between the high number of choices for fund B and low earnings may be explained by the large

heterogeneity in the front-end load treatments, illustrated by the histograms of efficiencies in

the lower panels of Figure 5. Some subjects do very well, but there are also many subjects with

efficiencies that are quite low.31

Although fund B is chosen most of the time in the majority of the treatments, fund A

is chosen quite often as well. In the treatments without a front-end load a vast majority of

the subjects chooses fund A now and then. In the front-end load treatments, on the other

hand, we more often see that a subject chooses the same fund (either fund A or fund B) for 15

consecutive periods (see Figure 3). In fact, a subject chooses the same fund for all periods in a

block in 36.8% of the cases in treatments FB and FRe
B and in 32.4% of the cases in treatment

FA. In most of these cases the subjects invest in the ex ante optimal fund B for 15 periods,

but not always.32 In contrast, for only 8.6% of the observations in treatments N, NRe, OB

and ORe
B a subject chooses the same fund for all 15 periods in a block; for treatment OA this

number is especially low, 1.7%.

Based upon the analysis above we conclude the following.

Result 2. We reject Hypothesis 2: there is a significant difference in subjects’ behavior in the

front-end load treatments, when compared to the corresponding operating expenses treatments.

In particular, a substantially higher fraction of subjects makes decisions consistent with rational

choice (investing in fund B for all 15 periods) in the front-end load treatments.

We propose two possible explanations for the substantial difference between individual

choices in the front-end load treatments and the other treatments. The first explanation relates

31Pooling all the data from the different front-end load treatments we find that in about 30% of the cases
efficiency is lower than 0.80, and in about 29% of the cases it is at least 1.00. These numbers are 4% and 22%,
respectively, for all other treatments (i.e., without front-end load) combined.

32 Investing for 15 consecutive periods in fund B happens for 28.5% of all observations in treatments FB and
FRe

B and for 21% of all observations in treatment FA.

24



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of switches

0

0.2

0.4

0.6

0.8

1

cu
m

ul
at

iv
e 

di
st

rib
ut

io
n

CDF of Switches

trs N and NRe

trs O
B
 and O

B
Re

trs F
B
 and F

B
Re

tr O
A

tr F
A

Figure 6: The empirical cumulative distribution of switches.

to the observation that after the front-end load is paid it is never optimal to invest in the other

fund. The front-end load is a sunk cost and expected returns (excluding the front-end load)

of the fund that charges the front-end load are always higher than those of the other fund. In

the treatments where none of the funds charges a front-end load such a lock-in is absent. The

second explanation is that subjects, given that they understand that switching between funds

is prohibitively costly in the front-end load treatments, may exert more cognitive effort (see

e.g. Brañas-Garza et al., 2012) in these treatments and conclude already at the start of the

experiment that they should choose fund B in every period.

Both explanations imply that the subjects are less likely to switch between funds in the front-

end load treatments. To confirm this we plot the empirical cumulative distribution function

(CDF) of the number of switches33 for different treatments in Figure 6. The empirical CDF for

switches in treatments FB, FRe
B and FA is shifted to the left substantially, with respect to the

empirical CDFs for switches in the other treatments. Moreover, the median number of switches

in each block of each front-end load treatment is 1, whereas it ranges between 2.5 and 6.5 in

the blocks of the other treatments (see the penultimate column of Table 3).34 The MWW and

KS tests confirm that the number of switches and their distributions are significantly different

when comparing the front-end load treatments with the other treatments, see Tables 7 and 8

33Switching is defined as a choice in period t > 1 that is different from the choice made in period t− 1. The
maximum number of switches per block is 14.

34The same conclusion can be drawn by considering the average number of switches per block. In treatments
N, NRe, OB, ORe

B and OA this number (4.54, 4.52, 4.15, 4.27 and 5.98, respectively) is substantially higher
than the average number of switches in treatments FB, FRe

B and FA (1.80, 1.33 and 1.47, respectively).
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Treatment Block
Number of times the front-load was paid Number of

0 1 2 3 4 5 6 or more observations

FB

Block 1 3 33 8 9 3 0 0 56
Block 2 7 34 11 3 1 0 0 56
Blocks 3 3 13 2 2 1 0 0 21

FRe
B

Block 2 8 25 11 3 1 0 0 48
Block 1 2 40 5 1 0 0 0 48
Blocks 3 0 43 4 0 1 0 0 48

All for fund B 23 188 41 18 7 0 0 277
(in % out of 277) (8.3%) (67.9%) (14.8%) (6.5%) (2.53%) (0%) (0%)

FA

Block 1 3 24 2 4 1 1 0 35
Block 2 9 23 1 1 1 0 0 35
Blocks 3 10 24 1 0 0 0 0 35

All for fund A 22 71 4 5 2 1 0 105
(in % out of 105) (21.0%) (67.6%) (3.8%) (4.8%) (1.9%) (1.0%) (0%)

Number of B-runs started in block Number of
0 1 2 3 4 5 6 or more observations

N
All 2 22 31 43 21 14 1 134

(in % out of 134) (1.5%) (16.4%) (23.1%) (32.1%) (15.7%) (10.4%) (0.7%)

NRe All 3 26 33 32 31 13 3 141
(in % out of 141) (2.1%) (18.4%) (23.4%) (22.7%) (22.0%) (9.2%) (2.1%)

OB
All 1 26 25 27 20 2 3 104

(in % out of 104) (1.0%) (25.0%) (24.0%) (26.0%) (19.2% ) (1.9%) (2.9%)

ORe
B

All 0 27 31 37 26 10 1 132
(in % out of 132) (0%) (20.5%) (23.5%) (28.0%) (19.7% ) (7.6%) (0.8%)

Number of A-runs started in block Number of
0 1 2 3 4 5 6 or more observations

OA
All 3 10 34 42 52 21 12 174

(% out of 174) (1.7%) (5.7%) (19.5%) (24.1%) (29.9%) (12.1%) (6.9%)

Table 4: The number of times subjects started to invest to fund B (or fund A for treatments
FA and OA) by choosing it in the first period of block or by switching from the other choice.
For treatments FB, FRe

B and FA, this is the number of times the subjects paid the front-end
load fee. The last column gives the total number of individual observations.

in Appendix B.35

As mentioned above, it can never be optimal to pay the front-end load more than once.

We now investigate which fraction of the subjects in treatments FB, FRe
B and FA seem to

understand this. Table 4 shows how often subjects in those treatments pay the front-end load,

that is, how often they start to invest in fund B for treatments FB and FRe
B and in fund A for

treatment FA. For reference, in the lower part of Table 4 we show how often subjects in the

treatments without front-end load start a “run” of one or more periods of investing in fund B

(or fund A for treatment OA), which they can do free of an explicit charge.

Table 4 again reveals a large contrast between treatments with a front-end load and the

other treatments. In the treatments without a front-end load the number of times subjects

start to invest in fund B (fund A for treatment OA) is often 2, 3 or 4 in a block; these account

35One reason for subjects to switch relatively often in treatments where no front-end load needs to be paid
may also be that, even if a subject understands that choosing B in every period is the optimal decision, he/she
is still curious about what happens if A is chosen instead, which is not very costly in these treatments. See, for
example, Blume and Ortmann (2007), who find that subjects may feel curious about other actions and deviate
from the efficient equilibrium even after they have played it for a long time.
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for about 70% of the observations. For only 16% of the observations subjects invest in fund

B (fund A in OA) exactly once. In contrast, in a majority of the observations (68%) from

the front-end load treatments, subjects invest only once in the fund that charges a fee. This

finding is consistent with the lock-in explanation given above. Support for the cognitive effort

argument is weaker. First, in almost a quarter (23.8%) of the blocks in treatments FB and

FRe
B subjects pay the front-end load more than once, which is clearly suboptimal. This even

happens in 11.4% of the blocks in treatment FA, where the front-end load is much higher.36

Second, in treatment FA paying the front-load fee is never optimal, and yet a vast majority of

subjects (79%) do it.

We identified a substantial number of subjects who invest exactly once in the fund for

which a front-end load is charged. Another question is how long these subjects stay in this

fund. Recall that for treatments FB and FRe
B the expected returns are maximized when the

subject invests in fund B for all 15 periods. The front-end load is recovered (in expectation) if

the subject invests for at least eight consecutive periods in fund B. For FA it is never optimal

to invest in fund A, but as soon as a subject invests in that fund it is suboptimal to switch

back to fund B.

It turns out that of the 188 cases in treatments FB and FRe
B where a subject only started

to invest in fund B once, 79 (42%) lasted for the full block of 15 periods.37 This behavior is

consistent with the cognitive effort hypothesis. In 111 (59%) of these 188 cases the investment

lasted for at least 13 periods and for 148 (79%) of these cases it lasted at least eight periods

(that is, in expectation, the front-end load is recovered from the investment). Summarizing,

those subjects in treatments FB and FRe
B that understand that they should pay the front-end

load not more than once will typically get locked into fund B, resulting in high payoffs. The

subjects that pay the front-end load more than once are unlikely to obtain a good payoff.

Lock-in into the fund that charges a front-end load may also occur when that fund is not

the optimal choice. In fact, in 71 of the 105 cases (68%) in treatment FA, the subject invests

in fund A exactly once, which is very similar to treatments FB and FRe
B . In 12 of these 71

cases (17%) the investment takes 15 periods and in 31 cases (44%) it takes at least 13 periods.

Investments in the front-end load fund, conditional on that there is only one such investment

by the subject, therefore tend to last not as long as in treatments FB and FRe
B , although – once

locked in – it is still optimal to stay with that fund.38 Note that, after paying the front-end

36The highest expected payoff for paying the front-end load twice – by investing for only one period in fund A,
in between two longer investment runs in fund B – equals 1470 points, which is lower than the expected number
of points (1512) from investing in fund A in every period. For treatment FA paying the front-end load twice
gives a highest expected return of 1133 points. Paying the front-end load even more than twice will obviously
decrease earnings only further.

37These 79 cases correspond to 28.5% of all 277 individual blocks in treatments FB and FRe
B . In treatments

N, NRe, OB, ORe
B together only in 35 of the 511 blocks (6.8%) the subject invested in fund B for all periods.

38The mean duration of the investments in the front-end load fund – if there is a single investment – is 11.4
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load, the difference between expected returns in treatment FA is 1%, whereas this difference is

2% in treatments FB and FRe
B , see Table 1. This may explain why subjects are locked-in for a

longer period on average in the latter treatments than in the former.

A final remarkable finding is that in treatment FA a substantial number of subjects make

the optimal choice of never investing in fund A. This happens in 22 out of 105 cases (21%),

which is much more often than in any of the treatments where no front-end load is charged.

This suggests that some subjects consistently choose the optimal fund because the suboptimal

fund charges a front-end load. This may be due to higher cognitive efforts by those subjects,

although the lock-in effect seems to be much stronger.39 Note that expected earnings for these

22 cases are substantially higher than the expected earnings of investing in fund A at least once

(since the latter are bounded from above by always investing in fund A). This explains the low

average and median profits in treatment FA: in a vast majority of the cases individual earnings

are low, either because the subject is locked-in in the suboptimal fund, or because the subject

pays the front-end load more than once.

Our analysis reveals a substantial heterogeneity between subjects behavior in the front-end

load treatments. On the one hand, many subjects understand that they should not pay the

front-end load more than once, and therefore get locked-in into the front-end load fund. This

also happens regularly when it is the inferior fund that charges the front-end load, suggesting

that the lock-in effect is stronger than the cognitive effort effect (although there is a substantial

number of subjects that steer clear from the inferior fund, when that fund charges a front-end

load). On the other hand, there are also quite some subjects that do pay the front-end load

more than once, which is clearly suboptimal.

To investigate whether we can explain that behavior by the subjects’ individual character-

istics, we collected data on age and gender and, for the sessions that we ran in 2017, we also

measured the subjects’ cognitive ability by letting subjects take the Cognitive Reflection Test

(see Frederick, 2005, for a description). We conjecture that subjects with a lower CRT score are

more inclined to pay the front-end load more than once. To analyze that we classify subjects

as ‘non-switchers’ if they pay the front-end load at most once in each of the three blocks, and

as ‘switchers’ otherwise. We estimate a logit model to try to explain the probability that a

subject is a switcher by his/her age, gender and CRT score. However, the coefficient for the

CRT score is not statistically significant and neither are the coefficients on age and gender, see

Table 9 in Appendix B.

periods for treatments FB and FRe
B combined, and 10.3 periods for treatment FA; the median length is 14

periods for FB and FRe
B combined and 11 periods for FA.

39An alternative explanation is that subjects want to avoid the large and very salient front-end load. However,
if that would be the case we should also see much more subjects in treatments FB and FRe

B only investing in
fund A. This only happens in 23 of the 277 cases (8.3%) in these treatments.
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4.4 Differences between Blocks: Learning and Return Chasing

In this section we take a more detailed look at the differences between blocks within treatments.

We have seen that this difference can be substantial, as for example in treatments ORe
B and

FRe
B , where the median number of choices for fund B is 7 in the first block and 13 and 14,

respectively, in the third block, see Table 3. Indeed, when we consider pairwise differences in

the number of choices for fund B between blocks in the same treatment (i.e., comparing, for

each treatment, Blocks 1 and 2, Blocks 2 and 3 and Blocks 1 and 3) we find that 10 of these 24

differences are statistically significant, according to the MWW test. Only for treatments FB,

OA and FA none of the three differences are significant.40 From this we conclude the following.

Result 3. We reject Hypothesis 3: there exist significant differences in the number of times

subjects choose fund B between at least two blocks in five of the eight treatments.

Figure 7 sheds some light on the dynamics of subjects’ behavior. It plots, for each treatment,

the time series of the fraction of subjects choosing B in the three blocks (in the order in

which subjects experience these blocks – the blocks are separated by the dashed vertical lines).

Figure 7 illustrates that differences between and within blocks indeed exist.

As mentioned in Section 3 there may be two explanations for the differences between blocks.

When subjects go from one block to the next they (i) have gained more experience with the

experiment; and (ii) are subjected to a new realization of the time series of returns. From the

additional experience with the experiment subjects may learn that it is optimal to invest in fund

B. Indeed, it follows from Table 3, and is illustrated by Figure 7, that the median and mean of

the number of choices for fund B is highest in the third block for five of the eight treatments

(the exceptions are treatments FB, OA and FA again). Moreover, for many blocks the fraction

of choices for fund B seems to increase during the block (note that period-to-period variations

in this fraction are lower in the front-end load treatments than in the other treatments, due to

the lock-in discussed above).

Alternatively, variations in realized returns during a block may also explain the differences

in subjects’ behavior. Although the time series in the different blocks are generated by the

same underlying data generating process, subjects may be (partly) driven by return chasing,

that is, a tendency to choose the fund that had a larger (gross) return in the previous period.

This is supported by the observation that for seven of the eight treatments the median number

40In particular, all three differences in treatment ORe
B are significant, as are two of the three differences in

each of the treatments N, NRe and FRe
B , and one difference in treatment OB. See Table 7 in Appendix B. The

KS test is broadly consistent with this finding, although the difference in treatment OB is not significant at the
5% level according to that test (but it is significant at the 10% level, see Table 8 in Appendix B). Note that
when comparing the number of choices for fund B from Blocks 1 or 2 with Block 3 we only use data from the
sessions from 2017.
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Figure 7: The time series of fraction of the B-choices (the blocks are divided by the vertical
dashed lines). For the first two blocks the circled markers indicate those instances when in the
previous period the realized gross return of A was larger than the realized gross return of B.
The squares indicate instances where in the previous period the realized gross return of fund
B was larger than that of fund A.
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of choices for fund B is higher for the time series of returns used in Block 1 than for those

used in Block 2 (recall that for the reverse order treatments the time series used in the first

and second block are swapped, and that relative performance of fund A is higher in Block 2

than in Block 1). Four of these differences are significant, according to the MWW test. Also

note that the increase in the fraction of subjects choosing fund B during the block seems to

be more pronounced in blocks where the time series of returns from Block 1 are used than in

the blocks where the time series from Block 2 are used. This suggests that, as subjects receive

more information during the block that fund B is the better choice, it becomes increasingly

likely that they choose fund B.

The three reverse order treatments allow for a direct test of the effect of experience. In

particular, if experience with another block does not have an effect then subjects’ behavior in

the first block of, e.g., treatment N should not be significantly different from subjects’ behavior

in the second block of treatment NRe, where the same time series of realized returns is used. It

turns out that of the six comparisons of a block in a reverse order treatment with its counterpart

in the corresponding benchmark treatment the only significant difference is for the time series

of returns used in Block 2 in treatments N and NRe.41 Therefore there is only a weak effect

of the order in which time series are presented to the subjects in the first two blocks, which

suggests that subjects do not learn between the first and second block. As an additional test of

learning we consider subjects’ behavior in the third block. The realized differences in returns

between funds B and A for the times series used in Block 3 are higher, on average, than for the

time series used in Block 2, but lower than for those used in Block 1 (see Table 2). If learning

does not effect subjects’ behavior, but the realization of the returns does, then the number of

choices for fund B in Block 3 should be higher than in Block 2, but lower than in Block 1.

Indeed, the median of the number of choices for fund B is higher in Block 3 than in Block 2 for

all but two treatments. For four of these treatments these differences, which are consistent with

learning and with return chasing, are significant. However, the number of choices for fund B

is also higher in Block 3 than in Block 1 for four treatments (with the difference significant for

treatments N and ORe
B ) which is not consistent with return chasing, but can be explained by

learning. Taken together, these results suggest that learning between blocks does play a role,

but that its effect is larger from the second to the third block than from the first to the second

block. Further evidence for learning is provided by the front-end load treatments, where the

fraction of subjects paying the front-end load more than once decreases over the three blocks,

see Table 4.42

41According to both the MWW and KS test, see the last six rows of Tables 7 and 8 in the appendix.
42A fraction of 34% of the subjects in treatments FB and FRe

B pay the front-end load at least two times in
the first block they experience, but this percentage decreases to 20% in the second block and to 14% in the
third block. A similar effect occurs for treatment FA, where the fraction of subjects paying the front-end load
at least twice decreases from 23% in the first block to 9% in the second block and 3% in the third block.
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Treatment Block 1 Block 2 Block 3 All

N 44.23% (56.18%) 38.78% (50.14%) 51.94% (68.81%) 43.84% (56.66%)

NRe 57.45% (70.21%) 43.62% (50.91%) 49.47% (71.88%) 50.18% (64.34%)

OB 62.20% (66.03%) 39.02% (52.26%) 45.08% (70.78%) 49.44% (61.61%)

ORe
B 64.77% (72.24%) 39.39% (53.41%) 67.05% (82.95%) 57.07% (69.53%)

OA 39.08% (43.35%) 40.28% (45.44%) 41.73% (44.83%) 40.36% (44.54%)

FB 62.50% (68.75%) 50.00% (53.57%) 46.03% (55.10%) 54.64% (60.20%)

FRe
B 72.92% (74.11%) 48.26% (50.00%) 82.29% (82.89%) 67.82% (69.00%)

FA 44.13% (43.88%) 49.35% (52.45%) 43.39% (47.14%) 45.62% (47.82%)

Table 5: The fraction of choices for fund B in periods that immediately follow a period where
the realized return of A was larger than that of fund realized return of B. The fraction in
parentheses refer to the (unconditional) fraction of choices for fund B in periods 2− 15 of that
block.

We continue by investigating whether part of subjects’ behavior can be explained by return

chasing as well. To start with, the markers in the first two blocks in each panel of Figure 7

characterize the realized returns of funds A and B from the previous period. In particular,

circles indicate when the gross return of fund A was higher than that of fund B in the previous

period, and squares refer to instances where the gross return of fund B was higher than that of

fund A.43 Using these markers we see that, at least in the first two blocks, there is a tendency

for the fraction of subjects choosing fund B to be low after a period in which fund A had a

higher return than fund B, suggesting that return chasing indeed helps in explaining subjects’

behavior. This suggestion of return chasing is quantified in Table 5. This table shows, for

each treatment and block, the fraction of choices for fund B in periods immediately preceded

by a period in which the return for fund A was higher than that of fund B. The numbers in

parentheses indicate the fraction of choices for fund B in all periods in that block (where we

excluded the first period in each block, to facilitate comparisons).

Table 5 shows that for each treatment the fraction of choices for fund B is smaller after a

positive return difference for fund A, with the effect particularly strong in treatments N, NRe,

OB, ORe
B , and return chasing therefore indeed seems to play an important role in subjects’

behavior. Note that in the treatments where a fee is paid for fund A (i.e., treatments OA and

FA) the fraction of choices for fund A are higher than in the other treatments, as discussed

above (see, e.g., Table 3). This can also be explained in part by return chasing, as it occurs

43Note that, because subjects experience different time series in the third block of the experiment, we cannot
characterize periods in that block in this way.
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more often in these treatments that the gross return in the previous period was higher for fund

A than for fund B.

Both learning and return chasing therefore seem to play a role in the differences between

blocks in the same treatment. In order to capture these two effects we estimate, for each

treatment, the following logit or discrete choice model:

nB,t =
exp

(
β0 + β1 (rB,t−1 − rA,t−1) + β2

∑t−1
s=1 (rB,s − rA,s) + β3t+ β4B2 + β5B3

)
1 + exp

(
β0 + β1 (rB,t−1 − rA,t−1) + β2

∑t−1
s=1 (rB,s − rA,s) + β3t+ β4B2 + β5B3

) . (1)

Here nB,t is the fraction of subjects choosing fund B in period t in that treatment, rA,t−1 and

rB,t−1 are the realized gross returns (in decimals) of funds A and B in period t−1, respectively,

t ∈ {2, . . . , 15} is the period in the block, and B2 (B3) is a dummy variable that equals 1 if the

observation is from the second block (the third block) the subject experiences, and 0 otherwise.

The coefficient β0 represents a predisposition towards choosing fund B and the coefficient β1,

sometimes referred to as the intensity of choice, captures how sensitive subjects are with respect

to the return difference from the previous period.44 As argued above, the fraction of subjects

choosing fund B may increase during the block if information that fund B is the better choice

accumulates as the block evolves. This effect is measured by coefficient β2. The coefficient β3

measures whether, during the block, subjects learn to choose fund B, independent of the past

returns of the funds in that block. The coefficients β4 and β5 measure whether there is learning

between blocks. Given our discussion above we expect that both return chasing and learning

within and between blocks help explain the fraction of subjects choosing fund B. That is, we

expect that β1 > 0 and that either β2 > 0 or β3 > 0. Moreover, we expect that the effect of

learning between blocks is higher from the second to the third block than from the first to the

second block (where learning seems to be limited), which would mean that β5 > 2β4 ≥ 0.

Table 6 gives the results of the estimations, which – to a considerable extent – are in line with

the discussion above. First, consider treatments N, NRe, OB and ORe
B . These treatments are

characterized by return chasing (β1 positive and strongly significant), learning within blocks

through return differences (β2 positive and significant, but β3 not significant) and learning

between blocks most prevalent from the second to the third block (β5 positive and significant,

but β4 not significant). The only exception is treatment OB, where most of the learning

between blocks takes place between the first and second block.45 The estimated discrete choice

44This terminology is used in the Heterogeneous Agent Models approach to financial markets, see, e.g.,
Hommes (2013). There is a growing literature that focuses on fitting the discrete choice model to experimental
or empirical data, see, e.g., Branch (2004), Boswijk et al. (2007), Anufriev and Hommes (2012), and Anufriev
et al. (2013). Anufriev et al. (2016) and Anufriev et al. (2018) recently estimated the values of the predisposition
effect and the intensity of choice for laboratory experiments on fund choice, where, as opposed to the present
paper, subjects do not know the data generating process.

45Moreover, for treatment OB the coefficient β0 is significant and negative , which is somewhat unexpected
at first sight. However given that the expected value of rB − rA is equal to 0.02, it is still consistent with the
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Treatment N Treatments O Treatments F
Variables N NRe OB ORe

B OA FB FRe
B FA

Const, β0 −0.300∗ 0.131 −0.782∗∗∗ −0.189 −0.511∗∗∗ −0.327∗ 0.590∗∗∗ −0.693∗∗∗

(0.167) (0.160) (0.206) (0.184) (0.127) (0.197) (0.172) (0.162)
Past Return Diff, β1 8.988∗∗∗ 8.742∗∗∗ 13.037∗∗∗ 11.345∗∗∗ 10.791∗∗∗ 3.350 −0.531 4.598∗∗

(2.126) (1.767) (2.669) (1.993) (1.516) (2.497) (1.866) (1.933)
Sum of Past Ret Diffs, β2 2.630∗∗ 3.319∗∗∗ 6.427∗∗∗ 4.732∗∗∗ 1.427∗ 4.288∗∗∗ 7.555∗∗∗ −1.784∗

(1.123) (0.939) (1.399) (1.074) (0.781) (1.277) (1.022) (0.997)
Period in Block, β3 −0.007 −0.007 −0.043 −0.010 0.031∗∗ −0.043 −0.123∗∗∗ 0.051∗∗∗

(0.019) (0.015) (0.033) (0.025) (0.013) (0.031) (0.023) (0.016)
Dummy Block 2, β4 0.336 0.188 0.810∗∗∗ −0.015 0.494∗∗∗ 0.071 −0.037 0.155

(0.219) (0.178) (0.264) (0.192) (0.156) (0.251) (0.182) (0.198)
Dummy Block 3, β5 0.860∗∗∗ 0.530∗∗∗ 0.868∗∗∗ 0.987∗∗∗ 0.221∗∗ 0.167 0.931∗∗∗ 0.055

(0.163) (0.142) (0.203) (0.162) (0.112) (0.185) (0.152) (0.142)
Observations 1260 1974 924 1848 2436 882 2016 1470
McFadden R2 0.041 0.052 0.089 0.110 0.022 0.034 0.098 0.021

Table 6: Estimated coefficients of the discrete choice model (1) for different treatments using
the data from 2017 experiments only. Standard deviations are in parentheses. Coefficients with
∗, ∗∗ or ∗∗∗ correspond to significance at 10%, 5% and 1% level respectively.

model for treatment OA differs a bit from the other treatments without front-end loads. It

is characterized by a predisposition toward fund A and return chasing, but learning within or

between blocks seems to be modest.46

The results are not as clear for the front-end load treatments. Obviously, given that the

front-end load may have to be paid when subjects switch between funds, return chasing is not

so prevalent in these treatments and indeed β1 is only significant for treatment FA. Instead,

lock-in in fund B (fund A) is captured by the significant positive (negative) value for β0 for

treatment FB (FA). The evidence on learning within blocks is mixed: four of the six coefficients

are significant, but the coefficients β2 and β3 have opposite signs, implying that the net effect

of learning within a block is limited in the front-end load treatments. This is not unexpected:

although fund B is the ex-ante optimal fund, it is never optimal to switch from fund A to

fund B in treatment FA, and not optimal after period t = 7 in the other two front-end load

treatments. Finally, there is little evidence of learning between blocks in the front-end loads

(the only significant coefficient is β5 for treatment FB).

We therefore find, in particular for the treatments where none of the funds charges a front-

end load, that return chasing, learning within blocks, and learning between the second and

third block, are important drivers of subjects’ choice behavior.

majority of the subjects choosing fund B. Plugging in the estimated coefficients from Table 6 for treatment OB

into Equation (1) and letting rB − rA = 0.02 we predict, halfway each block, nB,8 ≈ 0.52 for the first block,
nB,8 ≈ 0.71 for the second block and nB,8 ≈ 0.72 for the third block.

46The coefficient β2 is not significant, and although β3 is significant, it is rather small. There is some learning
from the first to the second block but, remarkably, some of that is neutralized in the next block, since β5 < β4.
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5 Conclusion

The experiment presented in this paper is aimed at studying how mutual fund choice is affected

by the fees charged by these funds. Subjects have to choose between two experimental funds,

where the expected net return of fund B is higher than that of fund A. We impose different

fee structures across treatments, but in such a way that expected (and realized) net returns of

the funds are independent of the treatment. Our prediction is that subjects’ choice behavior is

the same in each of these treatments.

We find that introducing a small operating expenses fee for fund B, accompanied by an

increase in gross returns of the same size, increases investment in fund B, but this increase is

not significant. However, when we increase gross returns for fund A such that they become

larger than gross returns for fund B, and combine this with an operating expenses fee that

keeps expected net returns of fund A at the original level (i.e., below those of fund B) we

see a substantial and significant decrease in investment in fund B. Although the decision

environment is very stylized and transparent, gross return illusion seems to play an important

role and subjects exhibit a tendency to ignore the fee they have to pay.

Although the front-end load is much more salient than the operating expenses fee, it does

not seem to discourage investors. In fact, total investment in the fund that charges the front-

end load is unaffected. However, the front-end load does lead to “lock-in” of subjects into

the fund that charges the load. Remarkably, this lock-in also occurs when the inferior fund

charges a front-end load, although in that case we simultaneously observe a substantial fraction

of subjects that never pays the front-end load. Quite a number of subjects therefore appear to

use the front-end load as a commitment device to consistently choose the optimal fund, either

because the subject gets locked-in into that fund, or because he/she does not want to become

locked-in into the inferior fund.47 Besides that, there are also a considerable number of subjects

that pay the front-end load more than once, which is clearly suboptimal. As a consequence,

there is substantial variation in individual earnings when one of the funds charges a front-end

load, with average earnings also lower than in the operating expenses treatments. Our results

suggest that, in a more general decision environment where some funds charge front-end loads

and other funds charge operating expenses fees, investors may eventually tend to choose the

latter, either because the front-end load is more salient (it is not ignored by our subjects to the

extent that the operating expenses fee is), or because average earnings are lower in the front-

end load treatments. This would be consistent with the decreasing popularity of front-end load

funds, which has been documented by, for example, Barber et al. (2005).

47An interesting direction for future research is to investigate what happens if, after a number of periods,
fund A becomes (much) more attractive than fund B and subjects should switch to fund A. In this way we
can test whether the sunk-cost fallacy, see Friedman et al. (2007) and the status quo bias, see Brown and Kagel
(2009), play a role in the choice between mutual funds.
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Finally, we find that differences between blocks in the same treatment can be partly ex-

plained by return chasing and learning. Since realized returns do not affect future expected

returns – and subjects are informed about this – it is odd that return chasing is so prevalent in

our experiment, although it is a robust feature of earlier experiments as well (see, e.g., Wilcox,

2003 and Choi et al., 2010). Our decision environment seems to be more stylized and transpar-

ent than these earlier experiments, so it is difficult to attribute return chasing to the limited

understanding subjects have of the experiment (see, e.g., Chou et al., 2009, Kirchler et al.,

2012, however, for studies that show that subjects are easily confused about their experimental

environment). Return chasing behavior may therefore be something deeply built in the “animal

spirit” of human beings. Moreover, although in some of the treatments subjects seem to make

better choices as they gain more experience with the decision environment, learning does not

eradicate the errors in their decision making.

In the empirical literature a number of arguments have been forwarded to explain the large

dispersion in fees, such as non-portfolio differentiation, search costs and asymmetric informa-

tion. Our experiment shows that there is a tendency for subjects to ignore fees and make

suboptimal decisions even in an environment where these arguments have no bite, illustrating

that these decision errors are very persistent and difficult to eliminate. Note that the mutual

fund industry attracts a considerable fraction of novice investors that are likely to be subject

to the same types of biases as our experimental subjects. Our study suggests that there may

be substantial scope for mutual fund firms to exploit the bias in investment decisions by mu-

tual fund investors. This highlights the desirability for regulatory authorities to exert effort in

enhancing the transparency of the mutual fund industry, and the level of financial literacy in

society. At a minimum there is a need for full disclosure of the fees of mutual funds, and these

fees should be made very salient in the prospectuses of those funds. Unfortunately, our results

suggest that this may not be sufficient, and stricter regulation might be required.
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APPENDIX

A Experimental Instructions

These are the experimental instructions for the different treatments. For this purpose those

parts that were shown only in certain treatments are included in squared brackets, preceded

by the indication of which treatment this part belongs to.

General information. In this experiment you are asked to make subsequent investment

decisions. You will start with 1000 points which you can invest. In every subsequent period

you will have the possibility to reinvest your accumulated points. In every period you can only

invest all of your points in fund A, all of your points in fund B, or invest in neither of the two

funds. [Treatments OB, ORe
B , FB, FRe

B : Fund B charges a fee for investment, fund A does

not.] [Treatments OA, FA: Fund A charges a fee for investment, fund F does not.] Your

earnings from the experiment will depend upon how well your investments will do.

The funds and their prices. The price of fund A is PA(t) in period t, and the price of fund

B is PB(t) in period t. Over time prices of the funds grow in the following way. The price of

fund A in period t+ 1 is equal to (1 + gA) times the price of fund A in period t, that is

PA(t+ 1) = (1 + gA)× PA(t).

The growth rate gA can only take one of two values. [Treatments N, NRe, OB, ORe
B , FB,

FRe
B : It is either equal to 0.05, or it is equal to 0.01.] [Treatments OA, FA: It is either equal

to 0.07, or it is equal to 0.03.] Both values are equally likely to occur (that is, both occur with

the probability equal to 0.5). The history of values of gA does not influence the probability of

either value occurring.

[Treatments N, NRe, OA, FA: Similarly, the price of fund B grows with growth rate gB,

which could either be 0.06 or 0.02.] [Treatments OB, ORe
B , FB, FRe

B : Similarly, the price of

fund B grows with growth rate gB, which could either be 0.07 or 0.03.] Again both values are

equally likely to occur. The price of fund B in period t therefore is

PB(t+ 1) = (1 + gB)× PB(t).

Prices of the two funds do not influence each other. Moreover, your decisions will not influence

the price of the two funds.
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Example: [Treatments N, NRe, OB, ORe
B , FB, FRe

B : Suppose the price of fund A is

equal to 50 in period 1, and the growth rate in period 1 is equal to 0.05. In that case we have

PA(2) = 1.05 × 50 = 52.5. If the growth rate in period 2 is given by 0.01 then the price in

period 3 will be given by PA(3) = 52.5 × 1.01 = 53.03, and so on.] [Treatments OA, FA:

Suppose the price of fund A is equal to 60 in period 1, and the growth rate in period 1 is equal

to 0.07. In that case we have PA(2) = 1.07× 60 = 64.2. If the growth rate in period 2 is given

by 0.03 then the price in period 3 will be given by PA(3) = 64.2× 1.03 = 66.12, and so on.]

[Treatments OB, ORe
B : Fees for fund B. Each period that you invest your points in fund B

you will have to pay fees to the fund manager. This fee equals 1% of your accumulated points

at the beginning of that period. Fund A does not charge any fees.]

[Treatment OA: Fees for fund A. Each period that you invest your points in fund A you

will have to pay fees to the fund manager. This fee equals 2% of your accumulated points at

the beginning of that period. Fund B does not charge any fees.]

[Treatments FB, FRe
B : Fees for fund B. In each period that you start to invest in fund

B you will have to pay a fee to the fund manager. This fee equals 13% of your accumulated

points at the beginning of that period. Suppose that you invest in fund B from period 1 until

period 5, and then invest in A from period 6 until period 10, and then go back to fund B in

period 11. Then as a fee you have to pay 13% of your initial points in period 1, you do not

have to pay a fee in periods 2 until 10, but in period 11 you then have to pay 13% of the points

you accumulated until the beginning of period 11. Fund A does not charge any fees.]

[Treatment FA: Fees for fund A. In each period that you start to invest in fund A you

will have to pay a fee to the fund manager. This fee equals 24% of your accumulated points

at the beginning of that period. Suppose that you invest in fund A from period 1 until period

5, and then invest in B from period 6 until period 10, and then go back to fund A in period

11. Then as a fee you have to pay 24% of your initial points in period 1, you do not have to

pay a fee in periods 2 until 10, but in period 11 you then have to pay 24% of the points you

accumulated until the beginning of period 11. Fund B does not charge any fees.]

Investing. If you invest your points in one of the two funds, the number of points you have

will grow. [Treatments N, NRe, OB, ORe
B , FB, FRe

B : For example, suppose you invest your

1000 points in fund A in period 1, when the price of fund A is PA(1) = 50, and you keep

your points in fund A until period 6. By then the price of fund A has grown to, for example,

PA(6) = 60.] [Treatments OA, FA: For example, suppose you invest your 1000 points in

fund B in period 1, when the price of fund B is PB(1) = 50, and you keep your points in fund

B until period 6. By then the price of fund B has grown to, for example, PB(6) = 60.] Then
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your points will have increased up to

1000× 60

50
= 1200.

[Treatments N, NRe: If you then decide to invest these points in fund B for the next two

periods and, for example PB(6) = 56, PB(7) = 59 and PB(8) = 61, your total number of points

at the end of period 8 will be equal to

1200× 61

56
= 1307.14.]

[Treatments OB, ORe
B : If you then decide to invest these points in fund B for the next two

periods and, for example PB(6) = 55, PB(7) = 57 and PB(8) = 61, your total number of points

at the end of period 7 will be equal to

1200× 57

55
− 1200× 1% = 1231.64.

Your total number of points at the end of period 8 will be (after subtracting the 1% fee again)

1231.64× 61

57
− 1231.64× 1% = 1305.75.]

[Treatment OA: If you then decide to invest these points in fund A for the next period and,

for example PA(6) = 66, PA(7) = 68, your total number of points at the end of period 7 will

be equal to

1200× 68

66
− 1200× 1% = 1224.36.]

[Treatments FB, FRe
B : If you then decide to invest these points in fund B for the next two

periods and, for example PB(6) = 55, PB(7) = 57 and PB(8) = 61, your total number of points

at the end of period 8 will be (after subtracting the 13% fee for fund B that you will have to

pay in period 7)

(1200− 1200× 13%)× 61

55
= 1157.89.]

Note that your points will remain constant in the periods in which you invest in none of the

two funds.

[Treatment FA: If you then decide to invest these points in fund A for the next two periods

and, for example PA(6) = 66, PA(7) = 68 and PA(8) = 72, your total number of points at the

end of period 8 will be (after subtracting the 24% fee for fund A that you will have to pay in
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period 8)

(1200− 1200× 24%)× 72

66
= 1004.15.]

Note that your points will remain constant in the periods in which you invest in none of the

two funds.

Your task. The experiment consists of three parts of 15 periods. In each part you start out

with 1000 points, and you can increase the number of points by investing in the two funds A

and B. In every period you have three options. Either to invest all of your points in fund A, or

to invest all of your points in fund B, or to invest your points in neither fund. You are allowed

to switch between funds as often as you want to, but you do not have to.

After the first 15 periods are finished, the experiment will be restarted. Your initial points

will be reset to 1000 points and the prices of funds A and B will be reset to their initial values

again. [Treatments N, NRe: The values that the growth rates of the two prices can take

are the same again (0.05 and 0.01 for fund A, with equal probability, and 0.06 and 0.02 for

fund B, also with equal probability).] [Treatments OB, ORe
B , FB, FRe

B : The values that the

growth rates of the two prices can take are the same again (0.05 and 0.01 for fund A, with equal

probability, and 0.07 and 0.03 for fund B, also with equal probability).] [Treatments OA, FA:

The values that the growth rates of the two prices can take are the same again (0.07 and 0.03

for fund A, with equal probability, and 0.06 and 0.02 for fund B, also with equal probability).]

Because these values are random, the actual growth rates in this second part of 15 periods will,

most likely, be different for the actual growth rates in the first part of 15 periods.

After the second part of 15 periods, the experiment will be restarted in the same way as

described above for another 15 periods.

Information. The information that you have at the beginning of time t, when you have to

make your investment decision for period t, consists of the current prices, all past prices and all

past growth rates of both funds. The current prices are shown in the top part of the computer

screen. Both past prices and past growth rates are shown in a table on the computer screen.

The prices of the funds are also shown in a graph on the screen. Moreover, we show your total

accumulated (from the beginning of the current part) number of points in the top part of the

computer screen.

Earnings. After the experiment you are paid out according to only one of the three parts.

For which part you are paid is determined randomly, and with equal probability. You will

be paid for the total number of points, and for each point you will receive 1 euro cent. For
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example, suppose in the first part your initial number of points increased from 1000 to 1800

points, in the second part your number of points increased from 1000 to 1400 points, and in

the final part your number of points increased from 1000 to 1600 points. Then you will earn

18 euros if you are paid according to the first part, and 14 euros if you are paid according to

the second part and 16 euros if you are paid according to the final part.

B Additional Data and Analysis

Here we collect the results and statistics that have been used for the analysis reported in the

main text.

Table 7 collects the p-values of several Mann-Whitney-Wilcoxon tests for comparison be-

tween different blocks and treatments. The table is divided into three horizontal parts depend-

ing on which hypothesis is tested. The upper part of the table (first four rows) collects the

results of testing Hypothesis 1. The next part (next five rows) collects the results of testing

Hypothesis 2. Finally, the lower part of the table (remaining rows) are used for testing Hypoth-

esis 3. Different columns of the table collect the statistics for the hypothesis about different

data. The second column shows the p-values for the test when the number of choices of fund B

are compared. The third column shows the p-values for the comparison of earnings. The fourth

column shows the p-values for the test for the comparison of efficiencies (defined as the return

earned divided by the return that could be earned using the rational strategy of investing every

period in fund B). Finally, the last column shows the values for the test for the comparison of

frequency of switching. Superscript a is used to indicate the occasions when the null hypothesis

that the number of B-choices (resp., earnings, efficiency, number of switches) is the same can

be rejected at the significance level of 5%.

Table 8 displays the p-value of the Kolmogorov-Smirnov test for comparison between differ-

ent blocks and treatments. It is organized in the same way as Table 7. Superscript a indicates

the cases when the null hypothesis that the B-choices (resp., earnings, efficiency, number of

switches) come from the same distribution can be rejected at the significance level of 5%.

Table 9 collects the results of estimation of logit model that we performed in an attempt

to identify the behavior in treatments with the front-end load with subjects’ characteristics,

see the discussion at the end of Section 4.3. For subjects in the sessions ran in 2017 we

collected data on age, gender and the CRT score. We classify all subjects in the front-end load

treatments as ‘switchers’ when, for at least one of the blocks, they paid the front-end load at

least twice, and ‘non-switchers’ otherwise (i.e., they paid the front-end load at most once in

each of the three blocks). We then estimate a logit model that explains this binary variable by
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Data to p-values for the MWW test for differences for:
compare choices of B earnings efficiency switches

N vs OB 0.187 0.547 0.592 0.219
N vs OA 0.000a 0.004a 0.006a 0.000a

OB vs OA 0.000a 0.002a 0.001a 0.000a

NRe vs ORe
B 0.279 0.107 0.030a 0.645

FB vs OB 0.527 0.000a 0.001a 0.000a

FB vs N 0.256 0.000a 0.001a 0.000a

FRe
B vs ORe

B 0.108 0.000a 0.001a 0.000a

FRe
B vs NRe 0.010a 0.012a 0.231 0.000a

FA vs OA 0.777 0.000a 0.000a 0.000a

N (b1 vs b2) 0.197 0.000a 0.000a 0.748
OB (b1 vs b2) 0.033a 0.000a 0.000a 0.336
FB (b1 vs b2) 0.059 0.001a 0.101 0.645
NRe (b1 vs b2) 0.001a 0.000a 0.000a 0.167
ORe

B (b1 vs b2) 0.000a 0.000a 0.000a 0.119
FRe

B (b1 vs b2) 0.002a 0.000a 0.525 0.036a

OA (b1 vs b2) 0.822 0.001a 0.000a 0.408
FA (b1 vs b2) 0.200 0.299 0.000a 0.038
N (b2 vs b3) 0.017a 0.000a 0.001a 0.817
OB (b2 vs b3) 0.062 0.000a 0.360 0.609
FB (b2 vs b3) 0.318 0.034 0.632 0.696
NRe (b2 vs b3) 0.000a 0.000a 0.005a 0.043a

ORe
B (b2 vs b3) 0.000a 0.000a 0.460 0.001a

FRe
B (b2 vs b3) 0.000a 0.000a 0.012a 0.034a

OA (b2 vs b3) 0.846 0.004a 0.000a 0.707
FA (b2 vs b3) 0.505 0.126 0.069 0.178
N (b1 vs b3) 0.029a 0.935 0.001a 0.396
OB (b1 vs b3) 0.233 0.699 0.004a 0.813
FB (b1 vs b3) 0.830 0.669 0.302 0.772
NRe (b1 vs b3) 0.254 0.003a 0.043a 0.584
ORe

B (b1 vs b3) 0.003a 0.214 0.000a 0.034a

FRe
B (b1 vs b3) 0.244 0.091 0.083 0.944

OA (b1 vs b3) 0.965 0.888 0.000a 0.249
FA (b1 vs b3) 0.623 0.211 0.000a 0.000a

N vs NRe (b1) 0.003a 0.005a 0.005a 0.466
N vs NRe (b2) 0.725 0.410 0.410 0.226
OB vs ORe

B (b1) 0.325 0.171 0.171 0.277
OB vs ORe

B (b2) 0.940 0.285 0.285 0.063
FB vs FRe

B (b1) 0.428 0.125 0.125 0.120
FB vs FRe

B (b2) 0.534 0.441 0.441 0.460

Table 7: p-values for the Mann-Whitney-Wilcoxon tests of various hypotheses analyzed in the
paper. The superscript a is used to indicate the occasions when the null hypothesis that the
number of B-choices (resp., earnings, efficiency, number of switches) is the same can be rejected
at the significance level of 5%.
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Data to p-values for the KS test for differences in distributions for:
compare choices of B earnings efficiency switches

N vs OB 0.076 0.403 0.280 0.232
N vs OA 0.000a 0.029a 0.033a 0.000a

OB vs OA 0.000a 0.002a 0.001a 0.000a

NRe vs ORe
B 0.781 0.179 0.037a 0.979

FB vs OB 0.003a 0.000a 0.000a 0.000a

FB vs N 0.006a 0.000a 0.000a 0.000a

FRe
B vs ORe

B 0.007a 0.000a 0.000a 0.000a

FRe
B vs NRe 0.000a 0.000a 0.001a 0.000a

FA vs OA 0.004a 0.000a 0.000a 0.000a

N (b1 vs b2) 0.065 0.000a 0.000a 0.858
OB (b1 vs b2) 0.086 0.000a 0.000a 0.548
FB (b1 vs b2) 0.050 0.000a 0.050 0.746
NRe (b1 vs b2) 0.024a 0.000a 0.000a 0.466
ORe

B (b1 vs b2) 0.000a 0.000a 0.000a 0.595
FRe

B (b1 vs b2) 0.026a 0.000a 0.333 0.220
OA (b1 vs b2) 0.765 0.011a 0.000a 0.765
FA (b1 vs b2) 0.168 0.024a 0.000a 0.168
N (b2 vs b3) 0.109 0.000a 0.005a 0.936
OB (b2 vs b3) 0.332 0.000a 0.332 0.821
FB (b2 vs b3) 0.154 0.011a 0.797 0.797
NRe (b2 vs b3) 0.000a 0.000a 0.078 0.321
ORe

B (b2 vs b3) 0.000a 0.000a 0.595 0.004a

FRe
B (b2 vs b3) 0.000a 0.000a 0.014a 0.139

OA (b2 vs b3) 0.977 0.001a 0.000a 0.765
FA (b2 vs b3) 0.839 0.005a 0.011a 0.640
N (b1 vs b3) 0.026a 0.537 0.011a 0.936
OB (b1 vs b3) 0.563 0.821 0.014a 0.979
FB (b1 vs b3) 1.000 0.304 0.304 0.973
NRe (b1 vs b3) 0.466 0.006a 0.131 0.812
ORe

B (b1 vs b3) 0.004a 0.179 0.000a 0.034a

FRe
B (b1 vs b3) 0.333 0.001a 0.220 1.000

OA (b1 vs b3) 0.607 0.324 0.000a 0.324
FA (b1 vs b3) 0.281 0.049a 0.000a 0.024a

N vs NRe (b1) 0.015a 0.009a 0.009a 0.658
N vs NRe (b2) 0.872 0.502 0.502 0.135
OB vs ORe

B (b1) 0.317 0.179 0.179 0.418
OB vs ORe

B (b2) 0.930 0.130 0.130 0.370
FB vs FRe

B (b1) 0.762 0.228 0.228 0.163
FB vs FRe

B (b2) 0.659 0.457 0.457 0.928

Table 8: p-values for the Kolmogorov-Smirnov test of various hypotheses analyzed in the paper.
The superscript a is used to indicate the occasions when the null hypothesis that the B-choices
(resp., earnings, efficiency, number of switches) come from the same distribution can be rejected
at the significance level of 5%.
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All Blocks Block 1 Block 2 Block 3 OLS on “All-Count”
Age 0.135 0.135 −0.436 0.245 0.00238

(0.277) (0.277) (0.391) (0.347) (0.13)
CRT-score 0.0244 0.0244 0.123 0.0417 0.00372

(0.223) (0.223) (0.3) (0.3) (0.107)
Male −0.508 −0.508 −0.957 −1.569∗ −0.416∗

(0.475) (0.475) (0.726) (0.82) (0.227)
Constant −2.289 −2.289 7.215 −6.214 0.984

(5.576) (5.576) (7.789) (6.995) (2.619)
Observations 84 84 84 84 84
R-squared 0.012 0.012 0.047 0.068 0.043

Table 9: The results of the regression of the “switcher” variable on CRT and other individ-
ual characteristics. Standard deviations are in parentheses. Coefficients with *, ** or ***
correspond to significance at 10%, 5% and 1% level, respectively.

the subject’s age, gender, and CRT score as explanatory variables. Table 9 presents the results

of this regression for all observations (second column) and also by block (columns 3-5), where

we classify a subject as a ‘switcher’ when he/she pays the front-end load at least twice in that

block. In addition, we run an OLS regression of the number of blocks in which a subject is

classified as a ‘switcher’ (this variable “All-Count” can therefore take on the values 0, 1, 2 and

3), with the same explanatory variables, see the last column of Table 9.

The coefficient on the CRT score is not statistically significant and has a positive sign.

Neither the coefficients on age and gender are statistically significant at the 5% level.
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ONLINE APPENDIX

C Control Questions, CRT test, and Questionnaire

C.1 Control Questions with Answers

Treatments N, NRe

1. Suppose that in the current period the price of fund A is 70 and the price of fund B

is 74.1. You have 700 points in the current period and you choose to invest in fund A.

Suppose that in the next period the price of funds A and B turned out to be 73.5 and

76.3, respectively. How many points do you have at the beginning of the next period?

[735]

2. You have 1100 points at the beginning of the current period and want to invest in fund

B. Would your investment decision from the previous period (i.e., in which fund you

invested previously) matter for the number of points you will earn? [No]

Treatments OB, ORe
B

1. Suppose that in the current period the price of fund A is 70 and the price of fund B

is 74.1. You have 700 points in the current period and you choose to invest in fund A.

Suppose that in the next period the price of funds A and B turned out to be 73.5 and

76.3, respectively. How many points do you have at the beginning of the next period?

[735]

2. Suppose you have 600 points and you invest your points in fund B whose price in the

current period is 57. Fund B charges a fee of 1%. How much fee would you pay for this

period? [6]

3. You have 1100 points at the beginning of the current period and want to invest in fund

B. Would your investment decision from the previous period (i.e., in which fund you

invested previously) matter for the number of points you will earn? [No]

Note: For treatment OA, in question 2, we used fund A charging 2% fee, instead of fund B

charging 1% fee, to keep consistency with the design.
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Treatment FB, FRe
B

1. Suppose that in the current period the price of fund A is 70 and the price of fund B is

74.1. You have 700 points in the current period and you choose to invest in fund A for

which there is no fee. Suppose that in the next period the price of funds A and B turned

out to be 73.5 and 76.3, respectively. How many points do you have at the beginning of

the next period? [735]

2. Suppose you invested in fund A in the last period, you have 1000 points at the beginning

of this period and want to invest in fund B in this period. Fund B charges a fee of 13%.

How much fee would you pay? [130]

3. Recall that fund A does not charge a fee, and fund B charges a fee of 13%. You have 1100

points at the beginning of the current period and want to invest in fund B. Would your

investment decision from the previous period (i.e., in which fund you invested previously)

matter for the number of points you will earn? [Yes]

Note: For treatment FA, in question 2, we used fund A charging a fee of 24%, instead of fund

B charging a fee of 13%, to keep consistency with the design.

C.2 Questionnaire

You have made your decision for all periods! Here is a questionnaire on your backgrounds.

Please fill in and press “send” to submit. After that you will see the payment page:

1. Age:

2. Gender:

3. Have you come to an experiment before?

A No

B Once

C More than once

4. How do you think of the instruction of this experiment?

A It is not clear at all.

B It is understandable, with some places a little unclear.

C It is very clear.
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5. What suggestions do you have for the instruction? (Open question)

6. How do you describe you strategy in this experiment? (Open question)

C.3 CRT test

For the CRT test that subjects in 2017 sessions had to complete after the questionnaire, we

used the standard 3 questions (see, e.g., Figure 1 in Frederick, 2005).

1. A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. How much

does the ball cost? [5 cents]

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines

to make 100 widgets? [5 minutes]

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it takes 48

days for the patch to cover the entire lake, how long would it take for the patch to cover

half of the lake? [47 days]

D Additional Figures and Tables

This Appendix contains additional figures and tables.

Fig. 8 is similar to Fig. 1 of the paper; it compares the time series of returns and prices that

were used and shown to the participants in blocks 1 and 2 for treatments N, OA and FA. In

the last two treatments the return time series of fund A are shifted up by 2 percentage points.

Figure 9 and Figure 10 show the 10 time series of returns and prices that were used and

shown to the participants in Block 3. In each row there are 4 panels which show (from left to

right): returns in treatments N, OB and FB; prices in treatments N, OB and FB; returns in

treatments N, OA and FA; prices in treatments N, OA and FA.

Figures 11, 12, 13, 14, and 15 present the histograms of B-choices by each block and

treatment. In each row, the left three panels show the data for blocks 1, 2 and 3, respectively,

and the right panel gives the data pooled over the blocks. Figure 11 show these histograms

for treatment N (upper row), treatment NRe (middle row), and these two treatments with

combined data (lower row). Figures 12 and 13 are similar for treatments OB-ORe
B and FB-FRe

B ,

respectively. Finally, Figures 14 and 15 show the histograms for treatments OA and FA.
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Figure 8: Generated time series in blocks 1 and 2 for treatments N, OA and FA. Left : Returns.
Right : Prices. Fund B returns are the same in three treatments. Fund A returns in treatments
OA and FA are two percentage points higher than returns in treatment N. Prices are generated
using the returns with initial values 60 and 50 for funds A and B, respectively.

The left upper panel in Figure 16 shows the CDF of individual choices for fund B in 5

different treatments. It aggregates the histograms shown in Fig. 3 of the paper. The remaining

three panels of Fig. 16 show the CDF of individual choices for fund B for the first block, the

second block, and the last (third) block.

Figure 17 show the histogram of earnings in different treatments. They complement the

CDF of earnings shown in the paper in Fig. 4.
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Figure 9: Generated time series in block 3 for all treatments. Time series 1 to 5.
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Figure 10: Generated time series in block 3 for all treatments. Time series 6 to 10.
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Figure 11: Histograms of investment in fund B by blocks in treatments N and NRe. The solid
vertical line shows the mean and the dashed vertical line shows the median.
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Figure 12: Histograms of investment in fund B by blocks in treatments OB and ORe
B . The

solid vertical line shows the mean and the dashed vertical line shows the median.
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Figure 13: Histograms of investment in fund B by blocks in treatments FB and FRe
B . The solid

vertical line shows the mean and the dashed vertical line shows the median.
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Figure 14: Histograms of investment in fund B by blocks in treatment OA. The solid vertical
line shows the mean and the dashed vertical line shows the median.
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Figure 15: Histograms of investment in fund B by blocks in treatment FA. The solid vertical
line shows the mean and the dashed vertical line shows the median.
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Figure 16: The CDF of individual choices of fund B. Top: Aggregated over all blocks. Middle:
For block 1 only. Lower: For block 3 only.
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Figure 17: Histograms of earnings in different treatments.
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Figure 18: The CDF of efficiencies.
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Figure 19: Histograms of switches in different treatments.

60


	Blank Page



