ENERGY-FOOD-WATER SECURITY NEXUS IN VIET NAM

NGUYEN, THI ANH PHUONG

Faculty of Engineering, University of Technology Sydney

A dissertation submitted to the University of Technology Sydney in fulfilment of the requirements for the degree of Doctor of Philosophy (Energy Planning and Policy)

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I, Thi Anh Phuong Nguyen declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Information, Systems and Modelling at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise reference or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. This document has not been submitted for qualifications at any other academic institution. This research is supported by the Australian Government Research Training Program.

Signature of Candidate

Production Note: Signature removed prior to publication.

Nguyen, Thi Anh Phuong

ACKNOWLEDGMENTS

I would like to express my great gratitude to all who have supported me over my Ph.D. journey.

I am grateful to Professor Deepak Sharma, my principle Supervisor, for his envisioning me to the world of languages, policy, history, philosophy and life that strengthens my endless love for my country - Việt Nam. His encouragement, support and insightful feedbacks are invaluable for my research which inspires me toward the positive in whatsoever that would happen otherwise. The lessons from his criticisms, suggestions and ideas are well-taken, actually widely applicable in all-life aspects, and beyond the scope of this research.

I am gratefully for my second Supervisor - Doctor Suwin Sandu, who has given me a solid foundation about Input-Output modelling — which is a fundamentally quantitative method to undertake this research. His advice during my flipped-classes help me a lot through tough periods of this journey.

Thanks to the Faculty of Engineering of University of Technology Sydney and Bach Khoa University for providing the right type of environment and financial assistance for me to carry out this research.

I would like to especially thank my friends, colleagues in the Energy Planning and Policy Program for their encouragement and cheerful assistance. Particular thanks go to Garima, Kristy, Shegufa, Muyi, Mr Bagia, and Mr Swaminathan, for providing a consistent support, particularly as a medium of communications with my principle supervisor, while I was not in Sydney.

Thanks to Anh Dũng, Trang and Giang for their good wishes and unconditional support me at OISP, MCI despite any possible inconveniences, mainly due to my unlikely study trips.

Thanks to Chi Thảo – a great sister, who came to my life as a "gift" while I was at the bottom of the circle of this research.

Thanks to Me Nguyên for her sympathy, understanding and encouragement so that I can go through this journey.

Special thanks to Mom and Dad, Anh Hai, Chi Ba and family for your unquestionable belief, aspiration and pride for my long-life learning pathway.

Finally, I'm grateful to my dear husband - Bình Phương, and my angels— Bon & Thỏ, who gave me utmost motivation and strength with their unconditional love during my PhD journey.

I owe to you - all, and this life a giving-back for all of the wonders I received.

Thanks – all– for accepting me as I am.

TABLE OF CONTENTS

Certificate of a	uthor	ship/originality	i
Table Of Conte	ents		iii
List of Tables List of Figures			vi
			vii
Abbreviations/	Gloss	ary	ix
Abstracts			xi
CHAPTER 1 I	NTRO	ODUCTION	1
	1.1	Research Background	1
	1.2	Research Objectives	9
	1.3	Methodological Research Framework	10
	1.4	Significance of this Research	15
	1.5	Research Scope and Data Considerations	15
	1.6	Organization of the thesis	18
CHAPTER 2 H	HISTO	ORICAL EVOLUTION OF ENERGY-FOOD-WATER NEXUS IN VIETN	
	2.1	E-F-W linkages: Formative years (until 179 BCE)	
	2.2	Evolution of E-F-W nexus: The Chinese era (179 BCE – 938)	24
	2.3	Evolvement of E-F-W nexus: The Independent Feudal era (939-1887)	26
	2.4	Expansion of E-F-W nexus: Resistance to Western dominance (1887-1975)	30
	2	2.4.1 The French dominance: 1887-1954	31
	2	2.4.2 Invasion by the United States (1954-1975)	32
	2.5	Stretching of E-F-W nexus: 1975 onwards	35
	2	2.5.1 Economic Restoration: 1975 – 1985	36
	2	2.5.2 Đổi Mới – Reform: 1986 – continuing	39
	2.6	Expected future trends of E-F-W	46
	2.7	Conclusion	47
CHAPTER 3 L	ITEI	RATURE REVIEW	50
	3.1	A review of existing studies on energy-food-water security nexus	51
	3.2	Major limitations of existing studies	75
	3.3	Methodological framework for this research	80
	3.4.	Conclusions	83
CHAPTER 4 M	ЛЕТ Н	HODOLOGICAL FRAMEWORK	85
	4.1	Overall Methodological Framework	85
	4.2	Historical Analysis	87

4.3 Scenario analysis	87
4.4 Input-Output Analysis	88
4.4.1 Introduction to Input-Output Modelling	90
4.4.2 Input-Output Modelling for Vietnam.	93
4.5 Data Sources and Preparation	113
4.5.1 Data Preparation for the Input-Output Model	113
4.5.2 Data Preparation for CES	121
4.5.3 Data Preparation for CO2 Emissions	122
4.6 Conclusions	123
CHAPTER 5 DEVELOPMENT OF ENERGY-FOOD-WATER SECURITY SCENARIOS	5125
5.1 Overview of Scenario Development	125
5.1.1 Identification of the key scenario attributes	126
5.1.2 Socio-economic attributes of scenarios	128
5.1.3 Food-water-energy security	128
5.1.4 Environment - CO2 emissions	130
5.2 Scenario Description and Key Features	130
5.3 Scenario Assumptions	136
5.3.1 Business as Usual – BAU (SC1)	136
5.3.2 Energy-oriented scenario (SC2)	139
5.3.3 Food-oriented scenario (SC3)	140
5.3.4 Water-oriented scenario (SC4)	142
5.3.5 Energy-food-water-nexus-oriented scenario (SC5)	144
5.3.6 Low carbon scenario (SC6)	147
5.4 Summary and Conclusions	150
CHAPTER 6 ASSESSMENT OF THE IMPACTS OF ALTERNATIVE SCENARIOS	158
6.1. Energy Security	158
6.1.1. Energy Demand	158
6.1.2. Energy Intensity	167
6.1.3. Energy Conversion Efficiency	171
6.1.4. Energy Diversity	175
6.1.5. Energy Import-Dependency	177
6.1.6. Energy Affordability	181
6.2. Food Security	183
6.2.1. Food Accessibility	184
6.2.2. Food Import-Dependency	187
6.2.3. Food Affordability	190
6.3. Water Security	192
6.3.1. Water Availability	193
6.3.2. Water demand	195

6.3.3. Water Stress	198
6.3.4. Water Intensity	201
6.4. Social - Economic Impacts	205
6.4.1. Social Impacts	205
6.4.2. Economic Impacts	208
6.5. Impacts on Environment – CO2 Emissions	222
6.6. Summary of Key Findings	226
CHAPTER 7 POLICY IMPLICATIONS & TRADE-OFFS IN VARIOUS SCENARIOS	229
7.1 Energy-Food-Water Security Trade-offs	229
7.1.1. SC1 BAU Scenario	229
7.1.2. SC2 Energy Scenario	233
7.1.3. SC3 Food Scenario	237
7.1.4. SC4 -Water Scenario	241
7.1.5. SC5 Food-Water-Energy Scenario	245
7.1.6. SC6 Low Carbon Scenario	249
7.1.7.Summary of Energy-Food-Water Security Trade-offs in Alternative Sce	
7.2 Social Economic and Environmental Trade offs	
7.2.Social, Economic, and Environmental Trade-offs	
7.4 Discussion and Conclusions	
7.4 Discussion and Conclusions	202
CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH	267
8.1 Conclusions	267
8.1.1 Energy–Food–Water nexus in Vietnam: Historical Evolution	267
8.1.2 Alternative energy-food-water scenarios	269
8.1.3 Social, economic and environmental impact of various scenarios	270
8.1.4 Energy–Food–Water security impact	272
8.1.5 Policy implications and trade-offs	273
8.2 Limitations and Recommendations	278
APPENDICES	
APPENDIX A: Foundations of assessment of CO2 Emissions	279
APPENDIX B: Data Preparation for Input-Output Modelling	282
APPENDIX C: nput-Output Modelling for Energy-Food-Water Scenarios	412
APPENDIX D: Assessments of impacts of CO2 emissions	548
BIBLIOGRAPHY	554

LIST OF TABLES

Table 1-1: Data sources.	17
Table 3-1: Summary of energy-food-water nexus research	57
Table 4-1: Model Coverage	95
Table 4-2: Example of SC2 I-O Coefficient Table after established nested CES function	101
Table 4-3: Model Coverage for the SC3-Food Scenario I-O Table	105
Table 4-4: Model Coverage for the SC4-Water Scenario I-O Table	106
Table 4-5: Model Coverage for the Energy-Food-Water Nexus (SC5 & SC6) I-O	108
Table 4-6: Sectoral Classification of the 149 Sector Groups in the 2007 Vietnam I-O	115
Table 4-7: Model Coverage for the 2007 Vietnam I-O Table	119
Table 4-8: Energy Consumption in 2014	122
Table 4-9: Value of Carbon Emission Factors by Two Conversion-Unit Rates	123
Table 5-1: Technological choices and development strategies for various scenarios	133
Table 5-2: Key Scenarios Features	152
Table 6-1: Energy demand in various scenarios during 2014–2030	161
Table 6-2: Growth rate of energy demand in various scenarios during 2014–2030 (%/year)	165
Table 6-3: Primary energy intensity (toe/million dollars)	168
Table 6-4: Total employment in various scenarios	205
Table 6-5: Changes in GDP among scenarios (2014-2030)	210
Table 6-6: Trade balance in Vietnam in various scenarios (\$US million)	214
Table 6-7: Total emissions by sectors	223
Table 6-8: Summary of scenario outcomes during 2014–2030	228
Table 7-1: Energy-Food-Water Security: 2014 – 2030 (SC1)	230
Table 7-2: Energy-Food-Water Security: 2014 – 2030 (SC1, SC2)	234
Table 7-3: Energy-Food-Water security: 2014 – 2030 (SC1, SC2 AND SC3)	238
Table 7-4: Energy-Food-Water Security: 2014 – 2030 (SC1, SC2, SC3, and SC4)	243
Table 7.5: Energy-Food-Water Securities: 2014–2030 (SC1, SC2, SC3, SC4, SC5)	247
Table 7-6: Energy-Food-Water Security: 2014 – 2030	252
Table 7-7: Trade-Offs In Social, Economic, And Environmental Outcome in Scenarios	258
Table 7-8: Summary of Policy Objectives, Scenario Outcomes, and Policy Concerns	261
Table 7-9: Summary of Scenarios' Outcomes	263

LIST OF FIGURES

Figure 1-1: Vietnam's Total Primary Energy Supply: 2006–2015	5
Figure 1-2: Rice Production in Vietnam, 1961–2012	7
Figure 1-3: Food Production Surplus and Consumption per capita in Vietnam, 1960–2005	8
Figure 1-4: Methodological Research Framewor	12
Figure 2-1: Vietnam's expansion towards the South.	29
Figure 2-2: Arable land in Vietnam: 1990-2012	41
Figure 4-1: Overall Methodological Research Framework	86
Figure 4-2: Input-Output Modelling Approach	88
Figure 4-3: The I-O Basic Structure	91
Figure 4-4: Extended I-O Table with Energy, Food and Water Sectors	94
Figure 4-5: Typical Nesting Structure of I-O Coefficients	98
Figure 4-6: Nesting Structure of SC2 - Energy Scenario	100
Figure 4-7: Nesting Structure of SC3 - Food Scenario	102
Figure 4-8: Nesting Structure of SC4 - Water Scenario	102
Figure 4-9: Nesting Structure of Energy-Food-Water Nexus Scenarios after establishing nested	CES
function	103
Figure 5-1: Key attributes for the Impact Assessment of different scenarios	127
Figure 5-2: Population Growth during 1984 – 2030	136
Figure 5-3: The Ratio Of Electricity Output And Power Capacity In 2016	137
Figure 6-1: Energy demand in SC1-BAU	159
Figure 6-2: Total primary energy demand, various scenarios.	160
Figure 6-3: Energy demand in various scenarios during 2014–2030 (MToe)	162
Figure 6-4: Share of fuel type in primary energy demand, various scenarios (%)	163
Figure 6-5: Share of fuel type in final energy demand in various scenarios (%)	164
Figure 6-6: Changes in primary energy demand, various scenarios	166
Figure 6-7: Energy intensity trends in Vietnam	167
Figure 6-8: Energy intensity changes in Vietnam	170
Figure 6-9: Trends in energy conversion efficiency in Vietnam	172
Figure 6-10: Changes in energy conversion efficiencies in Vietnam	174
Figure 6-11: Energy diversification changes: 2014 - 2030.	176
Figure 6-12: Energy diversity changes: 2014 - 2030	177
Figure 6-13: Energy import-dependency: 2014 - 2030	178
Figure 6-14: Impacts of alternative scenarios on energy imports	180
Figure 6-15: Shares of household energy consumption: 2014 - 2030	181
Figure 6-16: Energy affordability changes: 2014 -2030.	182
Figure 6-17: Food accessibility ratio in scenarios	184
Figure 6-18: Food accessibility ratio in comparison among scenarios	186
Figure 6-19: Food Import Dependency and Value of Food Import Ratio	187

Figure 6-20: Food import dependency ratio in comparison among scenarios	188
Figure 6-21: Value of food affordability ratio, various scenarios	191
Figure 6-22: Food affordability ratio in comparison among scenarios	191
Figure 6-23: Water availability: 2014-2030	193
Figure 6-24: Water demand and per capita demand, various scenarios	196
Figure 6-25: Changes in water demand in 2030 compared with 2014	196
Figure 6-26: Comparison of changes in water demand between scenarios	197
Figure 6-27: Water stress in various scenarios (2014–2030).	199
Figure 6-28: Water intensities for Vietnam in various scenarios, 2014–2030	202
Figure 6-29: Changes in water intensity compared with 2014 (%)	203
Figure 6-30: Water intensity reductions in Vietnam, 2014–2030	204
Figure 6-31: Employment growth rate	206
Figure 6-32: Change in employment, varios scenarios	207
Figure 6-33: Employment of economic sectors in various scenarios	207
Figure 6-34-a: GDP Growth, GDP Growth Rate: 1985 – 2030 (Various Scenarios)	209
Figure 6-34-b: Share of economic sectors in GDP: 1990 - 2030	211
Figure 6-35: Changes 8n Trade Balance in 2030, compared with SC1-BAU	215
Figure 6-36: Investment Requirment For Infrastructure, various Scenarios	218
Figure 6-37: Share of Investment in Infrastructure, various Scenarios (%)	219
Figure 6-38: Additional Investment for Power Sector (compared with SC1-BAU)	221
Figure 6-39: Share Of Co2 Emissions By Scenarios	223
Figure 6-40: Change of total emissions in 2030 compared with others	224
Figure 7-1: Trade-offs between Energy-Food-Water Securities: 2014-2030 (SC1)	229
Figure 7-2: Trade-Offs between Energy-Food-Water Securities: 2014-2030 (SC1, SC2)	233
Figure 7-3: Trade-offs between Energy-Food-Water Securities: 2014-2030 (SC1, SC3)	237
Figure 7-4: Trade-offs between Energy-Food-Water Securities: 2014-2030 (SC1, and SC4)	241
Figure 7-5: Trade-offs between Energy-Food-Water Securities: 2014-2030 (SC1 and SC5)	246
Figure 7-6: Trade-offs between Energy-Food-Water Securities: 2014-2030 (SC1, SC6)	250
Figure 7-7: Energy-Food-Water Security Trade-Offs in alternative scenarios	255
Figure 7-8: Trade-Offs in Economic, Social and Environmental Indicators across scenarios	257
Figure 7-9: Summary Of Impacts And Policy Implications In All Scenarios	265

ABBREVIATIONS/GLOSSARY

ADB Asian Development Bank

ADV Advanced Scenario

APEC Asia - Pacific Economic Cooperation

ASEAN Association of South East Asian Nations

BCE Before the Common Era

CES Constant Elasticity Substitution
CGE Computable General Equilibrium

CLEW Climate, Land, Energy, and Water

CO₂ Carbon Dioxide

CPV Communist Party of Vietnam

DO Diesel Oil

DSI Data Sciences International

ECHAM4 European Centre Hamburg Model, 4th edition

E-F-W Energy-Food-Water

ESCAP The United Nations Economic and Social Commission for Asia and

the Pacific

EVN Vietnam Corporation of Electricity
FAO Food and Agriculture Organization

FEM Fixed Effects Model

GDP Gross Domestic Product

GMS Greater Mekong Sub-region

GSO General Statistics Office

GSOVN General Statistics Office of Vietnam

GW Giga Watt

ICOR Incremental Capital and Output Ratio

IEA International Energy Agency
IFS International Food Standard

IGCC Integrated Gasification Combined Cycle

IMF International Monetary Fund

IO Input-Output

KVA Kilo Volt-Ampere

Laos' PDR Laos Peoples Democratic Republic

LCA Life Cycle Analysis

MARD Ministry of Agriculture and Rural Development

MENA Middle East and North Africa

MOD Moderate Scenario

MOIT Ministry of Investment and Trade

MONRE Ministry of Natural Resources and Environment

MW Mega Watt

NSSO National Sample Survey Office

NSW New South Wales

OECD Organisation for Economic Co-operation and Development

REM Random Effects Model

SC1-BAU Scenario 1 - Business as Usual

SC2-Energy Scenario 2 - Energy SC3-Food Scenario 3 - Food

SC4-Water Scenario 4 - Water

SC5-E-F-W Scenario 5 - Energy- Food- Water

SC6-Low Carbon Scenario 6 - Low Carbon SERC South-East River Cluster TOE Tonnes of Oil Equivalent

UN United Nations

UNDP United Nations Development Programme

UNEP The United Nations Environment Programme

USDA United States Department of Agriculture

VCGM Vietnam Competitive Generation Market

VCP Vietnam Communist Party

WB World Bank

WEM Water-Extraction Mechanism

ABSTRACTS

The security of Energy, Food and Water (EFW) – basic human necessities – have lately emerged as a key policy challenge for the Vietnamese policy-makers. This research is premised on the argument that current policy focus for ensuring EFW security is deficient as it is based on siloed thinking, neglectful of the complex, multifaceted, interlinkages (nexus) between EFW, the economy, the society and the environment. An integrated approach to policy, informed by the nexus will therefore be needed to redress the security challenge. Against this backdrop, this research analyses the impacts of alternative developmental pathways (scenarios) on EFW security and the economic, social and environmental domains for Vietnam for the period 2014-2030. These scenarios represent different policy foci, for example; SC1-BAU (Business-as-Usual) Scenario representing continuation with existing policy trends; SC2 Scenario emphasising energy security; SC3 Scenario – food Security; SC4 Scenario – water security; SC5 Scenario – EFW security; and SC6 Scenario - EFW security with specific priority on the environment. Each scenario is underscored by its own technological, economic and other assumptions which are broadly in accord with the current or likely trends in Vietnam. The EFW security and wider impacts of each scenario are assessed in this research through the application of an EFW-security-extended input-output based integrated framework (model), specifically developed for this research. The analyses of these impacts suggest that continuation with existing policy trends will produce detrimental EFW security, and economic, social and environmental outcomes for Vietnam. SC2, SC3 and SC4 scenarios (emphasising energy, food and water security, respectively) will produce superior outcomes in their specific domains but inferior outcomes in other domains (for example, in the S2 scenario energy security will improve appreciably, but at the expense of food and water security). The nexus scenarios (i.e., SC5 and SC6), while producing the best overall EFW security and overall economy-wide outcomes, do offer distinctive choices. SC5 produces extremely positive EFW security and economic and social, but relatively inferior environmental (CO2 emissions), outcomes; SC6 on the contrary produces considerably positive EFW security, social and environmental outcomes, but relatively lower economic outcome (with approximately one percent lower GDP in comparison with SC5 scenario). Such insights into the impacts of various (nexus and non-nexus scenarios) and, more pertinently, associated trade-offs across the scenarios, should – it is contended – provide the Vietnamese policy makers a much robust platform to inform their policy choices to promote EFW security, while ensuring the much-needed socio-economic development of the nation.