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Thesis Summary  
  

Whilst corals are under immense anthropogenic pressure from increasingly altered 

environments, growing evidence suggests that some coral populations have evolved to thrive 

within present day marginal environments. Marginal coral populations are therefore significant 

to understand the adaptive and acclimative capacities required to tolerate future climates. 

Genetic shifts within the coral microbiome are being increasingly recognised for their 

importance to holobiont functioning under extremes, and is considered in this thesis in terms 

of symbiont (Symbiodiniaceae) and bacterial diversity in response to variable environmental 

conditions.  Promising new “omics” approaches are allowing us to create species-specific 

metabolite profiles and further uncover the complex mechanisms of cell metabolism under 

environmental stress. When coupled to measurements of coral physiological variables 

(photosynthesis, respiration and calcification), the molecular regulation of corals under various 

environmental conditions can be elucidated.   

This thesis focuses on two coral species, Plesiastrea versipora and Coscinaraea mcneilli 

surviving under highly variable environmental conditions in Sydney Harbour. Specifically, 

coral heat stress tolerance was investigated during the 2016 El Niño event, which lead to the 

first report of coral bleaching in Sydney Harbour, showing that these high-latitude corals bleach 

in a similar way to tropical corals. Sampling for microbial diversity analysis was conducted 

ahead of coral bleaching in February, during coral bleaching in April and during coral recovery 

in August. Parallel measurements of coral metabolic rates (photosynthesis, respiration and 

calcification) were made in aquaria. Only P. versipora showed a bleaching response and a 

switch towards a heterotrophic nutrient acquisition mode during bleaching highlighting the 

different bleaching susceptibilities of these two-coral species. Microbial community 

composition showed clear species-specific associations and shifts in diversity and abundance 

of key bacterial taxa in response to the thermal anomaly event and over a 2-year study with 
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seasonal environmental change. Metabolite profiling conducted using GC-MS showed overall 

between species similarity with lipid compounds dominating the metabolome of both coral 

species. Under acute heat stress, increases in fatty acid metabolism significantly correlate to 

holobiont photosynthesis, suggesting a predictive capacity of metabolomic analysis in 

determining coral performance under heat stress.   

The systematic approach implemented in this thesis highlights some of the potential 

mechanisms of coral persistence in marginal environments. This is relevant as high-latitude 

regions such as Sydney have been proposed as coral refuge environments with climate change. 

This research will also open up a new level of biodiversity complexity quantification that is 

used to designate Sydney Harbour’s high conservation value.  
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