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Abstract

Recent years witnessed a dramatic increase of the surveillance cameras in the city.
There is thus an urgent demand for person re-identification (re-ID) algorithms. Person
re-identification aims to find the target person in other non-overlapping camera views,
which is critical in practical applications. In this thesis, I present my research on
person re-ID in three settings: supervised re-ID, one-example re-ID and unsupervised
re-ID. For supervised setting, a re-ranking algorithm is introduced that can improve the
existing re-ID results with Bayesian query expansion. We also investigate pedestrian
attributes for re-ID that learns a re-ID embedding and at the same time predicts
pedestrian attributes. Since supervised methods require a large amount of annotated
training data, which is expensive and not applicable for real-world applications, two
re-ID methods on the one-example setting are studied. We also propose an unsupervised
re-ID method that jointly optimizes a CNN model and the relationship among the
individual samples. The experimental results demonstrate that our algorithm is not
only superior to state-of-the-art unsupervised re-ID approaches but also performs
favourably than competing transfer learning and semi-supervised learning methods.
Finally, I make conclusions on my work and put forward some future directions on the
re-ID task.
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Chapter 1

Introduction

1.1 Background

Person re-identification (re-ID) is a fundamental task in video surveillance and has
become a focus in the recent vision research. Given an image/video of a person, the
goal of person re-ID is to find the aimed person in other non-overlapping camera views.
Person re-ID is challenging, partially due to the distinct characteristics of different
cameras, such as view points, illuminations, etc.

1.1.1 Supervised Person Re-identification

There are numerous supervised re-ID methods that achieve impressive performances.
These methods mainly focus on designing feature representations [140] or learning
robust distance metrics [54, 145]. Recently, deep learning methods achieve great
success [51, 100, 142, 146] by simultaneously learning the image representations and
similarities.

To make further progress based on the existing re-ID methods, we consider a
query expansion method that post-process the initial ranking list to get more precise
performance. In Chapter 3, we propose a Bayesian Query Expansion method, that a
Bayesian model is used to predict true matches in the gallery, which are used to fuse a
new query.

Since person re-ID [59, 83, 111, 156] and attribute recognition [1, 12, 153] both
imply critical applications in surveillance. We also tried to make use of the detailed
attribute information in the re-ID framework. In Chapter 4, we propose a network
that learns a re-ID embedding and predicts the pedestrian attributes simultaneously.
We show that attributes help improve person re-identification performance.
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1.1.2 One-example Person Re-identification

As we illustrated in Section 1.1, most proposed approaches rely on the fully annotated
data, i.e., the identity labels of all the tracklets from multiple cross-view cameras.
However, it is impractical to annotate very large-scale surveillance videos due to the
dramatically increasing cost. Therefore, one-example methods [66, 129] are of particular
interest.

The key challenge for the one-shot video-based person re-ID is the label estimation
for the abundant unlabeled tracklets [16, 129]. A typical approach is to generate the
pseudo labels for the unlabeled data at first. The initial labeled data and some selected
pseudo-labeled data are considered as an enlarged training set. Lastly, this new training
set is adopted to train the re-ID model.

Most existing methods employ a static strategy to determine the quantity of
selected pseudo-labeled data for further training. For example, Fan et al.. [16] and
Ye et al.. [129] compare the prediction confidences of pseudo-labeled samples with a
pre-defined threshold. The samples with higher confidence over the fixed threshold are
then selected for the subsequent training. During iterations, these algorithms select
a fixed and large number of pseudo-labeled data from beginning to end. However, it
is inappropriate to keep the threshold fixed in the one-shot setting. In this case, the
initial model may be not robust due to the very few training samples. Only a few of
pseudo-label predictions are reliable and accurate at the initial stage. If one still selects
the same number of data as that in the later stages, it will inevitably involve many
unreliable predictions. Updating the model with excessive not-yet-reliable data would
hinder the subsequent improvement of the model.

In Chapter 5, to better exploit the unlabeled data in one-shot video-based person re-
ID, we propose the step-wise learning method EUG (Exploit the Unknown Gradually),
that iteratively updates the CNN by label estimation and model updates. In Chapter
6, we further improve the EUG method by making use of the unlabeled data. Our
proposed methods achieve state-of-the-art performance on four large-scale image-based
and video-based datasets.

1.1.3 Unsupervised Person Re-identification

Since one-example methods still have limitations that require one sample annotated for
an identity. The limited generalization ability motivates the research into unsupervised
approaches for person re-ID.
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Traditional unsupervised methods focus on hand-crafted features [17, 54, 57],
salience analysis [103, 139] and dictionary learning [39]. These methods produce
much lower performance than supervised methods and are not applicable to large-
scale real-world data. In recent years, some transfer learning methods [11, 28, 80]
are proposed upon the success of deep learning [53]. These methods usually learn
an identity-discriminative feature embedding on the source dataset, and transfer the
learned features to the unseen target domain. However, these methods require a large
amount of annotated source data, which cannot be regarded as pure unsupervised
approaches.

Previous deep learning based “unsupervised” person re-ID approaches leverage
the prior knowledge learned from other re-ID datasets. However, we aim to solve the
problem in a more challenge and practical setting, i.e., without any re-ID annotation.
To learn discriminate features in this difficult condition, in Chapter 7, we propose a
novel Bottom-Up Clustering method (BUC) for unsupervised re-ID that maximizes
the diversity over the identities while maintaining the similarity within each identity.
We conduct extensive experiments on the large-scale image and video re-ID datasets,
including Market-1501, DukeMTMC-reID, MARS and DukeMTMC-VideoReID. The
experimental results demonstrate that our algorithm is not only superior to state-of-
the-art unsupervised re-ID approaches, but also performs favorably than competing
transfer learning and semi-supervised learning methods.

1.2 Thesis Organization

This thesis is organized as follows:

• Chapter 2: This chapter presents a survey of various methods for person re-
identification, including the supervised methods, weakly-supervised methods and
unsupervised methods.

• Chapter 3: In this chapter, we introduce a supervised Bayesian query expansion
method for person re-identification. Given a rank list, a Bayesian model is
proposed to calculate the weight for the reliable retrieved images. We then apply
weighted average pooling to the feature of the reliable images for query expansion.
This method achieves consistent improvement over various baselines.

• Chapter 4: In this chapter, we introduce a supervised attribute based method
for person re-identification. The method takes advantage of the mutual benefit



1.2 Thesis Organization 4

of the global feature and the attribute information and improve the performance
of both of the person re-ID and attribute prediction task.

• Chapter 5: In this chapter, we focus on one-example person re-identification. For
each identity, there is only one sample is annotated with a label. We use these
labeled samples to train a network for initialization and then gradually exploit
unlabeled samples with a reliable pseudo label for further training.

• Chapter 6: We make progress upon the method introduced in chapter 5. We
introduce a one-example method suitable for both video-based and image-based re-
ID. In addition to gradually exploiting the reliable unlabeled samples, we further
learn from the unselected unlabeled samples and achieve better performance.

• Chapter 7: In this chapter, we introduce an unsupervised person re-ID method
that iteratively maximizes the diversity over the identities while maintaining the
similarity within each identity. Without any annotation, this method achieves
better performance than the one-example or transfer learning methods.

• Chapter 8: A brief summary of the thesis contents and its contributions are given
in the final chapter. Recommendation for future works is given as well.



Chapter 2

Literature Review

2.1 Supervised Person Re-identification

Hand-crafted person re-ID. To address the re-ID problem, a number of approaches
focus on developing robust features. In these studies, many hand-crafted features
have been developed, such as color and texture histograms [17, 23, 54]. Zhao et al.
[138, 140] propose a feature that combined SIFT feature with color histogram. In
[98] local feature is combined with texture, and in [109, 143] local feature is combined
with SIFT based on the bag-of-word (BoW) structure. Liao et al. propose Local
Maximal Occurrance (LOMO) descriptor, which analyzes the horizontal occurrence of
local features, and maximizes the occurrence to make a stable representation. In [74],
Matsukawa et al. propose a hierarchical Gaussian descriptor, which calculates both
mean and covariance information of pixel features in each patch and region hierarchy.

CNN-based person re-ID. CNN-based methods are dominating the re-ID com-
munity upon the success of deep learning [27, 34, 100, 146, 151].A branch of works
learning deep metrics [13, 51, 71] that image pairs or triplets are fed into the network.
Usually, the spatial constraints are integrated into the similarity learning process [2, 51].
For example, in [100], a gating function is inserted in each convolutional layer, so
that some subtle difference between two input images can be captured. Generally
speaking, deep metric learning methods have advantages in training on relatively small
datasets, but its efficiency on larger galleries may be compromised. Another branch
of works learning deep representations [112, 116, 146, 151]. Xiao et al. [116] propose
to learn a generic feature embedding by training a classification model from multiple
domains with a domain guided dropout. In [146], the combination of verification and
classification losses is proven effective. Xu et al. [120] propose a Pose guided Part
Attention (PPA)is learned to extract attention-aware feature for body parts from a
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base network. Then the features of body parts are further re-weighted, resulting in
the final feature vector. Since GAN proposed by Goodfellow et al. [22], methods
utilizing GAN [107, 147] have been proposed to tackle re-ID. In [107], a Person Transfer
Generative Adversarial Network (PTGAN) is proposed to transfer the image style from
one dataset to another while keeping the identity information to bridge the domain
gap. In [73], a dictionary-learning scheme is applied to transfer the feature learned
by object recognition and person detection (source domains) to person re-ID (target
domain)

2.2 Weakly Supervised Person Re-identification

Semi-supervised learning methods. Semi-supervised setting assume that few data
from the training set are labeled data and rest of the training set are used as unlabeled
data. In [49], a novel semi-supervised region metric learning method is proposed, that
estimates positive neighbors to generate positive regions and learn a discriminative
region-to-point metric. Dictionary learning is originally designed for unsupervised
learning and is adopted for semi-supervised re-ID. In [61], two coupled dictionaries
that relate to the gallery and probe cameras are jointly learned in the training phase
from both labeled and unlabeled images. Other methods [3, 49] utilize another dataset
to pretrain the model, and then apply it to the target dataset. In [3], a one-example
learning approach is proposed, where one part (texture) of the metric is transferred
directly to the target dataset. The second part (color) is learned using patch-based
metric learning.

There are some works that focus on the few-example video-based re-ID task.
Ye et al. [129] propose a dynamic graph matching (DGM) method, which iteratively
updates the image graph and the label estimation to learn a better feature space with
intermediate estimated labels. Liu et al. [66] update the classifier with K-reciprocal
Nearest Neighbors (KNN) in the gallery set, and refine the nearest neighbors by apply
negative sample mining with KNN in the query set. Even though [66, 129] claim that
they are unsupervised methods, they are one-example methods in experiments, because
both of them require at least one labeled tracklet for each identity.

Unsupervised domain adaptation. Recently, cross-domain transfer learning is
adopted in the unsupervised re-ID task [28, 105], where information from an external
source dataset is utilized. In [67], a classifier trained on source dataset is applied to
the unlabeled target dataset to learn the pedestrians’ spatial-temporal patterns, which
are further combined with visual features to achieve an improved classifier. Finally,
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we propose a learning-to-rank based mutual promotion procedure to incrementally
optimize the classifiers based on the unlabeled data in the target domain.

Wang et al. [105] propose to learn an attribute-semantic and identity discriminative
representation from the source dataset, which is transferable to the target domain.
Some methods [11, 108] proposed to learn a similarity preserving generative adversarial
network based on CycleGAN [154] to translate images from the source domain to the
target domain. In this way, high-quality person images are generated, and person
identities are kept and the styles are effectively transformed. The translated images
are utilized to train re-ID models in a supervised manner. These methods assume that
the label of the source domain is available and apply the learned discriminative model
to the target domain. In this work, we propose a fully unsupervised re-ID framework
that gradually exploits the similarity within each identity.

2.3 Unsupervised Person Re-identification

The existing fully unsupervised methods usually fall into three categories, designing
hand-craft features [17, 54, 57], exploiting localized salience statistics [103, 139] or
dictionary learning based methods [39, 123]. However, it is a challenging task to
design suitable features for images captured by different cameras, under different
illumination and view condition. In [132], camera information is used to learn view-
specific projection for each camera view by jointly learning the asymmetric metric and
seeking optimal cluster separations. Recently, Lin et al. [55] propose a bottom-up
clustering framework that jointly optimize a convolutional neural network (CNN) and
the relationship among the individual samples.

There are also some recent works [66, 127, 129] focusing on the unsupervised
video-based re-ID. However, these methods require some very useful annotations of
the dataset, i.e., the total number of identities and their appearance. To conduct
experiments, they annotate each identity with a labeled video tracklet, which only
reduces part of the annotation workload. As discussed in [114], these approaches are
actually the one-example methods.

2.4 Datasets

The Market-1501 dataset [142] is one of the largest person re-ID dataset, which
contains 32,668 gallery images, 3,368 query images captured by 6 cameras. It also
includes 500K irrelevant images as distractor set, which makes the dataset even more
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challenging. This dataset is captured in a noisy campus environment. It is very
challenging due to the illumination and viewpoint changes across the cameras, and
occlusions in the views. Following the experimental protocol in [142], the dataset is
split into 751 identities for training and 750 identities for testing.

The DukeMTMC-reID dataset [147] is a subset of the DukeMTMC dataset
[84]. It contains 1,812 identities captured by 8 cameras. A number of 1,404 identities
appear in more than two cameras, and the rest 408 IDs are distractor images. Using
the evaluation protocol specified in [147], the training and testing set both contain 702
IDs, with 16,522 training images and 17,661 gallery images, respectively.

The DukeMTMC-VideoReID dataset is a subset of DukeMTMC[84], which
is specially for video-based re-ID. Since this dataset is manual annotated, each identity
only has one tracklet under a camera. The pedestrian images are cropped from the
videos for 12 frames every second to generate a tracklet. The dataset is split following
the protocol in [147], i.e., 702 identities for training, 702 identities for testing, and 408
identities as the distractors. Totally, 369,656 frames of 2,196 tracklets are generated for
training, and 445,764 frames of 2,636 tracklets are generated for testing and distractors.

The MARS dataset [141] is the largest video re-ID dataset, which contains 1261
individuals and around 20,000 video sequences captured by six cameras. The MARS
dataset is divided into train and test sets, containing 631 and 630 identities respectively.
Each identity has 13.2 tracklets on average. The dataset is captured in a noisy campus
environment, thus suffering from significant viewpoint changes, pose variation, and
illumination changes. For the MARS dataset, we use the multi-shot protocol [141] in
our experiment.

The CUHK03 dataset[51] contains 13,164 images of 1,360 pedestrians captured
by six cameras. Each identity appears in two disjoint camera views. This dataset is very
challenging due to clothing similarities among people, lighting and viewpoint variations
across camera views, and occlusions. Note that the original evaluation protocol of
CUHK03 has 20 train/test splits. To maintain consistency with other datasets, we use
the train/test protocol proposed in [149]: 7,365 images of 767 identities are used as
the training set. 5,332 images and 1,400 images of the remaining 700 identities are
used as the gallery set and the query set, respectively. We only conduct experiments
on the DPM-detected images.

The PETA dataset [12] is a large person attribute recognition dataset that
annotated with 61 binary attributes and 4 multi-class attributes for 19,000 images.
Following [12], 35 most important and interesting attributes are used in our experiments.
To investigate the complementarity of re-ID and attribute recognition, we re-split this
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dataset for re-ID task. We randomly select 9,500 images of 4,558 identities for training,
and 7,600 images for testing. As a result, we generate 423 query images and 7,177
gallery images.



Chapter 3

Query Expansion Method to
Person Re-identification

In this chapter, we investigate the query expansion method to person re-identification
(re-ID). Person re-identification is challenging because pedestrians may exhibit distinct
appearance under different cameras. Given a query image, previous methods usually
output the person retrieval results directly, which may perform badly due to the limited
information provided by the single query image. To mine more query information,
we add an expansion step to post-process the initial ranking list. The intuition is
that a true match in the gallery may be difficult to be found by the query alone, but
it can be easily retrieved by other true matches in the initial ranking list. In this
chapter, we propose the Bayesian Query Expansion (BQE) method to generate a new
query with information from the initial ranking list. The Bayesian model is used to
predict true matches in the gallery. We apply pooling on the features of these “true
matches” to get a single vector, i.e., the expanded new query, with which the retrieval
process is performed again to obtain the final results. We evaluate BQE with various
feature extraction methods and distance metric learning methods on four large-scale
re-ID datasets. We observe consistent improvement over all the baselines and report
competitive performances compared with the state-of-the-art results.

3.1 Introduction

In a different view from previous works on the feature or metric learning [17, 116],
we aim to improve the existing re-ID algorithms by query expansion. We investigate
some large-scale multi-camera datasets, such as Market-1501 [142], and find that the
same identity’s appearance in different cameras usually undergoes large variance. On
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Camera 1

Camera 2

Camera 3

Query

Fig. 3.1 An example of how query expansion works. Given a query image, true matches
in camera 1 somehow can be easily found. With the additional discriminative cues
(the dark green bag) of retrieved images in camera 1, true matches in camera 2 can be
found. Similarly, we can then obtain the true matches in camera 3.

the contrary, the appearance of each pedestrian under the same camera is usually
similar. As shown in Fig. 3.1, query expansion can help to improve the original re-ID
performance.

Inspired by the above considerations, we propose a Bayesian query expansion
re-ranking algorithm to improve the performance of the existing re-ID methods. In
a nutshell, after investigating the initial rank list, a new query is constructed based
on the top returned images. Since the top-ranked images may be false matches, we
develop a Bayesian framework to identify if a returned candidate is a true match; only
the candidates with high probability scores will be used for query expansion. In this
manner, the expanded query feature will contain more discriminative cues that may be
absent in the initial query and will be used to search the system for a second time to
improve re-ID recall. The pipeline of our method is shown in Fig. 3.2.

To evaluate the performance of the proposed method, we perform experiments on
four large-scale datasets including Market-1501 [142], DukeMTMC-reID [147], MARS
[141], and CUHK03 [51]. We show that BQE effectively improves the performance
of the baseline systems, and that it has comparable accuracy with several competing
re-ranking methods while enjoying efficient offline computations and robustness of
parameter changes. Using the expanded queries, we are able to achieve very competitive
results to the state-of-the-art methods.

Our contributions are summarized as follows:
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(1) We propose a Bayesian Query Expansion (BQE) method for re-ID re-ranking.
BQE generates a new query with information from the initial gallery ranking list, which
is used to retrieve the gallery images again.

(2) The Bayesian model is trained by the distances between images in the training
data and is used to calculate the probability of images in the gallery being a “true
match”. We apply pooling on the features of the “true matches” to get a vector for
query expansion.

(3) Our method effectively improves the person re-ID performance on several
datasets, including Market-1501, CUHK03, DukeMTMC-reID and MARS. We also
achieve the state-of-the-art accuracy on Market1501.

3.2 Related Work

Re-ranking methods in multimedia retrieval. Re-ranking methods have widely
applied in multimedia retrieval. Some of the algorithms are with human interaction
[85, 122], others are implemented without any extra information [26, 63, 148]. For
the second type, the re-ranking methods highly depend on the query and the initial
ranking list [77].

Many works of query expansion are proposed in the field of image retrieval [9, 10]
or text retrieval [102, 119]. In such works, the top-ranked images or documents from
the original rank list are used to generate a new query that can be used to obtain a
new ranking list. Nevertheless, the effects of all query expansion methods are highly
affected by the initial matching results.

Another re-ranking method Pseudo Relevance Feedback(PRF) [63, 64, 126] shows
a similar motivation, which assumes the top ranked sample as “pseudo relevant” to
address the re-ranking problem. In [33], Jain et al. use pseudo relevant in learning
method to classify the remaining samples into relevant or irrelevant classes. In [124],
pseudo relevant is used as extent query to retrieve the ranking list. Lee et al. [46]
propose a cluster-based re-sampling method to select better pseudo-relevant documents
based on the relevance model. In [125], the lowest ranked images are used as negative
examples, and the initial query is used as a positive example to train classifiers. Finally
the images are ranked by the confidence scores. In [64], a set of positive pairs in the
initial ranking list are selected and used to learns a re-ranking model by Ranking SVM.

Re-ranking methods in re-ID. Comparing with retrieval, fewer studies have
investigated the re-ranking method in the field of person re-ID, some of which are
presented with human in the loop and others fully automatic.
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Liu et al.[58] present a post-rank optimization (POP) model which constructs an
incremental affinity graph and the negative selections are propagated to their neighbors
to refine their search. Further, Wang et al. [104] propose a Human Verification
Incremental Learning model (HVIL), which constructs an incrementally optimized
ranking function and is updated in real-time.

Other researches pay attention to automatic re-ranking method. Ma et al. [68]
learn an adaptive function specific for each query, which combines the base score
function and query match estimated by modeling query variations. In [20], the content
and context information is analyzed. And then the visual ambiguities common are
removed to re-rank the initial ranking list. Leng et al. [47] calculate the matching
rates of common k-nearest neighbors between every two bidirectional ranking lists as
context and content similarity, and the rates are used to revise the initial query result.
Li et al. [50] propose a common Near-Neighbor analysis, which analyzes the pair of
samples of neighbors using both relative and direct information for re-ranking. In
[128], the similarity of top retrieved images and last retrieved images are calculated
by different baseline methods, then similarity ranking aggregation and dissimilarity
ranking aggregation are used to optimize the ranking result. In [149], Zhong et al.
encode the top-k retrieved images as the k-reciprocal feature and use it for re-ranking
under the Jaccard distance.

3.3 Proposed Method

3.3.1 Problem Formulation

In this section, we present the Bayesian query expansion framework. The overview
pipeline of our method is shown in Fig. 3.2. Briefly, our system consists of a Bayesian
model (see Section 3.3.2) and the query expansion process (see Section 3.3.3).

In more detail, the dataset is divided into three parts: query, gallery and training
data. During the offline procedure, a Bayesian posterior estimator is firstly trained
on the training data. Given a distance metric, the Bayesian model can predict the
probability of a candidate being a true match. During online retrieval, an initial
ranking list is obtained after computing the similarities between the query and the
gallery images. Based on the ranking list, the probability of each candidate being a
true match is computed by the Bayesian model. Then, features of images in the initial
ranking list with high probability are pooled together with the original query, such
that a new query is issued to perform another round of retrieval. Note that, after the
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Train Bayesian Model

Query Initial ranking list

Original person re-ID

Query Expansion

Final ranking list
Weighted Pooling

New query

Negative pairs

Positive pairs

Fig. 3.2 Overview of the proposed approach for person re-identification. The Bayesian
model is trained on the distances of relevant image pairs and irrelevant image pairs.
Given a query, an initial ranking list is first obtained by a normal retrieval method.
The features of top-ranked candidates are then pooled with weights calculated by
Bayesian model to generate a new query. Finally, the new query is used for query
expansion. The red bounding boxes denote the false matches in the ranking list.

new round of retrieval, the query expansion process can be leveraged again, resulting
in an iterative algorithm.

Formally, each image is represented by a d-dimensional feature vector, denoted by
x ∈ R

d. Let T = {xt
i|i = 1,2, ...M} be the training set, and G = {xg

i |i = 1,2, ...N} the
gallery set. Then the identity label of training image xt

i, query image q and gallery
image xg

i are denoted as lti, lq and lgi . Let d(q,xg
i ) denote the distance between a

query image q and a gallery image xg
i . Then the initial ranking list is denoted as

R(q) = [xg
1,xg

2, ...xg
n], where d(q,xg

i ) < d(q,xg
i+1). Our goal is to re-rank the initial

ranking list based on an offline-trained Bayesian model.

3.3.2 Bayesian Model

In spirit, the Bayesian model characterizes the matching score distribution of the true
matches and the false matches. The model is created on the training set and deployed
during testing to estimate the probability of a top-ranked image being a true match to
the query.

Let us formulate the person re-ID re-ranking problem in a more formal way. For
each image x in the ranking list returned from a person re-ID system, there is a distance
computed by the learned metric. Since images with small distance to the query will
be listed at the top, we wonder if we can re-rank the image list using the top images
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to improve the performance. Selecting the candidate images is crucial, because false
matches will have opposite effect on the performance. The problem is, can we estimate
the probability of an image being a true match when given a distance between the
query and the image, i.e., P (x is a true match | d(x,q)) ? As shown in Fig. 3.3, images
of the same or different identities usually have obvious different range of distance, so
that the distance can help us distinguish the candidates. In this chapter, the Bayesian
model is used to estimate the probability of relevance of an image in the ranking list.

To be specific, for a query q and a gallery image xg
i , we propose to compute the

probability that the two images belong to the same identity given the distance between
the two images, i.e., P (lq = lgi |d(q,xg

i )).
By Bayes’ theorem, the probability can be rewritten as follows,

P (lq = lgi |d(q,xg
i )) = P (d(q,xg

i )|lq = lgi )P (lq = lgi )
P (d(q,xg

i )) , (3.1)

where P (d(q,xg
i )) can be calculated by,

P (d(q,xg
i )) = P (d(q,xg

i )|lq = lgi )P (lq = lgi )
+P (d(q,xg

i )|lq �= lgi )P (lq �= lgi ).
(3.2)

We can estimate the probability using the training data. Here, we directly use
P (lti = ltj) and P (lti �= ltj) to approximate the value of P (lq = lgi ) and P (lq �= lgi ). To
calculate P (d(q,xg

i )|lq = lgi ), and P (d(q,xg
i )|lq �= lgi ), we calculate the distances between

every images in the training data, and use a range of distance to replace the exact value
of distance. We divide the range of distance (d(q,xg

i ) values) into M intervals. Then
the number of candidates within each interval is counted. As shown in Fig. 3.3, each
bar represents a interval. Assume that d(q,xg

i ) falls in [0.2,0.3], then P (d(q,xg
i )|lq = lgi )

can be calculated by the number of candidates divided by the frequency of the red bar
in this interval. P (d(q,xg

i )|lq �= lgi ) can be calculated in a similar way. The number of
intervals M is chosen based on the size of the dataset. Note that if a distance in the
test phase is larger than the upper bound (or smaller than the lower bound) in the
training phase, we use the result of the upper (or lower bound).

3.3.3 Query Expansion

For query expansion, a new query is issued to re-rank the candidates. Here only K

candidates with high probability are pooled as a new query, where K ≤ the number

of true matches and K � n. The value of K is evaluated in Section 3.4.3.
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Fig. 3.3 Histogram of Euclidean distance on the training set of the Market-1501 dataset.
The red bars represent the distance between the images of the same identity, while the
blue bars represent the distance between images of different identities.

There are two simple strategies for query expansion: average query expansion
(AQE) and max query expansion (MQE). For these two methods, average pooling
and max pooling are used to fuse the feature of the query image and the top ranked
candidates, respectively. For AQE, the expanded query is calculated as:

qnew =
∑K

i=1 xg
i + q

K +1 . (3.3)

The shortage of these strategies is that the effectiveness strongly relies on the quality
of the initial ranking list and the value of parameter K. When the initial ranking list
is not satisfying or the K is large, false matches will be used to construct the new
query, which would affect the precision.

To overcome the shortage, we assign different weight to each candidate when doing
feature pooling. Given a query, the probability of each candidate being a true match
of the query is computed in Section 3.3.2. Then the expanded probe qnew of the initial
query q is computed by pooling the top K images and query q with the probabilities.
Here we simply use average pooling with weight, where the weight is exactly the
probability. The formula is as follows:

qnew =
∑K

i=1 P (lq = lgi )∗xg
i + q

∑K
i=1 P (lq = lgi )+1

(3.4)
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Fig. 3.4 Comparison between the baselines and BQE on four datasets. All the experi-
ments are implemented using IDE and Euclidean distance.

Finally this new query is used to calculate the distance and re-rank the initial ranking
list.

More iterations. We assume that the expanded query will lead to a better
ranking list, which can produce a better query. Thus we can conduct the procedure of
producing ranking list, feature pooling, and query expansion repeatedly. By repeating
BQE, the effect will be strengthened. We denote T as the number of iterations, and
this parameter is evaluated in Section 3.4.3

3.3.4 Complexity Analysis

A large proportion of the computational cost consists in training Bayesian model and
query expansion. Suppose the size of the training set and the gallery set is M and N ,
respectively. The Bayesian model is computed offline with complexity O(M2). For
query expansion procedure, we need to compute the probability and construct the
new query. The time complexity is O(K), where K is the number of pooled images.
Since parameter K < number of true matches, and K � N , the complexity can be
constrained to O(1). Then the pairwise distance is computed with complexity O(N).
As a result, for one query, the computation complexity is O(N).
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3.4 Experiments

3.4.1 Implementation Details.

To demonstrate the robustness of this method, we adopt various feature extraction
methods and metric learning approaches as baselines.

• ID-discriminative Embedding (IDE) [144]. The IDE extractor is trained on
classification model using ResNet-50. It generate a 2048-dim vector for each
image.

• Attribute-Person Re-identification Embedding (APR) [56]. The descriptor is
trained on classification model using both ID and attribute labels. The network is
also trained on ResNet-50 model. For each image, a 2048-dim vector is extracted.

• Bag-of-Words (BoW) descriptor [142]. In the BoW model, local features are
aggregated into a global feature vector. For each image, a 5600-dim descriptor is
computed.

We also employ three distance learning methods, including Euclidean distance, KISSME
and XQDA.

For all the experiments, we set the parameter K = 5 on Market-1501, DukeMTMC-
reID and MARS. We set K = 3 on CUHK03, because the true matches of this dataset
are fewer. For all the four datasets, the number of intervals M is set to be 100. When
conduct BQE for iterations, the parameter T is set to be 3.

3.4.2 Evaluation of BQE

Comparison with the baselines.
We evaluate if the BQE method outperforms the baselines. Results on the four

datasets, i.e., Market-1501, Duke, MARS and CUHK03, are reported in Table 3.1,
Table 3.2, Table 3.3 and Table 3.4, respectively. Especially we show the baseline and
BQE results on the four datasets using the same setting in Fig. 3.4. We have several
observations from these results.

First, our method exceeds the baselines on four datasets. On the Market-1501
dataset, our method consistently improves the rank-1 accuracy and mAP with all
features(IDE, APR and Bow model). For example, when using IDE [56] and Euclidean
distance, the improvements are +0.95% in rank-1 accuracy and +5.12% in mAP.
Moreover, experiments conducted with three metrics all show better results than the
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Table 3.1 BQE results on Market-1501. The best and second highest results are
highlighted in blue and red.

Methods rank-1 rank-5 rank-20 mAP
DADM [92] 39.4 - - 19.6
MBC [99] 45.56 67 82 26.11
SML [36] 45.16 68.12 84 -
DLDA [111] 48.15 - - 29.94
SL [6] 51.9 - - 26.35
DNS [133] 55.43 - - 29.87
LSTM [101] 61.6 - - 35.3
S-CNN [100] 65.88 - - 39.55
2Stream [146]* 79.51 90.91 96.23 59.87
GAN [147]* 79.33 - - 55.95
APR+EU 84.29 93.20 97.00 64.67
APR+EU+BQE 85.24 93.46 97.32 69.79
APR+EU+BQEI 84.91 93.47 96.07 70.74
APR+Kissme 83.90 93.14 97.00 63.34
APR+Kissme+BQE 84.89 93.25 97.35 68.60
APR+XQDA 82.27 92.40 96.80 63.05
APR+XQDA+BQE 83.40 92.71 97.43 67.06
IDE+EU 73.69 88.15 94.83 51.48
IDE+EU+BQE 74.88 88.19 93.37 56.91
IDE+XQDA 72.35 86.78 94.32 50.19
IDE+XQDA+BQE 73.42 85.71 94.49 54.08
IDE+kissme 73.49 88.07 95.25 50.85
IDE+kissme+BQE 74.56 87.52 94.46 55.03
Bow+EU 34.03 50.80 65.91 13.15
Bow+EU+BQE 34.14 50.82 65.93 13.36
Bow+XQDA 41.93 63.26 79.87 21.90
Bow+XQDA+BQE 42.97 63.58 81.02 23.93
Bow+Kissme 41.26 60.38 78.33 20.74
Bow+Kissme+BQE 42.55 60.73 81.22 22.39

baselines, which demonstrate the effectiveness of our method on different distance
metrics.

On the DukeMTMC-reID dataset, we test BQE with IDE, APR and three matrix
learning methods. In all the settings, the performance of BQE is superior to the
baselines. For example, when using APR[56] and Euclidean distance, we observe the
most obvious improvement. The performance gain is +4.26% in rank-1 accuracy and
+7.59% in mAP.

Consistent findings also hold for the MARS dataset and the CUHK03 dataset, i.e.,
when IDE and three matrix learning methods are used, BQE improves both rank-1
accuracy and mAP over the baselines.
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BQE

Fig. 3.5 Sample results on the Market-1501 dataset. The green bounding boxes and
red bounding boxes denote the true matches and the false ones, respectively.

Second, the improvement of mAP is larger than that of rank-1 accuracy. For
example, on the Market-1501 dataset, when using CNN features ([144] or [56]), mAP
increases 4% ∼ 5%, while rank-1 increases 1% ∼ 2%. The results on the DukeMTMC-
reID dataset are similar, i.e., the improvement of mAP and rank-1 accuracy is about
5% ∼ 11% and 3% ∼ 9%, respectively. We speculate that when rank-1 is a false match,
noise will be introduced to the new query, thus it’s difficult to have a true match on
rank-1 in the new ranking list. However, diversity will be introduced to the new query
as well, and some true matches will have a higher rank in the new ranking list, so the
performance of mAP has relatively higher improvement.

Two sample re-ID results on the Market-1501 dataset are shown in Fig. 3.5. It is
clear that more true matches are found using BQE. Our method improves the baseline
algorithm to a great extent.

Comparison with the state-of-the-art methods. On the Market-1501 dataset,
we obtain rank-1 of 85.24%, mAP of 69.79% with the APR. We achieve the best rank-1
accuracy and mAP among the competing methods. On the DukeMTMC-reID dataset,
we achieve rank-1 of 76.48% and mAP of 60.97% with APR and Euclidean distance
when repeat BQE for 3 iterations. We achieve the best mAP among the competing
methods, and the second best in rank-1 accuracy (the highest rank-1 accuracy is
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Table 3.2 BQE results on DukeMTMC-reID. The best and second highest results are
highlighted in blue and red.

Methods rank-1 rank-5 rank-20 mAP
BoW+kissme [142] 25.13 - - 12.17
LOMO+XQDA [54] 30.75 - - 17.04
GAN (R, 702) [147] 67.68 - - 47.13
SVDNet [96] 76.7 - - 56.8
APR+EU 70.69 84.78 91.78 51.89
APR+EU+BQE 74.95 85.95 92.77 59.48
APR+EU+BQEI 76.48 85.81 91.49 60.97
APR+Kissme 70.78 84.15 91.15 50.62
APR+Kissme+BQE 75.49 85.456 91.60 55.79
APR+XQDA 71.18 84.02 91.24 51.21
APR+XQDA+BQE 74.77 85.32 91.60 58.43
IDE+EU 61.71 76.75 85.60 41.21
IDE+EU+BQE 70.37 81.73 89.22 53.03
IDE+Kissme 66.87 80.92 88.46 44.95
IDE+Kissme+BQE 69.12 80.25 88.06 48.60
IDE+XQDA 67.05 79.75 88.06 45.33
IDE+XQDA+BQE 70.33 81.28 88.82 51.72

reported by Sun et al. [96]). On the CUHK03 dataset, our method yields the best
rank-1 accuracy result of 34.78% and the second best mAP of 34.46% (the highest
mAP is reported by Zhong et al. [149]).

Effective of more iterations. We conduct BQE method for three iterations with
the setting that produces the best performance. On these four datasets, BQE with
more iterations (BQEI) shows superior results. On the Market-1501 dataset, BQEI
achieves a better mAP of 70.74% (+0.95%) and a relatively lower rank-1 accuracy of
84.91% (-0.33%). On the DukeMTMC-reID dataset, compared with the BQE method,
rank-1 increases from 74.95% to 76.48%, mAP increases from 59.48% to 60.97%. On
the MARS dataset, an improvement of 1.98% on rank-1 accuracy and an improvement
of 1.35% on mAP are observed. On the CUHK03 dataset, rank-1 accuracy and mAP
of BQEI are 34.78% and 34.46%, respectively. An improvement of 0.93% on rank-1
and an improvement of 2.39% on mAP are observed.

3.4.3 Algorithm Analysis

Number of top ranked candidates. An important parameter to be considered
is K, which defines how many candidates will be pooled to construct a new query
together with the original query. As we can imagine, when K is 0, the new query is
equal to the original query. When K becomes larger, more images in the ranking list
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Table 3.3 BQE results on MARS. The best highest results are highlighted in blue.

Methods rank-1 rank-5 rank-20 mAP
HistLBP+XQDA [141] 18.6 33.0 45.9 8.0

gBiCov+XQDA 9.2 19.8 33.5 3.7
LOMO+XQDA 30.7 46.6 60.9 16.4
BoW+Kissme 30.6 46.2 59.2 15.5

CNN+EU [141] 56.47 73.09 83.23 38.82
CNN+EU+BQE 59.32 77.18 87.19 42.75
CNN+Kissme [141] 63.54 79.35 88.4 45.20

CNN+Kissme+BQE 66.07 81.23 89.78 47.54
CNN+XQDA [141] 65.59 81.75 90.10 46.84

CNN+XQDA+BQE 66.46 82.25 90.39 51.38
CNN+XQDA+BQEI 68.42 81.59 88.82 52.73

Table 3.4 BQE results on CUHK03. The best results are highlighted in blue.

Methods rank-1 rank-5 rank-20 mAP
k-reciprocal [149] 34.7 - - 37.4
CNN+EU 21.35 37.50 57.42 19.75
CNN+EU+BQE 24.00 39.85 59.21 21.91
CNN+Kissme 27.88 46.57 65.71 26.80
CNN+Kissme+BQE 30.71 50.71 68.93 30.49
CNN+XQDA 29.50 50.00 71.35 28.14
CNN+XQDA+BQE 33.85 54.00 74.78 32.07
CNN+XQDA+BQEI 34.78 50.92 73.01 34.46

are used to generate the new query. To assign a suitable K value, we compare the
result under different K values for different datasets. As for Market-1501 benchmark,
the curve is shown in Fig. 3.6. At first, both recall and precision are improved. When
K increases, mAP raises slowly and then remains the same value, rank-1 accuracy
drops slowly and has a fluctuation. We set K = 5 to get a satisfying result.

Stability study. Fig. 3.7 presents the performance of three query expansion
methods when have different K value. Notice that when K is small, the three
algorithms produce similar results on both rank-1 accuracy and mAP. As K increases,
the performance of BQE drops a little and remain a relative high accuracy. On the
contrary, for AQE and MQE, both rank-1 accuracy and mAP drop rapidly.

We further investigate the weight of top 500 images in 3.8 . We observe that the
weight of top ranked images drops rapidly, and remains nearly zero when K > 50. The
Bayesian model plays an important role on control the impact of the top ranked images
to form the expanded query.
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Fig. 3.6 mAP and CMC vs. K value changes on the Market-1501 dataset. The
experiments are implemented using APR and Euclidean distance.

Fig. 3.7 mAP and CMC of three methods vs. K value changes on the Market-1501
dataset. The experiments are implemented using APR and Euclidean distance.
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Fig. 3.8 Pooling weight of top 500 ranked images on Market-1501.

Number of iterations. The impact of the number of iteration T is shown in Fig.
3.9. On the one hand, when T increases, mAP increases slowly and then remains a
relatively stable level. The reason is that as more images are merged into the query,
the diversity of the query vector is enhanced, thus improving the retrieval recall.

On the other hand, although mAP is improved, more iterations of query expansion
do not exactly lead to a higher rank-1 accuracy. From Fig. 3.9, on Market-1501,
rank-1 accuracy obtains the best result in the first iteration, and then decreases to
about 84.9%. For further iterations, rank-1 accuracy remains, which is still higher
than the baseline. The main reason for this phenomenon is that some false matches
might be ranked on the top, and are pooled into the new query several times during
the iterations. That being said, on DukeMTMC-reID (Table 3.2), MARS (Table 3.3)
and CUHK03 (Table 3.4), both rank-1 and accuracy improve with more iterations.

Overall speaking, mAP usually benefits from more iterations of BQE; rank-1
accuracy can be improved as well, but may be compromised in some cases due to the
deteriorated query.

3.4.4 Comparison with Other Re-ranking Methods

In this section we implement and compare some query expansion methods such as
AQE and MQE as we discussed in Section 3.3.3. Other kinds of re-ranking methods
are also adopted and compared with BQE and the baseline.
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Fig. 3.9 Rank-1 and mAP vs. T value changes on the Market-1501 dataset. The
experiments are implemented using APR and Euclidean distance.

• SVM query expansion. An SVM classifier is firstly trained on training data, then
it replaces the Bayesian model in predicting labels of candidates in the initial
ranking list.

• Graph based re-ranking method [135]. The top candidates’ nearest neighborhoods
are used as queries to get the ranking lists. Then a weighted undirected graph
is built using the top candidates from those ranking lists. Here, the Jaccard
similarity coefficient between two neighbors is used as weight.

• K-reciprocal Encoding [149]. This method calculates a k-reciprocal feature for re-
ranking under the Jaccard distance. The final distance is computed by combining
the original distance and the Jaccard distance. On the contrary, we propose a
new query to compute the final distance. The time complexity of this method is
O(NlogN), while ours is O(N). The two methods are complementary to each
other. In Table 5 we show that we further improve the performance when build
BQE upon the K-reciprocal Encoding [149].

The CMC and mAP results of different re-ranking methods are reported in Table
3.5. Here all the results are calculated using APR under Euclidean distance. We
observe that all the re-ranking methods consistently improves the rank-1 accuracy
and mAP over the original re-ID baseline. Among the query expansion methods (the
second row to the six row in Table 3.5), the proposed BQE method achieves the best
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Table 3.5 Re-ranking methods comparison on the Market-1501 dataset. Our method
is more robust to parameters than average/max pooling. Our method also requires
much less off-line computation and thus more flexible against database updates than
[134, 149]. The best and second highest results are highlighted in blue and red.

Methods rank-1 mAP
APR 84.29 64.67
APR+AQE 84.56 70.40
APR+MQE 84.88 69.60
APR+SVM 85.12 67.33
APR+Graph [134] 84.71 67.98
APR+k-reci [149] 85.87 77.27
APR+BQE 85.24 69.79
APR+BQEI 84.91 70.74
APR+Graph+BQE 85.42 70.35
APR+k-reci+BQE 86.57 76.95

result in rank-1 accuracy and BQE with three iterations achieves the best result in
mAP. Other query expansion methods also beat the baseline to some extent.

The graph based method [134] exhibits a similar result to the query expansion
methods. We also notice that the K-reciprocal encoding method achieves best result
with 85.87% on rank-1 and 77.27% on mAP. However, the shortcoming of this method
is that it needs much more offline training time, a process that needs to be re-computed
every time the gallery is updated. We use BQE behind some other re-ranking methods,
and the results are shown below. We also use BQE after these re-ranking method,
and observe that when BQE is conducted after other graph based method, the rank-1
accuracy improves from 84.71% to 85.42%, and mAP improves from 67.89% to 70.30%.
When we perform BQE after k-reciprocal method, rank-1 accuracy improves from
85.87% to 86.57.

3.5 Conclusion

We introduce a Bayesian query expansion algorithm to improve the recall of existing
person Re-ID approaches. The pairwise similarity scores between images from the same
and different identities are used to train the Bayesian model. For each query, the top
ranked candidates in the initial ranking list are selected, and the features are pooled
with the query using Bayesian model. A new query is then obtained and can be used
to produce a new ranking list. The experiments show that our approach consistently
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improves the performance of baselines and is very robust to feature representation
and metric learning methods. Our results are competitive with the state-of-the-art
methods on four large-scale re-ID datasets.

In the future, we will further investigate effective and efficiency re-ranking methods.
A promising direction is to integrate human labor in the re-ranking process [58, 104].



Chapter 4

Improving Person Re-identification
by Attribute and Identity Learning

In this chapter, we exploit attribute information for person re-identification task to
improve existing re-ID methods. Person re-identification (re-ID) and attribute recogni-
tion share a common target at the pedestrian description. Their difference consists
in the granularity. Attribute recognition focuses on local aspects of a person while
person re-ID usually extracts global representations. Considering their similarity and
difference, in this chapter we propose a very simple convolutional neural network (CNN)
that learns a re-ID embedding and predicts the pedestrian attributes simultaneously.
This multi-task method integrates an ID classification loss and a number of attribute
classification losses, and back-propagates the weighted sum of the individual losses.

Albeit simple, we demonstrate on two pedestrian benchmarks that by learning
a more discriminative representation, our method significantly improves the re-ID
baseline and is scalable on large galleries. We report competitive re-ID performance
compared with the state-of-the-art methods on the two datasets.

4.1 Introduction

We propose the attribute-person recognition (APR) network to exploit both identity
labels and attribute annotations for person re-ID. By combining the attribute recog-
nition task and identity classification task, the APR network is capable of learning
more discriminative feature representations for pedestrians, including global and local
descriptions. Specifically, we take attribute predictions as additional cues for the
identity classification. Considering the dependencies among pedestrian attributes,
we first re-weight the attribute predictions and then build identification upon these
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re-weighted attributes descriptions. Comparing with previous re-ID literature which
takes attributes into consideration, this method differs in two main aspects. First, in
most previous re-ID methods, attributes are used to strengthen the relationship of
image pairs, and their correlations are hardly considered. However, many attributes
usually co-occur simultaneous on a person, and the correlations of attributes are helpful
to re-weight the prediction of each attribute. For example, the attributes skirt and
handbag are highly related to female rather than male. Given these gender-biased
attribute descriptions, the probability of the attribute female should increase. We
introduce an Attribute Re-weighting Module to utilize correlations among attributes
and optimize the attribute predictions. Second, our work systematically investigates
how person re-ID and attribute recognition benefit each other. On the one hand,
identity labels provide global descriptions for person images, which have been proved
effective to learn a good feature representation for a person in many re-ID works
[7, 114, 142]. On the other hand, attribute labels provide detailed local descriptions.
By exploiting both local (attribute) and global (identity) information, one is able to
learn a better representation for a person, thereby achieving higher accuracy for person
attribute recognition and person re-ID.

We evaluate the performance of the proposed method APR on two large-scale
re-ID datasets. The experimental results show that our method achieves competitive
re-ID accuracy to the state-of-the-art methods. In addition, we demonstrate that the
proposed APR yields improvement in the attribute recognition task over the baseline
in all the testing datasets. The main contributions are summarized as follows:

(1) We have manually labeled a set of pedestrian attributes for the Market-1501
dataset and the DukeMTMC-reID dataset. Attribute annotations of both datasets are
publicly available on our website https://vana77.github.io.

(2) We propose a novel attribute-person recognition (APR) framework. It learns
a discriminative Convolutional Neural Network (CNN) embedding for identities and
attributes recognition.

(3) We introduce the Attribute Re-weighting Module, which corrects predictions of
attributes based on the learned dependency and correlation among attributes.

(4) We achieve competitive accuracy in compared with the state-of-the-art re-ID
methods on two large-scale datasets i.e., Market-1501 [142] and DukeMTMC_reID
[146]. We also demonstrate improvement in the attribute recognition task.
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4.2 Related Work

Attributes for person re-ID. In some early attempts, attributes are used as aux-
iliary information to improve low-level features [44, 62, 91, 94]. In [43, 44], low-level
descriptors and SVM are used to train attribute detectors, and the attributes are
integrated by several metric learning methods. Su et al. [91, 94] utilize both low-level
features and camera correlations learned from attributes for re-identification in a
systematic manner. In [79], a dictionary learning model is proposed that exploits the
discriminative attributes for the classification task. Recently, some deep learning meth-
ods are proposed. Franco et al. [19] propose a coarse-to-fine learning framework, which
is comprised of a set of hybrid deep networks. The network is trained for distinguishing
person/not person, predicting the gender of a person and person re-ID, respectively. In
this work, the networks are trained separately and might overlook the complementarity
of the ID label and the attribute label. Besides, gender is the only attribute used in the
work, so that the correlation between attributes is not leveraged. However, these works
do not consider the correlation between attributes nor show if the proposed method
improves the attribute recognition baselines. In [93], Su et al. first train a network on
an independent dataset with attribute label, and then fine-tune the network the target
dataset using only identity label with triplet loss. Finally, the predicts attribute labels
for the target dataset is combined with the independent dataset for the final round of
fine-tuning. Similarly, in [88], the network is pre-trained on an independent dataset
labeled with attributes, and then fine-tuned on another set with person ID. In [131], a
set of attribute labels are used as the query to retrieve the person image. Adversarial
learning is used to generate image-analogous concepts for query attributes and get it
matched with the image in both the global level and semantic ID level. Wang et al.
[105] propose an unsupervised re-ID method that shares the source domain knowledge
through attributes learned from labelled source data and transfers such knowledge to
unlabelled target data by a joint attribute identity transfer learning across domains.

4.3 Attribute Annotation

We manually annotate the Market-1501 [142] dataset and the DukeMTMC-reID [142]
dataset with attribute labels. Although the Market-1501 and DukeMTMC-reID datasets
are both collected in university campuses and most identities are students, they are
significantly different in seasons (summer vs. winter) and thus have distinct clothes.
For instance, many people wear dresses or pants in Market-1501 but most of the people
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Attribute

Short 
sleeve
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Blue 
lower-body 
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Positive Samples Negative Samples

Fig. 4.1 Positive and negative examples of some representative attributes: short sleeve,
backpack, dress, blue lower-body clothing.

wear pants in DukeMTMC-reID. So for the two datasets, we use two different sets of
attributes. The attributes are carefully selected considering the characteristics of the
datasets, so that the label distribution of an attribute (e.g., wearing a hat or not) is
not heavily biased.

For Market-1501, we have labeled 27 attributes: gender (male, female), hair length
(long, short), sleeve length (long, short), length of lower-body clothing (long, short),
type of lower-body clothing (pants, dress), wearing hat (yes, no), carrying backpack
(yes, no), carrying handbag (yes, no), carrying other types of bag (yes, no), 8 colors of
upper-body clothing (black, white, red, purple, yellow, gray, blue, green), 9 colors of
lower-body clothing (black, white, red, purple, yellow, gray, blue, green, brown) and
age (child, teenager, adult, old). Positive and negative examples of some representative
attributes of the Market-1501 dataset are shown in Fig. 4.1.

For DukeMTMC-reID, we have labeled 23 attributes: gender (male, female), shoe
type (boots, other shoes), wearing hat (yes, no), carrying backpack (yes, no), carrying
handbag (yes, no), carrying other types of bag (yes, no), color of shoes (dark, bright),
length of upper-body clothing (long, short), 8 colors of upper-body clothing (black,
white, red, purple, gray, blue, green, brown) and 7 colors of lower-body clothing (black,
white, red, gray, blue, green, brown).
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Fig. 4.2 The distributions of attributes on (a) Market-1501 and (b) DukeMTMC-reID.
The left figure of each row shows the numbers of positive IDs for attributes except
the color of upper/lower-body clothing. The middle and right pie chart illustrate the
distribution of the colors of upper-body clothing and lower-body clothing, respectively.

Note that all the attributes are annotated at the identity level. For example, in
Fig. 4.1, the first two images in the second row are of the same identity. Although
we cannot see the backpack clearly in the second image, we still annotate there is a
“backpack” in the image. For both Market-1501 and DukeMTMC-reID, we illustrate
the attribute distribution in Fig 4.2. We define correlation of two attributes as the
possibility that they co-occur on a person.

4.4 The Proposed Method

We first describe the necessary notations and two baseline methods in Section 4.4.1 and
then introduce our proposed Attribute-Person Recognition network in Section 4.4.2.

4.4.1 Preliminaries

Let SI = {(x1,y1), ...,(xn,yn)} be the pedestrian identity labeled data set, where xi

and yi denotes the i-th image and its identity label, respectively. For each image
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…
 

Feature
Attributes Re-weighting

Confidence

Labels

A young girl with long hair. She is in white short-sleeve 
clothes, and wear pink skirt. She carries a handbag and 

does not have hat. 
She is Helen.

Attribute loss

Identification loss

Fig. 4.3 An overview of the APR network. APR contains two classification part, one
for attribute recognition and the other for identification. Given an input image, the
person feature representation is extracted by the CNN extractor φ. Subsequently, the
attribute classifiers predict attributes based on the image feature. Here we calculate
the attribute classification losses by the attribute predictions and ground truth labels.
For the identity classification part, we take the attribute predictions as additional
cues. Specifically, we first re-weight the local attribute predictions by the Attribute
Re-weighting Module and then concatenate them with the global image feature. The
final identification is built upon the concatenated local-global feature.

xi ∈ SI , we have the attributes annotations aaai = (a1
i ,a2

i , ...,am
i ), where aj

i is the j-
th attribute label for the image xi, and m is the number of attributes classes. Let
SA = {(x1,aaa1), ...,(xn,aaan)} be the attribute labeled set. Note that set SI and set SA
share common pedestrian images {xi}. Based on these two set SI and SA, we have
the following two baselines:

Baseline 1 ID-discriminative Embedding (IDE). Following recent works [114,
142, 146], we take IDE to train the re-ID model. IDE regards re-ID training process as
an image identity classification task. It is trained only on the identity label data set
SI . We have the following objective function for IDE:

min
θI ,wwwI

n∑

i=1
�(fI(wwwI ;φ(θI ;xi)),yi), (4.1)

where φ is the embedding function, parameterized by θI , to extract the feature from
the data xi. CNN models [142, 146] are usually used as the embedding function φ. fI

is an identity classifier, parameterized by wwwI , to classify the embedded image feature



4.4 The Proposed Method 34

φ(θI ;xi) into a k-dimension identity confidence estimation, in which k is the number
of identities. � denotes the suffered loss between classifier prediction and its ground
truth label.

Baseline 2 Attribute Recognition Network (ARN). Similar to the IDE
baseline for identity prediction, we propose the Attribute Recognition Network (ARN)
for attribute prediction. ARN is trained only on the attribute label data set SA. We
define the following objective function for ARN:

min
θ,wwwA

n∑

i=1

m∑

j=1
�(fAj

(wwwAj
;φ(θ;xi)),aj

i ), (4.2)

where fAj
is the j-th attribute classifier, parameterized by wwwAj

, to classify the embedded
image representation φ(θ;xi) to the j-th attribute prediction. We take the sum of all
the suffered losses for m attribute predictions on the input image xi as the loss for the
i-th sample.

In the evaluation stage of person re-ID task, for both baseline models, we use the
embedding function φ(θ; ·) to embed the query and gallery images into the feature
space. The query result is the ranking list of all gallery data according to the Euclidean
Distance between the query data and each gallery data, i.e.., ||φ(θ;xq)−φ(θ;xg)||2,
where xq and xg denote the query image and the gallery image, respectively. For the
evaluation of attribute recognition task, we take the attribute prediction fA(wwwA;φ(θ; ·))
as the output, thereby evaluated with the ground truth by the classification metric.

4.4.2 Attribute-Person Recognition Network

Architecture Overview

The pipeline of the proposed APR network is shown in Fig. 4.3. APR network
contains two prediction parts, one for attribute recognition task and the other for
identity classification task. Given an input pedestrian image, the APR network first
extracts the person feature representation by the CNN extractor φ. Subsequently, APR
predicts attributes based on the image feature. Here we calculate the attribute losses
by the attribute prediction and ground truth labels. For the identity classification part,
motived by the fact that local descriptors (attributes) benefit global identification, we
take the attribute predictions as additional cues for identity prediction. Specifically,
we first re-weight the local attribute predictions by the Attribute Re-weighting Module
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and then concatenate them with the global image feature. The final identification is
built upon the concatenated local-global feature.

Attribute Re-weighting Module

The Attribute Re-weighting Module is designed to utilize the dependencies and correla-
tions among pedestrian attributes. The combination of attribute predictions contains
inner connections among these local descriptions on a person, resulting in refining the
prediction score of each attribute.

Suppose the attribute predictions for the image xi are ãaai = (ã1
i , ã2

i , ..., ãn
i ), where

ãj
i is the j-th attribute prediction score from the attribute classifier fAj

. For the
j-th attribute, we learn the confidence score cj

i for its prediction ãj
i by the vertical

concatenation of all the attributes prediction ãaai, i.e.,

cj
i = Sigmoid(vvvj ãaai + bj), (4.3)

where vvvj ∈ R
m×1 and bj is the correlation vector and bias for the j-th attribute,

respectively. The confidence score cij represents the reliability of the prediction ãj
i .

Therefore, we adjust the origin attribute prediction score to the re-weighted prediction
by the confidence score, i.e., âj

i = cj
i × ãj

i .

Optimization

To exploit the attributes data SA as auxiliary annotations for the re-ID task, we
propose Attribute-Person Recognition (APR) network. The APR network is trained
on the combined data set S of the identity set SI and the attribute set SA, i.e.,
S = {(x1,y1,aaa1), ...,(xn,yn,aaan)}. For a pedestrian image xi, we first extract the im-
age feature representation by the embedding function φ(θ; ·). Based on the image
representation φ(θ;xi), two object functions are optimized simultaneously:

The object function for attribute predictions. Similar to the baseline ARN,
the attribute predictions are obtained by a set of attribute classifiers on the input
image feature, i.e., {fAj

(wwwAj
;φ(θ;xi))}. We then optimize the object function for

attribute predictions the same as Eqn. (4.2).
The object function for identification. To introduce the attributes into identity

prediction, we gather the attribute predictions {fAj
(wwwAj

;φ(θ;xi))} and re-weight
them by the Attribute Re-weighting Module. We combine the re-weighted attribute
predictions âaai and the image global feature φ(θ;xi) to form a local-global representation.
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The identity classification is built upon the new feature. Thus we have the following
object function for identity prediction:

min
θ,wwwI

n∑

i=1
�(f̂I(ŵwwI ; âaai,φ(θ;xi)),yi), (4.4)

where âaai = (â1
i , â2

i , ..., âj
i ) is the concatenation of the re-weighted attribute predictions.

f̂I is the identity classier, parameterized by ŵwwI , to predict the identity based on
attribute predictions âaai and image embeddings φ(θ;xi).

The overall object function. Considering both attribute recognition and identity
prediction, we define the overall object function as followings:

min
θ,wwwI ,wwwA

λ
n∑

i=1
�(f̂I(ŵwwI ; âaai,φ(θ;xi)),yi)+ 1

m

n∑

i=1

m∑

j=1
�(fAj

(wwwAj
;φ(θ;xi)),aj

i ), (4.5)

where λ is a hyper-parameter to balance the identity classification loss and the attribute
recognition losses. We empirically discuss the effectiveness of λ in Section.4.5.1.

4.4.3 Implementation Details

We take ResNet-50 [27] with the last classification layer removed as the feature extractor
φ(θ; ·) for most experiments. The feature vector after the pool5 layer in ResNet-50
is taken as the output of extractor φ. For some experiments based on the CaffeNet
[114], similarly, we take the feature vector after the fc7 layer as the output of extractor
φ. We initialize the embedding extractor by ImageNet [86] pre-trained models. For
the identity classifier fI(wwwI ; ·), we take as input the embedded feature from φ(θ; ·).
The feature is then processed by a 512-dim fully-connected (FC) layer with Batch
Normalization. We add a dropout layer with drop rate 0.5 for regularization. Finally,
the classification layer with k class nodes is used to predict the identity. For the j-th
attribute classifier fAj

(wwwAj
; ·), we simply adopt a FC layer for each attribute prediction.

When evaluating the APR network for re-ID task, we take the vertical concatenation
of the mbedded feature φ(θ;xi) and attribute predictions {fAj

(wwwAj
;xi)} as the final

feature representation for image xi.
Following [146], we adopt the similar training strategy. Specifically, when using

ResNet-50, we set the number of epochs to 60. The batch size is set to 32. Learning
rate is initialized to 0.001 and changed to 0.0001 in the last 20 epochs. For CaffeNet,
the number of epochs is set to 110. For the first 100 epochs, the learning rate is 0.1



4.5 Experimental Results 37

Fig. 4.4 The re-ID performance (rank-1 accuracy and mAP) curves on the validation
set of Market-1501 with different values of the parameter λ in Eqn. (4.5). According
to the performance curves, we set λ = 8 for all the other experiments on Market-1501,
DukeMTMC-reID and PETA.

and changed to 0.01 in the last 10 epochs. The batch size is set to 128. Randomly
cropping and horizontal flipping are implied on the input images during training.

4.5 Experimental Results

4.5.1 Evaluation of Person Re-ID task

Parameter validation. We first validate the parameter λ of APR on the validation
set of Market-1501. λ is a key parameter balancing the contribution of identification
loss and attribute recognition loss (Eq. 4.5). When λ = 0, the APR network reduces
to Baseline 2 (ARN). When λ becomes larger, person identity classification will play a
more important role. Re-ID performance result on the validation set of Market-1501
with different values of the parameter λ is presented in Fig. 4.4. As λ increases, we
observe that both the rank-1 accuracy and mAP of the model first increase and then
decrease. The best re-ID performance is obtained when λ = 8. Therefore, we use λ = 8
for APR in all the following experiments.

Attribute recognition improves re-ID over the baselines. Results on the
three datasets are shown in Table 4.1 Table 4.2 and Table 4.3.

First, we observe that Baseline 2 (ARN) yields decent re-ID performance, e.g., a
rank-1 accuracy of 49.76% using ResNet-50 on Market-1501. Note that Baseline 2 only
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Table 4.1 Comparison with state of the art on Market-1501. “C” and “R” represent
CaffeNet and ResNet-50, resp. “w/o ARM” denote APR without the attribute re-
weighting module. The numbers in the bracket are the number of training IDs.

Methods Publish rank-1 rank-5 rank-10 mAP
MBC [99] (AVSS2017) 45.56 67 76 26.11
SML [36] (ECCV2016) 45.16 68.12 76 -
SL [6] (CVPR2016) 51.9 - - 26.35
Attri [75] (ICPR2016) 58.84 - - 33.04
S-CNN [100] (ECCV2016) 65.88 - - 39.55
GAN [147] (ICCV2017) 79.33 - - 55.95
2Stream [146] (TOMM2017) 79.51 90.91 94.09 59.87
Cont-aware [48] (CVPR2017) 80.31 - - 57.53
Part-align [137] (ICCV2017) 81.0 92.0 94.7 63.4
SVDNet [96] (ICCV2017) 82.3 92.3 95.2 62.1
Baseline 1 (C) - 54.76 73.28 82.04 28.75
Baseline 1 (R) - 80.16 92.03 94.98 57.82
Baseline 2 (R) - 49.76 70.07 77.767 23.95
APR (C) - 59.32 78.26 85.03 32.85
APR (R, w/o ARM) - 85.71 94.32 96.46 66.59
APR (R) - 87.26 95.03 96.82 66.94

utilizes attribute annotations without ID labels. This illustrates that attributes are
capable of discriminating between different persons.

Second, by integrating the advantages in Baseline 1 and Baseline 2, our method
exceeds the two baselines by a large margin. For example, when using ResNet-50, the
rank-1 improvement on Market-1501 over Baseline 1 and Baseline 2 is 7.1% and 38.5%,
respectively. On DukeMTMC-reID, APR achieves 9.7% and 27.78% improvement over
Baseline 1 and Baseline 2 in rank-1 accuracy. Consistent finding also holds for PETA,
i.e., we observe improvements of 4.15% and 14.65% over Baseline 1 and Baseline 2 in
rank-1 accuracy, respectively. This demonstrates the complementary nature of the two
baselines, i.e., identity and attribute learning.

Third, for both backbone models (i.e., CaffeNet and ResNet-50), APR yields
consistent improvement. On Market-1501, we obtain 4.56% and 7.1% improvements in
rank-1 accuracy over Baseline 1 with CaffeNet and ResNet-50, respectively.

The effectiveness of the Attribute Re-weighting Module. We test APR
with and without Attribute Re-weighting Module on the three re-ID datasets, and
the results are shown in Table 4.1, Table 4.2 and Table 4.3. We observe performance
improvement by using the Attribute Re-weighting Module for all the datasets. For
Market-1501 with ResNet-50 as the backbone, the rank-1 and mAP improvements are
1.55% and 0.35%, respectively. For DukeMTMC-reID, the improvements are 0.36%
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Table 4.2 Comparison with the state of the art on DukeMTMC-reID with ResNet-50.
Rank-1 accuracy (%) and mAP (%) are shown. “w/o ARM” denotes APR without the
Attribute Re-weighting Module.

Methods rank-1 mAP
BoW+kissme [142] 25.13 12.17
LOMO+XQDA [54] 30.75 17.04
AttrCombine [75] 53.87 33.35
GAN [147] 67.68 47.13
SVDNet [96] 76.7 56.8
Baseline 1 64.22 43.50
Baseline 2 46.14 24.17
APR (w/o ARM) 73.56 54.79
APR 73.92 55.56

Table 4.3 Person reID performance on PETA with ResNet-50. Rank-1 accuracy (%) and
mAP (%) are shown. “w/o ARM” denotes APR without the Attribute Re-weighting
Module.

Methods rank-1 rank-5 rank-10 rank-20 mAP
Baseline 1 53.90 68.32 73.04 80.14 49.60
Baseline 2 43.30 60.08 70.23 77.40 39.52
APR (w/o ARM) 56.91 72.10 78.48 83.45 53.81
APR 58.05 78.34 75.73 84.01 55.84

and 0.74%, respectively. For PETA, we observe improvements of 1.14% and 2.03% in
rank-1 and mAP, respectively. The improvement is consistent on all experiments.

Comparison with the state-of-the-art methods. The comparison with the
state-of-the-art algorithms on Market-1501 and DukeMTMC-reID is shown in Table 4.1
and Table 4.2, respectively. On Market-1501, we obtain rank-1 = 87.26%, mAP =
66.94% by APR using the ResNet-50 model. We achieve the best rank-1 accuracy and
mAP among the competing methods. On DukeMTMC-reID, our results are rank-1 =
73.92% and mAP = 55.56% by APR using ResNet-50. Our method is thus shown
to compare favorably with the state-of-the-art methods.

Ablation study of attributes. We evaluate the contribution of individual
attributes on the re-ID performance. We remove each attribute from the APR system
at one time, and the results on the two datasets are summarized in Fig. 4.5. We find
that most of the attributes on Market-1501 and DukeMTMC-reID are indispensable.
The most influencing attributes on the two datasets are bag types and the color of shoes,
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Fig. 4.5 Re-ID rank-1 accuracy on Market-1501 and DukeMTMC-reID. We remove
one attribute from the system at a time. All the colors of upper-body clothing are
viewed as one attribute here; the same goes for colors of lower-body clothing. Accuracy
changes are indicated above the bars.

which lead to a rank-1 decrease of 2.14% and 1.49% on the two datasets, respectively.
This indicates that pedestrians of the two datasets have different appearances. The
attribute of “wearing a hat or not” seems to exert a negative impact on the overall
re-ID accuracy, but the impact is very small.

Accelerating the retrieval process. Attributes can be used to speed up the
evaluation process by filtering the gallery data based on attribute predictions. The
gallery features and attribute predictions are usually calculated in advance (off-line).
We take those attributes with higher prediction scores over a threshold as the reliable
attributes. When an on-line query starts, we only take the gallery data with the
same reliable attributes into consideration. Gallery images with different attribute
predictions are filtered. Fig. 4.6 illustrates the re-ID performance over different
percentages of remaining gallery data. As the percentage of remaining gallery data
decreases from 42% to 9.7%, i.e., accelerating retrieval from 2.4 times to 10.3 times,
the rank-1 accuracies for re-ID decrease very gently. When we try a more aggressive
speedup, the performance drops quickly. For example, we observe an accuracy drop of
22.78% when we speed up 193 times. Note that with remaining 9.74% gallery data,
we still achieve 86.03% on rank-1 accuracy, which is very close to the original result
87.26%. It shows that APR could speed up the retrieval process 10.3 times with only
a slight accuracy drop of 1.23%.
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Fig. 4.6 Re-ID rank-1 accuracy curve on Market-1501 when using attribute to accelerate
the retrieval process. For an on-line query, we only take the gallery data with the same
reliable attributes into consideration. X-axis stands for different percentages of the
remaining gallery data when using different filter threshold values. Note that APR
could speed up the retrieval process 10.3 times (remaining 9.74% gallery data) with
only a slight accuracy drop of 1.23%.

Table 4.4 Attribute recognition accuracy on Market-1501. In “APR”, parameter
λ is optimized in Fig. 4.4. “L.slv”, “L.low”, “S.clth”, “B.pack”, “H.bag”, “C.up”,
“C.low” denote length of sleeve, length of lower-body clothing, style of clothing, backpack,
handbag, color of upper-body clothing and color of lower-body clothing, resp. “B2”
denotes Baseline 2 (ARN).

gender age hair L.slv L.low S.clth B.pack H.bag bag hat C.up C.low Avg
B2 87.5 85.8 84.2 93.5 93.6 93.6 86.6 88.1 78.6 97.0 72.4 71.7 86.0
APR 88.9 88.6 84.4 93.6 93.7 92.8 84.9 90.4 76.4 97.1 74.0 73.8 86.6

4.5.2 Evaluation of Attribute Recognition

We test attribute recognition on the galleries of the Market-1501, DukeMTMC-reID,
PETA in Table 4.4, Table 4.5, and Table 4.6, respectively. We also evaluate our method
on the CUB_200_2011 dataset, which contains 11,788 images of 200 bird classes. Each
category is annotated with 312 attributes, which are divided into 28 groups and are
used as 28 multi-class attributes in our experiments. The result is shown in Table 4.7.
By comparing the results of APR and Baseline 2 (ARN), two conclusion can be drawn:

First, on all datasets, the overall attribute recognition accuracy is improved by the
proposed APR network to some extent. The improvement is 0.26%, 0.08%, 0.2% and
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Table 4.5 Attribute recognition accuracy on DukeMTMC-reID. “L.up”, “B.pack”,
“H.bag”, “C.shoes”, “C.up”, “C.low” denote length of sleeve, backpack, handbag, color of
shoes, color of upper-body clothing and color of lower-body clothing, resp. “B2” denotes
Baseline 2 (ARN).

gender hat boots L.up B.pack H.bag bag C.shoes C.up C.low Avg
B2 82.0 85.5 88.3 86.2 77.5 92.3 82.2 87.6 73.4 68.3 82.3
APR 84.2 87.6 87.5 88.4 75.8 93.4 82.9 89.7 74.2 69.9 83.4

Table 4.6 Attribute recognition accuracy on PETA.

Attribute mean accuracy
MRFr2 [12] 71.1
ACN [95] 81.15
MVA [88] 84.61
Baseline 2 84.45
APR 84.94

Table 4.7 Attribute recognition accuracy on CUB_200_2011.

Methods mean accuracy
Baseline 2 87.31
APR 89.12

1.58% on Market-1501, DukeMTMC-reID, PETA and CUB_200_2011, respectively.
So overall speaking, the integration of identity classification introduces some degree
of complementary information and helps in learning a more discriminative attribute
model. Also, note that we achieve the best attribute recognition result on PETA among
the state-of-the-art.

Second, we observe that the recognition rate of some attributes decreases for APR,
such as hair and B.pack in Market-1501. However, Fig. 4.5 demonstrates that these
attributes are necessary for improving re-ID performance. The reason probably lies
in the multi-task nature of APR. Since the model is optimized for re-ID (Fig. 4.4),
ambiguous images of certain attributes may be incorrectly predicted. Nevertheless, the
improvement on the two datasets is still encouraging and further investigations should
be critical.
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4.6 Conclusions

In this chapter, we mainly discuss how re-ID is improved by the integration of attribute
learning. Based on the complementarity of attribute labels and ID labels, we propose
an attribute-person recognition (APR) network, which learns a re-ID embedding and
predicts the pedestrian attributes under the same framework. We systematically
investigate how the person re-ID and attribute recognition benefit each other. In
addition, we re-weight the attribute predictions considering the dependencies and
correlations among attributes of a person. We propose the attribute-person recognition
(APR) network which learns a discriminative embedding for person re-ID and can
make attribute predictions. The APR network contains both the ID classification and
attribute classification losses which are respectively contained in the re-ID and attribute
recognition baselines. To show the effectiveness of our method, we have annotated
attribute labels on two large-scale re-ID datasets. The experimental results on two
large-scale re-ID benchmarks demonstrate that by learning a more discriminative
representation, APR achieves competitive re-ID performance compared with the state-
of-the-art methods. We additionally use APR to accelerate the retrieval process of
re-ID ten times with a minor accuracy drop of 1.26% on Market-1501. For attribute
recognition, we also observe an overall precision improvement using APR.



Chapter 5

One-Example Video-Based Person
Re-Identification by step-wise
Learning

In this chapter, we focus on the one-example learning for video-based person re-
Identification (re-ID). Unlabeled tracklets for the person re-ID tasks can be easily
obtained by pre-processing, such as pedestrian detection and tracking. In this chapter,
we propose an approach to exploiting unlabeled tracklets by gradually but steadily
improving the discriminative capability of the Convolutional Neural Network (CNN)
feature representation via step-wise learning. We first initialize a CNN model using
one labeled tracklet for each identity. Then we update the CNN model by the following
two steps iteratively: 1. sample a few candidates with most reliable pseudo labels from
unlabeled tracklets; 2. update the CNN model according to the selected data. Instead
of the static sampling strategy applied in existing works, we propose a progressive
sampling method to increase the number of the selected pseudo-labeled candidates
step by step. We systematically investigate the way how we should select pseudo-
labeled tracklets into the training set to make the best use of them. Notably, the
rank-1 accuracy of our method outperforms the state-of-the-art method by 21.46 points
(absolute, i.e., 62.67% vs. 41.21%) on the MARS dataset, and 16.53 points on the
DukeMTMC-VideoReID dataset.
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Initialization: 
one-shot tracklet

Iteration 1: add easy 
samples

Iteration 2: add hard 
samples

Fig. 5.1 An illustration of the unlabeled data sampling procedure in the feature space.
The hollow point and solid point denote the labeled tracklet and unlabeled tracklet,
respectively. The pseudo label of each unlabeled tracklet is assigned by its nearest
labeled neighbor (indicated by the colored line). Different colors represent different
identities. Samples in the shade will be incorporated into training. We adopt the easy
and reliable pseudo-labeled tracklets for updating at the beginning and difficult ones
in subsequence.

5.1 Introduction

Person re-identification (re-ID) aims at spotting the person-of-interest from different
cameras. In recent years, person re-ID on the large-scale video data, such as surveillance
videos, has attracted significant attention [29, 65, 106, 121, 136]. Most proposed
approaches rely on the fully annotated data, i.e.., the identity labels of all the tracklets
from multiple cross-view cameras. However, it is impractical to annotate very large-scale
surveillance videos due to the dramatically increasing cost. Therefore, semi-supervised
methods [66, 129] are of particular interest. This work mainly focuses on the one-
example setting, in which only one tracklet is labeled for each identity.

The key challenge for the one-example video-based person re-ID is the label estima-
tion for the abundant unlabeled tracklets [16, 129]. A typical approach is to generate
the pseudo labels for the unlabeled data at first. The initial labeled data and some
selected pseudo-labeled data are considered as an enlarged training set. Lastly, this
new training set is adopted to train the re-ID model.

Most existing methods employ a static strategy to determine the quantity of
selected pseudo-labeled data for further training. For example, Fan et al.. [16] and
Ye et al.. [129] compare the prediction confidences of pseudo-labeled samples with a
pre-defined threshold. The samples with higher confidence over the fixed threshold are
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then selected for the subsequent training. During iterations, these algorithms select
a fixed and large number of pseudo-labeled data from beginning to end. However, it
is inappropriate to keep the threshold fixed in the one-example setting. In this case,
the initial model may be not robust due to the very few training samples. Only a few
of pseudo-label predictions are reliable and accurate at the initial stage. If one still
selects the same number of data as that in the later stages, it will inevitably involve
many unreliable predictions. Updating the model with excessive not-yet-reliable data
would hinder the subsequent improvement of the model.

In this chapter, to better exploit the unlabeled data in one-example video-based
person re-ID, we propose the step-wise learning method EUG (Exploit the Unknown
Gradually). Initially, a CNN model is trained on the one-example labeled tracklet.
EUG then iteratively updates the CNN by two steps, the label estimation step and the
model update step. In the first step, EUG generates the pseudo labels for unlabeled
tracklets, and selects some of pseudo-labeled tracklets for training according to the
prediction reliability. The selected subset is continuously enlarged during iterations
according to a sampling strategy. In the second step, EUG re-trains the CNN model
on both the labeled data and the sampled pseudo-labeled subset. Particularly, as
illustrated in Figure 5.1, EUG starts with a small-size subset of pseudo-labeled tracklets,
which includes only the most reliable and easiest ones. In the subsequent stages, it
gradually selects a growing number of pseudo-labeled tracklets to incorporate more
difficult and diverse data. This is different from existing methods [66, 129].

To characterize the proposed progressive approach in one-example person re-ID,
we intensively investigate two significant aspects, i.e., how the progressive sampling
strategy benefits the label estimation and which sampling criterion is effective for the
confidence estimation in person re-ID. For the first aspect, we find that if we enlarge
the sampled subset of pseudo-labeled data in a more conservative way (at a slower
speed), the model achieves a better performance. If we enlarge the subset in a more
aggressive way (at a faster speed), the model achieves a worse performance. Note
that the previous static sampling strategy can be viewed as an extremely aggressive
manner. For the second aspect, we investigate the gap between the classification
measures and retrieval evaluation metrics. We find that the sampling criteria highly
affect the performance of the proposed method. Instead of the classification measures,
a distance-based sampling criterion for the reliability estimation may yield promising
performance in person re-ID.

Our contributions are summarized as follows:
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• We propose a progressive method for one-example video-based person re-ID to
better exploit the unlabeled tracklets. This method adopts a dynamic sampling
strategy to uncover the unlabeled data. We start with reliable samples and
gradually include diverse ones, which significantly makes the model robust.

• We apply a distance-based sampling criterion for label estimation and candidates
selection to remarkably improve the performance of label estimation.

• Our method achieves surprisingly superior performance on the one-example
setting, outperforming the state-of-the-art by 21.46 points (absolute) on MARS
and 16.53 points (absolute) on DukeMTMC-VideoReID.

5.2 Related Works

Extensive works have been reported to address the video-based person re-ID prob-
lem. One simple solution is using image-based re-ID methods, and obtaining video
representations by pooling the frame features [29, 48, 65].

Supervised Video-based Person Re-ID. Recently, a number of deep learning
methods are developed [76, 110, 121, 136, 150, 152]. The typical architecture is to
combine CNN and RNN to learn a video representation or the similarity score. In
[152], temporal attention information and spatial recurrent information are used to
explore contextual representation. Another commonly used architecture is the Siamese
network architecture [60, 110, 121], which also achieve reasonably good performance.

Semi-Supervised Video-based Person Re-ID. Most works of semi-supervised
person re-ID are based on image [3, 18, 61, 69]. The approaches of these works include
dictionary learning, graph matching, metric learning, etc. To the best of our knowledge,
there are three works aiming at solving the semi-supervised video-based re-ID task.
Zhu et al.. [155] proposed a semi-supervised cross-view projection-based dictionary
learning (SCPDL) approach. A limitation is that this approach is only suitable for
datasets that only captured by two cameras.

There are two recent works designed for one-example video re-ID task [66, 129].
Although [66, 129] claim them as unsupervised methods, they are one-example methods
in experiments, as they require at least one labeled tracklet for each identity. They
assume that the tracklets are obtained by tracking, and this process is automatic
and unsupervised. Different tracklets from one camera with a long-time interval are
assumed representing different identities. However, to conduct experiments in existing
datasets, both methods require the annotation of at least a sample for each identity. To
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be more rigorous, we take this problem as a one-example task. Ye et al.. [129] propose
a dynamic graph matching (DGM) method, which iteratively updates the image graph
and the label estimation to learn a better feature space with intermediate estimated
labels. Liu et al.. [66] update the classifier with K-reciprocal Nearest Neighbors (KNN)
in the gallery set, and refine the nearest neighbors by apply negative sample mining
with KNN in the query set. While graph-based semi-supervised learning [126] could
possibly be adopted for one-example person Re-ID, it is time-consuming to solve a
linear system for each query.

Progressive Paradigm. Curriculum Learning (CL) is proposed in [5], which
progressively obtains knowledge from easy to hard samples in a pre-defined scheme.
Kumar et al.. [42] propose Self-Paced Learning (SPL) which takes curriculum learning
as a regularization term to update the model automatically. The self-paced paradigm
is theoretically analyzed in [35, 70]. Some works manage to apply the progressive
paradigm in the computer vision area [14]. We are inspired by these progressive
algorithms. Compared with the existing SPL and CL algorithms, we incorporated the
retrieval measures (the distance in feature space) into the learning mechanism, which
well fits the evaluation metric for person re-ID. Moreover, most previous SPL and CL
works mainly focus on the supervised and semi-supervised task. Few are used in the
one-example learning setting.

5.3 The Progressive Model

5.3.1 Preliminaries

We first introduce the necessary notations. Let L = {(x1,y1), ...,(xnl
,ynl

)} be the
labeled dataset, and U = {(xnl+1), ...,(xnl+nu)} be the unlabeled dataset, where xi

and yi denotes the i-th tracklet data and its identity label, respectively. We thus
have |L| = nl and |U| = nu where | · | is the cardinality of a set. Following recent
works [16, 56, 149], we take the training process as an identity classification task. For
training on the labeled dataset, we have the following objective function:

min
θ,www

nl∑

i=1
�(f(www;φ(θ;xi)),yi), (5.1)

where φ is an embedding function, parameterized by θ, to extract the feature from
the data xi. CNN models [27, 31, 116, 118] are usually used as the function φ. f
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Fig. 5.2 Overview of the framework. Different colors represent different identity samples.
The CNN model is initially trained on the labeled one-example data. For each iteration,
we (1) select the unlabeled samples with reliable pseudo labels according to the distance
in feature space and (2) update the CNN model by the labeled data and the selected
candidates. We gradually enlarge the candidates set to incorporating more difficult and
diverse tracklets. For a tracklet, each frame feature is first extracted by the CNN model
and then temporally averaged as the tracklet feature. We take the training process as
an identity classification task, and regard the evaluation as a retrieval problem on the
features of the test tracklets.

is a function, parameterized by www, to classifier the embedded feature φ(θ;xi) into a
k-dimension confidence estimation, in which k is the number of identities. � denotes
the suffered loss on the label prediction f(www;φ(θ;xi)) and its ground truth identity
label yi.

To exploit abundant unlabeled tracklets with pseudo labels, we consider the following
objective function in the one-example re-ID problem:

min
θ,www,si,ŷi

nl∑

i=1
�(f(www;φ(θ;xi)),yi)+

nl+nu∑

i=nl+1
si�(f(www;φ(θ;xi)), ŷi)+R(sss),

(5.2)

where ŷi denotes the machine generated pseudo labels for the i-th unlabeled data.
si ∈ {0,1} is the selection indicator for the unlabeled sample xi, which determine
whether the suffered loss of pseudo-labeled data (xi, ŷi) is adopted in optimizing. We
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use sss to indicate the vertical concatenation of all si. R(sss) is a regularization term on
sss to encourage incorporating more pseudo-labeled data.

In the evaluation stage, for both of query data and gallery data, we only use φ(θ; ·)
to embed each tracklet into the feature space. The query result is the ranking list of
all gallery data according to the Euclidean Distance between the query data and each
gallery data, i.e.., ||φ(θ;xq)−φ(θ;xg)||2, where xq and xg denote the query tracklet
and the gallery tracklet, respectively.

5.3.2 Framework Overview

In this work, we propose a step-wise learning method to exploit the unlabeled data
gradually and steadily. We adopt an alternative algorithm to solve the Eq. (6.5).
Specifically, we first optimize θ and www, and then optimize ŷ and sss, i.e.., the model
updating and the label estimating.

Let S denote the set of selected pseudo-labeled candidates. We can obtain S by:

S = {(xi, ŷi)|si = 1,nl +1 ≤ i ≤ nl +nu}. (5.3)

Our approach first trains an initial model on the labeled data L, and then the initial
model is applied to predict pseudo labels ŷ on the unlabeled data. In subsequence,
according to a label reliability evaluation criterion, we generate the selection indicators
sss in order to obtain the candidates set S via Eq. (5.3). In the model update step, the
set S along with the initial labeled set L is regarded as the new training set D, i.e.,
D = L∪S. The set D will be utilized to re-train the model so as to make the model
more robust. During training iterations, the candidates set S in each step is enlarged
continuously. In this way, we can progressively learn a more stable model.

To be specific, for our progressive strategy EUG, we adopt an end-to-end CNN
model with temporal average pooling (ETAP-Net) as the feature embedding function
φ. The ETAP-Net is an adaption of ResNet-50 architecture for video inputs, where we
add a fully-connected layer and a temporal average pooling layer before the classification
layer. As shown in Figure 6.2, for each tracklet, all frames are processed to obtain
frame-level feature embedding. The frame features within a tracklet are then element-
wise averaged as the tracklet feature representation by the temporal average pooling
layer. In the label estimation step, for each unlabeled video tracklet, the pseudo label
is assigned by the identity label of its nearest labeled neighbor in the tracklet feature
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space. The distance between them is considered as the dissimilarity cost, which is used
to measure the reliability of its pseudo label.

5.3.3 Progressive and Effective Sampling Strategy

It is crucial to obtain the appropriately selected candidates S to exploit the unlabeled
data. In this procedure, two significant aspects are mainly considered: First, how to
ensure the reliability of selected pseudo-labeled samples? Second, what is an effective
sampling criterion on the unlabeled data for one-example person re-ID?

Discussion on Sampling Strategy. The reliability of pseudo labels originates
from two main challenges in the one-example learning setting. (1) the initial labeled
data are too few to depict the detailed underlying distribution. (2) learning a CNN
model on a not-yet-reliable training set may not improve the re-ID performance. The
interplay of these two factors hinders the further performance improving. Therefore, it
is irrational to incorporate excessive pseudo-labeled data into training at the initial
iteration.

Discussion on Sampling Criterion. The previous works sample the unlabeled
data from confident to uncertain ones according to the classification loss. However, the
loss from classification prediction does not well fit the retrieval evaluation. Moreover,
it is far away to train a robust identity classifier in the one-example setting, where
each class has only one sample for training. The classifier may easily over-fit the
one-example labeled data and may not learn the intrinsic distinction in classification.
Therefore, the classification prediction may be not reliable on an unseen sample.

Our step-wise Solution. To address aforementioned two problems, we propose
(1) a dynamic sampling scheme, which progressively increases the number of selected
pseudo-labeled samples; (2) an effective sampling criterion, which takes the distance in
the feature space as a measure of reliability.

The proposed dynamic sampling scheme steadily increases the size of selected
candidates set |S| during iterations. It starts with a small proportion of pseudo-labeled
data at the beginning stages, and then incorporates more diverse samples in the
following stages. As the training iteration goes, the reliability of pseudo labels grows
steadily, because the re-ID model becomes more robust and discriminative. Therefore,
more pseudo-labeled candidates can be adopted into training.

For sampling criterion, instead of classification prediction, we adopt the Nearest
Neighbors (NN) classifier for the label estimation. For the one-example setting, the
NN classifier in the feature space may be a better choice, since similar input data
always have similar feature representations. The NN classifier assigned the label of
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Algorithm 1: Exploit the Unknown Gradually
Require: Labeled data L, unlabeled data U , enlarging factor p ∈ (0,1), initialized

CNN model θ0.
Ensure: The best CNN model θ∗.

1: Initialize the selected pseudo-labeled data S0 ← ∅, sampling size m1 ← p ·nu,
iteration step t ← 0, best validation performance V ∗ ← 0

2: while mt+1 ≤ |U| do
3: t ← t+1
4: Update training set: Dt ← L∪St−1
5: Train the CNN model (θt,wwwt) based on Dt.
6: Generate the selection indicators ssst via Eq. (6.9)
7: Update St based on ssst via Eq. (5.3)
8: Update the sampling number: mt+1 ← mt +p ·nu

9: end while
10: for i ← 1 to T do
11: Evaluate θi on the validation set → performance Vi

12: if Vi > V ∗ then
13: V ∗,θ∗ ← Vi,θi

14: end if
15: end for

each unlabeled data by its nearest labeled neighbor in feature space. We define the
confidence of label estimation as the distance between the unlabeled data and its
nearest labeled neighbor. For the candidates selection, we select some of top reliable
pseudo-labeled data according to their label estimation confidence.

More formally, we define the dissimilarity cost for each unlabeled data xi ∈ U as:

d(θ;xi) = min
xl∈L

||φ(θ;xi)−φ(θ;xl)||2, (5.4)

The cost is the minimum l2 distance between the unlabeled data xi and an arbitrary
labeled data xl ∈ L in the feature space parameterized by θ. The dissimilarity cost is
considered as the criterion for measuring the confidence of pseudo-labeled data. For the
candidates selection, at the iteration step t, we sample the pseudo-labeled candidates
into training by setting the selection indicator ssst as follows:

ssst = arg min
||s||0=mt

nl+nu∑

i=nl+1
sid(θ;xi), (5.5)
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where the mt denotes the size of selected pseudo-labeled set. As the iteration step t

increases, we enlarge the size of sampled pseudo-labeled data by set mt = mt−1 +p ·nu.
p ∈ (0,1) is the enlarging factor which indicates the speed of enlarging the candidates
set during iterations. Eq. (6.9) selects the top mt nearest unlabeled data for all the
labeled data at the iteration step t. As described in Algorithm 2, we evaluate the
model φ(θt; ·) on the validation set at each iteration step and output the best model.
In the one-example experiment, we take another video-based person re-ID training set
as the validation set.

How to find a proper enlarging factor p? An aggressive choice is to set p

to a very large value, which urges mt to increase rapidly. As a result, the sampled
pseudo-labeled candidates may not be reliable enough to train a robust CNN model.
A conservative option is to set p to a very small value, which means mt progressively
enlarges with a small change in each step. This option tends to result in a very stable
increase in the performance and a promising performance in the end. The disadvantage
is that it may require an excessive number of stages to touch great performance.

5.4 Experiments

5.4.1 Settings and Implementation Details

Experiment Setting. For one-example experiments, we use the same protocol as
[66]. In both datasets, we randomly choose one tracklet in camera 1 for each identity as
initialization. If there is no tracklet recorded by camera 1 for one identity, we randomly
select one tracklet in the next camera to make sure each identity has one video tracklet
for initialization. Note that as discussed in Section 6.2, [66, 129] are using the same
one-example setting in experiments.

Implementation Details. We use PyTorch [78] for all experiments. As discussed
in Section 5.3.2, we take ETAP-Net as our basic CNN model for training on video-
based re-ID. In experiments, we take ImageNet [41] pre-trained ResNet-50 model with
last classification layer removed as the initialization of ETAP-Net. For training as
a classification task for each identity, an additional fully-connected layer with batch
normalization [32] and a classification layer are appended at the end of the model. The
parameters of the first three residual blocks of ResNet-50 are kept fixed in training to
save GPU memory and boost iterations. In training, we randomly sample 16 frames as
the input for each tracklet. In label estimation and evaluation steps, all the frames
are processed by the CNN model to get the representations for each tracklet, which
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Methods rank-1 rank-5 rank-20 mAP
Baseline (one-example) 36.16 50.20 61.86 15.45
DGM+IDE[129] 36.81 54.01 68.51 16.87
Stepwise[66] 41.21 55.55 66.76 19.65
EUG (p = 0.30) 42.77 56.51 67.17 21.12
EUG (p = 0.20) 48.68 63.38 72.57 26.55
EUG (p = 0.15) 52.32 64.29 73.08 29.56
EUG (p = 0.10) 57.62 69.64 78.08 34.68
EUG (p = 0.05) 62.67 74.94 82.57 42.45
Baseline (supervised) 80.75 92.07 96.11 67.39

Table 5.1 Comparison with the state-of-the-art methods on MARS. All the methods
are conducted based on the same backbone model ETAP-Net. Baseline (one-example)
is the initial model trained on one-example labeled data. p is the enlarging factor that
indicates the enlarging speed of the sampled subset. At the bottom we provide the
Baseline (supervised) result as a upper bound where 100% training data are labeled.

are further l2 normalized and used to calculate the Euclidean distance. We adopt the
stochastic gradient descent (SGD) with momentum 0.5 and weight decay 0.0005 to
optimize the parameters for 70 epochs with batch size 16 in each iteration. The overall
learning rate is initialized to 0.1 and changed to 0.01 in the last 15 epochs.

5.4.2 Comparison with the State-of-the-Art Methods

We compare our method to DGM [129] and step-wise [66] on the one-example task.
Note that although [66, 129] claim them as unsupervised methods, they are actually
one-example methods in experiments, because they require at least one labeled tracklet
for each identity. Since the performances of both works were reported based on hand-
crafted features, to make a fair comparison, we reproduce their methods using the
same backbone model ETAP-Net (ResNet-50) as ours. The re-ID performance on
MARS and DukeMTMC-VideoRe-ID are summarized in Table 5.1 and Table 5.2. On
the MARS dataset, we achieve surprising result with rank-1 accuracy 62.67%, mAP
42.45% with enlarging factor 0.05, which greatly outperform the state-of-the-art result
by 21.46 points and 22.8 points (absolute), respectively. The great performance gap
between [66, 129] and ours is due to the excessive not-yet-reliable pseudo-labeled data
incorporated at the first iteration. The estimation errors are accumulated during
iterations and thus limit the further enhancement.
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Methods rank-1 rank-5 rank-20 mAP
Baseline (one-example) 39.60 56.84 66.95 33.27
DGM+IDE[129] 42.36 57.92 69.31 33.62
Stepwise[66] 56.26 70.37 79.20 46.76
EUG (p = 0.30) 63.82 78.64 87.04 54.57
EUG (p = 0.20) 68.95 81.05 89.46 59.50
EUG (p = 0.15) 69.08 81.19 88.88 59.21
EUG (p = 0.10) 70.79 83.61 89.60 61.76
EUG (p = 0.05) 72.79 84.18 91.45 63.23
Baseline (supervised) 83.62 94.59 97.58 78.34

Table 5.2 Comparison with the state-of-the-art methods on DukeMTMC-VideoReID. All
the methods are conducted based on the same backbone model ETAP-Net. Baseline
(one-example) is the initial model trained on one-example labeled data. p is the
enlarging factor that indicates the enlarging speed of the sampled subset. At the
bottom we provide the Baseline (supervised) result as a upper bound where 100%
training data are labeled.

Moreover, Baseline (one-example) and Baseline (supervised) are our initial model
and the upper bound model, respectively. Baseline (one-example) takes only the
one-example labeled data as the training set and do not exploit the unlabeled data.
Baseline (supervised) is conducted on the fully supervised setting that all tracklets in
the dataset are labeled and adopted in training. Specifically, we achieve 26.51 points
and 33.19 points rank-1 improvements over the Baseline (one-example) on MARS and
DukeMTMC-VideoReID, respectively.

5.4.3 Algorithm Analysis

Analysis on the sampling criteria.
As mentioned in Section 5.3.3, some previous works such as SPL take the classifica-

tion loss as the criterion. The label estimation and evaluation performances of sampling
by classification loss and by dissimilarity cost are illustrated in Figure 5.3 and Table 5.3.
From the figure, we observe the huge performance gaps for both label estimation and
evaluation. The label estimations of both criteria achieve similar and high precision at
the beginning stage. However, the label estimation accuracy gap between two criteria
gradually enlarges. As a result, the performance of the classification loss criterion is
only enhanced to a limited extent and drops quickly in the subsequence. Table 5.3
shows the evaluation performance differences of the two criteria with different enlarging
factors. With the same enlarging factor, the criterion of sampling by dissimilarity cost
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Fig. 5.3 Comparison with two sampling criteria on MARS when the Enlarging Factor
p = 0.1. (a) and (b): Precision and recall of the pseudo label prediction of selected
pseudo-labeled candidates during iterations with different sampling criteria. (c) and
(d): Rank-1 accuracy and mAP of person re-ID on the evaluation set during iterations
with different sampling criteria. The x-axis stands for the percentage of selected data
from entire unlabeled data for updating. Each solid point indicates an iteration step.

Enlarging Factor Criteria rank-1 rank-5 mAP

p = 0.05 Classification 48.33 62.67 25.35
Dissimilarity 62.67 74.94 42.45

p = 0.10 Classification 46.86 60.25 24.23
Dissimilarity 57.62 69.64 34.68

p = 0.15 Classification 46.53 60.12 24.03
Dissimilarity 52.32 64.29 29.56

p = 0.20 Classification 45.91 59.95 23.56
Dissimilarity 48.68 63.38 26.55

p = 0.30 Classification 41.86 56.01 20.24
Dissimilarity 42.77 56.51 21.12

Table 5.3 Comparison of the two criteria on MARS. The "Classification" and "Dis-
similarity" denotes the EUG methods with the classification loss criterion and the
dissimilarity cost criterion, respectively. Note for that with the same enlarging factors,
the dissimilarity cost criterion always lead to a superior performance.

always leads to the superior performance. When the enlarging factor is set to 0.05,
the best rank-1 accuracy on evaluation for classification loss and dissimilarity cost is
48.33% and 62.67%, respectively.

Analysis over iterations. Figure 5.4 illustrates the label estimation performance
and evaluation performance over iterations. At the initial iteration, the precision of
pseudo label for the selected subset (blue line) is relatively high, since EUG only adopts
a few of the most reliable samples. In later stages, as EUG gradually incorporates
more difficult and diverse samples, the precision drops along with the recall (red
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Fig. 5.4 The label estimation performance with the enlarging factor = 0.1 over iterations
on MARS. "Prec-S", "Recall-S" and "F-Score" denote the label estimation precision,
recall and F-score for the selected pseudo-labeled candidates. "Prec-All" denotes the
overall label estimation precision for all the unlabeled data. "mAP-Eval" represents
the mAP performance of the evaluation on the test set. Note that on all the unlabeled
data the overall label estimation accuracy is constantly increasing, which indicates the
model learns much information throughout iterations.

line) rising. In spite of the descending of precision, the F-score of label estimation
(green line) continuous increases. Throughout iterations, the precision of pseudo label
estimation for all the unlabeled data (orange line) constantly increases from 29.8% to
54.96%, which indicates the model grows robust steadily. At the last few iterations,
the evaluation performance stops to increase, because the gain of adding new samples
is offset by the loss of excessive pseudo label errors.

Analysis on the enlarging factor. For the iteration t, t∗p percent of unlabeled
tracklets with reliable pseudo labels are sampled for updating the model. The effec-
tiveness of enlarging factor p is shown in Figure 5.5. Two conclusions can be inferred:
First, the model always achieves a better performance if we enlarge the selected set at
a slower speed. The huge gaps among the five curves show that the great impact of the
enlarging factor. Second, we observe that the gaps among the five curves are relatively
small in the first several iterations and gradually enlarge in the later iterations. It
shows the estimation errors are accumulated during iterations. This is because that
the performance of the trained CNN model highly depends on the reliability of the
training set. As a result, the evaluation performances appear obvious different in the
last few iterations.
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Fig. 5.5 Comparison with different value of enlarging factor on MARS. (a) and (b) :
Precision and recall of the pseudo label prediction of selected candidates with different
enlarging factors. (c) and (d) : Rank-1 and mAP of person re-ID on the evaluation set
with different enlarging factors. "EF" denotes the enlarging factor. The x-axis stands
for the ratio of selected data from entire unlabeled data for updating. Each solid point
indicates an iteration step. Note for that the lower enlarging factor is beneficial for
improving performance.

5.4.4 Visualization

We visualize the selected samples for an identity during iterations in Figure 5.6. Since
the initial tracklets is captured from the side view of the pedestrian, the two unlabeled
tracklets captured from the same side are easily selected in iteration 0. In iteration 1
and 2, some tracklets in the behind or front view of the pedestrian are selected. The
above tracklets are relatively easier for sampling. Further, in iteration 5 and 6, video
tracklets suffering from obstructing and color variance are sampled. In iteration 7,
samples with pedestrian of small size and dark background are selected. It’s clear that
the samples are selected from easy to hard, from similar to diverse. Note that there
is no tracklet selected for this identity in iteration 3 and 4, which indicates the huge
difficulty gap. There are also four mismatches in iteration 5, 6, and 7, in which the
pedestrian is very similar to the ground truth identity, with the same pink shirt, gray
pants, and long hair.

5.5 Conclusion

Label estimation for unlabeled tracklets is crucial for one-example person re-ID. The
challenge in the one-example setting is that the pseudo labels are not reliable enough,
which prevents the trained model from improving robust. To solve this problem,
we propose a dynamic sampling strategy to start with easy and reliable unlabeled
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Fig. 5.6 The selected pseudo-labeled tracklets for an identity example on MARS with
the enlarging factor p = 0.1. Error estimated samples are in red rectangles. All the
tracklets incorporated in the former iterations are naturally selected by later ones. For
this identity, one tracklet is missed, and four false samples are selected. Observe that
the tracklet selected is easy and reliable at the beginning stage and difficult and diverse
in the later stage.

samples and gradually incorporating diverse tracklets for updating the model. We
found that if we enlarge the selected set at a slower speed, the model achieves a better
performance. In addition, we present a sampling criterion to remarkably improving the
performance of label estimation. Our method surpasses the state-of-the-art method by
21.46 points (absolute) in rank-1 accuracy on MARS, and 16.53 points (absolute) on
DukeMTMC-VideoReID. In sum, the proposed method is effective in exploiting the
unlabeled data and reducing the annotation work load for one-example video-based
person re-ID.



Chapter 6

Progressive Learning for Person
Re-Identification with One
Example

In the previous chapter, we propose a progressive model for video-based re-ID on
the one-example setting, where each identity has one labeled example and abundant
unlabeled examples. While in this chapter, we improve the progressive framework by
gradually exploiting the unlabeled data.

The framework also contains two process that updated iteratively: (1) train the
Convolutional Neural Network (CNN) model and (2) estimate pseudo labels for the
unlabeled data. We split the training data into three parts, i.e., labeled data, pseudo-
labeled data, and unselected data. Initially, the re-ID model is trained using the labeled
data. For the subsequent model training, we update the CNN model by the joint
training on the three data parts. The proposed joint training method can optimize
the model by both the data with labels (or pseudo labels) and the data without any
reliable labels. For the label estimation step, instead of using a static sampling strategy,
we propose a progressive sampling strategy to increase the number of the selected
pseudo-labeled candidates step by step. We select a few candidates with most reliable
pseudo labels from unlabeled examples as the pseudo-labeled data, and keep the rest
as unselected data. During iterations, the unselected unlabeled data are dynamically
transferred to be selected pseudo-labeled data.

Notably, the rank-1 accuracy of our method outperforms the state-of-the-art method
by 21.6 points (absolute, i.e., 62.8% vs. 41.2%) on MARS, and 16.6 points on
DukeMTMC-VideoReID. Extended to the few-example setting, our approach with
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only 20% labeled data surprisingly achieves comparable performance to the supervised
state-of-the-art method with 100% labeled data.

6.1 Introduction

Person re-identification (re-ID) aims at spotting the person-of-interest from non-
overlapping camera views[113, 114]. In recent years, deep convolutional neural networks
(CNN) has led to impressive successes in the field of re-ID [29, 116, 142, 147]. Most
existing re-ID methods, in particular deep learning models, adopt the supervised
learning approach. These methods rely on the full annotations, i.e., the identity labels
of all the training data from multiple cross-view cameras. However, it is impractical to
annotate large-scale data due to the dramatic cost for the human annotator to identify
pedestrians. The exhaustive manual efforts hence limit the applications where many
different cameras exist in practice.

Recently, semi-supervised learning methods for person re-ID [3, 66, 129] are of
particular interest. This work mainly focuses on the one-example setting, in which
only one example is required to be labeled for each identity. Annotating one example
for each identity is extremely easy compared to the exhaustive manual efforts on
cross-camera labelling. In the one-example setting, the key challenge is how to utilize
the abundant unlabeled data effectively. A typical approach for the one-example task
is to first generate the pseudo labels for the unlabeled data. Then the initial labeled
data and some selected pseudo-labeled data are considered as an enlarged training set.
Lastly, this new training set is used to train the re-ID model.

Most existing methods employ a static strategy to determine the quantity of
selected pseudo-labeled data for further training. For example, Fan et al. [16] and
Ye et al. [129] compare the prediction confidences of pseudo-labeled samples with a
pre-defined threshold. The samples with confidence higher than the fixed threshold are
then selected for the subsequent training. During iterations, these algorithms select a
fixed size of pseudo-labeled training data from beginning to end. However, in the initial
stage, only a few label predictions are reliable due to the very few labeled examples.
As the iteration goes, the model gets more robust, resulting in more accurate label
predictions. Therefore, keeping the size of the selected data fixed would hinder the
further improvement of the performance.

We propose a progressive learning framework to better exploit the unlabeled data
for person re-ID with limited exemplars. Initially, a CNN model is trained on the one-
example labeled samples. We then iteratively update the CNN by two steps, the label
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estimation step and the model update step. In the first step, we generate the pseudo
labels for all unlabeled samples, and select some reliable pseudo-labeled data for training
according to the prediction confidence. Different from existing methods [66, 129], the
selected subset is continuously enlarged during iterations according to a sampling
strategy. In the second step, same as the labeled data, the pseudo labels of selected
examples are incorporated in the model updating. Particularly, we start with a small-
size subset of pseudo-labeled samples, which only includes the most reliable and easiest
ones. In the subsequent stages, it gradually selects a growing number of pseudo-labeled
data to incorporate more difficult and diverse data.

In our preliminary version [114], we intensively investigate two significant aspects
for one-example video-based re-ID, i.e., the progressive sampling strategy and the
dissimilarity sampling criterion. The proposed method achieves surprisingly good
performance for the one-example video-based person re-ID where each identity has a
labeled tracklet (62 image frames on average). In this chapter, we expand it to a more
difficult task, the one-example image-based re-ID, where only one image instead of a
tracklet is labeled for each identity. We found it hard to obtain a good initial model
on the very few labeled images. It inspires us to further improve our approach by
exploiting the abundant unselected unlabeled data in an self-supervised manner. These
data account for a large proportion of training examples at initial iteration stages but
have been overlooked in all the previous methods. Although we cannot obtain reliable
pseudo identity labels for these unlabeled data, these images depict rich details of
persons.

In this chapter, we split training data into three parts, labeled data, selected data
(pseudo-labeled) and unselected data (unlabeled). We then propose a joint learning
method to simultaneously train the CNN model on three data splits. Specifically, as
shown in Figure 6.1, there are three different data sources. For the labeled data and
selected pseudo-labeled data, we apply an identity classifier on their CNN features and
further optimize the model by comparing the identity predictions and the (pseudo-)
labels. For those unselected unlabeled data, we use the exclusive loss to optimize the
model without any labels. The classification loss pulls representations of the same
identity data close to each other, while the exclusive loss pushes representations of
all the unselected samples away from each other. We also extend our approach from
one-example setting to the few-example setting. The experiments show that our method
can reduce 80% annotation cost with only a 4.3% rank-1 accuracy drop on MARS.

Our contributions are summarized as follows:
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Fig. 6.1 The proposed joint training procedure for few-example person re-ID. “CE
loss” denotes the Cross-Entropy loss. We select a few unlabeled data with reliable
pseudo labels as the pseudo-labeled data. On the labeled and pseudo-labeled data, we
optimize the CNN model by an ID classifier and corresponding Cross Entropy loss.
For the unselected data where no reliable pseudo label is available, an exclusive loss is
utilized to learn a discriminative feature embedding from images without any labels.

• We propose a progressive method for few-example person re-ID to better exploit
the unlabeled data. This method adopts a dynamic sampling strategy to uncover
the unlabeled data. We start with reliable samples and gradually include diverse
ones, which significantly makes the model robust.

• We apply a distance-based sampling criterion for label estimation and apply
candidates selection to remarkably improve the performance of label estimation.

• We propose a joint learning method to simultaneously train the CNN model on
the labeled, pseudo-labeled and unselected unlabeled data.

• Our method achieves surprisingly superior performance on the one-example
setting, outperforming the state-of-the-art by 21.6 points (absolute) on MARS
and 16.6 points (absolute) on DukeMTMC-VideoReID.

• Our approach can be readily extended into the few-example setting (with 20%
labeled data). It achieves comparable rank-1 performance (76.46%) compared to
the state-of-the-art performance (79.80%) in the supervised setting (with 100%
labeled data).
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Fig. 6.2 Overview of the proposed iterative framework. In each iteration, (1) we
train the CNN model by the joint learning on the labeled data, selected pseudo-labeled
data, and unselected unlabeled data. We utilize the labeled data and the selected
pseudo-labeled data by an identity classification learning with their (pseudo-) labels.
On the unselected dataset where no reliable pseudo label is available, we apply the
exclusive loss directly on the images to optimize the model without any identity label.
(2) In the label estimation step, we select a few reliable pseudo-labeled candidates
from unlabeled data U to the selected set S according to the distance in feature space.
Nodes with different colors in the feature space box denote different identity samples.

6.2 Related Works

Semi-supervised learning. Semi-supervised learning [37, 45, 82] takes advantages
from both labeled and unlabeled data to solve the given task. Some semi-supervised
approaches [38] use graph representations in recent years. Kipf et al. [38] encode the
graph structure directly using a neural network model and train on a supervised target
for all nodes with labels. Most recently, with the great success of the Generative
Adversarial Network (GAN) [22], many researchers adopt semi-supervised learning
to explore images generated by GAN [87, 147]. Salimans et al. [87] present a variety
of new architectural features and training procedures that apply to the generative
adversarial networks framework.

6.3 The Progressive Model

We first introduce the framework overview of the proposed method in Section 6.3.1,
and the preliminaries in Section 6.3.2 Then we illustrate the two key parts of our
method, i.e., the joint learning method in Section 6.3.3 and the label estimation
in Section 6.3.4. Lastly, we present the overall progressive iteration strategy in
Section 6.3.5.
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6.3.1 Framework Overview

In this work, we propose a progressive learning method to exploit the unlabeled data
gradually and steadily. In general, as shown in Figure 6.2, our method updates the
model by the following two steps iteratively: 1. train the CNN model by the joint
learning on the labeled data, selected pseudo-labeled data, and unselected unlabeled
data; 2. select a few reliable pseudo-labeled candidates from unlabeled data according
to a prediction reliability criterion. Specifically, in the first iteration, all the unlabeled
data are unselected. During iterations, we continuously enlarge the set of selected
candidates to progressively learn a robust and stable model. In the label estimation
step, the pseudo label is assigned to the candidate by the identity label of its nearest
labeled neighbor in the training data feature space. The distance between them is
considered as the dissimilarity cost, which is the measure of reliability for the pseudo
label.

6.3.2 Preliminaries

We first introduce the necessary notations for the one-example re-ID task. Let x and
y denote the pedestrian visual data and the identity label, respectively. The visual
data x can be either a person image for image-based re-ID, or a tracklet (a series of
person images) for video-based re-ID. For the training in the one-example re-ID task,
we have the labeled data set L = {(x1,y1), ...,(xnl

,ynl
)} and the unlabeled data set

U = {xnl+1, ...,xnl+nu}. Usually, these data are utilized in an identity classification
way to train the re-ID model φ(θ, ·). For the evaluation stage, the trained CNN model
φ is used to embed both query data and gallery data into the feature space. The
query result is the ranking list of all gallery data according to the Euclidean Distance
between the query data and each gallery data, i.e.., ||φ(θ;xq)−φ(θ;xg)||, where xq

and xg denote the query data and the gallery data, respectively. To exploit abundant
unlabeled data, we predict the pseudo label ŷi for each unlabeled data xi ∈ U and
select a few reliable ones for the identity classification learning. Let St and Mt denote
the selected pseudo-labeled dataset and unselected unlabeled data set at t-th step,
respectively.

6.3.3 The Joint Learning Method

We first introduce the model updating step. At the t-th iteration, we have three kinds of
the data source for model training, i.e., the labeled data L, the selected pseudo-labeled
data St and the remaining unselected data Mt. We utilize the labeled data L and
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the pseudo-labeled data St by an identity classification learning with their (pseudo-)
labels. For the unselected data, their pseudo labels are not-yet-reliable and may harm
the model training. Therefore, we utilize the exclusive loss to optimize the CNN model
on the unselected set.

The Exclusive Loss aims at learning a discriminative embedding on Mt without
any identity labels. In general, we optimize the CNN model by learning to distinguish
samples, rather than identities. To push each unselected data xi ∈ Mt away from
the other data xj ∈ Mt, i �= j in the feature space, we define the following target for
unsupervised feature learning:

max
θ

∑

xi,xj∈Mt

xi �=xj

||φ(θ;xi)−φ(θ;xj)||, (6.1)

where || · || denotes the Euclidean distance between two embedded features.
To solve Eq. (6.1) in an efficient way, we have the following approximation. Let

vi = φ̃(θ;xi) be the L2-normalized feature embedding for the data xi, i.e., ||vi|| = 1.
Since ||vi −vj ||2 = 2−vT

i vj , maximizing the Euclidean distance between data xi and
xj is equivalent to minimize the cosine similarity vT

i vj . Therefore, Eq. (6.1) can be
optimized by a softmax-like loss:

�e(VVV ; φ̃(θ;xi)) = − log exp(vi
Tφ̃(θ;xi)/τ)

∑|Mt|
j=1 exp(vj

Tφ̃(θ;xi)/τ)
, (6.2)

where VVV ∈R
|Mt|×nφ is a lookup table that stores the features of each unselected data xi.

τ is a temperature parameter that controls the concentration level of the distribution.
A higher temperature τ leads to a softer probability distribution. Inspired by [117], we
adopt the lookup table VVV to avoid the exhaustive computation of extracting features
from all data at each training step. In the forward operation, we compute cosine
similarities between data xi and all the other data by VVV T φ̃(θ;xi). During backward, we
update the i-th column of the table VVV by vi ← 1

2(vi + φ̃(θ;xi)) and then L2-normalize
vi to a unit vector.

The exclusive loss is a self-supervised auxiliary loss to learn discriminative repre-
sentations from the unlabeled data. It can also be viewed as a regularization term,
as it introduces the remaining unlabeled data to the model training process and thus
avoids simply overfitting to the labeled data and selected pseudo-labeled data. During
the model optimization, to achieve the target that any two unlabelled samples are
repelled away, the exclusive loss forces the model to learn to distinguish the difference
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of the input images (or tracklets). Therefore, the learned representation is expected
to focus more on details of an input identity. During this procedure, the model could
access more samples during training. Although these samples have neither ground
truth labels nor the reliable pseudo labels, they can still provide some weak supervision
information by exploiting the differences between human images.

Joint objective Function. There are three data parts, i.e., the labeled data,
pseudo-labeled data, and the remaining unselected unlabeled data. We jointly optimize
our model on these three data parts. On the labeled dataset L which we have the
ground truth identity labels, we follow recent works [16, 56, 149] to train the re-ID
model. We have the following objective function for model training:

min
θ,www

nl∑

i=1
�CE(f(www;φ(θ;xi)),yi), (6.3)

where f(www; ·) is an identity classifier, parameterized by www, to classify the embedded
feature φ(θ;xi) ∈ R

nφ into a k-dimension confidence estimation, in which k is the
number of identities. �CE denotes the cross entropy loss on the identity label prediction
f(www;φ(θ;xi)) ∈ R

k and its ground truth identity label yi. Similarly, we can optimize
the model on the pseudo-labeled data set S by

min
θ,www

nl+nu∑

i=nl+1
si�CE(f(www;φ(θ;xi)), ŷi), (6.4)

where si ∈ {0,1} is the selection indicator for the unlabeled sample xi, which is
generated from previous label estimation step. si determines whether we should select
pseudo-labeled data (xi, ŷi) for identity classification training. We will discuss it later
in Section 6.3.4.

Considering the three data splits, we design the following objective function for the
model training at t-th iteration:

min
θ,www

λ
nl∑

i=1
�CE(f(www;φ(θ;xi)),yi)+

λ
nl+nu∑

i=nl+1
st−1

i �CE(f(www;φ(θ;xi)), ŷi)+

(1−λ)
nl+nu∑

i=nl+1
(1− st−1

i )�e(VVV ; φ̃(θ;xi)),

(6.5)
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where λ is a hyper-parameter to adjust the contribution of the identity classification
loss �CE and the exclusive loss �e. The Eq. (6.5) consists of three loss parts. The
first part is the ID classification loss on the labeled set L. The second one is the ID
classification loss on the selected pseudo-labeled set St. The last one is the exclusive
loss on the unselected set Mt.

6.3.4 The Effective Sampling Criterion

We then introduce the label estimation step. It is crucial to obtain the appropriately
selected candidates St to exploit the unlabeled data. The previous works sample the
unlabeled data from confident to uncertain ones according to the classification loss [14].
However, the loss from classification prediction does not well fit the retrieval evaluation.
Moreover, the classifier may easily over-fit the one-example labeled data. Thus it may
be not robust in predicting identity. To address this problem, we propose an effective
sampling criterion, which takes the distance in the feature space as a measure of pseudo
label reliability.

For the label estimation on unlabeled data, we adopt the Nearest Neighbors (NN)
classifier instead of classification prediction. The NN classifier assigns the pseudo label
for each unlabeled data by its nearest labeled neighbor in the feature space. We define
the confidence of label estimation as the distance between the unlabeled data and its
nearest labeled neighbor. For the candidates selection, we select a few top reliable
pseudo-labeled data according to their label estimation confidence.

More formally, we estimate the pseudo label for each unlabeled data xi ∈ U by:

x∗,y∗ = arg min
(xl,yl)∈L

||φ(θ;xi)−φ(θ;xl)||, (6.6)

d(θ;xi) = ||φ(θ;xi)−φ(θ;x∗)||, (6.7)
ŷi = y∗, (6.8)

where d(θ;xi) is the dissimilarity cost of label estimation. The dissimilarity cost is
used as the criterion for measuring the confidence of pseudo-labeled data. To select
candidates, at the iteration step t, we sample the pseudo-labeled candidates into
training by setting the selection indicators as follows:

ssst = arg min
||ssst||0=mt

nl+nu∑

i=nl+1
sid(θ;xi), (6.9)
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where mt denotes the size of selected pseudo-labeled set and ssst is the vertical concate-
nation of all si. Eq. (6.9) selects the top mt nearest unlabeled data for all the labeled
data at the iteration step t.

6.3.5 The overall Iteration Strategy

We iteratively train the CNN model and then estimate labels for unlabeled data. At
each iteration, we first optimize the model by Eq. (6.5). Then we estimate labels for
unlabeled data by Eq. (6.8) and select some reliable ones by applying the trained
model on Eq. (6.9). Since the initial labeled data are too few to depict the detailed
underlying distribution, it is irrational to incorporate excessive pseudo-labeled data in
training at the initial iteration.

We propose a dynamic sampling strategy to ensure the reliability of selected pseudo-
labeled samples. It starts with a small proportion of pseudo-labeled data at the
beginning stages and then incorporates more diverse samples in the following stages.
We start our framework by setting m0 = 0 and M0 = U , i.e., optimizing the model by
(1) identity classification training on labeled data L and (2) unsupervised training by
exclusive loss on the unlabeled data. In the later iterations, we progressively increase
the size of selected pseudo-labeled candidates set |St|. At iteration step t, we enlarge
the size of sampled pseudo-labeled data by set mt = mt−1 +p ·nu, where p ∈ (0,1) is
the enlarging factor which indicates the speed of enlarging the candidates set during
iterations. As described in Algorithm 2, we evaluate the model φ(θ; ·) on the validation
set at each iteration step and output the best model. In the one-example experiment,
we take another person re-ID training set as the validation set.

How to find a proper enlarging factor p for real-life applications? The
enlarging factor controls the speed of enlarging the reliable pseudo-labeled candidates
set during iterations. Smaller enlarging factor indicates lower enlarging speed, therefore,
more iteration steps and training time. In the real-life application, this factor is a
trade-off between efficiency and accuracy. An aggressive choice is to set p to a very
large value, which urges mt to increase rapidly. As a result, the sampled pseudo-labeled
candidates may not be reliable enough to train a robust CNN model. A conservative
option is to set p to a very small value, which means mt progressively enlarges with a
small change in each step. This option tends to result in a very stable increase in the
performance and a promising performance in the end. The disadvantage is that it may
require an excessive number of stages to touch great performance.
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Algorithm 2: The proposed framework
Require: Labeled data L, unlabeled data U , enlarging factor p ∈ (0,1), initialized

CNN model θ0.
Ensure: The best CNN model θ∗.

1: Initialize the selected pseudo-labeled data S0 ← ∅, sampling size m1 ← p ·nu,
iteration step t ← 0, best validation performance V ∗ ← 0.

2: while mt+1 ≤ |U| do
3: t ← t+1
4: Update the model (θt,wwwt) on L, St and Mt via Eq. (6.5).
5: Estimate pseudo labels for U via Eq. (6.8)
6: Generate the selection indicators ssst via Eq. (6.9)
7: Update the sampling size: mt+1 ← mt +p ·nu

8: end while
9: for i ← 1 to T do

10: Evaluate θi on the validation set → performance Vi

11: if Vi > V ∗ then
12: V ∗,θ∗ ← Vi,θi

13: end if
14: end for

6.4 Experimental Analysis

6.4.1 Settings and Implementation Details

Experiment Setting. For one-example experiments, we use the same protocol as
[66]. In all datasets, we randomly choose an image/trackelt from camera 1 for each
identity as initialization. If there is no data recorded by camera 1 for one identity, we
randomly select a sample from the next camera to make sure each identity has one
sample for initialization. Note that [66, 129] are using the same one-example setting in
experiments.

Implementation Details.
We adopt ResNet-50 with the last classification layer removed as our feature

embedding model φ to conduct all the experiments. We initialize it by the ImageNet
[41] pre-trained model. To optimize the model by the (pseudo-) label loss, we append
an additional fully-connected layer with batch normalization and a classification layer
on the top of the CNN feature extractor. For the exclusive loss, we process the
unlabeled feature by a fully-connected layer with batch normalization, followed by
the L2-normalization operation. Following [117], the temperature scalar τ in Eq. (6.2)
is set to 0.1. We set λ in Eq. (6.5) to be 0.8 for all the experiments. In each model
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Table 6.1 Comparison with the state-of-the-art methods on two image-based large-scale
re-ID datasets. Baseline (one-example) is the initial model trained on one-example
labeled data. Baseline (supervised) shows the upper bound performance where 100%
training data are labeled. p is the enlarging factor that indicates the enlarging speed
of the selected pseudo-labeled subset.

Settings Method rank-1 rank-5 rank-10 rank-20 mAP
Supervised Baseline [149] 83.1 92.5 95.0 96.9 63.7

One-Example

Baseline [149] 26.0 41.4 49.2 59.6 9.0
Ours (p = 0.30) 35.5 52.8 60.5 68.6 13.4
Ours (p = 0.20) 41.4 59.6 66.4 73.5 17.4
Ours (p = 0.15) 44.8 61.8 69.1 76.1 19.2
Ours (p = 0.10) 51.5 66.8 73.6 79.6 23.2
Ours (p = 0.05) 55.8 72.3 78.4 83.5 26.2

Table 6.2 Comparison with the state-of-the-art methods on DukeMTMC-reID. Baseline
(one-example) is the initial model trained on one-example labeled data. Baseline
(supervised) shows the upper bound performance where 100% training data are labeled.
p is the enlarging factor that indicates the enlarging speed of the selected pseudo-labeled
subset.

Settings Methods rank-1 rank-5 rank-10 rank-20 mAP
Supervised Baseline [149] 71.0 83.2 87.3 89.9 49.3

One-Example

Baseline [149] 16.4 27.9 32.8 39.0 6.8
Ours (p = 0.30) 23.3 35.7 42.2 48.0 11.1
Ours (p = 0.20) 30.0 43.4 49.2 54.8 15.1
Ours (p = 0.15) 35.1 49.1 54.3 60.0 18.2
Ours (p = 0.10) 40.5 53.9 60.2 65.5 21.8
Ours (p = 0.05) 48.8 63.4 68.4 73.1 28.5

updating step, the stochastic gradient descent (SGD) with momentum 0.5 and weight
decay 0.0005 is used to optimize the parameters for 70 epochs with batch size 16. The
overall learning rate is initialized to 0.1. In the last 15 epochs, to stabilize the model
training, we change the learning rate to 0.01 and set λ = 1. For the experiments on
video-based re-ID datasets, we simply add a temporal average pooling layer on the
CNN extractor, where we element-wisely average features of all frame within a tracklet.
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Table 6.3 Comparison with the state-of-the-art methods on MARS. Baseline (one-
example) is the initial model trained on one-example labeled data. Baseline (supervised)
shows the upper bound performance where 100% training data are labeled. p is the
enlarging factor that indicates the enlarging speed of the selected pseudo-labeled subset.

Settings Methods rank-1 rank-5 rank-10 rank-20 mAP
Supervised Baseline [149] 80.8 92.1 94.6 96.1 63.7

One-Example

Baseline [149] 36.2 50.2 57.2 61.9 15.5
DGM+IDE [129] 36.8 54.0 59.6 68.5 16.9
Stepwise [66] 41.2 55.6 62.2 66.8 19.7
Ours (p = 0.30) 44.5 58.7 65.7 70.6 22.1
Ours (p = 0.20) 49.6 64.5 69.8 74.4 27.2
Ours (p = 0.15) 52.7 66.3 71.9 76.4 29.9
Ours (p = 0.10) 57.9 70.3 75.2 79.3 34.9
Ours (p = 0.05) 62.8 75.2 80.4 83.8 42.6

Table 6.4 Comparison with the state-of-the-art methods on DukeMTMC-VideoReID.
Baseline (one-example) is the initial model trained on one-example labeled data.
Baseline (supervised) shows the upper bound performance where 100% training data
are labeled. p is the enlarging factor that indicates the enlarging speed of the selected
pseudo-labeled subset.

Settings Methods rank-1 rank-5 rank-10 rank-20 mAP
Supervised Baseline [149] 83.6 94.6 96.9 97.6 78.3

One-Example

Baseline [149] 39.6 56.8 62.5 67.0 33.3
DGM+IDE [129] 42.4 57.9 63.8 69.3 33.6
Stepwise [66] 56.3 70.4 74.6 79.2 46.8
Ours (p = 0.30) 66.1 79.8 84.9 88.3 56.3
Ours (p = 0.20) 69.1 81.2 85.6 89.6 59.6
Ours (p = 0.15) 69.3 81.4 85.9 89.2 59.5
Ours (p = 0.10) 71.0 83.8 87.4 90.3 61.9
Ours (p = 0.05) 72.9 84.3 88.3 91.4 63.3

6.4.2 Comparison with the State-of-the-Art Methods

There are two recent works designed for one-example video-based person re-ID, i.e.,
DGM [129] and Stepwise [66]. Note that although [66, 129] claim them as unsupervised
methods, they are actually one-example methods in experiments, because they require
at least one labeled tracklet for each identity. We compare our method to them on
the one-example video-based re-ID task. Since the performances of both works were
reported based on hand-crafted features, to make a fair comparison, we reproduce their
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(a) (b) (c) (d) (e)

Fig. 6.3 Ablation studies on Market-1501. We validate the effectiveness of the two
parts of our method, i.e., the joint learning method (denoted as J) and the dissimilarity
cost (denoted as D). The enlarging factor p is set to 0.1 in the comparison. (a) and
(b): Rank-1 accuracy and mAP on the evaluation set during iterations. (c), (d) and
(e): Precision, recall, and F-score of the label prediction of selected pseudo-labeled
candidates during iterations. The x-axis stands for the percentage of selected data over
entire unlabeled data. Each solid point indicates an iteration step.

methods using the same backbone model ResNet-50 as ours. The re-ID performance
of our method on the four large-scale re-ID datasets are summarized in Table 7.1,
Table 7.2, Table 7.3 and Table 7.4. With only one labeled example for each identity,
our method achieves surprising performance on both image-based and video-based
re-ID task.

Moreover, we compare our method to two baseline methods, i.e., the Baseline
(one-example) and Baseline (supervised), which are our initial model and the upper
bound model (100% data are labeled), respectively. Baseline (one-example) takes only
the one-example labeled data as the training set and do not exploit the unlabeled
data. Baseline (supervised) is conducted on the fully supervised setting that all
data are labeled and adopted in training. Specifically, we achieve 29.8, 32.4, 26.6
and 33.3 points of rank-1 accuracy improvement over the Baseline (one-example) on
Market-1501,DukeMTMC-reID, MARS and DukeMTMC-VideoReID, respectively. The
superior performances on the four large-scale datasets validate the effectiveness of our
proposed method.

6.4.3 Ablation Studies

To validate the effectiveness of each component in our proposed method, we conduct
ablation studies on the two key parts of our methods, i.e., the joint learning method
and the dissimilarity criterion, as shown in Table 6.5 and Figure 6.3. All experiments
share the same training parameters and initial labeled images.
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Table 6.5 Ablation studies w.r.t. rank-1 and mAP on Market-1501 (image-based) and
MARS (video-based). “Ours w/o D” denotes the model without the dissimilarity cost,
i.e., using classification loss as the criterion. Note that “Ours w/o D” is optimized on
all the three data parts. “Ours w/o J” indicates the model without the joint learning
method, i.e., only optimized by the identity classification training on labeled and
selected pseudo-labeled data. “Ours” is the full model.

Enlarging factor Methods Market-1501 MARS
rank-1 mAP rank-1 mAP

p = 0.30
Ours w/o D 35.2 13.2 42.0 20.3
Ours w/o J 28.9 10.5 42.8 21.1
Ours 35.5 13.4 44.5 22.1

p = 0.20
Ours w/o D 36.5 13.7 45.5 23.5
Ours w/o J 36.2 14.0 48.7 26.6
Ours 41.4 17.4 49.6 27.2

p = 0.10
Ours w/o D 39.8 16.1 46.4 24.1
Ours w/o J 45.1 20.1 57.6 34.7
Ours 51.5 23.2 57.9 34.9

p = 0.05
Ours w/o D 40.3 16.2 48.1 25.2
Ours w/o J 49.8 22.5 62.6 42.4
Ours 55.8 26.2 62.8 42.6

The effectiveness of the joint learning method. We compare our method to
the model trained without the joint learning method, denoted as “Ours w/o J” in
Table 6.5. The “Ours w/o J” model is only optimized by the identity classification
loss on the labeled and selected pseudo-labeled data, as proposed in the preliminary
version [114]. The comparison results on the two datasets prove the effectiveness of the
joint learning method. Compared to the great improvement on the image-based task
(Market-1501), the improvement of the video-based task (MARS) is relatively small.
The main reason is that the one-example initial model in the video-based re-ID task is
much more robust compared to the image-based one, since an initial tracklet contains
many images (62 frames on average on MARS) of the same identity. It can be seen
from the accuracy difference of the initial label predictions on all the unlabeled data,
i.e., 30.0% on MARS while 11.9% on Market-1501. Exploiting the unlabeled data with
a relatively robust model may not benefit the feature learning a lot.

The effectiveness of the sampling criteria. As mentioned in Section 6.3.4,
some previous works such as SPL take the classification loss as the criterion. The label
estimation accuracy and re-ID performances of sampling by classification loss and by
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dissimilarity cost are illustrated in Figure 6.3 and Table 6.5. We observe the huge
performance gaps in Figure 6.3 for both label estimation and evaluation. The label
estimations of both criteria achieve similar and high precision at the beginning stage.
However, the label estimation accuracy gap between two criteria gradually enlarges.
As a result, the performance of the classification loss criterion is only enhanced to a
limited extent and drops quickly in the subsequence. Table 6.5 shows the evaluation
performance differences between the two criteria with different enlarging factors. “Ours
w/o D” denotes the method with classification loss as the criterion. With the same
enlarging factor, the criterion of sampling by dissimilarity cost always leads to superior
performance.

6.4.4 Algorithm Analysis

Analysis over iterations.
Figure 6.3 illustrates the label estimation performance and re-ID performance over

iterations. Since we only collect a few most reliable unlabeled samples as pseudo-labeled
data, the precision score of label estimation is relatively high at the beginning. As
iteration goes, we adopt more unlabeled data into the pseudo-labeled set, resulting
in a continuous precision drop of the label estimation. However, in this procedure,
the recall score of label estimation gradually increases as more correctly estimated
pseudo-labeled data are used. The overall label estimation performance, the F-score,
appears a rapid increase at the first several iterations and a slight performance drop in
the last iterations. Interestingly, the re-ID evaluation performances, i.e., Rank-1 and
mAP scores, show a similar curve with F-score, which indicates the label estimation
quality is the key factor in the One-Example task.

Analysis on the enlarging factor.
The enlarging factor p is a key parameter in our framework. It controls the speed

of enlarging pseudo-labeled candidates set during iterations. Smaller enlarging factor
indicates lower enlarging speed, therefore, more iteration steps and training time.
The results of different enlarging factors can be found in Figure 6.4. As we can see,
in experiments, a smaller enlarging factor always yield a better performance. It is
consistent with human intuition since each enlarging step is more cautious and thus
the label estimation is more accurate. We could also find that the gaps among the five
curves are relatively small in the first several iterations and gradually enlarge in the
later iterations, which shows the estimation errors are accumulated during iterations.

Qualitative Analysis.
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(a) (b)

Fig. 6.4 Comparison with the different value of enlarging factor p on Market-1501. (a)
mAP of person re-ID on the evaluation set with different enlarging factors. (b) F-score
of the label prediction of selected candidates with different enlarging factors. The
x-axis stands for the ratio of selected data from the entire unlabeled set. Each solid
point indicates an iteration step.

We visualize our selected pseudo-labeled samples for an identity during iterations
in Figure 6.5. As shown in the left, the initial labeled sample is captured from the
side view of the pedestrian, wearing a white shirt and black pants. At the beginning
iteration stages (iteration 1 to 4), the selected samples are very similar samples that are
also captured from the side view of the pedestrian. In iteration 5, samples in the behind
view of the pedestrian are selected into the pseudo-labeled set. The above samples are
relatively easy for the model to distinguish. In iteration 6, there is no sample selected
for this identity, indicating there is a difficulty gap here in the pseudo label generation.
Further, in iteration 6 and 7, some samples from other pedestrians are selected for
this identity by mistake, indicated by the red box in the figure. Although these are
error cases, the selected data are very similar to the initial labeled sample that they
share almost the same cloth appearance. In the last two stages, our method selects
the difficult samples which are suffering from both color variance and view change
(captured from the back view). It’s clear that the samples are selected from easy to
hard, from similar to diverse. There are also four samples missed for this identity, i.e.,
assigned to other identities by mistake. However, the person in these images is either
in small size or surrounded by the dark background.
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Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

Initial labeled sample Missed samples:

Iter 6 Iter 7 Iter 8 Iter 9 Iter 10

Fig. 6.5 The selected pseudo-labeled samples for an identity example on Market-1501.
We use the enlarging factor p of 0.1. Error estimated samples are in red rectangles.
All the samples selected in the former iterations are naturally selected again by later
ones. We only show the newly added samples of each iteration in the figure. For this
identity, four samples are missed, and three false samples are selected. As shown in the
figure, the selected samples are easy and reliable at the beginning stage and difficult
and diverse in the later stage.

6.4.5 Evaluation on the Few-example Setting

Our method can be easily extended to the few-example re-ID task by annotating
more labeled data for initialization. We report the few-example performances on the
Market-1501 dataset (see Table 6.7) and the MARS dataset (see Table 6.6). The
performances of our method in different ratios of labeled data are reported. On the
Marker-1501 dataset, our method outperforms the state-of-the-art method SPACO [70]
by a large margin. On the MARS dataset, when using 20% labeled training data, our
method achieves 76.5% rank-1 and 60.3% mAP, which is close to the state-of-the-art
supervised methods with 100% labeled tracklets (upper bound). Although it costs
more annotation effort for the few-example task comparing to the one-example task, it
can easily achieve the competitive results to supervised performance with only a part
of training data labeled.
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Table 6.6 Comparison to the state-of-the-art on MARS. The listed works are fully
supervised methods, and the other performance we reported are in the few-example
setting. The number in the bracket indicates the percentage of used labeled training
data.

Settings Methods rank-1 rank-5 rank-20 mAP

Supervised
MSCAN[48] 71.8 86.6 93.1 56.0
K-reciprocal[149] 73.9 - - 68.4
IDTriplet[29] 79.8 91.4 - 67.7
Ours (10%) 72.2 84.8 91.8 54.2

Semi- Ours (20%) 76.5 88.4 93.3 60.3
supervised Ours (40%) 79.2 91.1 95.6 65.5

Ours (60%) 80.6 91.6 95.7 66.8

Table 6.7 Comparison to the state-of-the-art on Market-1501. The number in the
bracket indicates the percentage of used labeled training data.

Settings Methods rank-1 rank-5 rank-20 mAP

Supervised

IDE [142] 72.5 - - 46.0
K-reciprocal[149] 77.1 - - 63.6
Siamese [146] 79.5 90.9 - 59.9
GAN [147] 83.9 - - 66.0
IDTriplet[29] 84.9 94.2 - 69.1
SPACO (20%) [70] 68.3 - - -

Semi- Ours (5%) 70.1 84.2 92.1 43.6
supervised Ours (10%) 80.7 90.4 95.8 58.3

Ours (20%) 82.5 92.4 97.2 63.6

6.5 Conclusion

To tackle the one-example re-ID task, we propose a progressive training framework
and the joint training method. In the framework, we iteratively train the CNN model
and estimate pseudo labels for the unlabeled data. For the label estimation step, we
propose a progressive sampling strategy to enlarge the pseudo-labeled data set. For the
model training, our proposed joint training method can effectively exploit the labeled
data, the selected pseudo-labeled data, and the unselected unlabeled data. Our method
outperforms the baseline by 29.8 points (absolute) in rank-1 accuracy on Market-1501,
and surpasses the state-of-the-art method by 21.6 points (absolute) on MARS. The
promising performance improvement demonstrates the effectiveness of our method.



Chapter 7

Unsupervised Person
Re-identification

Most person re-identification (re-ID) approaches are based on supervised learning,
which requires intensive manual annotation for training data. However, it is not
only resource-intensive to acquire identity annotation but also impractical to label
the large-scale real-world data. To relieve this problem, in this chapter we propose
a bottom-up clustering (BUC) approach to jointly optimize a convolutional neural
network (CNN) and the relationship among the individual samples. Our algorithm
considers two fundamental facts in the re-ID task, i.e., diversity across different
identities and similarity within the same identity. Specifically, our algorithm starts
with regarding individual sample as a different identity, which maximizes the diversity
over each identity. Then it gradually groups similar samples into one identity, which
increases the similarity within each identity. We utilizes a diversity regularization
term in the bottom-up clustering procedure to balance the data volume of each cluster.
Finally, the model achieves an effective trade-off between the diversity and similarity.
We conduct extensive experiments on the large-scale image and video re-ID datasets,
including Market-1501, DukeMTMC-reID, MARS and DukeMTMC-VideoReID. The
experimental results demonstrate that our algorithm is not only superior to state-of-
the-art unsupervised re-ID approaches, but also performs favorably than competing
transfer learning and semi-supervised learning methods.

7.1 Introduction

Person re-identification (re-ID) aims at matching a target person in a set of query
pedestrian images. In recent years, the widespread adoption of deep convolutional
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Fig. 7.1 The bottom-up clustering method. Each circle denotes an individual image
for training. N denotes the number of training samples, while C denotes the number
of clusters after clustering. After the current stage of network training, we apply
clustering based on the previous clustering result and the feature similarity of the
current stage. By clustering from bottom to up, individual pedestrian samples are
gathered to represent an identity.

neural networks (CNN) has led to impressive progress in the field of re-ID [51, 100, 130].
However, supervised re-ID methods require intensive manual labeling. It is expensive
and not applicable to the real-world applications. The limited generalization ability
motivates the research into unsupervised approaches for person re-ID.

Traditional unsupervised methods focus on hand-crafted features [17, 54, 57],
salience analysis [103, 139] and dictionary learning [39]. These methods produce
much lower performance than supervised methods and are not applicable to large-
scale real-world data. In recent years, some transfer learning methods [11, 28, 80]
are proposed upon the success of deep learning [53]. These methods usually learn
an identity-discriminative feature embedding on the source dataset, and transfer the
learned features to the unseen target domain. However, these methods require a large
amount of annotated source data, which cannot be regarded as pure unsupervised
approaches.

Previous deep learning based “unsupervised” person re-ID approaches leverage
the prior knowledge learned from other re-ID datasets. However, we aim to solve the
problem in a more challenge and practical setting, i.e., without any re-ID annotation.
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To learn discriminate features in this difficult condition, we propose a novel Bottom-Up
Clustering method (BUC) for unsupervised re-ID that maximizes the diversity over
the identities while maintaining the similarity within each identity. As illustrated in
Fig. 7.1, during the training process, the individual samples are gathered into clusters,
and the clusters will merge gradually. Specifically, our framework BUC applies network
training and the bottom-up clustering in an iterative way. We propose the repelled
loss that can optimize the network without actually having any label and obtain
decent initial accuracy. At the beginning of network training, we view individual
images as exemplars, i.e., each image belongs to a distinct cluster. We then gradually
incorporate similarity within identities by a bottom-up clustering, which is to merge
similar images (clusters) into one cluster. Moreover, in practice, different identities
should have a similar probability to be captured by cameras, and thus the image number
for different clusters should be balanced. To enforce this property, we incorporate a
diversity regularization term in the merging procedure. Finally, during the bottom
to up clustering procedure, our framework exploits the similarity and the diversity to
learn discriminative features.

Our contributions can be summarized in four-fold:

• We propose a bottom-up clustering framework to solve the unsupervised re-ID
problem. By exploiting the intrinsic diversity among identities and similarity
within each identity, our framework can learn robust and discriminative features.

• We adopt the repelled loss to optimize the model without labels. The repelled loss
directly optimizes the cosine distance among each individual sample / cluster. It
can facilitate the model to exploit the similarity within each cluster and maximize
the diversity among each identity.

• We propose a diversity regularization term to enable the balanced image number in
each cluster. It makes the clutering results align with the real world distribution.

• The experimental results demonstrate that our approach is superior to the state-
of-the-art methods on both image-based and video-based re-ID datasets. We
achieves top-1 accuracy of 66.2% on Market-1501 [142] and 61.1% on MARS [141].
Moreover, the one-shot re-ID methods utilize more annotation than ours, whereas
our approach also obtains a higher performance than them.
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7.2 Related Work

Most re-ID methods are in a supervised manner, in which sufficient labeled person pairs
across cameras are given. They mainly focus on designing feature representations [140]
or learning robust distance metrics [54, 145]. Recently, deep learning methods achieve
great success [51, 100, 142, 146] by simultaneously learning the image representations
and similarities. In this chapter, we focus on the unsupervised setting and do not
discuss more supervised methods here.

Unsupervised person re-identification. The existing fully unsupervised meth-
ods usually fall into three categories, designing hand-craft features [17, 54, 57], exploiting
localized salience statistics [103, 139] or dictionary learning based methods [39, 123].
However, it is a challenging task to design suitable features for images captured by
different cameras, under different illumination and view condition. These methods are
unable to explicitly exploit the cross-view discriminative information without pairwise
identity labels. Thus the performance of these methods is much weaker than supervised
methods. Recently, Xiao et al. [117] propose the OIM loss for semi-supervised person
search. It can also be used for unsupervised re-ID. Compared to OIM, our BUC
has three advantages. (1) We constrain the feature to distribute on a unit sphere to
improve its robustness. (2) We design the cluster merging to exploit the similarity
among identities. (3) We propose a diversity regularization term to avoid the model
collapse.

Another category of the unsupervised method makes use of additional information
[11, 52, 80]. Recently, cross-domain transfer learning is used in the unsupervised re-ID
task [28, 105], where information from an external source dataset is utilized. Fan et
al. [28] propose a progressive method, where the K-means clustering and the IDE [142]
network pre-trained on the source dataset are updated iteratively. Wang et al. [105]
propose to learn an attribute-semantic and identity discriminative representation from
the source dataset, which is transferable to the target domain. There are also some
recent works [66, 127, 129] focusing on the unsupervised video-based re-ID. However,
these methods require some very useful annotations of the dataset, i.e., the total
number of identities and their appearance. To conduct experiments, they annotate
each identity with a labeled video tracklet, which only reduces part of the annotation
workload. As discussed in [114], these approaches are actually the one-example methods.
Different from these methods, our work focuses on the fully unsupervised setting in
which there is no annotation on the dataset.

Unsupervised feature learning. Unsupervised feature learning is widely studied
in many tasks, such as image recognition, image classification, and image retrieval [97].
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Some works use hand-crafted features combined with conventional clustering methods
[24, 25, 90]. However, the hand-designed features are not as effective as deeply learned
features. A number of works [4, 15] sample patches from images and generate labels for
the patches as supervision. In [15], exemplar-CNN is proposed to discriminate among
a set of surrogate classes, where the surrogate classes are formed by applying a variety
of transformations to randomly sampled image patches.

Wu et al. [115] propose a non-parametric softmax classifier and use noise-contrastive
estimation to tackle the computational challenges. Different from these works, our
BUC not only considers the diversity over each sample but also exploits the similarity
within each class. Comparing with these unsupervised feature learning methods on the
classification task, our BUC obtains superior performance.

7.3 Methodology

7.3.1 Preliminary

Given a training set X = {x1,x2, ...,xN} of N images, our goal is to learn a feature
embedding function φ(θ;xi) from X without any manual annotation, where parameters
of φ are collectively denoted as θ. This feature embedding function can be applied to the
testing set, Xt = {xt

1,xt
2, ...xt

Nt
} of Nt images, and the query set Xq = {xq

1,xq
2, ...xq

Nq
}

of Nq images. During the evaluation, we use the feature of a query image φ(θθθ;xq
i ) to

search the similar image features from the testing set. The query result is a ranking
list of all testing images according to the Euclidean distance between the feature
embedding of the query and testing data, i.e., d(xq

i ,xt
i) = ‖φ(θθθ;xq

i ) − φ(θθθ;xt
i)‖. The

feature embeddings are supposed to assign a higher rank to similar images and keep
the images of a different person a low rank.

To learn the feature embedding, traditional methods usually learn the parameters
with manual annotations. That is, each image xi is associated with a label yi, where 1 ≤
yi ≤ k and k is the number of identities. A classifier f(www;φ(θ;xi)) ∈ R

k parameterized
by www is used to predict the identity of the image xi. The classifier parameter www and
the embedding parameter θ are jointly optimized by the following objective function:

min
θθθ,www

N∑

i=1
�(f(www;φ(θθθ;xi)),yi), (7.1)
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Fig. 7.2 (a). The proposed framework takes unlabeled images as input to train the
network and extract the image features for clustering. The framework do three steps
alternatively, i.e., extracts the CNN feature for each image, merges clusters over the
whole training set, and re-train the CNN model. Fig. (b)-(d) depict the cluster merging
procedure. In this example, each step we merge two cluster pairs with minimum
dissimilarity. The solid points with the same color represent images in the same cluster.
The colored line indicates the connected two clusters have been merged into one. In
(b), the learned features discriminatively span a unit sphere, which the diversity is
maximized. In (c), after merging the clusters, feature embeddings of the same cluster
get closer in the sphere. In (d), the upper sphere shows the cluster merging result
without diversity regularization: (Point 1, Point 3) and (Point 4, Point 8) have the
shortest distances, and are then merged into one cluster. The lower sphere shows the
cluster merging result with diversity regularization: though the distance between the
yellow and green clusters is the shortest, these two clusters are too large and should
not be merged. The Point 6 and Point 7 are merged instead.

where � is the softmax cross entropy loss. However, yi is not available in the unsupervised
setting, and it is challenging to find another objective function that can learn a robust
embedding function φ.

7.3.2 The Bottom-up Clustering Framework

Without the manual annotation, it is important to design a supervision signal that can
be used to train CNN models. To achieve this goal, we aim to exploit the similarity
and diversity properties from the training data as the supervision information. As
shown in Fig. 7.2 (a), the framework mainly contains two components: (i) A network
trained with a repelled loss to let the cluster centers repelled by each other. (ii) A
clustering procedure in the feature embeddings space to merge existing clusters. The
clustering and network updating is done iteratively.
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Network with Repelled Loss.

Since we do not have ground truth labels, we assign each image to a different cluster
initially, i.e., {ŷi = i | 1 ≤ i ≤ N}.1 In this way, the network learns to recognize
each training sample instead of the identities, and the diversity over each training
sample is maximized. We then gradually incorporate similarity within identities by
grouping similar images into clusters. The cluster ID is used as the training label,
and the network is trained to minimize total intra-cluster variance and maximize the
inter-cluster variance.

We define the probability that image x belongs to the c-th cluster as,

p(c|x,VVV ) = exp(VVV T
c vvv/τ)

∑C
j=1 exp(VVV T

j vvv/τ)
, (7.2)

where vvv = φ(θθθ;x)
||φ(θθθ;x)|| , VVV ∈ R

C×nφ is a lookup table that stores the feature of each cluster,
VVV j is the j-th colum of VVV , and C is the number of clusters at the current stage. At the
first training stage, C = |XXX| = N . At the following stages, our approach will merge sim-
ilar images into one class, and C will gradually decrease. τ is a temperature parameter
[30] that controls the softness of probability distribution over classes. Following [117],
we set τ = 0.1. In the forward operation, we compute cosine similarities between data
xi and all the other data by VVV T · vvvi. During backward, we update the ŷi-th column
of the table VVV by VVV ŷi

← 1
2(VVV ŷi

+vvvi). Finally, we minimize the repelled loss, which is
formulated as,

L = − log(p(ŷi|xi,VVV )). (7.3)

During the optimization, VVV j will contain the information of all images within the j-
th cluster. It can be considered as a kind of “centroid” of this cluster. We do not directly
calculate the centroid feature in each training stage due to the high time complexity.
The lookup table V can avoid exhaustive computation of extracting features from all
data at each training step. The proposed objective has two advantages. First, it can
maximize the cosine distance between each image feature vvvi and each centroid features
VVV j �=ŷi

. Second, it can minimize the cosine distance between each image feature vvvi and
the corresponding centroid feature VVV j=ŷi

. With these two advantages, our approach
can trade off the similarity and diversity over the whole training set.

1ŷi is the cluster index for xi and is dynamically changed.
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Cluster Merging.

After the first training stage, the training samples are prone to be away from each
other in the learned feature space. However, images of the same identity are usually
visually similar and should be close, which we call similarity. To exploit the similarity,
we apply the hierarchical clustering on the CNN features to merge the images from
bottom to up. In the start, each image is treated as a cluster. Then pairs of clusters are
merged into one by measuring their similarity. In order to decide which clusters should
be merged, we consider the minimum distance criterion to calculate the dissimilarity
value D(A,B) between cluster A and cluster B.

The minimum distance criterion takes the shortest distance between images in
two clusters as dissimilarity. This criterion only considers the shortest distance: if two
images in the cluster look really alike, the clusters tend to be merged, no matter how
dissimilar other images look. The advantage is that images of the same identity under
the same camera are visually alike and tend to be merged into one cluster under this
criterion, which guarantees the accuracy of merged images. It is formulated as:

Ddistance(A,B) = min
xa∈A,xb∈B

d(xa,xb), (7.4)

where d(xa,xb) is defined as the Euclidean distance between the feature embeddings of
two images, i.e., vvva and vvvb. Specifically, d(xa,xb) = ‖vvva −vvvb‖.

As shown in Fig. 7.2 (b)-(d), at each merging step, we aim to reduce m clusters. We
define m = N ×mp, where mp ∈ (0,1) denotes the speed of cluster merging. Each time,
the clusters with the shortest distance are merged. The number of clusters is initialed
as C = N , i.e., the number of training samples. After t times of cluster merging, the
number of clusters is dynamically decreased to C = N − t×m.

There are other criteria methods to measure the dissimilarity. (1) The maximum
distance criterion takes the maximum distance between elements of each cluster
as the dissimilarity. However, images of the same identity under different cameras
may have totally different visual appearance. This strategy fails to merge images from
different cameras. (2) The centroid distance criterion takes the distance between
mean features of elements in each cluster as the dissimilarity. In the re-ID task, images
come from different cameras, which have different illumination, pose, and viewpoint.
The mean operation omits the diversity among images within one cluster, therefore, it
overlooks the useful camera information. In experiments, we demonstrate the minimum
criterion is the best, and will discuss later in Section 7.4.3.
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Algorithm 3: The Bottom-Up Clustering (BUC) Framework
Require: Unlabeled data X = {x1,x2, ...xN};

Merge percent mp ∈ (0,1);
CNN model φ(·;θθθ0).

Ensure: Best CNN model φ(·;θθθ∗).
1: Initialize: Cluster label Y = {ŷi| 1 ≤ i ≤ N}
2: Number of cluster C = N
3: Number of merging image m = mp∗C�
4: while C > m do
5: Train CNN model φ(x;θθθ) with X and Y
6: Clustering with m:
7: C ← C −m
8: Update Y with the new cluster labels
9: Initialize the lookup table VVV with new dimensions

10: Re-train the CNN model with parameters θθθ
11: Evaluate on the validation set → performance P
12: if P > P ∗ then
13: P ∗ = Pt

14: Best model = φ(x;θθθ)))
15: end if
16: end while

Dynamic Network Updating.

The framework iteratively trains the network and merges the learned image features
clusters. The clustering results are then fed to the network for further updating.
The whole updating process is described in Algorithm 3. The number of clusters is
initialized as the number of training images. After each cluster merging, the labels
of the training images are re-assigned as the new cluster ID. The memory layer of
the optimizer is randomly re-initialized to avoid getting stuck in local optima. We
constantly train the network until we observe a performance drop on the validation set.

7.3.3 Diversity Regularization

With the clusters being merged, the number of classes is decreasing, and the number
of images in the clusters is increasing. Although we do not know the exact number
of images in each identity, we can assume that the images are evenly distributed to
the identities, and different identities should be scattered in different clusters, which
we call diversity. This implies that one cluster should not contain much more images
compared to other clusters.
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To avoid one cluster being redundant and boost the small clusters to merge together,
we incorporate a diversity regularization term into the distance criterion.

Ddiversity(A,B) = |A|+ |B|, (7.5)

where |A| denotes the number of samples belonging to the cluster A. Then, the final
dissimilarity is calculated as:

D(A,B) = Ddistance(A,B)+λDdiversity(A,B), (7.6)

where λ is a parameter that balances the impact of distance and regularization. The
reason for adding a diversity regularization term is that, there exist some visually
similar identities wearing almost the same clothes. Without the regularization term,
the algorithm might merge these similar but different identities into one tremendous
cluster by mistake. We tend to merge small clusters, unless the distance d(xa,xb) is
small enough. This procedure is illustrated in Fig. 7.2 (d).

7.4 Experimental Results

7.4.1 Experimental Settings

Evaluation Protocols. For the image-based re-ID datasets Market-1501 and DukeMTMC-
reID, we take all the training images without ID labels to train the framework. For
the video-based datasets MARS and DukeMTMC-VideoReID, each training tracklet is
regarded as an individual sample in the model training. Note, our method does not
utilize any annotation information (e.g. ID labels or other annotated datasets) for
model initialization or training.

Implementation Details. We adopt ResNet-50 as the CNN backbone to conduct
all the experiments. We initialize it by the ImageNet [41] pre-trained model with the
last classification layer removed. For all the experiments if not specified, we set the
number of training epochs in the first stage to be 20, the batch size to be 16, the
dropout rate to be 0.5, mp to be 0.05 and λ in Eq. (7.6) to be 0.005. We use stochastic
gradient descent with a momentum of 0.9 to optimize the model. The learning rate is
initialized to 0.1 and changed to 0.01 after 15 epochs. For video-based datasets, we
take the average feature of all frames within a tracklet to be the tracklet feature for
cluster merging and final evaluation. On Market-1501 and DukeMTMC-reID, it takes
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Table 7.1 Comparison with the state-of-the-art methods on the Market-1501 dataset.
The column “Labels” lists the labels utilized by the method. “Transfer” denotes the
information from another re-ID dataset with full annotations. “OneEx” denotes the
one-example annotation, in which each person in the dataset is annotated with one
labeled example. ∗ denotes that the results are reproduced by us. “No DR” denotes
results without diversity regularization term.

Methods Venue Labels rank-1 rank-5 rank-10 mAP
BOW [142] ICCV15 None 35.8 52.4 60.3 14.8
OIM∗ [117] CVPR18 None 38.0 58.0 66.3 14.0
UMDL [80] CVPR16 Transfer 34.5 52.6 59.6 12.4
PUL [28] TOMM18 Transfer 44.7 59.1 65.6 20.1
EUG∗ [114] CVPR18 OneEx 49.8 66.4 72.7 22.5
SPGAN [11] CVPR18 Transfer 58.1 76.0 82.7 26.7
TJ-AIDL [105] CVPR18 Transfer 58.2 - - 26.5
BUC No DR AAAI19 None 62.9 77.1 82.7 33.8
BUC AAAI19 None 66.2 79.6 84.5 38.3

Table 7.2 Comparison with the state-of-the-art methods on the DukeMTMC-reID
dataset. The column “Labels” lists the labels utilized by the method. “Transfer”
denotes the information from another re-ID dataset with full annotations. “OneEx”
denotes the one-example annotation, in which each person in the dataset is annotated
with one labeled example. ∗ denotes that the results are reproduced by us. “No DR”
denotes results without diversity regularization term.

Methods Venue Labels rank-1 rank-5 rank-10 mAP
BOW [142] ICCV15 None 17.1 28.8 34.9 8.3
OIM∗ [117] CVPR18 None 24.5 38.8 46.0 11.3
UMDL [80] CVPR16 Transfer 18.5 31.4 37.6 7.3
PUL [28] TOMM18 Transfer 30.4 46.4 50.7 16.4
EUG∗ [114] CVPR18 OneEx 45.2 59.2 63.4 24.5
SPGAN [11] CVPR18 Transfer 46.9 62.6 68.5 26.4
TJ-AIDL [105] CVPR18 Transfer 44.3 - - 23.0
BUC (No DR) AAAI19 None 41.3 55.8 62.5 22.5
BUC AAAI19 None 47.4 62.6 68.4 27.5

about 4 hours to finish the training procedure with a GTX 1080TI GPU. On Mars
and DukeMTMC-VideoReID, it takes about 5 hours.

7.4.2 Comparison with the State of the Art

Image-based Person Re-identification.

The comparisons with the state-of-the-art algorithms on image-based datasets are
shown in Table 7.1 and Table 7.2. Note that the performances in [80] are reproduced
by [28] and we borrow the numbers to our table. On Market-1501, we obtain the best
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Table 7.3 Comparison with the state-of-the-art methods on MARS. The column “Labels”
lists the labels utilized by the method. “OneEx” denotes the one-example annotation,
in which each person in the dataset is annotated with one labeled example. ∗ denotes
that the results are reproduced by us. “No DR” denotes results without diversity
regularization term.

Methods Venue Labels rank-1 rank-5 rank-10 mAP
OIM∗ [117] CVPR18 None 33.7 48.1 54.8 13.5
DGM+IDE [129] ICCV17 OneEx 36.8 54.0 - 16.8
Stepwise [66] ICCV17 OneEx 41.2 55.5 - 19.6
RACE [127] ECCV18 OneEx 43.2 57.1 62.1 24.5
DAL [8] BMVC18 Camera 49.3 65.9 72.2 23.0
EUG [114] CVPR18 OneEx 62.6 74.9 - 42.4
BUC (No DR) AAAI19 None 55.5 71.3 76.1 31.9
BUC AAAI19 None 61.1 75.1 80.0 38.0

performance among the compared methods with rank-1 = 66.2%, mAP = 38.3%.
Compared to the state-of-the-art method OIM [117] in the fully unsupervised setting,
we achieve 28.2 points (absolute) and 24.3 points improvement in rank-1 accuracy
and mAP, respectively. Similarly, our method achieves 22.9 points (absolute) and
16.2 points improvement in rank-1 and mAP on DukeMTMC-reID. The significant
improvement is mainly due to the further cluster merging that exploits similarity from
the instances for supervision.

We also compare our method to the state-of-the-art transfer learning methods in
Table 7.1. Although these methods utilize external images and human annotations, our
method with zero annotation still surpasses them by a large margin. On Market-1501,
our method outperforms the state-of-the-art transfer learning method [105] by 8.0
points and 11.8 points in rank-1 accuracy and mAP, respectively.

Video-based Person Re-identification.

Table 7.3 and Table 7.4 shows the comparisons with the state-of-the-art algorithms
on video-based datasets. On MARS, we obtain rank-1 = 61.1%, mAP = 38.0%.
We beat the fully-unsupervised method OIM [117] by a large margins with 27.4
points in rank-1 accuracy and 24.5 points for mAP. On DukeMTMC-VideoReID, our
results achieve 18.1 points and 18.1 points improvement on rank-1 accuracy and mAP,
respectively.

In Table 7.3 and Table 7.4, we also compare our method to the state-of-the-art
methods [66, 127, 129] in the video-based one-example setting. These methods initialize
their models by annotating each person with a labeled video tracklet. As discussed
in [114], these approaches are the one-example methods, hence, are not actually
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Table 7.4 Comparison with the state-of-the-art methods on DukeMTMC-VideoReID.
The column “Labels” lists the labels utilized by the method. “OneEx” denotes the
one-example annotation, in which each person in the dataset is annotated with one
labeled example. ∗ denotes that the results are reproduced by us. “No DR” denotes
results without diversity regularization term.

Methods Venue Labels rank-1 rank-5 rank-10 mAP
OIM∗ [117] CVPR18 None 51.1 70.5 76.2 43.8
DGM+IDE [129] ICCV17 OneEx 42.3 57.9 69.3 33.6
Stepwise [66] ICCV17 OneEx 56.2 70.3 79.2 46.7
EUG [114] CVPR18 OneEx 72.7 84.1 - 63.2
BUC (No DR) AAAI19 None 60.7 76.8 80.6 50.8
BUC AAAI19 None 69.2 81.1 85.8 61.9

unsupervised. Their methods rely on some very useful annotations on the dataset, i.e.,
how many identities exist in the dataset and what they look like (from a tracklet for
each person). Without any annotation, our method still beats most of these methods
with one-example annotation, which indicates that our method is more effective in
exploiting the unlabeled data.

7.4.3 Ablation Studies

The Impact of Diversity Regularization.

The performance of with and without the diversity regularization item is shown in
Table 7.1 and Table 7.3, respectively. The diversity regularization provides a large
performance improvement on all the four datasets. Specifically, on Market-1501 and
DukeMTMC-reID, the diversity regularization item improves the rank-1 accuracy
by 3.3 points and 6.1 points, respectively. We suspect that without the diversity
regularization, two similar identities may be easily merged into one cluster by mistake.
With the diversity regularization term, we tend to merge small clusters first.

The diversity regularization parameter λ in Eq. (7.6) balances the cluster size and
cluster distance. We evaluate different values for the parameter λ in Fig. 7.3 (a). As λ

increases from 0 to 0.005, the rank-1 accuracy on Market-1501 increases from 62.9% to
66.2%. If we set λ to be greater than 0.05, the too large diversity regularization term
would begin to introduce a negative effect.

The Impact of Cluster Merging Criterion.

As shown in Table 7.5, the results of three cluster merging criteria are listed. We get
the best result with the rank-1 = 66.2% when using the minimum distance criterion.
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Fig. 7.3 (a) Performance curve with different values of the diversity regularization
parameter λ on Market-1501. (b) The rank-1 accuracy, mAP, and the number of
clusters on Market-1501 after each cluster merging step.

Table 7.5 The comparison of different merging criteria on Market-1501.

Criterion rank-1 rank-5 rank-10 rank-20 mAP
Maximum 62.5 76.8 82.6 87.1 35.0
Centroid 65.8 79.2 83.6 88.4 37.9
Minimum 66.2 79.6 84.5 88.5 38.3

When using the centroid distance criterion, we observe a slightly lower performance
with the rank-1 = 65.8%. When using the maximum distance criterion, we observe a
rank-1 accuracy of 62.5%. We assume that images of the same identity from different
cameras suffer from large visual appearance difference. Using this criterion may fail to
merge clusters including images captured from different cameras.

7.4.4 Algorithm Analysis

Analysis over Cluster Merging.

We show the performance of re-ID and the number of remaining clusters on Market-1501
in Fig. 7.3 (b). As the number of the remaining clusters gradually decreases, the
rank-1 accuracy and the mAP accuracy are both increasing. After 16 times of merging,
the rank-1 accuracy increases from 33.2% to 66.2%, and the mAP accuracy increases
from 12.3% to 38.3%. The number of clusters is decreased from 12,936 to 2,023, while
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Fig. 7.4 T-SNE visualization of the learned feature embeddings on a part of the Market-
1501 training set (100 identities, 1,700 images). Points of the same color represent
images of the same identity. We show the detailed images of a positive example (the
green circle) and a negative example (the red circle). The points in the green circle are
of the same identity. In the red circle, the green and yellow points gathered together,
indicating that our algorithm merges them into one cluster by mistake. However, the
samples looks very similar and are hard to be discriminated between each other.

the ground truth number of identities is 751. We observe that both the improvement
of the performance and the reduction of the clusters are continuous and gradual. It
indicates that our method gradually learns from the diversified images to generate a
more discriminative feature representation.

Qualitative Analysis.

To further understand the discriminative ability of our unsupervised learned feature,
we utilize t-SNE [72] to visualize the feature embeddings of the merged clusters by
plotting them to the 2-dimension map. As illustrated in Fig. 7.4, the images of the
same identity usually gather together, which represents the learned similarity within
identities. Besides, most identities are distinguishable from each other, which represents
the diversity among the identities. More qualitative results over iterations can be found
in the supplementary material.
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Table 7.6 The top-1 accuracy on CIFAR-10.

Methods top-1
S-CNN [21] 72.7
NID [115] 80.8
Roto-Scat + SVM [89] 82.3
DCGAN [81] 82.8
Ours 85.2

7.4.5 Compare to Unsupervised Feature Learning

To compare with the unsupervised feature learning methods, we also conduct image
classification experiments on CIFAR-10 [40] to make a fair comparision with them.
CIFAR-10 contains 60,000 images of 10 different classes. Following [115], we take
ResNet18 as the backbone model and extract the last pooling layer’s features. The
nearest neighbor classifier is adopted to assess the learned feature, which reflects
the quality of the representation. As shown in Table 7.6, we achieve 85.2% top-1
accuracy on CIFAR-10, showing a 4.4% accuracy gain over [115]. This improvement
demonstrates the superiority of the cluster merging and network updating strategies.

7.5 Conclusions

In this chapter, we propose a bottom-up clustering approach (BUC) to tackle the
unsupervised re-ID task. It jointly optimizes a CNN model and the relationship among
the individual samples. Specifically, the network training starts by treating each
individual image as an identity. Then, bottom-up clustering is applied to the feature
embedding extracted from the network to reduce the number of classes. During the
whole process, the network gradually exploits similarity from diverse unlabeled images.
In experiments, BUC achieves higher performance than the state-of-the-art methods
in both image-based and video-based re-ID datasets.



Chapter 8

Conclusion and Future Directions

In this thesis, we investigate the deep learning approaches to person re-identification.
We contribute in three settings, including supervised learning, one-example learning
and unsupervised learning.

For the first setting, we introduce a Bayesian based query expansion method and an
attribute based method. We show that query expansion with reliable retrieved images
could improve the re-ID baselines. We also investigate the person attributes and find
that the identity labels and the attribute labels are complementary that leveraging
these two type of labels could improve the performance of both re-ID and attribute
prediction.

In one-example learning, we introduce two methods. The first method utilizes the
labeled samples to initialize a network and progressively exploit unlabeled samples
with the reliable pseudo label for further training. The second method improves the
first method that further utilize the unselected samples for training.

In unsupervised learning, the previous methods mainly focus on unsupervised do-
main adaptation. However, we propose a bottom-up clustering method that iteratively
exploits the similarity and maximize the diversity among the unlabeled images to learn
the discriminative embeddings.

In the future, we will continue focusing on weakly supervised and unsupervised
re-ID. Since cross-camera annotation is expensive, and it is exhausting to annotate
images/videos for the real-world data, we aim to achieve the satisfied re-ID result
with only a few or no labeled data. It is valuable to investigate the correlation of
images captured by different cameras. Different from identity labels that need manual
labeling, the camera ID is easy to obtain. We can learn from the difference between
different cameras to solve the cross-camera re-ID problem under the unsupervised
setting. Besides, without any annotation, we can exploit supervision from the image
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by self-supervise. For example, we could apply transformation such as rotation or
scaling to the original image and learn from the difference and similarity of the images.
The part-based person re-ID is also a promising direction. There have been many
works that investigate part-based re-ID in a supervised setting and achieves impressive
performances. We could also use the local patches as the auxiliary information of the
global image for unsupervised learning.
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