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One-shot information theory entertains a plethora of entropic quantities, such as the
smooth max-divergence, hypothesis testing divergence and information spectrum divergence,
that characterize various operational tasks and are used to prove the asymptotic behavior of
various tasks in quantum information theory. Tight inequalities between these quantities are
thus of immediate interest. In this note we use a minimax approach (appearing previously
for example in the proofs of the quantum substate theorem), to simplify the quantum prob-
lem to a commutative one, which allows us to derive such inequalities. Our derivations are
conceptually different from previous arguments and in some cases lead to tighter relations.
We hope that the approach discussed here can lead to progress in open problems in quantum
Shannon theory, and exemplify this by applying it to a simple case of the joint smoothing
problem.

I. INTRODUCTION

Recent years have seen remarkable progress in the area of one-shot quantum Shannon theory,
which generalizes the standard asymptotic and i.i.d. (independent and identically distributed)
quantum Shannon theory and also eases the notational complications in the latter. Achievability
results in the one-shot setting clarify a lot about the structure of the protocol, as various entropic
equalities that are equivalent in the asymptotic and i.i.d. setting are vastly different in the one
shot setting. This setting also forces the development of novel encoding and decoding schemes that
would have been trivial if the time sharing method was used in the asymptotic and i.i.d. setting.

A (minor) downside of one-shot information theory is that there can be various quantities
that seem to generalize the entropic quantities such as the relative entropy. Below, we introduce
various such quantities that will be considered in this work. We focus here on relative entropies,
but relations for other entropic quantities like entropy, conditional entropy and mutual information
can often be derived readily using the fact that they can be expressed in terms of relative entropies.

A. Notation and definitions

We will fix a finite-dimensional Hilbert space throughout most of this manuscript and denote
with P and S the set of positive semi-definite operators and the subset of trace-normalized quantum
states, respectively. Sometimes we will refer to the set of sub-normalized states, denoted S•,
which contains all positive semi-definite operators ρ ≥ 0 (using the Löwner partial order) with
0 < tr(ρ) ≤ 1. When joint quantum systems are considered, we use the notation S(AB) etc. to
denote joint quantum states on the Hilbert spaces A and B.

Some of the entropic quantities will require the concept of a neighbourhood, namely a function
B that maps ρ ∈ S to an ε-neighbourhood Bε(ρ) ⊂ S of ρ. We can also define neighbourhoods of
sub-normalized states in the same way. We will always require that, for any ρ ∈ S•, the set Bε(ρ) is
convex and at least contains ρ. Such ε-neighbourhoods can easily be constructed from any metric
on states, and the two most prominent examples are defined below for any ε ∈ [0, 1). The first is
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the neighbourhood of states that are close in trace distance, T (ρ, σ) := 1
2‖ρ− σ‖, given as

Bε
T (ρ) := {ρ̃ ∈ S : T (ρ, ρ̃) ≤ ε} . (1)

The second is the neighbourhood of sub-normalized states that are close in purified distance [14],

Bε
P (ρ) := {ρ̃ ∈ S• : P (ρ, ρ̃) ≤ ε} , (2)

where P (ρ, σ) =
√

1− F̄ (ρ, σ) and F̄ (ρ, σ) =
(
‖√ρ

√
σ‖1 +

√
(1− tr ρ)(1− trσ)

)2
is a generaliza-

tion of the fidelity to sub-normalized states.
We are now ready to define our entropic quantities of interest. The max-divergence is defined

for any ρ ∈ S• and σ ∈ P as

Dmax(ρ‖σ) := inf{λ ∈ R : ρ ≤ 2λσ} . (3)

Note that by definition of the infimum this quantity takes on the value +∞ in case there does
not exist a λ satisfying the constraint ρ ≤ 2λσ, which happens if and only if the support of ρ
is not contained in the support of σ. Otherwise, the minimum is achieved and takes the value
λ∗ = log ‖σ− 1

2ρσ− 1
2 ‖∞, where we used the Moore-Penrose inverse. Using any neighbourhood ball

Bε, we define an ε-smooth max-divergence as [2, 10]

Dε
max(ρ‖σ) := inf

ρ̃∈Bε(ρ)
Dmax(ρ̃‖σ) . (4)

We will use the notation D
ε,P
max and D

ε,T
max to specify the balls Bε

P and Bε
T , respectively.

The max-divergence is a limiting case of a Rényi divergence [9, 17], namely the family

D̃α(ρ‖σ) :=
1

α− 1
log

tr
(
σ

1−α
2α ρσ

1−α
2α

)α

tr ρ
. (5)

for α ∈ [12 , 1) ∪ (1,∞) defined for any ρ ∈ S• and σ ∈ P. The max-relative divergence is recovered
in the limit α → ∞ and the name is justified since the family is monotonically increasing as a
function of α. In the limit α → 1, we recover the relative entropy:

D(ρ‖σ) := 1

tr ρ
tr ρ (log ρ− log σ) .

Asymmetric quantum hypothesis testing plays a crucial role in one-shot quantum information
theory. The fundamental relationship between errors of the first and second kind can be cast as
an entropic quantity. Bounding the error of the first kind with ε ∈ [0, 1) and minimizing the error
of the second kind, the ε-hypothesis testing divergence is defined as

Dε
h(ρ‖σ) := − log sup

0≤Λ≤1
trΛρ≥1−ε

tr Λσ . (6)

For any Hermitian operator X, let {X}+ be the projector onto the subspace spanned by all the
eigenvectors with positive eigenvalue. We define the ε-information spectrum divergence as

Dε
s(ρ‖σ) := sup{λ ∈ R : tr ρ{2λσ − ρ}+ ≤ ε} . (7)

This quantity gives a potential quantum generalization of the notion of ε-tail bounds of the log-
likelihood ratio function. To see this, note that for P,Q two probability distributions, the above
expression simplifies to

Dε
s(P‖Q) := sup

{
λ ∈ R : Pr

P

[
log

P

Q
≤ λ

]
≤ ε

}
. (8)
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Its usefulness, apart from this simple interpretation, is mainly due to its close relation to hypothesis
testing, shown in the following relation from [15, Lemma 12]: For any ρ ∈ S, σ ∈ P and ε, δ ∈ (0, 1)
with ε+ δ < 1, it holds that

Dε
s(ρ‖σ) ≤ Dε

h(ρ‖σ) ≤ Dε+δ
s (ρ‖σ) + log

1

δ
. (9)

B. Some useful properties of above quantities

The purified distance satisfies the following ‘gentle measurement’ property, which has first been
established in [16, Lemma 7]. Since the relation between the below lemma and the result in [16] is
not imediately obvious, we provide a proof in Appendix A for the convenience of the reader.

Lemma 1. For any projector P and ρ ∈ S•, we have

P (ρ, ρ̃) =
√

trPρ for ρ̃ =
(1− P )ρ(1− P )

1− trPρ
. (10)

It is worth noting that the state ρ̃ is only normalized if ρ ∈ S and sub-normalized otherwise.
The special case of normalized ρ is in fact well-known, and in that case we also have T (ρ, ρ̃) ≤
P (ρ, ρ̃) =

√
trPρ by the Fuchs-van de Graaf inequality.

Many of these entropic quantities satisfy the data processing [1, 2, 5]. That is, for any quantum
channel (a completely positive and trace-preserving map) E , it holds that

Dε
h(ρ‖σ) ≥ Dε

h(E(ρ)‖E(σ)), D̃α(ρ‖σ) ≥ D̃α(E(ρ)‖E(σ)), Dε
max(ρ‖σ) ≥ Dε

max(E(ρ)‖E(σ)).
(11)

Data processing for the information spectrum divergence is not as simple, but an approximate
data-processing inequality can be deduced from (9). Thus, information spectrum divergence is
known to satisfy data processing only up to an additive logarithmic term.

II. RELATING VARIOUS INFORMATION THEORETIC MEASURES

Our central idea is inspired by the works [6–8] on the quantum substate theorem, which show
that we can use a minimax approach to find the optimal smoothing of the max-divergence. More
precisely, we use the following straight-forward generalization of a key result from [6], a proof of
which is given in Appendix B for the convenience of the reader.

Lemma 2. Let ρ ∈ S•, σ ∈ P. For any convex ε-neighbourhood Bε(ρ), we have

Dε
max(ρ‖σ) = sup

M≥0
Tr[Mσ]≤1

inf
ρ̃∈Bε(ρ)

log Tr [Mρ̃] . (12)

A. Smooth max-divergence and Rényi relative entropies

Our first application is a relation between ε-smoth max-divergence and Rényi divergence, which
improves on [13, Proposition 6.5] for the purified distance smoothing (which was shown using a
different method) and is new for normalized trace distance smoothing. Our proof closely follows
the proof of the quantum substate theorem in [6].
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Theorem 3. Let ρ ∈ S•, σ ∈ P. For any ε ∈ (0, 1) and α > 1, we have

Dε,P
max(ρ‖σ) ≤ D̃α(ρ‖σ) +

1

α− 1
log

1

ε2
+ log

1

1− ε2
. (13)

The same inequality also holds with D
ε,P
max replaced by D

ε,T
max with ρ ∈ S.

Proof. Invoking Lemma 2 the claim becomes equivalent to

sup
M≥0

Tr[Mσ]≤1

inf
ρ̃∈B(ρ)

tr [Mρ̃] ≤ 2Dα(ρ‖σ) · g(ε)
1

α−1h(ε), (14)

where we introduced g(ε) = 1
ε2

and h(ε) = 1
1−ε2

for convenience. That is, for every M with
tr(Mσ) ≤ 1 it is sufficient to produce a corresponding ρ̃ ∈ B(ρ) that fulfils the bound. For such an
M with spectral decomposition M =

∑
i mi|vi〉〈vi|, and α > 1, define

pi := 〈vi|ρ|vi〉, qi := 〈vi|σ|vi〉, and I :=

{
i :

pi

qi
> 2Dα(ρ‖σ) · g(ε)

1
α−1

}
(15)

and finally Π :=
∑

i∈I |vi〉〈vi|. We now invoke the data-processing inequality for the quantum
Rényi divergences under the projective measurement {|vi〉〈vi|}i, leading to

2(α−1)·Dα(ρ‖σ) ≥
∑

i

pαi q
1−α
i ≥

∑

i∈I
pi

(
pi

qi

)α−1

≥
∑

i∈I
pi

(
2Dα(ρ‖σ) · g(ε)

1
α−1

)α−1
, (16)

where the last inequality follows from the definition of I. This implies that

trΠρ =
∑

i∈I
pi ≤ g(ε)−1 = ε2 . (17)

We are now ready to define our smoothed state,

ρ̃ :=
(1−Π)ρ(1−Π)

1− tr Πρ
, (18)

which is normalized if and only if ρ is normalized (and otherwise sub-normalized). By Lemma 1
we find that P (ρ, ρ̃) =

√
trPρ ≤ ε, and thus this state lies in both Bε

P and Bε
T . Furthermore,

(1− trΠρ) trMρ̃ =
∑

i 6∈I
pi ·mi ≤

∑

i 6∈I
qi ·mi · 2Dα(ρ‖σ) · g(ε)

1
α−1 ≤ 2Dα(ρ‖σ) · g(ε)

1
α−1 , (19)

where the penultimate inequality follows from the definition of I and the last inequality follows
from

∑
i qi ·mi = trMσ ≤ 1. Finally, we bound 1

1−tr Πρ
≤ 1

1−ε2
= h(ε), concluding the proof.

B. Relating smooth max-divergence and asymmetric hypothesis testing

One of the main results in [15] was to establish a close relation between the smooth max-
divergence and asymmetric hypothesis testing, which were then used to derive asymptotic bounds.
The following relation improves on two bounds established in [15, Proposition 13] and [4, Propo-
sition 4.1].

Theorem 4. Let ρ ∈ S, σ ∈ P and ε ∈ (0, 1) and δ ∈ (0, 1 − ε2). It holds that

D1−ε
h (ρ‖σ) ≥ D

√
ε,P

max (ρ‖σ) − log
1

1− ε
≥ D1−ε−δ

h (ρ‖σ) − log
4

δ2
. (20)
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We note in particular that our new upper bound on D
ε,P
max(ρ‖σ) does not depend on the number

of distinct eigenvalues of σ, in contrast to the result in [15, Proposition 13]. It is also tight in ε,
unlike the bound in [4, Proposition 4.1]. This is particularly relevant when attempting to generalize
these relations to the infinite-dimensional case.

Proof. We start with the first inequality. Using Lemma 2, we fix an arbitrary M ≥ 0 such that
Tr[Mσ] ≤ 1 and it suffices to construct a state ρ̃ ∈ Bε

P such that

trMρ̃ ≤ 1

ε′
2D

ε′

h (ρ‖σ) , (21)

where we set ε′ = 1− ε for convenience. Given the spectral decomposition M =
∑

i mi|vi〉〈vi|, we
define M as the measurement in the basis {|vi〉}i and two probability distributions P := M(ρ)
and Q := M(σ) obtained by measuring ρ and σ in this basis. The data-processing inequality for
the hypothesis testing divergence and (9) yield

Dε′

h (ρ‖σ) ≥ Dε′

h (P‖Q) ≥ Dε′

s (P‖Q) =: K . (22)

Let us now, for any η > 0, define the set I := {i : P (i) ≤ 2K+ηQ(i)} such that P (I) > ε′ by
definition of Dε′

s (P‖Q). Moreover, let Π :=
∑

i 6∈I |vi〉〈vi|. We have

tr Πρ = trM(Π)ρ = trΠM(ρ) = 1− P (I) ≤ ε . (23)

And, thus, according to Lemma 1, we have P (ρ, ρ̃) ≤ √
ε for the choice ρ̃ := (1−Π)ρ(1−Π)

1−trΠρ
. Finally,

using that 1− tr Πρ > ε′ by (23), we find

trMρ̃ ≤ 1

ε′
∑

i∈I
miP (i) ≤ 2K+η

ε′
·
∑

i∈I
miQ(i) =

2K+η

ε′
Tr[Mσ] ≤ 2D

ε′

h (ρ‖σ)+η

ε′
. (24)

The first inequality then follows in the limit η → 0.

To show the second inequality, we follow the ideas in [15]. Let ρ̃ ∈ Bε
P be such that

ρ̃ ≤ 2λσ with λ = D
√
ε,P

max (ρ‖σ) , (25)

that is, the state ρ̃ is an optimal smooth state. Moreover, consider the optimal hypothesis test
0 ≤ Q ≤ 1 satisfying tr(1 − Q)ρ = 1 − ε − δ and log trQσ = −D1−ε−δ

h (ρ‖σ). Then, the data-
processing inequality for the fidelity and applied to the positive operator-valued measurement
{Q, 1−Q} yields the following sequence of inequalities:

√
1− ε =

√
F̄ (ρ, ρ̃) ≤

√
trQρ trQρ̃+

√
tr(1−Q)ρ tr(1−Q)ρ̃ (26)

≤
√

trQρ̃+
√

tr(1−Q)ρ (27)

≤
√

2λ trQσ +
√
1− ε− δ . (28)

Substituting for λ and trQσ, we thus arrive at the inequality

log
(√

1− ε−
√
1− ε− δ

)2
≤ D

√
ε,P

max (ρ‖σ) −D1−ε−δ
h (ρ‖σ) . (29)

Further bounding
√
1− ε−

√
1− ε− δ ≥ δ

2
√
1−ε

yields the desired result.
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III. JOINT SMOOTHING RELATIVE TO ARBITRARY STATES

Simultanenous smoothing is a question of great interest in quantum Shannon theory, with
recent progress such as in [3, 11] having new consequences in network scenarios. Here we show
simultaneous smoothing for the two marginals of joint quantum system AB. In contrast to earlier
results on joint smoothing, our technique allows to smooth relative to an arbitrary positive operator,
and this operator can in fact be different for the two marginals. If we choose these operators to
be identity, our result reduces to the usual case considered in the literature [3]. We hope that the
approach can lead to more progress on the simultaneous smoothing question.

Theorem 5. Let ρAB ∈ S(AB) with marginals ρA and ρB, and let σA ∈ P(A), σB ∈ P(B). For

any ε, ε′ ∈ (0, 1) such that ε+ε′ < 1, there exists a state ρ̃AB ∈ S(AB) with P (ρAB , ρ̃AB) ≤
√
ε+ ε′

such that its marginals ρ̃A and ρ̃B satisfy

Dmax(ρ̃A‖σA) ≤ D1−ε
h (ρA‖σA) + ∆ and Dmax(ρ̃B‖σB) ≤ D1−ε′

h (ρB‖σB) + ∆ (30)

for ∆ = − log(1− ε− ε′).

Proof. Let us first confirm that it suffices, for every η > 0, to construct a normalized state ρ̃AB ∈
B
√
δ

P (ρAB) for δ = ε+ ε′ that satisfies the following operator inequalities:

ρ̃A ≤ 2λAσA and ρ̃B ≤ 2λBσB, (31)

where λA = D1−ε′

h (ρA‖σA)+∆+η and λB = D1−ε′′

h (ρB‖σB)+∆+η. Then, the inequalities in (30)
are implied since η > 0 is arbitrarily small. Consider now

Opt := inf
ρ̃AB∈Bε(ρAB)

sup
0≤MA≤1
0≤MB≤1

trMA(ρ̃A − 2λAσA) + trMB(ρ̃B − 2λBσB) (32)

where the infimum and supremum can be interchanged using Sion’s minimax theorem [12]. Clearly
Opt ≤ 0 implies the existence of a state satisfying the desiderate in (31). Using the minimax
principle on (32), it thus suffices to construct, for every fixed MA and MB , a ρ̃AB ∈ S(AB) with
P (ρAB , ρ̃AB) ≤

√
δ such that trMAρ̃A ≤ 2λA trMAσA and trMB ρ̃B ≤ 2λB trMBσB.

The proof now proceeds similarly to the proof of Theorem 4, where more detail is given. Given
the eigenvalue decomposition MA =

∑
i mA(i)|vi〉〈vi|A of MA, the measurement MA in its eigen-

basis, and the two probability distributions PA = MA(ρA) and QA = MA(σA), we find

D1−ε
h (ρA‖σA) ≥ D1−ε

h (PA‖QA) ≥ D1−ε
s (PA‖QA) =: KA . (33)

We then define the set IA = {i : P (i) ≤ 2KA+ηQ(i)} such that PA(IA) > 1− ε. As a consequence,
the projector ΠA :=

∑
i∈IA |vi〉〈vi|A satisfies

trΠAρA = trMA(ΠA)ρA = trΠAMA(ρA) = PA(IA) ≥ 1− ε. (34)

The exact same construction for B yields ΠB with trΠBρB ≥ 1− ε′. Consequently, we establish

tr(1AB −ΠA ⊗ΠB)ρAB = tr(1AB −ΠA ⊗ 1B)ρAB + tr(ΠA ⊗ 1B)(1AB − 1A ⊗ΠB)ρAB (35)

≤ 1− trΠAρA + 1− trΠBρB ≤ ε+ ε′ = δ , (36)

where we used the fact that trA(PA ⊗ 1B)XAB ≤ XB for every projector PA and positive operator
XAB with marginal XB (see, e.g., [13, Lemma A.1] for a proof of a more general statement).
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Now, we are ready to define the (normalized) smoothed state

ρ̃AB =
(ΠA ⊗ΠB)ρAB(ΠA ⊗ΠB)

tr(ΠA ⊗ΠB)ρAB
(37)

such that Lemma 1 together with (36) yields P (ρ, ρ̃) ≤
√
δ. Moreover,

trMAρ̃A ≤ 1

1− δ
tr(MA ⊗ 1B)(ΠA ⊗ΠB)ρAB(ΠA ⊗ΠB) (38)

≤ 1

1− δ
trMAΠAρAΠA =

1

1− δ

∑

i∈IA
mA(i)PA(i) (39)

≤ 2KA+η

1− δ

∑

i∈IA
mA(i)QA(i) . (40)

Finally, since
∑

i∈IA mA(i)QA(i) ≤ tr(MAσA) and
2KA+η

1−δ
= 2λA , the first inequality in (31) follows.

The analogous argument for B also verifies the second inequality in (31), concluding the proof.

Using Theorem 4, we can further replace D1−ε
h with D

√
ε

max and D1−ε′

h with D
√
ε′

max (introducing
some small correction), which yields the following corollary.

Corollary 6. Let ρAB ∈ S(AB) with marginals ρA and ρB, and let σA ∈ P(A), σB ∈ P(B). For

any ε, ε′, δ ∈ (0, 1) such that ε+ ε′+2δ < 1, there exists a state ρ̃AB ∈ S(AB) with P (ρAB , ρ̃AB) ≤√
ε+ ε′ + 2δ such that its marginals ρ̃A and ρ̃B satisfy

Dmax(ρ̃A‖σA) ≤ D
√
ε

max(ρA‖σA) + ∆ and Dmax(ρ̃B‖σB) ≤ D
√
ε′

max(ρB‖σB) + ∆ (41)

for ∆ = 2− 2 log δ − log(1− ε− ε′ − 2δ).
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grant. RJ is also supported by VAJRA Faculty Scheme of the Science and Engineering Board
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Appendix A: Proof of Lemma 1

Proof of Lemma 1. We need to verify that F̄ (ρ, ρ̃) = 1− trPρ for ρ̃ = (1−P )ρ(1−P )
1−trPρ

. Indeed,

√
F̄ (ρ, ρ̃) = ‖√ρ

√
ρ̃‖1 +

√
(1− tr ρ)(1 − tr ρ̃) (A1)

=
tr(1− P )ρ√
1− trPρ

+

√
(1− tr ρ)

(
1− tr(1− P )ρ

1− trPρ

)
=

√
1− trPρ (A2)

by a simple computation.
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Appendix B: Proof of Lemma 2

Proof of Lemma 2. Recall the definition of the max-divergence, Dmax(ρ‖σ) = log infρ≤λσ λ. We
first show the following identity:

inf
ρ≤λσ

λ = sup
X≥0

inf
trXρ≤λ trXσ

λ . (B1)

The direction ‘≥’ follows directly from the fact that

inf
ρ≤λσ

λ ≥ inf
trXρ≤λ trXσ

λ , (B2)

for all X ≥ 0, since the restriction on λ on the right-hand side is less restrictive.
For the direction ‘≤’, we simply need to construct an operator X ≥ 0 such that the infimum on

the right-hand side of (B2) matches the left-hand side. We first consider the case where infρ≤λσ λ =
∞, i.e. the case where the support of ρ is not contained in the support of σ. In this case we can
choose X to be orthogonal to σ but with trXρ > 0, such that indeed also inftrXρ̃≤λ trXσ λ = ∞.
Otherwise, choose λ∗ = argminρ≤λσ λ. With X the projector onto the kernel of λ∗σ − ρ, we find

λ trXσ − trXρ = (λ− λ∗) trXσ + λ∗ trXσ − trXρ = (λ− λ∗) trXσ, (B3)

and thus infλ≥0,tr Xρ̃≤λ tr Xσ λ = λ∗, as required. Normalising X such that trXσ = 1 then yields

Dmax(ρ‖σ) = log sup
X≥0

trXσ=1

tr Xρ = log sup
X≥0

trXσ≤1

tr Xρ . (B4)

And finally, using the definition of ε-smooth max-divergence, we find

Dε
max(ρ‖σ) = inf

ρ̃∈Bε(ρ)
sup
X≥0

trXσ≤1

log tr Xρ̃ . (B5)

Sion’s minimax theorem [12] ensures that we can swap the infimum and the supremum since Bε(ρ)
and {X ≥ 0, trXσ ≤ 1} are convex sets, which completes the proof.
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