- 1 TITLE: Biomarkers for detecting resilience against mycobacterial disease in animals
- 2 Authors: Kathryn Wright¹, Karren Plain¹, Auriol Purdie¹, Bernadette M Saunders², Kumudika de Silva¹
- 3 Affiliation: 1: Sydney School of Veterinary Science, Faculty of Science, The University of Sydney,
- 4 Australia
- 5 2: School of Life Science, Faculty of Science, University of Technology Sydney, Australia
- 6 Keywords: paratuberculosis; tuberculosis; biomarker; microRNA; resilience
- 7
- 8 Corresponding author details:
- 9 Name: Kumudika de Silva
- Address: School of Veterinary Science, The University of Sydney, 425 Werombi Road, Camden NSW
 2570, Australia

Downloaded from http://iai.asm.org/ on September 29, 2019 at UNIVERSITY OF TECH SYDNEY

- 12 Phone: +61 2 9036 7737
- 13 Fax: N/A
- 14 E-mail: kumi.desilva@sydney.edu.au

15 Abstract:

16 Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a 17 considerable impact on livestock health, welfare and production. These are chronic 'iceberg' 18 diseases which take years to manifest and where many subclinical cases remain undetected. 19 Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, 20 peptides and expression of specific genes, however these do not provide a strong correlation to 21 disease. Despite these advances, the basis for disease detection still rely heavily on dated methods 22 such as detection of pathogen shedding, skin tests or serology. Here, we review the evidence for 23 suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are 24 resilient to disease. A better understanding of these factors will help establish new strategies to 25 control the spread of these diseases.

26

27 Introduction:

Resilience, in the context of health, can be defined as the capacity to overcome or recover from physiological challenges, be they infectious or otherwise. The health of an individual can start to deteriorate upon infection and progress further into ill health as the pathogen load increases.
Pathology contributing to ill health can also be caused by the immune responses to eliminate the pathogen. Resilient individuals are able to reduce the pathogen load without exacerbating pathology and eventually recover (1).

A further complexity in the context of resilience to mycobacterial infections are pathogen survival strategies that enable them to remain dormant in the host and cause latent disease. In reality, it is difficult to definitively establish whether an individual is resistant or tolerant to a mycobacterial infection, in that the infection either does not establish or disease does not progress, or whether the individual has recovered from the disease. Sheep and cattle do recover from intestinal mycobacterial infection (paratuberculosis) (2-4) and some are resistant to infection (5, 6).

Infection and Immunity

Resilience can thus be more broadly defined as the animal's ability to remain productive in the face
of an endemic disease challenge, such as a mycobacterial infection. The ability to identify animals
that have the potential to withstand disease progression in this setting is highly beneficial.

43 Paratuberculosis, a widespread mycobacterial infection of animals, is caused by Mycobacterium avium subspecies paratuberculosis (MAP), a non-tuberculous mycobacterium which 44 45 preferentially infects ruminants. MAP has been detected in food sources such as milk (7, 8) and the pathogen found in humans with immunosuppressive conditions such as Crohn's disease (9-11). 46 47 While there is no proven causative association between MAP and Crohn's disease, it is clear that 48 urgent research attention is required to find new ways to halt global spread of the disease in the 49 animal population in order to prevent MAP from entering the food chain and reduce human exposure to this pathogen (12, 13). Current diagnostic tests including detection of the mycobacteria 50 51 in faeces, or the presence of serum antibodies to MAP, are inadequate for definitive diagnosis, due 52 to the intermittent nature of MAP faecal shedding and the low sensitivity of serological tests during 53 early, subclinical infection.

54 Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important zoonotic 55 mycobacterial infection of ruminants, with significant impact on agricultural production globally; Australia is the only major livestock exporting country to have eradicated bTB (14). The serious 56 57 zoonotic potential and public health risk of bTB makes the swift identification and control of this pathogen in animal hosts and wildlife populations a key focus across human and veterinary research 58 59 programs (15, 16). Issues with interference in diagnosis due to coinfection and cross-reactivity with 60 paratuberculosis, the generally low sensitivity of currently available tests, and the spread and 61 maintenance of M. bovis in wildlife reservoirs, have made eradication of bTB a difficult task (17). A 62 final confounding factor in the diagnosis and treatment of veterinary mycobacterial infections is the 63 presence of non-tuberculous mycobacterial (NTM) species. These bacteria include the M. avium complex (MAC) and the *M. terrae* complex which survive in environmental niches (18). NTM have 64

65

66

67

68

69

70

71

tuberculin test or serological tests.

72 Both paratuberculosis and bTB have recently been ranked as the second most significant 73 infectious veterinary disease in food producing animals and zoonoses respectively (23). It is 74 therefore evident that mycobacterial disease detection and management within animal populations 75 must be improved, and while resilient animals may play a key role in reducing mycobacterial 76 diseases, the accurate identification of such individuals is paramount to future efforts. New ways of 77 distinguishing animals that are resilient, or susceptible, to disease will provide new strategies for 78 managing the spread of disease. This has led us to consider the literature on other biological markers 79 that could be useful in the diagnosis and control of these diseases.

also been identified in fisheries leading to general and chronic mycobacteriosis, highlighting the

widespread nature and the variety of mycobacterial species present in a range of environments (19).

While mainly innocuous to livestock, simultaneous infection with NTM and either MAP or M. bovis

creates further difficulty in the accurate diagnosis and delineation of disease, due to similarities

between the antigens and cross-reactive host immune responses (20-22). In this situation, disease-

specific biomarkers may provide an alternative to current diagnostic techniques such as the

80 Biomarkers of disease are objectively measurable indicators of normal and/or disease conditions, which must be highly specific and sensitive to accurately denote disease (24). As a 81 82 diagnostic tool, biomarkers not only indicate the presence of disease, but may also differentiate between disease states, treatment efficacy and outcomes. In order for a biomarker to be considered 83 84 acceptable and reliable, it must be both sensitive and specific for the appropriate disease or disease 85 state (25). Ideally, biomarkers should also be from samples which are collected easily by minimally-86 invasive methods and use measurement technologies that are readily available in diagnostic 87 laboratories (26). The possibility of prognostic biomarkers to demonstrate the likelihood of, and 88 resilience to, disease have promising applications to aid in the management and control of paratuberculosis, and possibly that of bTB. 89

 \triangleleft

90 The chronicity of mycobacterial diseases and the spectrum of disease outcomes makes it 91 necessary to definitively characterise the disease 'phenotype' being detected by any biomarker test. 92 For example, using an experimental infection model for paratuberculosis in the natural host, we have shown that even resilient animals can shed MAP in faeces for a limited time when young (5). To 93 94 this end we have recently published a guide to characterising the spectrum of disease outcomes in 95 ovine paratuberculosis (27) which will be useful for researchers interested in discovering biomarkers 96 to identify specific disease outcomes. An additional benefit of characterising protective immunity 97 using biomarkers is that it can also be used to guide better vaccine design. Regardless of the vaccine 98 formulation, ultimately the ability to mimic processes that overcome natural infection will provide 99 effective protection against disease.

A range of novel biomarkers have been suggested for mycobacterial diseases, ranging from host immune proteins and molecules, including cytokines (summarised in Figure 1.), as well as differentially expressed miRNAs and genes. Current biomarkers for paratuberculosis are primarily related to the identification and diagnosis of disease, however as TB-associated biomarkers have demonstrated the ability to discriminate between active and latent disease while also functioning as prognostic markers (28-31), there is potential for paratuberculosis- and bTB-specific biomarkers to detect "silent", subclinical infections and to identify disease resilient animals.

107

108 Immunological biomarkers

109 Antibodies

Although the role of the humoral immune response in host immunity to intracellular mycobacterial pathogens is not fully understood, it is recognised that specific antibodies are detectable in the serum and may be important in protective immunity (32-34). Serum and milk antibody ELISA assays are common diagnostic tests for paratuberculosis, although less commonly applied in bTB. Current

 \triangleleft

commercial test methods for paratuberculosis have highest diagnostic sensitivity in the later stages of disease when animals are infectious, with low sensitivity to detect early disease (35). However, in an experimental challenge model in sheep, animals that were classified as resilient to disease, as lambs, had a stronger antibody response than those where disease progresses (5). This offers potential new applications for serological tests to be used during subclinical disease stages to identify resilient animals.

120 The isotype of antibody detected, as well as the antigenic target, can impact serological test 121 efficacy. A range of antigens have been tested in an attempt to improve early disease detection in 122 both paratuberculosis and bTB (36-38). Immunoglobulin (Ig)G antibodies are the most common 123 isotype used for mycobacterial antibody ELISAs, however targeting different isotypes may be more 124 informative. A recent study has shown that circulating *M.bovis* antigen in association with IgM was 125 present in the serum during the early stages of infection (39). IgA, the main isotype present in 126 mucosal secretions, has also shown potential for identifying resilience, being associated with 127 protective responses in TB (40). An investigation into MAP-specific faecal IgA immunoglobulins has 128 found that these antibodies can be detected during paratuberculosis disease progression, but this is 129 transient and appears to be related to environmental MAP load (41).

While not as well-understood as cell-mediated responses to mycobacterial infections,
antibodies are clearly indicative of exposure to pathogens and disease states, and may yet play a key
role in defining phenotypes and resilience to mycobacteria.

133

134 Cytokines and chemokines

135 One of the key immunologic responses characteristic of mycobacterial infection is the elevation in 136 IFN- γ secretion, however the application of IFN- γ as a diagnostic cytokine is limited as it is an 137 indicator of exposure rather than disease *per se* (5, 42). There is potential for this cytokine as a 138 biomarker of resilience in sheep as these animals have a higher early IFN- γ response when young (5, 139 43). A range of other cytokines and chemokines have been reported as differentially regulated 140 between infected and uninfected populations (summarised in Table 1.), as well as between active 141 and latent TB states, and these are likely applicable to other mycobacterial infections. These 142 potential biomarkers warrant further investigation, although there is a lack of consistency across 143 studies as to the degree and nature of cytokine expression, possibly due to differences in cell type 144 assessed, stimulating antigen, and experimental techniques used. Activated T cell and related 145 cytokines including, but not limited to, IL-2, IL-3, IL-6, IL-7, IL-8, IL-9 and IL-10, have been reported to 146 differ significantly even within infected and healthy control groups in studies of human 147 mycobacterial infections (44-49). It is evident that further investigation, especially regarding 148 pathogen-specific responses, is required to determine if cytokine profiles can accurately detect and 149 differentiate between disease states.

150 Variations in cytokine signatures in active versus latent mycobacterial disease have also 151 been demonstrated, with cytokines such as TNF α , IL-12, and IL-17 reported to be more abundantly 152 expressed during active tuberculosis infections compared to latent infection (50). More recent 153 investigations into cytokines as biomarkers and discriminators of active versus latent infection have 154 suggested that combinations or ratios of multiple cytokines are more efficient at categorising 155 disease than a single biomarker. One such combination with promising diagnostic potential are IL-2 156 and IL-10, detecting not only disease in TB patients, but also distinguishing between active and 157 latent infection (49). With IL-2 ligation activating JAK-STAT signalling and regulating T cell responses, 158 and IL-10 acting as a key immunosuppressive cytokine, the combination of the two could prove to be 159 a major indicator of mycobacterial disease. Multiple studies have also proposed the combination of 160 IL-2 and IFN- γ and their respective levels as a diagnostic marker of latent TB infection (49, 51). Ex-161 vivo studies of TB have also yielded possible combinations of predictive biomarkers, and cytokines 162 that act as correlates of treatment success. Firstly, increased expression of IL-4 and its antagonist IL-

 \triangleleft

 \triangleleft

Accepted Manuscript Posted Online

163

164

165

166

167

168

169

170 Cytokine profiles during MAP infection in both sheep and cattle also provide possible 171 biomarker targets. These include cytokines such as IL-10, IL-12p40 and IL-3 as they are often 172 associated with different disease pathologies in paratuberculosis (54) (Figure 2). IL-18 and similar Th₂ 173 related cytokines are symptomatic of specific pathological lesion types in bovine MAP infections 174 (55); while an increase in IFN- γ , osteopontin, and IL-17 may suggest a shift towards a Th₁₇ response 175 in MAP infections (56). A similar range of T cell cytokines and chemokines including IP-10, IL-22 and 176 IL-17A have been suggested for bTB, however as with paratuberculosis and TB there is no widely 177 accepted or employable signature (57-59). Originally called CXCL10, IP-10 was first described for its 178 chemoattractant properties and role in the recruitment of T cells to sites of inflammation, but has 179 been identified as a possible biomarker of infection in TB and bTB with the potential to differentiate 180 between latent and active disease (60, 61). IP-10 is currently one of the most promising chemokine 181 biomarker candidates for bTB, with evidence of a specific response to M. bovis which correlated 182 strongly to the production of IFN-y, further suggesting that the combination of cytokine and 183 chemokine biomarkers may be more applicable than single marker measurement (62). As IP-10 has 184 also been shown to distinguish between cultutre positive and culture negative M. bovis samples, this 185 biomarker can potentially provide a rapid alternative to traditional culture diagnostics for bTB (63).

452 during treatment, and subsequent changes of the ratio between the two, have been reported to

be indicative of disease outcome, with lower IL-4 and IL-4 δ 2 linked with better treatment outcomes

(52). Similarly, the ratio of IFN- γ and IL-10 may also be indicative of treatment success in TB patients.

IFN- γ characteristically increases during infection and IL-10 decreases, in keeping with the need for

strong T cell responses to control an intracellular pathogen. Low ratios of IFN-y and IL-10 were

observed in early infection, and subsequently improved during and after treatment, indicating that

this may correlate with treatment efficacy (53).

186 Studies profiling the chemokine immune responses in pathological presentations of 187 paratuberculosis and bTB have often found contrasting results and patterns of expression, and could 188 have been influenced by differences in experiemental design including in vitro or in vivo conditions 189 of the study (54, 57, 64-66). Suggested cytokine and chemokine biomarkers for each stage of disease 190 and pathologies are summarised in Figure 1. Due to the granulomatous nature of mycobacteria, 191 chemokine recruitment of leucocytes may be a host response to contain the invading bacteria, and 192 the restriction of this process by mycobacteria may act to subvert the host immune response and 193 establish a latent infection. Downregulation of key chemokines such as RANTES (CCL5) and 194 monocyte chemoattractant protein 1 (MCP-1 [CCL2]) in paratuberculosis could provide alternative 195 biomarkers for diagnosis alongside IFN-y assays. To date, there has been no discernable pattern of 196 expression of significant chemokines such as CCL3, CCR, and CXCL11 between disease pathologies of 197 paratuberculosis and bTB, suggesting the immunological response may be too variable and 198 individual specific to function as accurate and repeatable biomarkers across differing populations 199 (67, 68).

Although these combinations require further validation across animal breeds, sample types and mycobacterial species, their role as indicators of disease in MAP and *M. bovis* infected animals may prove to be valuable in rapid, reliable and simple detection of disease with improvements in diagnostic technologies.

204

205 Transcriptomic biomarkers

206 Many studies have investigated gene expression in paratuberculosis and bTB pathogenesis, resulting 207 in a long list of differentially expressed genes for these diseases, and are summarised in Table 2. Key 208 functional pathways such as antigen presentation and MHC processing and lipid metabolism are 209 altered during mycobacterial infection (69-73). Genes from these pathways may yet provide key 210 resilience or susceptibility biomarkers in MAP infection.

Infection and Immunity

211

212

213 lactoferrin; they are often attributed to the pathogen's metabolism of host iron via the action of mycobactins (74-76). Similarly, S100a8 and S100a9 are differentially regulated and have been 214 215 proposed as biomarkers for comparable inflammatory bowel diseases (75, 76). Together, the 216 S100a8/9 proteins form the heterodimer calprotectin, a biomarker for inflammation which leads to 217 inflammatory responses and immune cell migration and has been detected in MAP lesions, 218 suggesting these genes play a role in disease pathology (77, 78). Haptoglobin, controlled by the Hp 219 gene, is an anti-inflammatory agent that not only disrupts neutrophil and phagosomal activity, but 220 also disrupts bacterial iron sequestering. This response is thought to be a result of the host's 221 immune system limiting the harmful immunopathology of MAP infection. Matrix metalloproteinase 222 9 (MMP9) and its inhibitor TIMP1, are both upregulated during paratuberculosis and TB and are 223 documented as consistently up-regulated genes in TB (74, 75, 79). Two β -defensin genes have also 224 recently been shown to be up-regulated in MAP, Defb1 and Defb10, indicating that their 225 antimicrobial and immunomodulatory role may be indicative of host responses to bacterial infection 226 (74). Along with this gene subset, Th1 chemokine genes such as CCL4, CCL5, CXCL9, CXCL10 and 227 genes related to metabolism including IGF1 and TCF7L2, are up and down regulated respectively in 228 paratuberculosis (76). A novel biomarker signature has been established from these differentially 229 regulated genes in early MAP infections. Combinations of these 8 genes (Timp1, MMP9, Hp, Tfrc, 230 Defb1, Defb10, S100a8, and Serpine1) have been demonstrated as potential biomarkers of various 231 disease and exposure states of paratuberculosis (74) (Figure 2). Differences between case definitions 232 and disease classifications between studies does however make comparison difficult, and supports 233 the need for standardised practices (27). Although this is extremely promising for disease detection 234 and as biomarkers for paratuberculosis, further validation in both laboratory and on-farm settings 235 must be undertaken before their potential for identifying resilient and susceptible animals is 236 confirmed.

Among the differentially regulated genes with potential as diagnostic biomarkers in

mycobacterial infections are Tfrc, which encodes the transferrin receptor, and LTF, which regulates

 \triangleleft

Infection and Immunity

237 In a similar manner to human TB and paratuberculosis, early gene expression in bTB 238 correlates to the immune response and pathology with an early increase in Th₁ cytokine related 239 genes, and a switch towards Th₂ cytokines as infection progresses. A panel of transcriptomic biomarkers have been suggested including the chemokine genes CXCR3 and CCL1 and TLR2/4 genes, 240 241 along with TNF, BCL2, NFKB1, IL16, IL8, EEF1G, ADAM17, IER5, PHB2, STK17B, CD84, CD81, MCL1, 242 TBK1, ATK1, PRKCB1, and RPS6KB2 (80). While this panel is predominantly protein binding and 243 transcription related genes, it displays the trend of immune suppression by mycobacteria and M. 244 bovis and may provide an alternative to the current immune based diagnostics used in bTB 245 identification.

246

Protein biomarkers 247

248 The analysis of circulating proteins and serum proteomes has also yielded promising candidates for 249 biomarkers in MAP and other mycobacterial infections (Table 3). Mass spectrometry has detected a 250 number of proteins either over- or under-expressed, with some, specific to MAP infection (81). 251 Studies assessing both early and late stages of mycobacterial infection have shown a dysregulation 252 of several pathogenically significant proteins including vitamin D-binding protein, a potential 253 biomarker for general mycobacterial infection, found in both paratuberculosis and bTB (81-83). As 254 vitamin D is involved in macrophage activation and is a known anti-tuberculoid agent acting via TLR 255 signalling pathways, its expression in paratuberculosis may be attributed to the immune response in 256 the early stages of infection. Glycoproteins, proinflammatory fetuin, alpha-haemoglobin and serine 257 protease inhibitor are also differentially expressed proteins in both bTB and paratuberculosis, acting 258 as biomarkers for general mycobacterial diseases in animals (81-83).

259 Proteomic analysis of serum proteins of MAP infected cattle has yielded further possible 260 specific biomarker targets, such as complement proteins, actin binding proteins, and clotting factors Accepted Manuscript Posted Online

Infection and Immunity

 \triangleleft

261

262

263 binding proteins have been identified as MAP-specific biomarkers. Vitamin A (retinol) is involved in the maintenance and differentiation of immune cells. It is transported by the negative acute phase 264 265 protein transthyretin, which may be an indicator of early disease (82, 83). Transthyretin is also an 266 indicator of malnourishment in diseases such as HIV and cancer and may show similar changes in a 267 chronic wasting disease like paratuberculosis. Cathelicidin is specific for advanced MAP infection, 268 possibly related to a shift in the bacterial response to induce shedding and escaping from 269 macrophages, or a host antimicrobial control response (82). Investigation of the proteome may 270 provide potential pathogen protein biomarker candidates, however the homologous nature of 271 mycobacteria and issues with cross-reactivity mean that this requires much greater research and 272 validation. Preliminary research into identifying specific proteins from the secretome has provided 273 promising novel antigens as serodiagnostic biomarkers, although further investigation must be 274 undertaken (85).

associated with thrombin and fibrinogen (84). These proteins of interest, along with their

corresponding coding genes may provide diagnostic biomarker signatures. Transthyretin and retinol

Other suggested bTB protein biomarkers include the host proteins alpha-1-antitrypsin, alpha-1antiproteinase, and fetuin-A and the pathogen proteins ESAT-6, CFP-10, MB2515c, and Pks5 (81, 82,
86). Advances in protein array chips and mass spectrometry technologies will allow discovery of
other biomarkers using pathogen proteomes and circulating peptides in the future.

279

280 Extracellular vesicles

Extracellular vesicles (EVs) include exosomes, microparticles and apoptotic vesicles and are key cellular transport and signalling entities. The importance of these vesicles was originally underestimated, believed to be waste disposal units removing cellular debris during reticulocyte maturation (87). Both exosomes (<200 nm) and microparticles (<1000 nm) are now prime targets for 287 Exosomes are released from multivesicular bodies following fusion with the plasma 288 membrane and are formed through a series of endocytic events. Following their formation, 289 multivesicular bodies fuse with the plasma membrane and release their cytosolic endosomal bodies, 290 which become exosomes once liberated (91). In comparison, microparticles (also known as 291 microvesicles and ectosomes) are formed and released via budding or 'blebbing' of the cellular 292 membrane. This is a steady state process which may be upregulated following stimuli such as 293 infection and include specifically enriched cargo for biological communication. Both exosomes and 294 microparticles contain a range of enzymes, proteins, and RNA molecules, and have several functions, 295 often highly dependent on the constituents and therefore their cell of origin (Figure 3).

296 products Vesicles transport mycobacterial such as lipoarabinomannan and 297 phosphatidylinositol mannosides, which are contained in, and released from mycobacteria-infected 298 macrophages through EV secretion. The shuttling of both bacterial and viral components further 299 supports the role of exosomes in immune surveillance and intracellular communication (92). These 300 EVs secreted from macrophages are able to stimulate a pro-inflammatory response, triggering the 301 release of TNF α , nitric oxide, and the chemokine RANTES (93-95), as well as transferring 302 mycobacterial RNA and ultimately effecting infection outcomes (96). Similarly, EVs secreted from 303 host neutrophils appear to work in favour of the immune response and promote clearance and 304 mycobactericidal activity (97).

Extracellular vesicles may prove to be extremely useful vaccine candidates and diagnostic or predicative biomarkers for mycobacterial diseases such as paratuberculosis and bTB. Their stability and circulating nature, as well as their ability to be isolated from minimally-invasive biological samples such as saliva, urine and blood make them prime targets. Differentially expressed proteins and molecules contained in vesicular compartments may also provide useful markers for treatment

efficacy and indicate disease resilience to mycobacterial infections. A small number of studies have identified *M. tuberculosis*-specific proteins in serum-derived exosomes that differentiated individuals with active and latent TB infection (98, 99). These small-scale studies remain to be verified but suggest that further examination of the biomarker potential of extracellular vesicles is warranted.

315

316 microRNA

317 miRNA are a subset of small RNA (~22 nucleotides long) which are non-coding post transcriptional 318 regulators. Originally considered to be genetic junk, along with other non-coding parts of the 319 genome, miRNAs were first discovered in Caenorhabditis elegans and are now known to be master 320 regulators of gene expression and protein translation (100). Many of these miRNAs are highly conserved (101) and play key roles in regulating mRNAs that control complex host signalling 321 322 networks, as well as immune function. miRNA control the stability (i.e. degradation), translation, and 323 suppression of specific mRNAs in order to regulate a large network of genes and proteins. They have 324 also been indicated in various diseases and as possible drug therapy targets. Their abundance and 325 stability in circulating extracellular vesicles such as exosomes and microparticles have made them 326 potential candidates as disease biomarkers (102-105). Although reports into the role of miRNA in 327 mycobacterial infections, relative to other major diseases, are sparse, their demonstrated 328 differential expression has elevated them to the forefront of mycobacterial research in the last few years. It is currently estimated that over 60% of genes are directly regulated by miRNAs (106), 329 330 exemplifying the importance of the previously disregarded non-coding aspect of the genome, 331 particularly in regard to biomarker discovery.

There are several mechanisms through which miRNA can exert their "gene silencing" effect, with the degree of miRNA-mRNA complementarity the primary determinant. In general, a high complementarity and perfect to near perfect binding will result in mRNA cleavage, while mismatches 335 in the mi 336 common 337

in the miRNA-mRNA complex will reduce protein synthesis through translational repression, a more common phenomenon in animal miRNAs (107, 108).

miRNA biomarkers have been successful in the diagnosis and prediction of outcomes in cancer (109-111) and multiple studies have indicated that miRNA signatures have the potential to 338 339 distinguish active TB patients from healthy controls and latent TB (112-114). One of the major 340 obstacles to miRNA biomarker investigations is the lack of consistency and established scientific 341 practices, as well as the lack of standardisation across experiments. Variance in case classification, 342 source of biological samples, and study size can affect reproducibility of results making comparison 343 across studies difficult. Variability in miRNA expression due to tissue specificity and miRNA origin, i.e. 344 circulating or exosomal, must also be considered when investigating potential miRNA biomarkers. 345 Further, studies have also indicated that environmental or ethnic differences may also influence 346 miRNA expression (115-117). Analysis of differentially expressed miRNAs in TB has yielded multiple 347 potential biomarker sets yet a rigorous definable signature remains to be confirmed. A large number 348 of miRNAs have been reported to be modulated during TB including the potential biomarkers miR-349 378, miR-483-5p, miR-22, miR-29c which are upregulated, and miR-101 and miR-320b which are 350 downregulated (118, 119). These miRNAs have been suggested as biomarkers of specific TB disease 351 states, with sensitivity and specificity of 95.0% and 91.8% respectively (119). Similar studies have 352 also suggested that the miRNAs miR-22, miR-25, miR-365, miR-590-5p and miR-885-5p may also be 353 useful in diagnosing TB (118-122). The promising biomarker combinations from human TB research 354 suggests that markers for diseases such as paratuberculosis and bTB may yet be uncovered, and that 355 discovering signatures of resilience to infection are highly plausible.

Several recent studies have focused on miRNA as biomarkers in paratuberculosis and bTB (123-128); however the relatively minor research effort into veterinary diseases compared to TB or similar human diseases has meant that the majority of these studies are still exploratory and further research is required to produce a true diagnostic signature. Potential bovine miRNAs which

 \triangleleft

360 may be key biomarkers include immune and inflammatory related miRNAs such as miR-19b, miR-361 196b, and miR-146, which are modulated during infection and linked to bTB, TB and Crohn's disease 362 (124, 129-135). Although no definitive biomarkers have been elucidated, strong evidence for their 363 modulation following MAP infection indicates that they may be significant candidates for diagnostic 364 markers.

365

366 miRNA regulation in mycobacterial infections

367 Several key miRNAs have been identified in mycobacterial infections, and the similarity in host 368 responses and pathogenesis between mycobacterial species allows for some extrapolation to 369 paratuberculosis and bTB. One of the miRNAs first identified in host immune responses to 370 mycobacteria, miR-146, targets mRNA of TNF receptor associated factor 6 (TRAF6) and IL-1 receptor 371 associated kinase 1 (IRAK1) (136, 137). Acting on TRAF6, miR-146 dampens iNOS and therefore nitric 372 oxide production, an important host microbicidal response (138), while IRAK1 is a key receptor-373 associated molecule involved in activation of NF-KB transcription (139). Through targeting these 374 molecules, which are essentially downstream signals from TLR cascades, miR-146 can control TLR 375 and cytokine signalling through a negative feedback loop, fundamentally altering the immune 376 response, and decreasing pro-inflammatory effects (Figure 4.).

Another major miRNA modulated by mycobacterial pathogens is miR-142-3p. This miRNA targets an mRNA that negatively regulates a key cell surface signal transducer involved in actinbased cellular motility and assembly of the phagosome for internalised pathogens. miR-142-3p is overexpressed during the early stages of mycobacterial infection and therefore impairs phagocytosis of bacteria (140). miR-142-3p is also a major regulator of pro-inflammatory cytokines, decreasing production and expression of molecules such as TNFα and IL-6, also acting on IRAK1 and the TLR/NF-383 κB pathway (141).

 \triangleleft

Infection and Immunity

384 miR-155 inhibits autophagy and antimicrobial immune effects through ESAT6 inducing 385 expression, preventing immune modulators Cox-2 and IL-6 induction, as well as decreasing Bach1 386 and SHIP1 (involved in mycobacterial survival and dormancy, as well as production of Reactive 387 Oxygen Intermediates) (142). Nitric oxide production is also limited by increased miR-155 expression 388 in *M. marinum* infections, enhancing survival of pathogenic bacteria (143). As with many miRNAs, 389 miR-155 has multiple functions including modulating the innate TLR response through acting on a 390 number of genes. SOCS1, TAB2 (TLR adaptor molecule) and a DC-specific adhesion molecule are all 391 decreased following overexpression of miR-155, impacting the pathogen binding capability of 392 dendritic cells and possibly contributing to the establishment of disease (144, 145).

393 miRNAs targeting host cell apoptosis are also modulated by virulent mycobacteria, with 394 miR29a and let-7e upregulated, in turn decreasing caspase 7 and 3 activity respectively (146). As 395 caspase 3 and 7 are both executioner caspases which induce morphological changes for induction of 396 apoptosis, their decreased expression in mycobacterial infections further aids the pathogen in 397 intracellular survival and evasion of immune responses. miR-29 also has a role in decreasing early stage Th1 responses through targeting IFN- γ , with differential expression following infection with 398 399 both M. bovis BCG and Listeria monocytogenes (147). miR-582-5p which regulates Forkhead box 400 protein O1 (FOXO1) is upregulated in TB, inhibiting apoptosis by decreasing FOXO1 (148). miR-155 401 has been implicated as a regulator promoting apoptosis via the TLR2 and PI3K-APT pathways. 402 Pathogenic mycobacteria are able to upregulate miR-155 after activation of TLR2 signalling, and, 403 through a series of cascades and cross-talk between pathways such as MAPK and PKC δ , induce 404 apoptosis by activating caspase 3 and translocating mitochondrial cytochrome c (149). miR-21 is also 405 a significant miRNA in apoptosis as it acts on IL-12p35 (IL-12A protein) to decrease IL-12 and 406 therefore activation of Th1 and NK cells. This miRNA also functions to activate apoptosis by targeting 407 Bcl-2, thus further modulating early Th1 responses following *M. bovis* exposure (150).

408 miRNA are also carried within EVs, while exosomal miRNA may be a key regulator of host 409 gene expression and immune defences in mycobacterial infections. Exosomal miR-21 and -29a for 410 example, act as ligands for TLR signalling, suggesting several functional roles and possible roles in 411 paratuberculosis and bTB pathogenesis (151).

412 While these miRNAs clearly play a role in mycobacterial infection, they are only a small 413 number of differentially regulated miRNAs observed in mycobacterial infections and the current 414 understanding of the mycobacteria-miRNA relationships are summarised in Table 4 and Figure 5. It is 415 clear that the regulation, and either over or under expression of these miRNAs, is altered during 416 infection, and their effects are often related to critical events in mycobacterial pathogenesis. The 417 interconnected nature of miRNA, mRNA, and cell signalling pathways are complex. Although current 418 research efforts into the specific functions and modes of action of miRNAs are producing promising 419 results much of the current research focuses on TB; greater investigation into miRNAs and their 420 profiles in bTB and MAP is warranted.

421

422 Future directions

423 It is evident, from the nature of mycobacterial diseases, their global distribution and the spread of 424 animal pathogens into the human sphere, that new management strategies are needed to control 425 diseases like paratuberculosis and bTB to ensure subclinically infected animals do not enter the food 426 chain. Directing the focus of production towards identifying animals that are resilient to these 427 diseases may be a means to reducing the economic impact and welfare implications of subclinical 428 infection. Biomarkers are at the forefront here, not only for diagnosis of mycobacterial infections, 429 but also for the differentiation of clinical and subclinical states and identifying resilient animals. In 430 addition, this type of research will undoubtedly provide the ability to characterise immune 431 protection in mycobacterial diseases of animals, which can then be utilised to develop better

vaccines with potential for providing sterile immunity. However, this requires well-designed
controlled experimental trials where resilience to disease can be identified accurately. With recent
efforts globally to limit the use of antimicrobials in both humans and animals, vaccines can provide
advantageous control strategies (152).

436 The inability to adequately compare current biomarker studies hampers progress. Ideally 437 complete expression patterns of immunologic, proteomic and transcriptomic markers during the 438 course of infection should be studied in vivo. The generation of a complete data set would allow for 439 key molecules to be prioritised and a possible combinational signature to be determined. While this 440 would be a large and costly undertaking, the investigation of each of the separate biomarker 441 candidates (e.g. cytokines/chemokines, proteins, genes) from early subclinical to late clinical 442 infection would still provide invaluable information as to the applicability of markers for diagnosis 443 and the host response to mycobacteria. Archived sample biobanks may be integral in these future 444 research efforts, abrogating the cost of establishing in vivo infection models and providing multiple 445 sample types i.e blood products and tissue samples, as well as defined infection outcomes and the 446 ability to profile a vast array of biomarker candidates from the same individual over multiple time 447 points. These would also allow the validation of any potential markers across not only different 448 animal species, but also different breeds, which may have differing responses to infection (153). A 449 complete picture of host responses to infection could be obtained through the combination of a 450 variety of 'omics' technologies including transcriptomics, proteomics and metabolomics.

Biomarkers for resilience to mycobacterial infection are a promising resource for better control of for both paratuberculosis and bTB. In our estimation, miRNA are the frontrunners for discovering biomarker signature of resilience. Not only are they ideal biomolecules because of their stability in the circulation and under storage conditions, but additionally miRNA can be isolated from a range of minimally invasive biological sources such as plasma, serum or saliva. They are master regulators of gene expression and mediate many biological and metabolic processes, thus are

457	upstream of the trans	scriptomic, proteo	mic and metabolomic	effects. Changes in th	eir expression
458	and patterns of regu	lation are likely i	ndicators not only of	infection, but also c	of the disease
459	phenotype and/or res	ilience to mycobad	terial disease. One dra	awback could be their	inability to be
460	pathogen-specific; to	overcome this lin	nitation, there may be	e a diagnostic role fo	r a combined
461	pathogen-specific cyto	okine or chemokir	ne (e.g. IFN-γ) respons	se and miRNA signatu	ire to identify
462	resilient animals. Wi	th rapid advance	ments of biomarker	discovery platforms	such as next-
463	generation sequencin	g and array tech	nologies we envisage	the capacity to deve	lop of robust
464	signatures	for	significant	global	diseases.

Downloaded from http://iai.asm.org/ on September 29, 2019 at UNIVERSITY OF TECH SYDNEY

SPECIES	HOSTS	SAMPLE	IMMUNOLOGICAL MARKER	REFERENCES
		Bovine/ovine intestinal tissue	↑: TRAF-1, IL-8, IFN-γ, TNF-α, IL-10, IL-12, TGF-β, IL-1α, IL-1β, IL-6 ↓: IL-18	(54, 154)
		Bovine plasma + MDMs	↑: IFN-γ, Osteopontin ↓: IL-4 ↓: IL-17	(56)
14	G1	THP-1 cell line	↑: TNF-α, IL-1β, IL-10	(155)
M. avium subsp. paratuberculosis	Sheep, cattle, goats, camelids, deer	Bovine PBMCs + intestinal tissue + lymph node	↑: IFN-γ, IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-2, IL-10, IL-4, IL-2R ↓: IL-16, IL-18 ↓: TGF-β	(55, 156)
		Murine spleen/liver/ileum	↑: IFN-γ, TNF-α, IL-4	(157)
		Caprine PBMCs	↑: NOS2, IL-21, C2, C3, IL-34, IL-12A, TLR4, TNF, ↓: IL-17F, IL-9, IL-9R2, IL-36β, IGF1, IL-18, IL-9, IL-5, IL-13, IL-11, Granulysin, IFN-γ	(158)
		Whole blood (bovine)	↓: TNF-α, RANTES, MCP-1	(67)
		Murine spleen/lung + bovine PBMCs	↑: IFN-γ, IL-22, CXCL9, IL-17a, IP-10, Granzyme B, IL-17Re, Granzyme A	(57)
	Cattle, possums, badgers, buffalo	Multinucleated giant cells	↑: TNF-α, IL-17A, TGF-β, IL-10, IFN-γ	(159)
M. bovis		Bovine PBMCs	↑: IFN-γ, TNF-α, iNOS, IL-4 ↓: IL-10	(160)
		Bovine lymph node	↑: IFN-γ, TNF-α, TGF-β, IL-17A ↓: IL-4, IL-6, IL-10, IL-22	(161-163)
	Fish, frogs, humans (NTM)	Goldfish spleen/kidney + leukocytes	↑: ROI, NO, IL-1β, IFNGR, TNFR ↑↓: SOCS3, TGF-β, IL-10	(164)
		Murine mast cells + HMC-1	↑: COX-2, TNF-α, NOD2	(165)
M. marinum		Adult zebrafish (homogenised tissue)	↑: MMP13, TNF-α, IFN-γ, IL-1β	(166)
		Human $M\phi$ culture supernatant	↑: IL-12p40, IL-6, TNF-α, ↓: IL-1β	(167)
		Kidney Mø (goldfish)	↑: NRAMP, IL-10, TGF-β1, SOCS3, TNF-α, IL-1β1, IFN-γ, CXCL8, IFN-γrel, IDO, CCL1 ↓: ROI	(168)
M. hominissuis	Pigs, humans,	Human PBMCs	↑: IL-17 ↓: IL-12p70	(169)
M. avium	Poultry, humans	Human PBMCs + alveolar Mq	↑: IL-10, IL-17, TNF-α, IFN-γ ↓: IFN-γ, IL-12, IL-12p70	(169, 170)
	Humans, armadillos,	Human PBMCs	↑: IL-4, IL-6, IL-8, TNF-α, TGF-β	(171)
M. leprae	primates	Human Schwann cells	↑: TLR2, TLR4, MyD88, Irak4, IL-18, CCL2, CCL7, CCL9, CSF-1, Mif, CXCL1 ↓: TLR1, TLR6	(172)
Manuarda	Soil - rarely found in	RAW 264.7 cell line	↑: TNF-α, IL-6, MCP-1	(173)
M. smegmatis	animals or humans	Human PB Mø	↑: IL-1, IL-6. TNF-α, GM-CSF-	(174)

SPECIES	HOSTS	SAMPLE	GENE	REFEREN

465

 \mathbb{A}

Infection and Immunity

nunity

				•
		Whole blood (bovine)	↑: KLRB1, MPO, LTF, SERPINE1, S100A&9, TFRC, GBP6, PIGR, IL-10, CXCR3, CD14, ELANE, CH13L1, HP, HGF, MMP9, DEFB1, DEFB10, TIMP1, PIP5K1C, IRF5, IRF7, CORO1A ↓: IL17F, IL27, IL26, HMGB1, IRF4	(74, 75, 175)
		THP-1 cell line	↑: CD14, CD68, S100A8/9, ELANE, LTF, HP, CCL4, CCL5, CXCL9, CXCL10 L: ELANE, IGF1, TCF7L2, MPO	(76)
M. avium subsp. paratuberculosis	Sheep, cattle, goats, camelids, deer	pats, camelids, PAW 264.7 cell line	¹ : ABCA ¹ , APOE, LDLR, RFTNI, HMCGR, ILIA, ILIB, IL6, MCP1, TNFA, INOS, LAMP1, P53, TLR4 PLIN2, SREBF1, RAB7 ¹ : TFRC, CXCR31, CCNE2, COX62A, GDF15, YPEL3, AQP9, SLC40A1, TMEM154, CD74, AATK, RRAS, GADD45α, YPEL5, HEBP1, ENO2, MACROD1, IRF7, NFKBIC, LCN2	(176, 177)
		Bovine monocytes + WBCs + PBMCs	↑: TGFB, TSP1, BCL2L1, TGF, IL6, MMP12, MT1A/B/E/F/H/I, 17A-HYDROXYLASE, CD40L, CRF, CRFR1, EP2, FSG-R, IL1, IL10, IL12, IL2, IL4, IL5, IFNG, MMP1, MMP3, MMP7, MMP9, MMP15, MMP 16, MMP19, MMP23, PA11/2, SCC, SPARC, TGFB, TIMP1, TIMP2 V3 L: SFK, ADRB, cAMPPK, VTAP, TNFB, DOB, IA6, MAPK2K5, MEK5B, CD38, GIMAP6, SCD-1, 24DHCR, LDLR	(178-180)
		Lymph nodes + tonsils + spleen (wild boar)	1: VDR, ANX, LAP, VCAM, CXCR4, MHC-I SLA-31, B2M, MHC-II SLA-DRA, C3, C7, HSPGP96, LYZS, ARG, OPN, CUL, ARP3, MUT, DEFB129, BAP29, CD8A f; LGALSJ, CIQB, CD74, SLA	(181, 182)
M. bovis	Cattle, possums, badgers, buffalo		↑: PPP2R5B, ZDHHC19, 28S, GPR98, PDGFA/B, ECGF1, MHCR1, AXL, CD84, CCL15, NFATC4, TLR2, CD80, NFKB1, IL8, CXCL6, ADORA3 ↓: PRKCB1, PRKCA, AKT1/2, EEF2, EEF1G, GATA4, IER5, CSF2, CD14, CCL1, CHUK, NFKB1, TBK1, MIF, CCR7, BOLA, ADAMI7, CXCR3, PHB2, STK17B, MCL1, CCL1, IL8, TLR2, TLR4, BCL2, NCOR1, UCP2, UNC84B, GAN, SPPQ, NRM, FGFR1,	(80, 183)
			↑: CD83, CTLA4, ILIA, IL8, STATI, TLR4, ↓: CASP1, DEFB10, IFNGR2, ILI5, KIR3DS1, MYD88, STAT2, TLR3, TREM1, TYROBP	(184)
M. marinum	Fish, frogs, humans (NTM)	Muscle wound tissue + homogenised zebrafish	↑: ATF3, BCL3, CEBPB/D, ELF3, IRF1B, IRF3, FOSL2, JUNBA/B, NFKB, IL1B, TNF, CXCL8A/B, MMP9/13A, TIMP2B, C3/7/8/9, IRG1, SAA, STEAP4, HAMP, DRAMI, IRAKI, SOCS3, NCF, NOX, CYB, IL1B, TNFAIP2/3/6 ↓: CKMA/B, MYLPFA, MYL23, MYL10, ACTA1B, MYOZIA, MYOM1A, MB, MYBPC2A, MURCA, MYOM2, MYL1, MYOZ3A ↑↓: APOA, APOE, APOB, FOSLIA, FOSAB	(185, 186)
M. hominissuis	Pigs, humans,	Human MDMs	↑: INHBA, CCL1/3/4/5/18/20, ILI, VEGFC, MMP1/3/10, SLAMF1, CCR7, TNFAIP6, TNIP3, IL7R, PROCR, PDGFB, CSF2, TNF, IL8, IL3RA, BMP6, MSC, TM45F1, TNFRSF9/19, MRC1, LAMB3, CHST2, ETS2, PTGS2, IL10, SOCS3, SERPINB2, SERPINE1, TIMPI, BTG1, SOD2, CD14, PLAUR ↓: STMN1, LTA4H, CD36	(146)
M. avium	Poultry, humans	U937 cell line	↑: ERBB3, EPHA3, PTPN7, LAT, CSF1, NFKB, JUN, SPI1, ARHGDIA, GNB1, GNB2L1, FGF11, ITGA5, ITGAL, ICAMI, IEXIL, CASP10, RPS19, TNFA, RANTES, MIP2, ILIB, IL8, IL2RA/G, TNFRSF1B, CDKN1A, TIMP1, MMP9/11, CAPN4, PI, AZU1, MT1H, DTR ↓: ID2, SPN, BCL2L1, TMSB4X, AP2M1, CTSD	(187)
	Humans,	FFPE leprosy lesions	↑: NOD2, TNFSF15, RIPK, CCDC122, HLA-DR, C130RF31, LRRK2	(188)
M. leprae	armadillos, primates	Whole blood (human)	↑: VEGF, GNLY, GZMA/B, PRF1 ↓: IGF, KIF1B, LRRK2	(189)
M. smegmatis	Soil – rarely found in animals or humans	U937 cell line	; CDKNIA, ERBB3, BRF1, NSEP1, JUN, GNB1, FGF11, GRN, PGF, NDUFB7, ICAM1, IEX-L1, L1F, RANTES, MIP2, IL1B, TNF, IL8, SPP1, IL2RG, MMP1/9, HSPA1A, FTH1, BTG1 L: IQGAP1, CRHR1	(187)

Table 2. Differentially expressed genes in mycobacterial infections of animals

SPECIES	HOSTS	SAMPLE	PROTEIN/PEPTIDE	REFERENCES
M. avium subsp.	Sheep, cattle,	Bovine serum	↑: VDBP, thransthyretin, RBP, alpha-2 glycoprotein, SERPINA3, cathelicidin, VDBP precursor, leucine-rich alpha-2-	(82)
paratuberculosis	goats, camelids,	Bovine serum	glycoprotein	(02)

Downloaded from http://iai.asm.org/ on September 29, 2019 at UNIVERSITY OF TECH SYDNEY

466

Table 3. Dysregulated protein responses to mycobacterial infections of animals
--

SPECIES	HOSTS		SAMPLE	miRNAs	REFERENCES
M. avium subsp. paratuberculosis	Sheep, cattledeer goats, camelids, Bovine whole blood		Bovine whole blood	14រ អតីវឌម៌តែ\$ វិទុក្ខអត្ថារិចុះក្រុមភ្នំក្មេរត្តរដែលដែលអាចក្រុមអ្នកអ្នកអ្នកអ្នកអ្នកអ្នកអ្នកអ្នកអ្នកអ្នក	(130)
			Bovine plasma	Transferrin, gelsolin α/β, actin binding protein, C1r, C3, AOC3, thrombin L: COAFXIII, FCG	(84)
			Camelid serum	↑: Hp, serum amyloid A, Fb	(190)
			-	FbpA/B, FbpC2, PirG, Wag31, MetC, PepA, Csp, modD, thioredoxin, thiol peroxidase, FadB4, FabG5_2, FabG3_2, AhpC, Hsp7-, Hsp65/K, superoxide dismutase, FixA, pstA, EchA20/8_1, DesA2, MoaA3	(191) (Review)
			Bovine serum	↑: Alpha-1 antiproteinase, fetuin, VDBP, alpha-1 acid glycoprotein, alpha-2 glycoprotein 1, alpha-1-B glycoprotein, RBP, Pks5 j: SERPINA3	(81, 82)
M. bovis	Cattle, pos badgers, bu		Buffy coat (bovine)	↑: TLR2/4/9, MHC1, Syngap1, Alox5, Adar, Mpo, tyrosine-protein kinase, Pxk, MHCII, ↓: C80/β, TINAGL1, Drosha, Ifnx, PIK3C2B, Tyk2, P2x, IL1RL2, oligoadenylate synthase, protein kinase C, beta- 1,4-galactosyltransferase 1, CXCL2, Lif, thrombspondin-1, AP-3, azacytidine-indiced protein, CCL20 ↓1: 8B, ADAM15, Rnf19B, PLAA	(192)
			THP-1 cell line	↑: Sod2, Kr99, CCL20, ICAMI, Ncf1, Tnnt1, Vps26A, Apoe, Rbm17, Agtrap, REP15, Cmtm6, PkIr, Yars2, CCDC124/51/93, Dpysl4, Acaa1, Mthfd2, Ckap4, Derl1, Ndrg1, LAMTOR2, TBC1D9B, Rnf2 j: Tma7, Mtpn, Tmsb10, Tmsb4X	(193)
M. marinum	Fish, fro humans (N		Murine BMDMs, RAW 264.7 cell line & THP-1 cell line	↑↓: ESAT-6, CFP-10, LC3, MMP13, Arp2/3, WASP, N-WASP	(166, 194, 195)
M. hominissu	s Pigs, hum	ans,	BEAS-2B cell line	↑: Snd1, NADPH dehydrogenase, Ddx6, Cbr1, Importin, Exportin-5, Cndp2, Dynamin-1-like protein, HNRPK/L, Pafah1B3, GCP60, Ubap2L, glutathione synthetase, PPP2A, calnexin, Banf1, lactoferroxin-C, MBP-1	(196, 197)
M. avium	Poultry, hu	mans	U937 cell line	1: CAM1/2/3, PPP3R1, Dffa, Bub3, Smc1A, CDK1, CycB, HDAC2, TUBA1B, ItgB2, UBA1, ACTB, H1.4, PP1, PP2A, ITGA	(198)
M. leprae	Human armadill primate	os,	-	†↓: PGL1, ErbB2, α-DG, laminin-2, MMP1/2/9, IDO, VDR, SMAD, VD, SLC11A1	(199, 200) (review)
M. smegmati	Soil – rarely in animal human	s or	Murine BMDMS & BMDDs	11: Calmodlin, cAMP, CREB, caspase-8, caspase-3	(201)

Table 4. miRNA	responses to n	nycobacterial	infections of	f animals

	deer	Bovine intestinal tissue	↑: miR-146b, miR-1247, miR-196b, miR-184 miR-202 ↓: miR-137, miR-105a, miR-433, miR-133b	(124)
		Murine BMDMs	↓: miR-27a-3p	(202)
	Cattle, possums,	Bovine alveolar Mø	↑: miR-146b, miR-146a, miR-147, miR-29c, miR-22-3p, miR-21-3p, miR-142-5p, miR-210, miR-32, miR-125a, miR-155, miR-9b, miR-27a-5p, miR-149-5p, miR-28, miR-15a, miR-23a, miR-29a, miR-30b-5p, miR-151-5p ↓: miR-92a, miR-34a, let-7a/b/c/d/e/f, miR-6529, miR-107, miR-744, miR-328, miR-423-3p/5p, miR-345-3p, miR-128, miR-874, miR-378b, miR-296	(126)
M. bovis	badgers, buffalo	HEK293T, EL4 cell lines + human MPMs	↓: miR-29a	(147)
		Human MDMs (BCG)	↑: miR-135b, miR-296-5p, miR-645 ↓: miR-629	(203)
		RAW 264.7, THP-1, HEK293T cell lines + MPMs	↑: miR-155	(143)
M. marinum	Fish, frogs, humans (NTM)	Adult zebrafish (homogenised tissue)	↑: Let-7a/c/d, miR-142b, miR-146a-3p/5p, miR-146b-3p/5p, miR-15c, miR-16b, miR-181a, miR-181b, miR-20b, miR-21-3p/-5p, miR-219, miR-223-3p/5p, miR-23b, miR-26a, miR-29a, miR-29b, miR-430a/i, miR-457b, miR-46c, miR-728-3p/5p, miR-731-3p/5p, miR-732 ↓: miR-104, miR-25, miR-30b/c, miR-128, miR-150, miR-181c, miR-184, miR-204, miR-216a/b, miR-217, miR-365, miR-430b, miR-454b, miR-461, miR-489, miR-724, miR-727, miR-730	(204)
M. hominissuis	Pigs, humans,	Human MDMs	↑: miR-155. miR-146a, miR-146b-5p, miR-886-5p ↓: miR-20a, miR-191, miR-378, miR-30c, miR-423-5p. miR-374a, miR-185, miR-768-5p, miR-18 ↑↓: let-7e/i, miR-146b-5p, miR-29a, miR-193a-5p, miR- 483	(146)
M. avium	Poultry, humans	Human MDMs	†↓: miR-29a, let-7e, miR-146a	(146)
	Humans.	Skin biopsy	↑: miR-21, miR-24, miR-146a, miR-451, miR-30a/b/e, miR-22, miR-181b, miR-34a, miR-93, miR-422a, miR-29c	(205)
M. leprae	armadillos, primates	Skin biopsy	↑: miR-142-3p/5p, miR-146b-5p, miR-342-3p/5p, miR-361-3p, miR-3653, miR-484, miR-155, miR-146, miR-21, miR-150, miR-181 ↓: miR-1290, miR-429, miR-141, miR-205, miR-193b, miR-200c, miR-224	(206)
M. smegmatis	Soil – rarely found in animals or humans	Human MDMs & J774A.1	↑: miR-125b, miR-142-3p ↓: miR-155	(207, 208)

468

Accepted Manuscript Posted Online

Infection and Immunity

470	REFERENCES

471	1.	Torres BY, Oliveira JHM, Thomas Tate A, Rath P, Cumnock K, Schneider DS. 2016. Tracking
472	-	Resilience to Infections by Mapping Disease Space. PLOS Biology 14:e1002436.
473	2.	Dennis MM, Reddacliff LA, Whittington RJ. 2010. Longitudinal Study of Clinicopathological
474		Features of Johne's Disease in Sheep Naturally Exposed to Mycobacterium avium Subspecies
475	-	Paratuberculosis. Veterinary Pathology 48:565-575.
476	3.	Begg DJ, Plain KM, de Silva K, Gurung R, Gunn A, Purdie AC, Whittington RJ.
477		Immunopathological changes and apparent recovery from infection revealed in cattle in an
478		experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium
479		subspecies paratuberculosis. Veterinary Microbiology.
480	4.	Begg DJ, Plain KM, de Silva K, Gurung R, Gunn A, Purdie AC, Whittington RJ. 2018.
481		Immunopathological changes and apparent recovery from infection revealed in cattle in an
482		experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium
483		subspecies paratuberculosis. Veterinary Microbiology.
484	5.	de Silva K, Plain K, Purdie A, Begg D, Whittington R. 2018. Defining resilience to
485		mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Veterinary
486		Immunology and Immunopathology 195:56-64.
487	6.	Stinson KJ, Baquero MM, Plattner BL. 2018. Resilience to infection by Mycobacterium avium
488		subspecies paratuberculosis following direct intestinal inoculation in calves. Veterinary
489		Research 49:58.
490	7.	Botsaris G, Swift BMC, Slana I, Liapi M, Christodoulou M, Hatzitofi M, Christodoulou V, Rees
491		CED. 2016. Detection of viable Mycobacterium avium subspecies paratuberculosis in
492		powdered infant formula by phage-PCR and confirmed by culture. International Journal of
493		Food Microbiology 216:91-94.
494	8.	Gerrard ZE, Swift BMC, Botsaris G, Davidson RS, Hutchings MR, Huxley JN, Rees CED. 2018.
495		Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk.
496		Food Microbiology 74:57-63.
497	9.	Naser SA, Ghobrial G, Romero C, Valentine JF. 2004. Culture of Mycobacterium avium
498		subspecies paratuberculosis from the blood of patients with Crohn's disease. The Lancet
499		364:1039-1044.
500	10.	Bull TJ, McMinn EJ, Sidi-Boumedine K, Skull A, Durkin D, Neild P, Rhodes G, Pickup R,
501		Hermon-Taylor J. 2003. Detection and verification of Mycobacterium avium subsp.
502		paratuberculosis in fresh ileocolonic mucosal biopsy specimens from individuals with and
503		without Crohn's disease. Journal of Clinical Microbiology 41:2915.
504	11.	Sharp RC, Beg SA, Naser SA. 2018. Polymorphisms in Protein Tyrosine Phosphatase Non-
505		receptor Type 2 and 22 (PTPN2/22) Are Linked to Hyper-Proliferative T-Cells and
506		Susceptibility to Mycobacteria in Rheumatoid Arthritis. Frontiers in Cellular and Infection
507		Microbiology 8.
ናበዩ	17	Waddell Ι Raiić Δ Sargeant Ι Harris Ι Δπεγούα R. Ποινιουν Ι. Read S. McFivien S. 2008. The

517		2017. The Consensus from the Mycobacterium avium ssp. paratuberculosis (MAP)
518		Conference 2017. Frontiers in Public Health 5.
519	14.	More SJ, Radunz B, Glanville RJ. 2015. Lessons learned during the successful eradication of
520		bovine tuberculosis from Australia. The Veterinary record 177:224-232.
521	15.	, Biet F, Boschiroli ML, Thorel MF, Guilloteau LA. 2005. Zoonotic aspects of Mycobacterium
522		bovis and Mycobacterium avium-intracellulare complex (MAC). Vet Res 36:411-436.
523	16.	Thirunavukkarasu S, Plain K, de Silva K, Marais B, Whittington R. 2017. Applying the One
524		Health Concept to Mycobacterial Research - Overcoming Parochialism. Zoonoses and Public
525		Health 64:410-422.
526	17.	Schiller I, Oesch B, Vordermeier HM, Palmer MV, Harris BN, Orloski KA, Buddle BM, Thacker
527		TC, Lyashchenko KP, Waters WR. 2010. Bovine Tuberculosis: A Review of Current and
528		Emerging Diagnostic Techniques in View of their Relevance for Disease Control and
529		Eradication. Transboundary and Emerging Diseases 57:205-220.
530	18.	Biet F, Boschiroli ML. 2014. Non-tuberculous mycobacterial infections of veterinary
531		relevance. Research in Veterinary Science 97:S69-S77.
532	19.	Gcebe N, Michel AL, Hlokwe TM. 2018. Non-tuberculous Mycobacterium species causing
533		mycobacteriosis in farmed aquatic animals of South Africa. BMC Microbiology 18:32.
534	20.	Hope JC, Thom ML, Villarreal-Ramos B, Vordermeier HM, Hewinson RG, Howard CJ. 2005.
535		Exposure to Mycobacterium avium induces low-level protection from Mycobacterium bovis
536		infection but compromises diagnosis of disease in cattle. Clinical & Experimental
537		Immunology 141:432-439.
538	21.	Álvarez J, de Juan L, Bezos J, Romero B, Sáez JL, Marqués S, Domínguez C, Mínguez O,
539		Fernández-Mardomingo B, Mateos A, Domínguez L, Aranaz A. 2009. Effect of
540		paratuberculosis on the diagnosis of bovine tuberculosis in a cattle herd with a mixed
541		infection using interferon-gamma detection assay. Veterinary Microbiology 135:389-393.
542	22.	Jenkins AO, Gormley E, Gcebe N, Fosgate GT, Conan A, Aagaard C, Michel AL, Rutten VPMG.
543		2018. Cross reactive immune responses in cattle arising from exposure to Mycobacterium
544		bovis and non-tuberculous mycobacteria. Preventive Veterinary Medicine 152:16-22.
545	23.	O'Brien D, Scudamore J, Charlier J, Delavergne M. 2017. DISCONTOOLS: a database to
546		identify research gaps on vaccines, pharmaceuticals and diagnostics for the control of
547		infectious diseases of animals. BMC Veterinary Research 13:1.
548	24.	Biomarkers Definitions Working Group. 2001. Biomarkers and surrogate endpoints:
549		Preferred definitions and conceptual framework. Clinical Pharmacology & Therapeutics
550		69:89-95.
551	25.	Strimbu K, Tavel JA. 2010. What are biomarkers? Current Opinion in HIV and AIDS 5:463-466.
552	26.	Correia CN, Nalpas NC, McLoughlin KE, Browne JA, Gordon SV, MacHugh DE, Shaughnessy
553		RG. 2017. Circulating microRNAs as Potential Biomarkers of Infectious Disease. Front
554		Immunol 8:118.
555	27.	Whittington RJ, Begg DJ, de Silva K, Purdie AC, Dhand NK, Plain KM. 2017. Case definition
556		terminology for paratuberculosis (Johne's disease). BMC Veterinary Research 13:328.
557	28.	Frahm M, Goswami ND, Owzar K, Hecker E, Mosher A, Cadogan E, Nahid P, Ferrari G, Stout
558		JE. 2011. Discriminating between latent and active tuberculosis with multiple biomarker
559		responses. Tuberculosis 91:250-256.
560	29.	Lu C, Wu J, Wang H, Wang S, Diao N, Wang F, Gao Y, Chen J, Shao L, Weng X, Zhang Y, Zhang
561		W. 2011. Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection
562		Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells. PLOS ONE
563		6:e24290.
564	30.	Wang S, Diao N, Lu C, Wu J, Gao Y, Chen J, Zhou Z, Huang H, Shao L, Jin J, Weng X, Zhang Y,
565		Zhang W. 2012. Evaluation of the Diagnostic Potential of IP-10 and IL-2 as Biomarkers for the
566		Diagnosis of Active and Latent Tuberculosis in a BCG-Vaccinated Population. PLOS ONE
567		7:e51338.

568	31.	Shu C-C, Wu M-F, Hsu C-L, Huang C-T, Wang J-Y, Hsieh S-L, Yu C-J, Lee L-N, Yang P-C. 2013.
569		Apoptosis-associated biomarkers in tuberculosis: promising for diagnosis and prognosis
570		prediction. BMC Infectious Diseases 13:45.
571	32.	Achkar JM, Prados-Rosales R. 2018. Updates on antibody functions in Mycobacterium
572		tuberculosis infection and their relevance for developing a vaccine against tuberculosis.
573		Current Opinion in Immunology 53:30-37.
574	33.	Dyatlov AV, Apt AS, Linge IA. 2019. B lymphocytes in anti-mycobacterial immune responses:
575		Pathogenesis or protection? Tuberculosis 114:1-8.
576	34.	Pooley HB, Begg DJ, Plain KM, Whittington RJ, Purdie AC, de Silva K. 2019. The humoral
577		immune response is essential for successful vaccine protection against paratuberculosis in
578		sheep. BMC Veterinary Research 15:223.
579	35.	Nielsen SS, Toft N. 2008. Ante mortem diagnosis of paratuberculosis: a review of accuracies
580		of ELISA, interferon-gamma assay and faecal culture techniques. Vet Microbiol 129.
581	36.	Li L, Wagner B, Freer H, Schilling M, Bannantine JP, Campo JJ, Katani R, Grohn YT, Radzio-
582		Basu J, Kapur V. 2017. Early detection of Mycobacterium avium subsp. paratuberculosis
583		infection in cattle with multiplex-bead based immunoassays. PLOS ONE 12:e0189783.
584	37.	Fontana S, Pacciarini M, Boifava M, Pellesi R, Casto B, Gastaldelli M, Koehler H, Pozzato N,
585		Casalinuovo F, Boniotti MB. 2018. Development and evaluation of two multi-antigen
586		serological assays for the diagnosis of bovine tuberculosis in cattle. Journal of
587		Microbiological Methods 153:118-126.
588	38.	Lyashchenko KP, Grandison A, Keskinen K, Sikar-Gang A, Lambotte P, Esfandiari J, Ireton GC,
589		Vallur A, Reed SG, Jones G, Vordermeier HM, Stabel JR, Thacker TC, Palmer MV, Waters WR.
590		2017. Identification of Novel Antigens Recognized by Serum Antibodies in Bovine
591		Tuberculosis. Clinical and vaccine immunology : CVI 24:e00259-17.
592	39.	Lyashchenko KP, Greenwald R, Sikar-Gang A, Sridhara AA, Johnathan A, Lambotte P,
593		Esfandiari J, Maggioli MF, Thacker TC, Palmer MV, Waters WR. 2017. Early Detection of
594		Circulating Antigen and IgM-Associated Immune Complexes during Experimental
595		Mycobacterium bovis Infection in Cattle. Clinical and vaccine immunology : CVI 24:e00069-
596		17.
597	40.	Tjärnlund A, Rodríguez A, Cardona P-J, Guirado E, Ivanyi J, Singh M, Troye-Blomberg M,
598		Fernández C. 2006. Polymeric IgR knockout mice are more susceptible to mycobacterial
599		infections in the respiratory tract than wild-type mice. International Immunology 18:807-
600		816.
601	41.	Begg DJ, de Silva K, Plain KM, Purdie AC, Dhand N, Whittington RJ. 2015. Specific faecal
602		antibody responses in sheep infected with Mycobacterium avium subspecies
603		paratuberculosis. Veterinary Immunology and Immunopathology 166:125-131.
604	42.	Jungersen G, Mikkelsen H, Grell SN. 2012. Use of the johnin PPD interferon-gamma assay in
605		control of bovine paratuberculosis. Veterinary Immunology and Immunopathology 148:48-
606		54.
607	43.	de Silva K, Begg DJ, Plain KM, Purdie AC, Kawaji S, Dhand NK, Whittington RJ. 2013. Can early
608	-	host responses to mycobacterial infection predict eventual disease outcomes? Preventive
609		Veterinary Medicine 112:203-212.
610	44.	Anbarasu D, Ponnu Raja C, Raja A. 2013. Multiplex analysis of cytokines/chemokines as
611		biomarkers that differentiate healthy contacts from tuberculosis patients in high endemic
612		settings. Cytokine 61:747-754.
613	45.	Singh PP, Goyal A. 2013. Interleukin-6: a potent biomarker of mycobacterial infection.
614	.5.	SpringerPlus 2:686.
615	46.	Suzukawa M, Akashi S, Nagai H, Nagase H, Nakamura H, Matsui H, Hebisawa A, Ohta K. 2016.
616		Combined Analysis of IFN-y, IL-2, IL-5, IL-10, IL-1RA and MCP-1 in QFT Supernatant Is Useful
617		for Distinguishing Active Tuberculosis from Latent Infection. PLOS ONE 11:e0152483.
017		

618	47.	Tebruegge M, Dutta B, Donath S, Ritz N, Forbes B, Camacho-Badilla K, Clifford V, Zufferey C,
619		Robins-Browne R, Hanekom W, Graham SM, Connell T, Curtis N. 2015. Mycobacteria-Specific
620		Cytokine Responses Detect Tuberculosis Infection and Distinguish Latent from Active
621		Tuberculosis. American Journal of Respiratory and Critical Care Medicine 192:485-499.
622	48.	Won EJ, Choi JH, Cho YN, Jin HM, Kee HJ, Park YW, Kwon YS, Kee SJ. 2017. Biomarkers for
623		discrimination between latent tuberculosis infection and active tuberculosis disease. J Infect
624		74:281-293.
625	49.	Wu J, Wang S, Lu C, Shao L, Gao Y, Zhou Z, Huang H, Zhang Y, Zhang W. 2017. Multiple
626	45.	cytokine responses in discriminating between active tuberculosis and latent tuberculosis
627		
	50	infection. Tuberculosis (Edinb) 102:68-75.
628	50.	Sutherland JS, de Jong BC, Jeffries DJ, Adetifa IM, Ota MOC. 2010. Production of TNF- α , IL-
629		12(p40) and IL-17 Can Discriminate between Active TB Disease and Latent Infection in a
630		West African Cohort. PLOS ONE 5:e12365.
631	51.	Biselli R, Mariotti S, Sargentini V, Sauzullo I, Lastilla M, Mengoni F, Vanini V, Girardi E, Goletti
632		D, D' Amelio R, Nisini R. 2010. Detection of interleukin-2 in addition to interferon- γ
633		discriminates active tuberculosis patients, latently infected individuals, and controls. Clinical
634		Microbiology and Infection 16:1282-1284.
635	52.	Wassie L, Demissie A, Aseffa A, Abebe M, Yamuah L, Tilahun H, Petros B, Rook G, Zumla A,
636		Andersen P, Doherty TM, for the VSG. 2008. Ex Vivo Cytokine mRNA Levels Correlate with
637		Changing Clinical Status of Ethiopian TB Patients and their Contacts Over Time. PLOS ONE
638		3:e1522.
639	53.	Sai Priya VH, Latha GS, H SE, Murthy KJR, Valluri VL. 2010. Enhanced T cell responsiveness to
640		Mycobacterium bovis BCG r32-kDa Ag correlates with successful anti-tuberculosis treatment
641		in humans. Cytokine 52:190-193.
642	54.	Smeed JA, Watkins CA, Rhind SM, Hopkins J. 2007. Differential cytokine gene expression
643		profiles in the three pathological forms of sheep paratuberculosis. BMC Veterinary Research
644		3:18.
645	55.	Tanaka S, Sato M, Onitsuka T, Kamata H, Yokomizo Y. 2005. Inflammatory Cytokine Gene
646		Expression in Different Types of Granulomatous Lesions during Asymptomatic Stages of
647		Bovine Paratuberculosis. Veterinary Pathology 42:579-588.
648	56.	Dudemaine PL, Fecteau G, Lessard M, Labrecque O, Roy JP, Bissonnette N. 2014. Increased
649		blood-circulating interferon-y, interleukin-17, and osteopontin levels in bovine
650		paratuberculosis. Journal of Dairy Science 97:3382-3393.
651	57.	Aranday-Cortes E, Hogarth PJ, Kaveh DA, Whelan AO, Villarreal-Ramos B, Lalvani A,
652	071	Vordermeier HM. 2012. Transcriptional Profiling of Disease-Induced Host Responses in
653		Bovine Tuberculosis and the Identification of Potential Diagnostic Biomarkers. PLOS ONE
654		7:e30626.
655	58.	Goosen WJ, Cooper D, Miller MA, van Helden PD, Parsons SDC. 2015. IP-10 is a sensitive
656	50.	biomarker of antigen recognition in whole blood stimulation assays used for the diagnosis of
657		Mycobacterium bovis infection in African buffaloes (Syncerus caffer). Clinical and Vaccine
658	50	Immunology doi:10.1128/cvi.00324-15.
659	59.	Waters WR, Maggioli MF, Palmer MV, Thacker TC, McGill JL, Vordermeier HM, Berney-Meyer
660		L, Jacobs WR, Larsen MH. 2016. Interleukin-17A as a Biomarker for Bovine Tuberculosis.
661	~~	Clinical and Vaccine Immunology 23:168-180.
662	60.	Clifford V, Tebruegge M, Zufferey C, Germano S, Denholm J, Street A, McBryde E, Eisen D,
663		Curtis N. 2015. Serum IP-10 in the diagnosis of latent and active tuberculosis. Journal of
664		Infection 71:696-698.
665	61.	Parsons SDC, McGill K, Doyle MB, Goosen WJ, van Helden PD, Gormley E. 2016. Antigen-
666		Specific IP-10 Release Is a Sensitive Biomarker of Mycobacterium bovis Infection in Cattle.
667		PLOS ONE 11:e0155440.

668	62.	Parsons SDC, McGill K, Doyle MB, Goosen WJ, van Helden PD, Gormley E. 2016. Antigen-
669		Specific IP-10 Release Is a Sensitive Biomarker of Mycobacterium bovis Infection in Cattle.
670		PloS one 11:e0155440-e0155440.
671	63.	Roos EO, Olea-Popelka F, Buss P, de Klerk-Lorist L-M, Cooper D, Warren RM, van Helden PD,
672		Parsons SDC, Miller MA. 2018. IP-10: A potential biomarker for detection of Mycobacterium
673		bovis infection in warthogs (Phacochoerus africanus). Veterinary Immunology and
674		Immunopathology 201:43-48.
675	64.	Zhang X, Li S, Luo Y, Chen Y, Cheng S, Zhang G, Hu C, Chen H, Guo A. 2013. Mycobacterium
676		bovis and BCG induce different patterns of cytokine and chemokine production in dendritic
677		cells and differentiation patterns in CD4+ T cells. Microbiology 159:366-379.
678	65.	Shin M-K, Park H-E, Park H-T, Jung M, Kang H-L, Baik SC, Lee W-K, Jung YH, Yoo HS. 2018.
679		Gene Expression Profiles of Th1-type Chemokines in Whole Blood of Mycobacterium avium
680		subsp. paratuberculosis-Infected Cattle. J Bacteriol Virol 48:130-136.
681	66.	Motiwala AS, Janagama HK, Paustian ML, Zhu X, Bannantine JP, Kapur V, Sreevatsan S. 2006.
682		Comparative Transcriptional Analysis of Human Macrophages Exposed to Animal and Human
683		Isolates of Mycobacterium avium Subspecies paratuberculosis with Diverse Genotypes.
684		Infection and Immunity 74:6046-6056.
685	67.	Buza JJ, Mori Y, Bari AM, Hikono Aodon-geril H, Hirayama S, Shu Y, Momotani E. 2003.
686		Mycobacterium avium subsp. paratuberculosis Infection Causes Suppression of RANTES,
687		Monocyte Chemoattractant Protein 1, and Tumor Necrosis Factor Alpha Expression in
688	60	Peripheral Blood of Experimentally Infected Cattle. Infection and Immunity 71:7223-7227.
689	68.	Gossner A, Watkins C, Chianini F, Hopkins J. 2017. Pathways and Genes Associated with
690	60	Immune Dysfunction in Sheep Paratuberculosis. Scientific Reports 7:46695.
691	69.	Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. 2012. Expression of genes
692		associated with the antigen presentation and processing pathway are consistently regulated
693		in early Mycobacterium avium subsp. paratuberculosis infection. Comparative Immunology,
694	70	Microbiology and Infectious Diseases 35:151-162.
695 695	70.	Weiss DJ, Evanson OA, McClenahan DJ, Abrahamsen MS, Walcheck BK. 2001. Regulation of
696		Expression of Major Histocompatibility Antigens by Bovine Macrophages Infected with
697 600		Mycobacterium avium subsp. paratuberculosis or Mycobacterium avium subsp. avium.
698 600	71	Infection and Immunity 69:1002-1008.
699 700	71.	Purdie AC, Plain KM, Begg DJ, de Silva K, Whittington RJ. 2019. Gene expression profiles
700		during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can
701	70	predict disease outcome. Scientific reports 9:8245-8245.
702	72.	Gago G, Diacovich L, Gramajo H. 2018. Lipid metabolism and its implication in mycobacteria–
703	73.	host interaction. Current Opinion in Microbiology 41:36-42.
704	75.	Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. 2015. Immunoevasion and immunosuppression
705 706	74.	of the macrophage by Mycobacterium tuberculosis. Immunological Reviews 264:220-232. Park HE, Park HT, Jung YH, Yoo HS. 2017. Establishment a real-time reverse transcription PCR
700	74.	based on host biomarkers for the detection of the subclinical cases of Mycobacterium avium
707		subsp. paratuberculosis. PLoS One 12:e0178336.
708	75.	Park HE, Shin MK, Park HT, Jung M, Cho YI, Yoo HS. 2016. Gene expression profiles of
710	75.	putative biomarker candidates in Mycobacterium avium subsp. paratuberculosis-infected
711		cattle. Pathog Dis 74:ftw022.
712	76.	Shin MK, Shin SW, Jung M, Park H, Park HE, Yoo HS. 2015. Host gene expression for
712	70.	Mycobacterium avium subsp. paratuberculosis infection in human THP-1 macrophages.
713		Pathog Dis 73.
714	77.	Fernández M, Benavides J, Castaño P, Elguezabal N, Fuertes M, Muñoz M, Royo M, Ferreras
716	<i>,,</i> .	MC, Pérez V. 2016. Macrophage Subsets Within Granulomatous Intestinal Lesions in Bovine
717		Paratuberculosis. Veterinary Pathology 54:82-93.
/ 1/		i aracaner curosis. Vereninary i actiology JT.02 JJ.

31

Infection and Immunity

718	78.	Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MAD, Nacken W, Foell D,
719		van der Poll T, Sorg C, Roth J. 2007. Mrp8 and Mrp14 are endogenous activators of Toll-like
720		receptor 4, promoting lethal, endotoxin-induced shock. Nature Medicine 13:1042.
721	79.	Friedland JS, Shaw TC, Price NM, Dayer JM. 2002. Differential regulation of MMP-1/9 and
722		TIMP-1 secretion in human monocytic cells in response to Mycobacterium tuberculosis.
723		Matrix Biology 21:103-110.
724	80.	Meade KG, Gormley E, Doyle MB, Fitzsimons T, O'Farrelly C, Costello E, Keane J, Zhao Y,
725		MacHugh DE. 2007. Innate gene repression associated with Mycobacterium bovis infection
726		in cattle: toward a gene signature of disease. BMC Genomics 8:400.
727	81.	Lamont EA, Janagama HK, Ribeiro-Lima J, Vulchanova L, Seth M, Yang M, Kurmi K, Waters
728		WR, Thacker T, Sreevatsan S. 2014. Circulating Mycobacterium bovis Peptides and Host
729		Response Proteins as Biomarkers for Unambiguous Detection of Subclinical Infection.
730		Journal of Clinical Microbiology 52:536-543.
731	82.	Seth M, Lamont EA, Janagama HK, Widdel A, Vulchanova L, Stabel JR, Waters WR, Palmer
732		MV, Sreevatsan S. 2009. Biomarker discovery in subclinical mycobacterial infections of
733		cattle. PLoS One 4:e5478.
734	83.	Zhong L, Taylor D, Begg DJ, Whittington RJ. 2011. Biomarker discovery for ovine
735		paratuberculosis (Johne's disease) by proteomic serum profiling. Comp Immunol Microbiol
736		Infect Dis 34:315-26.
737	84.	You Q, Verschoor CP, Pant SD, Macri J, Kirby GM, Karrow NA. 2012. Proteomic analysis of
738		plasma from Holstein cows testing positive for mycobacterium avium subsp.
739		Paratuberculosis (MAP). Veterinary Immunology and Immunopathology 148:243-251.
740	85.	Facciuolo A, Kelton DF, Mutharia LM. 2013. Novel secreted antigens of Mycobacterium
741		paratuberculosis as serodiagnostic biomarkers for Johne's disease in cattle. Clin Vaccine
742		Immunol 20:1783-91.
743	86.	Vordermeier HM, Whelan A, Cockle PJ, Farrant L, Palmer N, Hewinson RG. 2001. Use of
744		Synthetic Peptides Derived from the Antigens ESAT-6 and CFP-10 for Differential Diagnosis of
745	~-	Bovine Tuberculosis in Cattle. Clinical and Diagnostic Laboratory Immunology 8:571-578.
746	87.	Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 1987. Vesicle formation during
747		reticulocyte maturation. Association of plasma membrane activities with released vesicles
748		(exosomes). Journal of Biological Chemistry 262:9412-20.
749	88.	Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ, Kalluri R. 2017.
750		Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature
751	~~	546:498.
752	89.	Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, Kwong A, Mitsialis
753		SA, Kourembanas S. 2018. Mesenchymal Stromal Cell Exosomes Ameliorate Experimental
754		Bronchopulmonary Dysplasia and Restore Lung Function through Macrophage
755		Immunomodulation. American Journal of Respiratory and Critical Care Medicine 197:104-
756	00	116.
757	90.	Webb RL, Kaiser EE, Jurgielewicz BJ, Spellicy S, Scoville SL, Thompson TA, Swetenburg RL,
758		Hess DC, West FD, Stice SL. 2018. Human Neural Stem Cell Extracellular Vesicles Improve
759	01	Recovery in a Porcine Model of Ischemic Stroke. Stroke 49:1248-1256.
760	91.	Mathivanan S, Ji H, Simpson RJ. 2010. Exosomes: Extracellular organelles important in
761	0.2	intercellular communication. Journal of Proteomics 73:1907-1920.
762	92.	Beatty WL, Rhoades ER, Ullrich H-J, Chatterjee D, Heuser JE, Russell DG. 2000. Trafficking and
763	02	Release of Mycobacterial Lipids from Infected Macrophages. Traffic 1:235-247.
764	93.	Bhatnagar S, Schorey JS. 2007. Exosomes Released from Infected Macrophages Contain
765 766		Mycobacterium avium Glycopeptidolipids and Are Proinflammatory. The Journal of biological chemistry 282:25779-25789.
766		אוטוטצונמו נוופווווגנו א 202.25/13-25/03.

767	94.	Bhatnagar S, Shinagawa K, Castellino FJ, Schorey JS. 2007. Exosomes released from
768	0.11	macrophages infected with intracellular pathogens stimulate a proinflammatory response in
769		vitro and in vivo. Blood 110:3234-3244.
770	95.	Wang J-j, Chen C, Xie P-f, Pan Y, Tan Y-h, Tang L-j. 2014. Proteomic analysis and immune
771		properties of exosomes released by macrophages infected with Mycobacterium avium.
772		Microbes and Infection 16:283-291.
773	96.	Cheng Y, Schorey JS. 2019. Extracellular vesicles deliver Mycobacterium RNA to promote
774		host immunity and bacterial killing. EMBO reports 20:e46613.
775	97.	Alvarez-Jiménez VD, Leyva-Paredes K, García-Martínez M, Vázquez-Flores L, García-Paredes
776		VG, Campillo-Navarro M, Romo-Cruz I, Rosales-García VH, Castañeda-Casimiro J, González-
777		Pozos S, Hernández JM, Wong-Baeza C, García-Pérez BE, Ortiz-Navarrete V, Estrada-Parra S,
778		Serafín-López J, Wong-Baeza I, Chacón-Salinas R, Estrada-García I. 2018. Extracellular
779		Vesicles Released from Mycobacterium tuberculosis-Infected Neutrophils Promote
780		Macrophage Autophagy and Decrease Intracellular Mycobacterial Survival. Frontiers in
781		Immunology 9.
782	98.	Lv L, Li C, Zhang X, Ding N, Cao T, Jia X, Wang J, Pan L, Jia H, Li Z, Zhang J, Chen F, Zhang Z.
783		2017. RNA Profiling Analysis of the Serum Exosomes Derived from Patients with Active and
784		Latent Mycobacterium tuberculosis Infection. Frontiers in microbiology 8:1051-1051.
785	99.	Kruh-Garcia NA, Wolfe LM, Chaisson LH, Worodria WO, Nahid P, Schorey JS, Davis JL, Dobos
786		KM. 2014. Detection of Mycobacterium tuberculosis peptides in the exosomes of patients
787		with active and latent M. tuberculosis infection using MRM-MS. PloS one 9:e103811-
788		e103811.
789	100.	Lee RC, Feinbaum RL, Ambros V. 1993. The C. elegans heterochronic gene lin-4 encodes
790		small RNAs with antisense complementarity to lin-14. Cell 75:843-854.
791	101.	Jin W, Grant JR, Stothard P, Moore SS, Guan LL. 2009. Characterization of bovine miRNAs by
792		sequencing and bioinformatics analysis. BMC Molecular Biology 10:90-90.
793	102.	Lindow M, Kauppinen S. 2012. Discovering the first microRNA-targeted drug. The Journal of
794		Cell Biology 199:407-412.
795	103.	Ma R, Jiang T, Kang X. 2012. Circulating microRNAs in cancer: origin, function and
796		application. Journal of Experimental & Clinical Cancer Research : CR 31:38-38.
797	104.	Rosenfeld N, Aharonov R, Meiri E, Rosenwald S, Spector Y, Zepeniuk M, Benjamin H, Shabes
798		N, Tabak S, Levy A, Lebanony D, Goren Y, Silberschein E, Targan N, Ben-Ari A, Gilad S, Sion-
799		Vardy N, Tobar A, Feinmesser M, Kharenko O, Nativ O, Nass D, Perelman M, Yosepovich A,
800		Shalmon B, Polak-Charcon S, Fridman E, Avniel A, Bentwich I, Bentwich Z, Cohen D, Chajut A,
801		Barshack I. 2008. MicroRNAs accurately identify cancer tissue origin. Nat Biotech 26:462-
802	105	469.
803	105.	Wiggins JF, Ruffino L, Kelnar K, Omotola M, Patrawala L, Brown D, Bader AG. 2010.
804		Development of a Lung Cancer Therapeutic Based on the Tumor Suppressor MicroRNA-34.
805	100	Cancer Research 70:5923-5930.
806	106.	Friedman RC, Farh KK-H, Burge CB, Bartel DP. 2009. Most mammalian mRNAs are conserved
807	107	targets of microRNAs. Genome Research 19:92-105.
808 809	107.	Hutvágner G, Zamore PD. 2002. A microRNA in a Multiple-Turnover RNAi Enzyme Complex. Science 297:2056-2060.
809 810	108.	Bartel DP. 2004. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 116:281-
810 811	108.	297.
811	109.	Peng Y, Croce CM. 2016. The role of MicroRNAs in human cancer. Signal Transduction And
012	109.	reng i, ciole civi. 2010. The fole of Million NAS III Huffidi Calicel. Signal ItalisQUCLION AND

813 Targeted Therapy 1:15004.

- 814 110. Calin GA, Croce CM. 2006. MicroRNA signatures in human cancers. Nat Rev Cancer 6.
- Taylor DD, Gercel-Taylor C. 2008. MicroRNA signatures of tumor-derived exosomes as
 diagnostic biomarkers of ovarian cancer. Gynecologic Oncology 110:13-21.

 $\overline{\triangleleft}$

817	112.	Ueberberg B, Kohns M, Mayatepek E, Jacobsen M. 2014. Are microRNAs suitable biomarkers
818		of immunity to tuberculosis? Molecular and Cellular Pediatrics 1:8.
819	113.	Volinia S, Calin GA, Liu C-G, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C,
820		Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC,
821		Croce CM. 2006. A microRNA expression signature of human solid tumors defines cancer
822		gene targets. Proceedings of the National Academy of Sciences of the United States of
823		America 103:2257-2261.
824	114.	Barry SE, Ellis M, Yang Y, Guan G, Wang X, Britton WJ, Saunders BM. 2018. Identification of a
825		plasma microRNA profile in untreated pulmonary tuberculosis patients that is modulated by
826		anti-mycobacterial therapy. Journal of Infection 77:341-348.
827	115.	Barry SE, Chan B, Ellis M, Yang Y, Plit ML, Guan G, Wang X, Britton WJ, Saunders BM. 2015.
828		Identification of miR-93 as a suitable miR for normalizing miRNA in plasma of tuberculosis
829		patients. Journal of Cellular and Molecular Medicine 19:1606-1613.
830	116.	Huang RS, Gamazon ER, Ziliak D, Wen Y, Im HK, Zhang W, Wing C, Duan S, Bleibel WK, Cox
831		NJ, Dolan ME. 2011. Population differences in microRNA expression and biological
832		implications. RNA biology 8:692-701.
833	117.	Duffy FJ, Thompson E, Downing K, Suliman S, Mayanja-Kizza H, Boom WH, Thiel B, Weiner Iii
834	/.	J, Kaufmann SHE, Dover D, Tabb DL, Dockrell HM, Ottenhoff THM, Tromp G, Scriba TJ, Zak
835		DE, Walzl G, Consortium GC. 2018. A Serum Circulating miRNA Signature for Short-Term Risk
836		of Progression to Active Tuberculosis Among Household Contacts. Frontiers in immunology
837		9:661-661.
838	118.	Miotto P, Mwangoka G, Valente IC, Norbis L, Sotgiu G, Bosu R, Ambrosi A, Codecasa LR,
839	110.	Goletti D, Matteelli A, Ntinginya EN, Aloi F, Heinrich N, Reither K, Cirillo DM. 2013. miRNA
840		Signatures in Sera of Patients with Active Pulmonary Tuberculosis. PLOS ONE 8:e80149.
840 841	119.	Zhang X, Guo J, Fan S, Li Y, Wei L, Yang X, Jiang T, Chen Z, Wang C, Liu J, Ping Z, Xu D, Wang J,
841	119.	Li Z, Qiu Y, Li J-C. 2013. Screening and Identification of Six Serum microRNAs as Novel
843		Potential Combination Biomarkers for Pulmonary Tuberculosis Diagnosis. PLOS ONE
843 844		8:e81076.
844 845	120.	Abd-El-Fattah AA, Sadik NAH, Shaker OG, Aboulftouh ML. 2013. Differential MicroRNAs
845 846	120.	Expression in Serum of Patients with Lung Cancer, Pulmonary Tuberculosis, and Pneumonia.
840 847		Cell Biochemistry and Biophysics 67:875-884.
848	121.	Fu Y, Yi Z, Wu X, Li J, Xu F. 2011. Circulating MicroRNAs in Patients with Active Pulmonary
848 849	121.	Tuberculosis. Journal of Clinical Microbiology 49:4246-4251.
849 850	122.	Qi Y, Cui L, Ge Y, Shi Z, Zhao K, Guo X, Yang D, Yu H, Cui L, Shan Y, Zhou M, Wang H, Lu Z.
850 851	122.	2012. Altered serum microRNAs as biomarkers for the early diagnosis of pulmonary
851		tuberculosis infection. BMC Infectious Diseases 12:384-384.
853	123.	Farrell D, Shaughnessy RG, Britton L, David E, Mac H, Bryan M, Stephen VG. 2015. The
853 854	125.	Identification of Circulating MiRNA in Bovine Serum and Their Potential as Novel Biomarkers
		•
855	124	of Early Mycobacterium avium subsp paratuberculosis Infection. PLoS ONE 10.
856	124.	Liang G, Malmuthuge N, Guan Y, Ren Y, Griebel PJ, Guan LL. 2016. Altered microRNA
857		expression and pre-mRNA splicing events reveal new mechanisms associated with early
858		stage Mycobacterium avium subspecies paratuberculosis infection. Scientific Reports
859	425	6:24964.
860	125.	Shaughnessy RG, Farrell D, Riepema K, Bakker D, Stephen V, Gordon SV. 2015. Analysis of
861		Biobanked Serum from a Mycobacterium avium subsp paratuberculosis Bovine Infection
862		Model Confirms the Remarkable Stability of Circulating miRNA Profiles and Defines a Bovine
863		Serum miRNA Repertoire. PLoS ONE 10.
864	126.	Vegh P, Magee DA, Nalpas NC, Bryan K, McCabe MS, Browne JA, Conlon KM, Gordon SV,
865		Bradley DG, MacHugh DE, Lynn DJ. 2015. MicroRNA profiling of the bovine alveolar
866		macrophage response to Mycobacterium bovis infection suggests pathogen survival is

867		enhanced by microRNA regulation of endocytosis and lysosome trafficking. Tuberculosis
868		95:60-67.
869	127.	Gupta SK, Maclean PH, Ganesh S, Shu D, Buddle BM, Wedlock DN, Heiser A. 2018. Detection
870		of microRNA in cattle serum and their potential use to diagnose severity of Johne's disease.
871		Journal of Dairy Science 101:10259-10270.
872	128.	Golby P, Villarreal-Ramos B, Dean G, Jones GJ, Vordermeier M. 2014. MicroRNA expression
873		profiling of PPD-B stimulated PBMC from M. bovis-challenged unvaccinated and BCG
874		vaccinated cattle. Vaccine 32:5839-5844.
875	129.	Farrell D, Shaughnessy RG, Britton L, MacHugh DE, Markey B, Gordon SV. 2015. The
876		Identification of Circulating MiRNA in Bovine Serum and Their Potential as Novel Biomarkers
877		of Early Mycobacterium avium subsp paratuberculosis Infection. PLoS One 10:e0134310.
878	130.	Malvisi M, Palazzo F, Morandi N, Lazzari B, Williams JL, Pagnacco G, Minozzi G. 2016.
879		Responses of Bovine Innate Immunity to Mycobacterium avium subsp. paratuberculosis
880		Infection Revealed by Changes in Gene Expression and Levels of MicroRNA. PLOS ONE
881		11:e0164461.
882	131.	Shaughnessy RG, Farrell D, Riepema K, Bakker D, Gordon SV. 2015. Analysis of Biobanked
883		Serum from a Mycobacterium avium subsp paratuberculosis Bovine Infection Model
884		Confirms the Remarkable Stability of Circulating miRNA Profiles and Defines a Bovine Serum
885	400	miRNA Repertoire. PLoS One 10:e0145089.
886	132.	Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR, Kwon JH. 2010.
887		Identification of MicroRNAs Associated with Ileal and Colonic Crohn's Disease. Inflammatory
888	177	bowel diseases 16:1729-1738.
889	133.	Xu Z, Zhou A, Ni J, Zhang Q, Wang Y, Lu J, Wu W, Karakousis PC, Lu S, Yao Y. 2015.
890		Differential expression of miRNAs and their relation to active tuberculosis. Tuberculosis
891	174	95:395-403.
892	134.	Yi Z, Fu Y, Ji R, Li R, Guan Z. 2012. Altered microRNA Signatures in Sputum of Patients with
893 804	125	Active Pulmonary Tuberculosis. PLOS ONE 7:e43184.
894 895	135.	Iannaccone M, Cosenza G, Pauciullo A, Garofalo F, Proroga YT, Capuano F, Capparelli R.
896		2018. Milk microRNA-146a as a potential biomarker in bovine tuberculosis. Journal of Dairy Research 85:178-180.
890 897	136.	Li S, Yue Y, Xu W, Xiong S. 2013. MicroRNA-146a Represses Mycobacteria-Induced
898	150.	Inflammatory Response and Facilitates Bacterial Replication via Targeting IRAK-1 and TRAF-
899		6. PLoS ONE 8:e81438.
900	137.	Roos J, Enlund E, Funcke J-B, Tews D, Holzmann K, Debatin K-M, Wabitsch M, Fischer-
901	157.	Posovszky P. 2016. miR-146a-mediated suppression of the inflammatory response in human
902		adipocytes. 6:38339.
903	138.	Li M, Wang J, Fang Y, Gong S, Li M, Wu M, Lai X, Zeng G, Wang Y, Yang K, Huang X. 2016.
904	100.	microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric
905		oxide production. Scientific Reports 6:23351.
906	139.	Wu D, Cerutti C, Lopez-Ramirez MA, Pryce G, King-Robson J, Simpson JE, van der Pol SMA,
907	100.	Hirst MC, de Vries HE, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA. 2015. Brain
908		endothelial miR-146a negatively modulates T-cell adhesion through repressing multiple
909		targets to inhibit NF-κB activation. Journal of Cerebral Blood Flow & Metabolism 35:412-423.
910	140.	Naqvi AR, Fordham JB, Nares S. 2015. miR-24, miR-30b and miR-142-3p regulate
911		phagocytosis in myeloid inflammatory cells. Journal of immunology (Baltimore, Md : 1950)
912		194:1916-1927.
913	141.	Xu G, Zhang Z, Wei J, Zhang Y, Zhang Y, Guo L, Liu X. 2013. microR-142-3p down-regulates
914		IRAK-1 in response to Mycobacterium bovis BCG infection in macrophages. Tuberculosis
915		93:606-611.
916	142.	Kumar R, Halder P, Sahu SK, Kumar M, Kumari M, Jana K, Ghosh Z, Sharma P, Kundu M, Basu
917		J. 2012. Identification of a novel role of ESAT-6-dependent miR-155 induction during

918		infection of macrophages with Mycobacterium tuberculosis. Cellular Microbiology 14:1620-
919		1631.
920	143.	Qin Y, Wang Q, Zhou Y, Duan Y, Gao Q. 2016. Inhibition of IFN-γ-Induced Nitric Oxide
921		Dependent Antimycobacterial Activity by miR-155 and C/EBP eta . International Journal of
922		Molecular Sciences 17:535.
923	144.	Ceppi M, Pereira PM, Dunand-Sauthier I, Barras E, Reith W, Santos MA, Pierre P. 2009.
924		MicroRNA-155 modulates the interleukin-1 signaling pathway in activated human monocyte-
925		derived dendritic cells. Proceedings of the National Academy of Sciences of the United States
926		of America 106:2735-2740.
927	145.	Martinez-Nunez RT, Louafi F, Friedmann PS, Sanchez-Elsner T. 2009. MicroRNA-155
928		Modulates the Pathogen Binding Ability of Dendritic Cells (DCs) by Down-regulation of DC-
929		specific Intercellular Adhesion Molecule-3 Grabbing Non-integrin (DC-SIGN). The Journal of
930		Biological Chemistry 284:16334-16342.
931	146.	Sharbati J, Lewin A, Kutz-Lohroff B, Kamal E, Einspanier R, Sharbati S. 2011. Integrated
932		MicroRNA-mRNA-Analysis of Human Monocyte Derived Macrophages upon Mycobacterium
933		avium subsp. hominissuis Infection. PLOS ONE 6:e20258.
934	147.	Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, Hua M, Li N, Yao H, Cao X. 2011. The microRNA miR-
935		29 controls innate and adaptive immune responses to intracellular bacterial infection by
936		targeting interferon-[gamma]. Nat Immunol 12:861-869.
937	148.	Liu Y, Jiang J, Wang X, Zhai F, Cheng X. 2013. miR-582-5p Is Upregulated in Patients with
938		Active Tuberculosis and Inhibits Apoptosis of Monocytes by Targeting FOXO1. PLOS ONE
939		8:e78381.
940	149.	Ghorpade DS, Leyland R, Kurowska-Stolarska M, Patil SA, Balaji KN. 2012. MicroRNA-155 is
941		required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol Cell Biol
942		32:2239-53.
943	150.	Wu Z, Lu H, Sheng J, Li L. 2012. Inductive microRNA-21 impairs anti-mycobacterial responses
944		by targeting IL-12 and Bcl-2. FEBS Letters 586:2459-2467.
945	151.	Fabbri M, Paone A, Calore F, Galli R, Gaudio E, Santhanam R, Lovat F, Fadda P, Mao C, Nuovo
946		GJ, Zanesi N, Crawford M, Ozer GH, Wernicke D, Alder H, Caligiuri MA, Nana-Sinkam P,
947		Perrotti D, Croce CM. 2012. MicroRNAs bind to Toll-like receptors to induce prometastatic
948		inflammatory response. Proceedings of the National Academy of Sciences of the United
949	450	States of America 109:E2110-E2116.
950	152.	Jansen KU, Anderson AS. 2018. The role of vaccines in fighting antimicrobial resistance
951	450	(AMR). Human vaccines & immunotherapeutics 14:2142-2149.
952	153.	Begg DJ, Purdie AC, de Silva K, Dhand NK, Plain KM, Whittington RJ. 2017. Variation in
953 954		susceptibility of different breeds of sheep to Mycobacterium avium subspecies
954 955	154.	paratuberculosis following experimental inoculation. Veterinary Research 48:36. Lee H, Stabel JR, Kehrli ME. 2001. Cytokine gene expression in ileal tissues of cattle infected
955 956	154.	with Mycobacterium paratuberculosis. Veterinary Immunology and Immunopathology
957		82:73-85.
958	155.	Borrmann E, Möbius P, Diller R, Köhler H. 2011. Divergent cytokine responses of
959 959	155.	macrophages to Mycobacterium avium subsp. paratuberculosis strains of Types II and III in a
960		standardized in vitro model. Veterinary Microbiology 152:101-111.
961	156.	Coussens PM, Verman N, Coussens MA, Elftman MD, McNulty AM. 2004. Cytokine Gene
962	150.	Expression in Peripheral Blood Mononuclear Cells and Tissues of Cattle Infected with
963		Mycobacterium avium subsp. paratuberculosis: Evidence for an Inherent Proinflammatory
964		Gene Expression Pattern. Infection and Immunity 72:1409-1422.
965	157.	Schwarz DGG, Pietralonga PAG, Souza MCC, Carvalho IA, Cruzeiro RS, Malaquias JV,
966	_2	Benjamin LA, Silva Júnior A, Moreira MAS. 2015. Cytokine gene expression and molecular
967		detection of Mycobacterium avium subspecies paratuberculosisin organs of experimentally
968		infected mice. Pesquisa Veterinária Brasileira 35:396-402.
		• • • • • • •

969	158.	Berry A, Wu C-w, Venturino AJ, Talaat AM. 2018. Biomarkers for Early Stages of Johne's
970	450	Disease Infection and Immunization in Goats. Frontiers in Microbiology 9.
971	159.	Palmer MV, Thacker TC, Waters WR. 2016. Multinucleated giant cell cytokine expression in
972		pulmonary granulomas of cattle experimentally infected with Mycobacterium bovis.
973	100	Veterinary Immunology and Immunopathology 180:34-39.
974 975	160.	Thacker TC, Palmer MV, Waters WR. 2007. Associations between cytokine gene expression
975 976		and pathology in Mycobacterium bovis infected cattle. Veterinary Immunology and Immunopathology 119:204-213.
970 977	161.	Witchell J, Maddipatla SVPK, Wangoo A, Vordermeier M, Goyal M. 2010. Time dependent
978	101.	expression of cytokines in Mycobacterium bovis infected cattle lymph nodes. Veterinary
978 979		Immunology and Immunopathology 138:79-84.
980	162.	Widdison S, Schreuder LJ, Villarreal-Ramos B, Howard CJ, Watson M, Coffey TJ. 2006.
981	102.	Cytokine expression profiles of bovine lymph nodes: effects of Mycobacterium bovis
982		infection and bacille Calmette-Guerin vaccination. Clin Exp Immunol 144.
983	163.	Palmer MV, Thacker TC, Waters WR. 2016. Differential Cytokine Gene Expression in
984	2001	Granulomas from Lungs and Lymph Nodes of Cattle Experimentally Infected with
985		Aerosolized Mycobacterium bovis. PLOS ONE 11:e0167471.
986	164.	Hodgkinson JW, Ge J-Q, Grayfer L, Stafford J, Belosevic M. 2012. Analysis of the immune
987		response in infections of the goldfish (Carassius auratus L.) with Mycobacterium marinum.
988		Developmental & Comparative Immunology 38:456-465.
989	165.	Siad S, Byrne S, Mukamolova G, Stover C. 2016. Intracellular localisation of Mycobacterium
990		marinum in mast cells. World Journal of Immunology 27:83-95.
991	166.	Weerdenburg EM, Abdallah AM, Mitra S, de Punder K, van der Wel NN, Bird S, Appelmelk BJ,
992		Bitter W, van der Sar AM. 2012. ESX-5-deficient Mycobacterium marinum is hypervirulent in
993		adult zebrafish. Cellular Microbiology 14:728-739.
994	167.	Abdallah AM, Savage NDL, van Zon M, Wilson L, Vandenbroucke-Grauls CMJE, van der Wel
995		NN, Ottenhoff THM, Bitter W. 2008. The ESX-5 Secretion System of Mycobacterium marinum
996		Modulates the Macrophage Response. The Journal of Immunology 181:7166.
997	168.	Grayfer L, Hodgkinson JW, Belosevic M. 2011. Analysis of the antimicrobial responses of
998		primary phagocytes of the goldfish (Carassius auratus L.) against Mycobacterium marinum.
999		Developmental & Comparative Immunology 35:1146-1158.
1000	169.	Thegerström J, Jönsson B, Brudin L, Olsen B, Wold AE, Ernerudh J, Friman V. 2012.
1001		Mycobacterium avium subsp. avium and subsp. hominissuis give different cytokine
1002		responses after in vitro stimulation of human blood mononuclear cells. PloS one 7:e34391-
1003	170	e34391.
1004 1005	170.	Vankayalapati R, Wizel B, Samten B, Griffith DE, Shams H, Galland MR, von Reyn CF, Girard WM, Wallace RJ, Jr., Barnes PF. 2001. Cytokine Profiles in Immunocompetent Persons
1005		Infected with Mycobacterium avium Complex. The Journal of Infectious Diseases 183:478-
		484.
1007 1008	171.	Fulya I, Mehmet O, Handan A, Vedat B. 2006. Cytokine measurement in lymphocyte culture
1000	1/1.	supernatant of inactive lepromatous leprosy patients. Indian J Med Microbiol 24:121-123.
1010	172.	Masaki T, McGlinchey A, Cholewa-Waclaw J, Qu J, Tomlinson SR, Rambukkana A. 2013.
1011		Innate Immune Response Precedes Mycobacterium leprae–Induced Reprogramming of
1012		Adult Schwann Cells. Cellular Reprogramming 16:9-17.
1013	173.	Kim S-H, Cho S-N, Lim Y-J, Choi J-A, Lee J, Go D, Song C-H. 2018. Phagocytosis influences the
1014		intracellular survival of Mycobacterium smegmatis via the endoplasmic reticulum stress
1015		response. Cell & Bioscience 8:52.
1016	174.	Beltan E, Horgen L, Rastogi N. 2000. Secretion of cytokines by human macrophages upon
1017		infection by pathogenic and non-pathogenic mycobacteria. Microb Pathog 28:313-8.

1018	175.	Park H-E, Park H-T, Jung YH, Yoo HS. 2018. Gene expression profiles of immune-regulatory
1019		genes in whole blood of cattle with a subclinical infection of Mycobacterium avium subsp.
1020		paratuberculosis. PLOS ONE 13:e0196502.
1021	176.	Johansen MD, de Silva K, Plain KM, Whittington RJ, Purdie AC. 2019. Mycobacterium avium
1022		subspecies paratuberculosis is able to manipulate host lipid metabolism and accumulate
1023		cholesterol within macrophages. Microbial Pathogenesis 130:44-53.
1024	177.	Cha SB, Yoo A, Park HT, Sung KY, Shin MK, Yoo HS. 2013. Analysis of Transcriptional Profiles
1025		to Discover Biomarker Candidates in Mycobacterium avium subsp. paratuberculosis-Infected
1026		Macrophages, RAW 264.7. J Microbiol Biotechnol 23:1167-1175.
1027	178.	Thirunavukkarasu S, Plain KM, de Silva K, Begg D, Whittington RJ, Purdie AC. 2014.
1028		Expression of genes associated with cholesterol and lipid metabolism identified as a novel
1029		pathway in the early pathogenesis of Mycobacterium avium subspecies paratuberculosis-
1030		infection in cattle. Veterinary Immunology and Immunopathology 160:147-157.
1031	179.	Weiss DJ, Evanson OA, Deng M, Abrahamsen MS. 2004. Gene Expression and Antimicrobial
1032		Activity of Bovine Macrophages in Response to Mycobacterium avium subsp.
1033		paratuberculosis. Veterinary Pathology Online 41:326-337.
1034	180.	Coussens PM, Colvin CJ, Wiersma K, Abouzied A, Sipkovsky S. 2002. Gene expression
1035		profiling of peripheral blood mononuclear cells from cattle infected with Mycobacterium
1036		paratuberculosis. Infect Immun 70.
1037	181.	Naranjo V, Höfle U, Vicente J, Martín MP, Ruiz-Fons F, Gortazar C, Kocan KM, de la Fuente J.
1038		2006. Genes differentially expressed in oropharyngeal tonsils and mandibular lymph nodes
1039		of tuberculous and nontuberculous European wild boars naturally exposed to
1040	402	Mycobacterium bovis. FEMS Immunology & Medical Microbiology 46:298-312.
1041	182.	Galindo RC, Ayoubi P, Naranjo V, Gortazar C, Kocan KM, de la Fuente J. 2009. Gene
1042		expression profiles of European wild boar naturally infected with Mycobacterium bovis.
1043	100	Veterinary Immunology and Immunopathology 129:119-125.
1044	183.	Shukla SK, Shukla S, Chauhan A, Sarvjeet, Khan R, Ahuja A, Singh LV, Sharma N, Prakash C,
1045		Singh AV, Panigrahi M. 2017. Differential gene expression in Mycobacterium bovis
1046	104	challenged monocyte-derived macrophages of cattle. Microbial Pathogenesis 113:480-489.
1047	184.	Killick KE, Browne JA, Park SDE, Magee DA, Martin I, Meade KG, Gordon SV, Gormley E,
1048		O'Farrelly C, Hokamp K, MacHugh DE. 2011. Genome-wide transcriptional profiling of
1049		peripheral blood leukocytes from cattle infected with Mycobacterium bovis reveals
1050	105	suppression of host immune genes. BMC genomics 12:611-611.
1051	185.	Chen L, Liu Z, Su Y, Wang D, Yin B, Shu B, Zhang J, Zhu X, Jia C. 2017. Characterization of
1052 1053		Mycobacterium marinum infections in zebrafish wounds and sinus tracts. Wound Repair and Regeneration 25:536-540.
1053	186.	Benard EL, Rougeot J, Racz PI, Spaink HP, Meijer AH. 2016. Chapter Eight - Transcriptomic
1054	100.	Approaches in the Zebrafish Model for Tuberculosis—Insights Into Host- and Pathogen-
1055		specific Determinants of the Innate Immune Response, p 217-251. In Foulkes NS (ed),
1050		Advances in Genetics, vol 95. Academic Press.
1057	187.	McGarvey JA, Wagner D, Bermudez LE. 2004. Differential gene expression in mononuclear
1058	107.	phagocytes infected with pathogenic and non-pathogenic mycobacteria. Clinical &
1055		Experimental Immunology 136:490-500.
1061	188.	Sun Y, Liu H, Yu G, Chen X, Liu H, Tian H, Zhou G, Zhang F. 2011. Gene expression analysis of
1061	100.	leprosy by using a multiplex branched DNA assay. Experimental Dermatology 20:520-522.
1062	189.	Geluk A, van Meijgaarden KE, Wilson L, Bobosha K, van der Ploeg-van Schip JJ, van den
1063	109.	Eeden SJF, Quinten E, Dijkman K, Franken KLMC, Haisma EM, Haks MC, van Hees CLM,
1065		Ottenhoff THM. 2014. Longitudinal Immune Responses and Gene Expression Profiles in Type
1065		1 Leprosy Reactions. Journal of Clinical Immunology 34:245-255.
1000		- Lepiosy Acaetons, Journal of Chinear minunology J4.243-233.

1067	190.	El-Deeb PDW, Fouda T, El-Bahr S. 2014. Clinico-biochemical Investigation of Paratuberculosis
1068		of Dromedary Camels in Saudi Arabia: Proinflammatory Cytokines, Acute Phase Proteins and
1069		Oxidative Stress Biomarkers, vol 34.
1070	191.	Piras C, Soggiu A, Greco V, Alloggio I, Bonizzi L, Roncada P. 2015. Peptidomics in veterinary
1071		science: focus on bovine paratuberculosis, vol 2.
1072	192.	Lopez V, van der Heijden E, Villar M, Michel A, Alberdi P, Gortázar C, Rutten V, de la Fuente J.
1073		2018. Comparative proteomics identified immune response proteins involved in response to
1074		vaccination with heat-inactivated Mycobacterium bovis and mycobacterial challenge in
1075		cattle. Veterinary Immunology and Immunopathology 206:54-64.
1076	193.	Li P, Wang R, Dong W, Hu L, Zong B, Zhang Y, Wang X, Guo A, Zhang A, Xiang Y, Chen H, Tan
1077		C. 2017. Comparative Proteomics Analysis of Human Macrophages Infected with Virulent
1078		Mycobacterium bovis. Frontiers in Cellular and Infection Microbiology 7.
1079	194.	Stamm LM, Pak MA, Morisaki JH, Snapper SB, Rottner K, Lommel S, Brown EJ. 2005. Role of
1080		the WASP family proteins for Mycobacterium marinum actin tail formation.
1081		Proceedings of the National Academy of Sciences of the United States of America
1082		102:14837-14842.
1083	195.	Stamm LM, Morisaki JH, Gao L-Y, Jeng RL, McDonald KL, Roth R, Takeshita S, Heuser J, Welch
1084		MD, Brown EJ. 2003. Mycobacterium marinum Escapes from Phagosomes and Is
1085		Propelled by Actin-based Motility. The Journal of Experimental Medicine 198:1361-1368.
1086	196.	Babrak L, Bermudez LE. 2018. Response of the respiratory mucosal cells to mycobacterium
1087		avium subsp. Hominissuis microaggregate. Archives of Microbiology 200:729-742.
1088	197.	Babrak L, Danelishvili L, Rose SJ, Kornberg T, Bermudez LE. 2015. The environment of
1089		"Mycobacterium avium subsp. hominissuis" microaggregates induces synthesis of small
1090		proteins associated with efficient infection of respiratory epithelial cells. Infection and
1091		immunity 83:625-636.
1092	198.	Yang D, Fu X, He S, Ning X, Ling M. 2017. Analysis of Differentially Expressed Proteins in
1093		Mycobacterium avium-Infected Macrophages Comparing with Mycobacterium tuberculosis-
1094		Infected Macrophages. BioMed Research International 2017:9.
1095	199.	Goulart LR, Goulart IMB. 2009. Leprosy pathogenetic background: a review and lessons from
1096		other mycobacterial diseases. Archives of Dermatological Research 301:123-137.
1097	200.	Pinheiro RO, de Souza Salles J, Sarno EN, Sampaio EP. 2011. Mycobacterium leprae-host-cell
1098		interactions and genetic determinants in leprosy: an overview. Future microbiology 6:217-
1099		
1100	201.	Bohsali A, Abdalla H, Velmurugan K, Briken V. 2010. The non-pathogenic mycobacteria M.
1101		smegmatis and M. fortuitum induce rapid host cell apoptosis via a caspase-3 and TNF
1102		dependent pathway. BMC Microbiology 10:237.
1103	202.	Hussain T, Zhao D, Shah SZA, Wang J, Yue R, Liao Y, Sabir N, Yang L, Zhou X. 2018. MicroRNA
1104		27a-3p Regulates Antimicrobial Responses of Murine Macrophages Infected by
1105		Mycobacterium avium subspecies paratuberculosis by Targeting Interleukin-10 and TGF-β-
1106		Activated Protein Kinase 1 Binding Protein 2. Frontiers in Immunology 8.
1107	203.	Furci L, Schena E, Miotto P, Cirillo DM. 2013. Alteration of human macrophages microRNA
1108		expression profile upon infection with Mycobacterium tuberculosis. International Journal of
1109	204	Mycobacteriology 2:128-134.
1110	204.	Ordas A, Kanwal Z, Lindenberg V, Rougeot J, Mink M, Spaink HP, Meijer AH. 2013.
1111		MicroRNA-146 function in the innate immune transcriptome response of zebrafish embryos
1112	205	to Salmonella typhimurium infection. BMC Genomics 14:696.
1113	205.	Liu PT, Wheelwright M, Teles R, Komisopoulou E, Edfeldt K, Ferguson B, Mehta MD, Vazirnia
1114 1115		A, Rea TH, Sarno EN, Graeber TG, Modlin RL. 2012. MicroRNA-21 targets the vitamin D– dependent antimicrobial pathway in leprosy. Nature Medicine 18:267.
1115		uepenuent antimicropial patriway in reprosy. Nature Medicine 18:267.

Infection and Immunity

 $\overline{\triangleleft}$

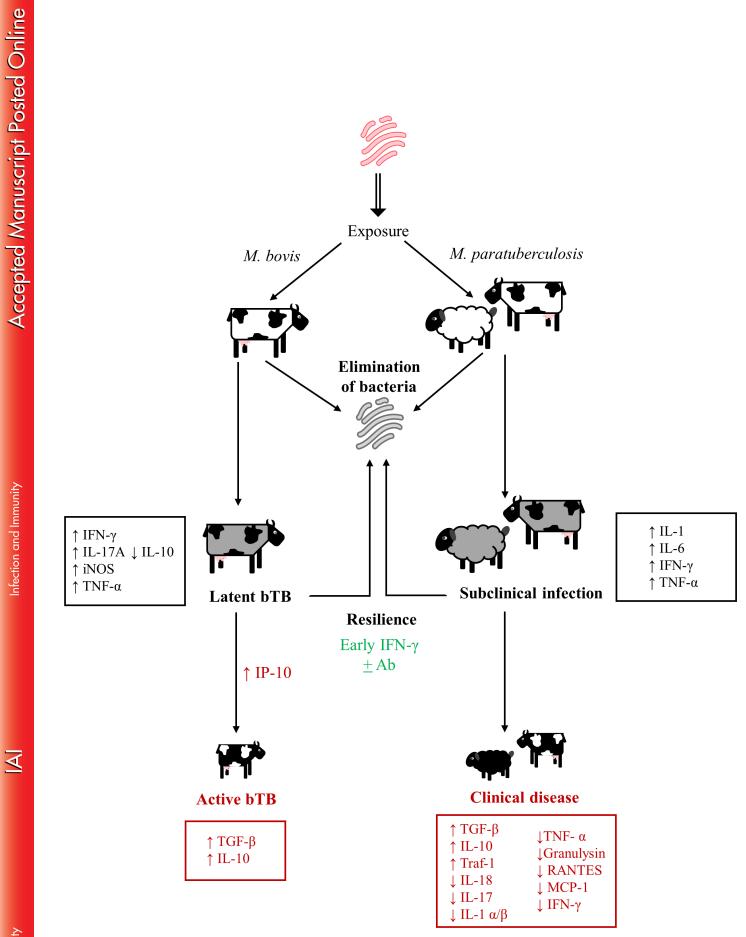
1116 1117 1118	206.	Soares CT, Trombone APF, Fachin LRV, Rosa PS, Ghidella CC, Ramalho RF, Pinilla MG, Carvalho AF, Carrara DN, Soares FA, Belone AFF. 2017. Differential Expression of MicroRNAs in Leprosy Skin Lesions. Frontiers in Immunology 8.
1119	207.	Rajaram MVS, Ni B, Morris JD, Brooks MN, Carlson TK, Bakthavachalu B, Schoenberg DR,
1120		Torrelles JB, Schlesinger LS. 2011. Mycobacterium tuberculosis lipomannan
1121		blocks TNF biosynthesis by regulating macrophage MAPK-activated protein kinase 2 (MK2)
1122		and microRNA miR-125b. Proceedings of the National Academy of Sciences 108:17408-
1123		17413.
1124	208.	Bettencourt P, Marion S, Pires D, Santos L, Lastrucci C, Carmo N, Blake J, Benes V, Griffiths G,
1125		Neyrolles O, Lugo-Villarino G, Anes E. 2013. Actin-binding protein regulation by microRNAs
1126		as a novel microbial strategy to modulate phagocytosis by host cells: the case of N-Wasp and
1127		miR-142-3p. Frontiers in Cellular and Infection Microbiology 3.
1128		

1129 Figure Legends:

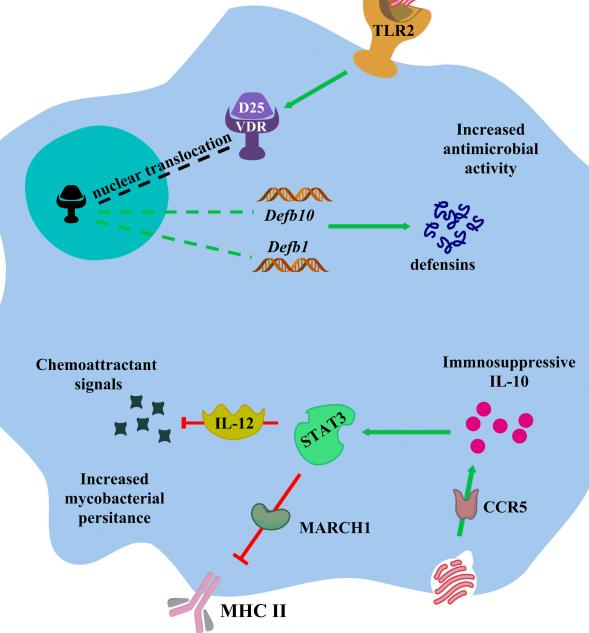
1130 Figure 1. Immunological markers predictive or associated with stages of mycobacterial infection. 1131 Following exposure to mycobacterial pathogens, hosts may have either a successful immune 1132 response to eliminate the bacteria before an infection is established, or may progress along the 1133 spectrum of disease. When the pathogen remains in the host system and is able to persist, the 1134 infection remains latent/subclinical. At this stage in latent bTB, the IFN-y and proinflammatory 1135 response is also elevated, and coupled with a decrease in anti-inflammatory IL-10. In 1136 paratuberculosis, during the subclinical infection stage, there is an increase in a number of 1137 proinflammatory cytokines. From here, the animal may successfully control the infection and 1138 eliminate the bacteria (termed 'Resilience'), or progress to clinical disease. An early, elevated IFN-y 1139 and antibody response is observed in infected sheep that progress down a pathway of Resilience to 1140 disease. During clinical disease, the response is primarily anti-inflammatory, with a decrease in key 1141 proinflammatory cytokines. A similar response is observed in active bTB, where the immune 1142 responses favours anti-inflammatory cytokines such as IL-10 and TGF-β. Elevated IP-10 levels may be 1143 predictive of animals that will develop active bTB.

Figure 2. Host biomarker responses to mycobacterial infection. Potential biomarkers for 1144 1145 mycobacterial infection play many different roles in the host response. Some commonly 1146 measured biomarkers and the likelihood of either a successful host response or successful 1147 modulation of the response by the pathogen are shown here. Vitamin-D is a key 1148 antimicrobial agent involved in mycobacterial infections. Host upregulation of the Vitamin D 1149 receptor (VDR) and the subsequent binding of Vitamin D (D25/calcitriol) triggers nuclear 1150 translocation and specific cellular responses. A resulting increase in genes such as Defb1/10 1151 and the production of antimicrobial defensins reduce bacterial burden and facilitate 1152 mycobacterial killing. An opposing response favouring mycobacterial persistence is associated with an increase in IL-10 and a subsequent upregulation of STAT3 transcription. 1153 1154 Acting through MARCH1, STAT3 is able to reduce MHCII expression and therefore reduces 1155 further antigen presentation. Concurrently, increased levels of STAT3 block the release of chemoattractant signals from IL-12 to prevent an influx of immune cells. 1156

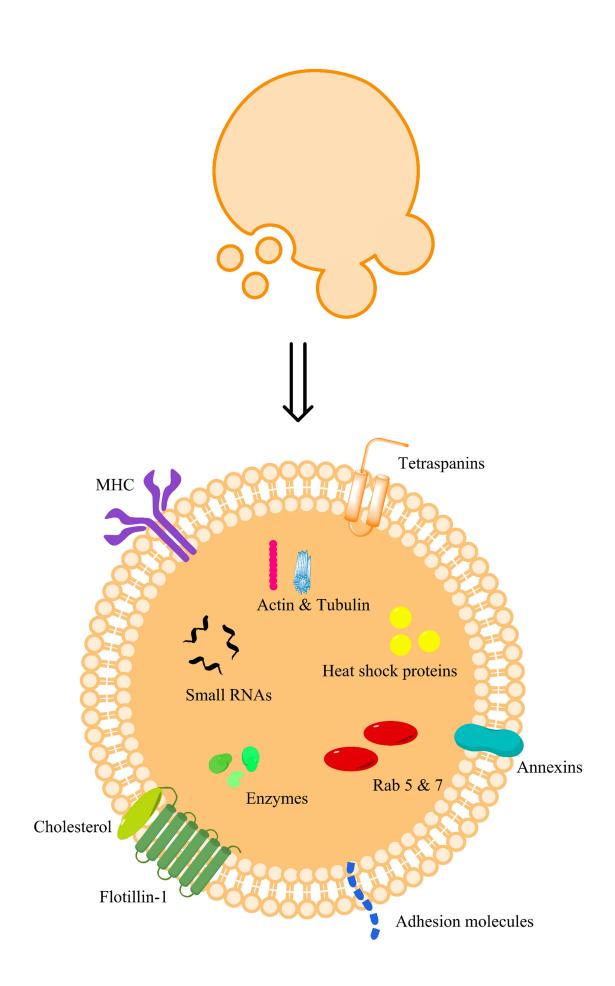
Figure 3. General extracellular vesicle structure. A phospholipid bilayer membrane surrounds the vesicle and contains several key molecules: annexins assist in transport and membrane fusion, lipid rafts consisting of flotillin-1, cholesterol etc. aid in internalisation,

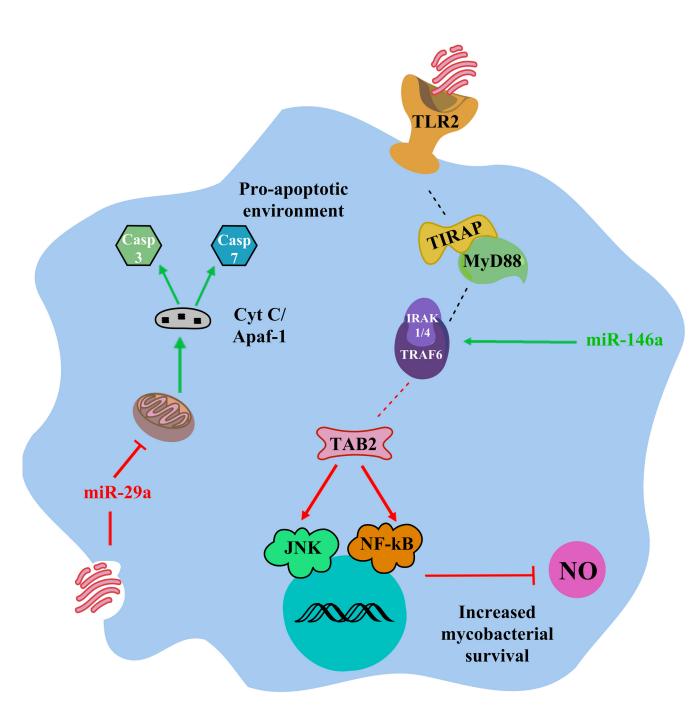

 $\overline{\triangleleft}$

1160 MHC class I and II enables peptide binding, adhesion molecules such as β 2 integrin and 1161 ICAM-1, and tetraspanins such as CD63 and CD81 are for cell recognition. The internal 1162 compartment also contains a range of important components including miRNA, Rabs for 1163 exosome docking, HSPs to aid in MHC peptide binding, and cytoskeletal proteins.


Figure 4. miRNA responses to mycobacterial infection. Conflicting miRNA responses are 1164 1165 common in bacterial infections, resulting in either pro- or anti-survival conditions, with an 1166 example of each given here. Upon encountering mycobacteria, miR-29a can be either up or downregulated. When miR-29a is decreased, its effect on mitochondrial membrane 1167 1168 potential is lessened, allowing for the release of cytochrome c and eventual activation of 1169 caspases which result in cell death and possible bacterial clearance. In contrast, recognition of mycobacteria by TLR2 and MyD88/TIRAP results in an increase in miR-146a, which 1170 1171 directly targets and reduces TRAF6. This reduction leads to a decrease in iNOS and NO 1172 production, and an overall decline in mycobacterial clearance. The specific miRNA response 1173 is dependent on the pathogen and host immune response and may therefore contribute to 1174 the disease progression and phenotype.

1175


Figure 5. miRNA responses to mycobacterial infection. Infection and exposure to mycobacteria results in a large-scale miRNA response with changes in different functional and biological pathways. The above miRNAs are some that have been observed as being dysregulated during infection and their function identified. There are likely many other miRNAs that are of importance in mycobacterial infections which fall into these, and other, canonical pathways.



 $\overline{\triangleleft}$

TLR signalling-Cytokine/ Inflammatory Response	Lipid Pathways
Let-7 family miR-30b miR-19b miR-744 miR-1271 miR-181 miR-301a miR-223 miR-146a/b miR-26 miR-105a miR-26 miR-433 miR-365 miR-147 miR-365 miR-147 miR-191 miR-29 miR-451 miR-142 miR-342 miR-99b miR-224	miR-378 miR-125 miR-202 miR-107 miR-27a-3p miR-422
	Apoptosis miR-24-1/2 miR- 100 miR-874 miR-184 miR-645 miR-133b miR-16b
Autophagy miR-142 miR-30b miR-125 miR-92a miR-23 miR-423	miR-27a-3p miR-26 miR-202 miR-731 miR-29 miR-886 miR-21-3p miR-25 miR-149 miR-193 miR-15a miR-34 miR-34a miR-34

 $\overline{\triangleleft}$

Infection and Immunity