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Abstract:  15 

Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a 16 

considerable impact on livestock health, welfare and production. These are chronic ‘iceberg’ 17 

diseases which take years to manifest and where many subclinical cases remain undetected. 18 

Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, 19 

peptides and expression of specific genes, however these do not provide a strong correlation to 20 

disease. Despite these advances, the basis for disease detection still rely heavily on dated methods 21 

such as detection of pathogen shedding, skin tests or serology. Here, we review the evidence for 22 

suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are 23 

resilient to disease. A better understanding of these factors will help establish new strategies to 24 

control the spread of these diseases.  25 

 26 

Introduction: 27 

Resilience, in the context of health, can be defined as the capacity to overcome or recover from 28 

physiological challenges, be they infectious or otherwise. The health of an individual can start to 29 

deteriorate upon infection and progress further into ill health as the pathogen load increases. 30 

Pathology contributing to ill health can also be caused by the immune responses to eliminate the 31 

pathogen. Resilient individuals are able to reduce the pathogen load without exacerbating pathology 32 

and eventually recover (1).  33 

A further complexity in the context of resilience to mycobacterial infections are pathogen 34 

survival strategies that enable them to remain dormant in the host and cause latent disease. In 35 

reality, it is difficult to definitively establish whether an individual is resistant or tolerant to a 36 

mycobacterial infection, in that the infection either does not establish or disease does not progress, 37 

or whether the individual has recovered from the disease. Sheep and cattle do recover from 38 

intestinal mycobacterial infection (paratuberculosis) (2-4) and some are resistant to infection (5, 6). 39 
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Resilience can thus be more broadly defined as the animal’s ability to remain productive in the face 40 

of an endemic disease challenge, such as a mycobacterial infection. The ability to identify animals 41 

that have the potential to withstand disease progression in this setting is highly beneficial. 42 

 Paratuberculosis, a widespread mycobacterial infection of animals, is caused by 43 

Mycobacterium avium subspecies paratuberculosis (MAP), a non-tuberculous mycobacterium which 44 

preferentially infects ruminants. MAP has been detected in food sources such as milk (7, 8) and the 45 

pathogen found in humans with immunosuppressive conditions such as Crohn’s disease (9-11). 46 

While there is no proven causative association between MAP and Crohn’s disease, it is clear that 47 

urgent research attention is required to find new ways to halt global spread of the disease in the 48 

animal population in order to prevent MAP from entering the food chain and reduce human 49 

exposure to this pathogen (12, 13). Current diagnostic tests including detection of the mycobacteria 50 

in faeces, or the presence of serum antibodies to MAP, are inadequate for definitive diagnosis, due 51 

to the intermittent nature of MAP faecal shedding and the low sensitivity of serological tests during 52 

early, subclinical infection.  53 

 Bovine tuberculosis (bTB) caused by Mycobacterium bovis is an important zoonotic 54 

mycobacterial infection of ruminants, with significant impact on agricultural production globally; 55 

Australia is the only major livestock exporting country to have eradicated bTB (14). The serious 56 

zoonotic potential and public health risk of bTB makes the swift identification and control of this 57 

pathogen in animal hosts and wildlife populations a key focus across human and veterinary research 58 

programs (15, 16). Issues with interference in diagnosis due to coinfection and cross-reactivity with 59 

paratuberculosis, the generally low sensitivity of currently available tests, and the spread and 60 

maintenance of M. bovis in wildlife reservoirs, have made eradication of bTB a difficult task (17). A 61 

final confounding factor in the diagnosis and treatment of veterinary mycobacterial infections is the 62 

presence of non-tuberculous mycobacterial (NTM) species. These bacteria include the M. avium 63 

complex (MAC) and the M. terrae complex which survive in environmental niches (18). NTM have 64 
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also been identified in fisheries leading to general and chronic mycobacteriosis, highlighting the 65 

widespread nature and the variety of mycobacterial species present in a range of environments (19). 66 

While mainly innocuous to livestock, simultaneous infection with NTM and either MAP or M. bovis 67 

creates further difficulty in the accurate diagnosis and delineation of disease, due to similarities 68 

between the antigens and cross-reactive host immune responses (20-22). In this situation, disease-69 

specific biomarkers may provide an alternative to current diagnostic techniques such as the 70 

tuberculin test or serological tests.  71 

Both paratuberculosis and bTB have recently been ranked as the second most significant 72 

infectious veterinary disease in food producing animals and zoonoses respectively (23). It is 73 

therefore evident that mycobacterial disease detection and management within animal populations 74 

must be improved, and while resilient animals may play a key role in reducing mycobacterial 75 

diseases, the accurate identification of such individuals is paramount to future efforts. New ways of 76 

distinguishing animals that are resilient, or susceptible, to disease will provide new strategies for 77 

managing the spread of disease. This has led us to consider the literature on other biological markers 78 

that could be useful in the diagnosis and control of these diseases.  79 

 Biomarkers of disease are objectively measurable indicators of normal and/or disease 80 

conditions, which must be highly specific and sensitive to accurately denote disease (24). As a 81 

diagnostic tool, biomarkers not only indicate the presence of disease, but may also differentiate 82 

between disease states, treatment efficacy and outcomes. In order for a biomarker to be considered 83 

acceptable and reliable, it must be both sensitive and specific for the appropriate disease or disease 84 

state (25). Ideally, biomarkers should also be from samples which are collected easily by minimally-85 

invasive methods and use measurement technologies that are readily available in diagnostic 86 

laboratories (26). The possibility of prognostic biomarkers to demonstrate the likelihood of, and 87 

resilience to, disease have promising applications to aid in the management and control of 88 

paratuberculosis, and possibly that of bTB. 89 
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The chronicity of mycobacterial diseases and the spectrum of disease outcomes makes it 90 

necessary to definitively characterise the disease ‘phenotype’ being detected by any biomarker test. 91 

For example, using an experimental infection model for paratuberculosis in the natural host, we 92 

have shown that even resilient animals can shed MAP in faeces for a limited time when young (5). To 93 

this end we have recently published a guide to characterising the spectrum of disease outcomes in 94 

ovine paratuberculosis (27) which will be useful for researchers interested in discovering biomarkers 95 

to identify specific disease outcomes. An additional benefit of characterising protective immunity 96 

using biomarkers is that it can also be used to guide better vaccine design. Regardless of the vaccine 97 

formulation, ultimately the ability to mimic processes that overcome natural infection will provide 98 

effective protection against disease. 99 

 A range of novel biomarkers have been suggested for mycobacterial diseases, ranging from 100 

host immune proteins and molecules, including cytokines (summarised in Figure 1.), as well as  101 

differentially expressed miRNAs and genes. Current biomarkers for paratuberculosis are primarily 102 

related to the identification and diagnosis of disease, however as TB-associated biomarkers have 103 

demonstrated the ability to discriminate between active and latent disease while also functioning as 104 

prognostic markers (28-31), there is potential for paratuberculosis- and bTB-specific biomarkers to 105 

detect “silent”, subclinical infections and to identify disease resilient animals.  106 

 107 

Immunological biomarkers  108 

 Antibodies  109 

Although the role of the humoral immune response in host immunity to intracellular mycobacterial 110 

pathogens is not fully understood, it is recognised that specific antibodies are detectable in the 111 

serum and may be important in protective immunity (32-34). Serum and milk antibody ELISA assays 112 

are common diagnostic tests for paratuberculosis, although less commonly applied in bTB. Current 113 
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commercial test methods for paratuberculosis have highest diagnostic sensitivity in the later stages 114 

of disease when animals are infectious, with low sensitivity to detect early disease (35). However, in 115 

an experimental challenge model in sheep, animals that were classified as resilient to disease, as 116 

lambs, had a stronger antibody response than those where disease progresses (5). This offers 117 

potential new applications for serological tests to be used during subclinical disease stages to 118 

identify resilient animals. 119 

 The isotype of antibody detected, as well as the antigenic target, can impact serological test 120 

efficacy. A range of antigens have been tested in an attempt to improve early disease detection in 121 

both paratuberculosis and bTB (36-38). Immunoglobulin (Ig)G antibodies are the most common 122 

isotype used for mycobacterial antibody ELISAs, however targeting different isotypes may be more 123 

informative. A recent study has shown that circulating M.bovis antigen in association with IgM was 124 

present in the serum during the early stages of infection (39). IgA, the main isotype present in 125 

mucosal secretions, has also shown potential for identifying resilience, being associated with 126 

protective responses in TB (40).  An investigation into MAP-specific faecal IgA immunoglobulins has 127 

found that these antibodies can be detected during paratuberculosis disease progression, but this is 128 

transient and appears to be related to environmental MAP load (41).  129 

 While not as well-understood as cell-mediated responses to mycobacterial infections, 130 

antibodies are clearly indicative of exposure to pathogens and disease states, and may yet play a key 131 

role in defining phenotypes and resilience to mycobacteria.  132 

 133 

Cytokines and chemokines 134 

One of the key immunologic responses characteristic of mycobacterial infection is the elevation in 135 

IFN- secretion, however the application of IFN- as a diagnostic cytokine is limited as it is an 136 

indicator of exposure rather than disease per se (5, 42). There is potential for this cytokine as a 137 
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biomarker of resilience in sheep as these animals have a higher early IFN- response when young (5, 138 

43). A range of other cytokines and chemokines have been reported as differentially regulated 139 

between infected and uninfected populations (summarised in Table 1.), as well as between active 140 

and latent TB states, and these are likely applicable to other mycobacterial infections. These 141 

potential biomarkers warrant further investigation, although there is a lack of consistency across 142 

studies as to the degree and nature of cytokine expression, possibly due to differences in cell type 143 

assessed, stimulating antigen, and experimental techniques used. Activated T cell and related 144 

cytokines including, but not limited to, IL-2, IL-3, IL-6, IL-7, IL-8, IL-9 and IL-10, have been reported to 145 

differ significantly even within infected and healthy control groups in studies of human 146 

mycobacterial infections (44-49). It is evident that further investigation, especially regarding 147 

pathogen-specific responses, is required to determine if cytokine profiles can accurately detect and 148 

differentiate between disease states.  149 

 Variations in cytokine signatures in active versus latent mycobacterial disease have also 150 

been demonstrated, with cytokines such as TNFα, IL-12, and IL-17 reported to be more abundantly 151 

expressed during active tuberculosis infections compared to latent infection (50). More recent 152 

investigations into cytokines as biomarkers and discriminators of active versus latent infection have 153 

suggested that combinations or ratios of multiple cytokines are more efficient at categorising 154 

disease than a single biomarker. One such combination with promising diagnostic potential are IL-2 155 

and IL-10, detecting not only disease in TB patients, but also distinguishing between active and 156 

latent infection (49). With IL-2 ligation activating JAK-STAT signalling and regulating T cell responses, 157 

and IL-10 acting as a key immunosuppressive cytokine, the combination of the two could prove to be 158 

a major indicator of mycobacterial disease. Multiple studies have also proposed the combination of 159 

IL-2 and IFN- and their respective levels as a diagnostic marker of latent TB infection (49, 51). Ex-160 

vivo studies of TB have also yielded possible combinations of predictive biomarkers, and cytokines 161 

that act as correlates of treatment success. Firstly, increased expression of IL-4 and its antagonist IL-162 
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4δ2 during treatment, and subsequent changes of the ratio between the two, have been reported to 163 

be indicative of disease outcome, with lower IL-4 and IL-4δ2 linked with better treatment outcomes 164 

(52). Similarly, the ratio of IFN- and IL-10 may also be indicative of treatment success in TB patients. 165 

IFN- characteristically increases during infection and IL-10 decreases, in keeping with the need for 166 

strong T cell responses to control an intracellular pathogen. Low ratios of IFN- and IL-10 were 167 

observed in early infection, and subsequently improved during and after treatment, indicating that 168 

this may correlate with treatment efficacy (53).  169 

 Cytokine profiles during MAP infection in both sheep and cattle also provide possible 170 

biomarker targets. These include cytokines such as IL-10, IL-12p40 and IL-3 as they are often 171 

associated with different disease pathologies in paratuberculosis (54) (Figure 2). IL-18 and similar Th2 172 

related cytokines are symptomatic of specific pathological lesion types in bovine MAP infections 173 

(55); while an increase in IFN-, osteopontin, and IL-17 may suggest a shift towards a Th17 response 174 

in MAP infections (56). A similar range of T cell cytokines and chemokines including IP-10, IL-22 and 175 

IL-17A have been suggested for bTB, however as with paratuberculosis and TB there is no widely 176 

accepted or employable signature (57-59). Originally called CXCL10, IP-10 was first described for its 177 

chemoattractant properties and role in the recruitment of T cells to sites of inflammation, but has 178 

been identified as a possible biomarker of infection in TB and bTB with the potential to differentiate 179 

between latent and active disease (60, 61). IP-10 is currently one of the most promising chemokine 180 

biomarker candidates for bTB, with evidence of a specific response to M. bovis which correlated 181 

strongly to the production of IFN-γ, further suggesting that the combination of cytokine and 182 

chemokine biomarkers may be more applicable than single marker measurement (62). As IP-10 has 183 

also been shown to distinguish between cultutre positive and culture negative M. bovis samples, this 184 

biomarker can potentially provide a rapid alternative to traditional culture diagnostics for bTB (63). 185 

 Studies profiling the chemokine immune responses in pathological presentations of 186 

paratuberculosis and bTB have often found contrasting results and patterns of expression, and could 187 
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have been influenced by differences in experiemental design including in vitro or in vivo conditions 188 

of the study (54, 57, 64-66). Suggested cytokine and chemokine biomarkers for each stage of disease 189 

and pathologies are summarised in Figure 1. Due to the granulomatous nature of mycobacteria, 190 

chemokine recruitment of leucocytes may be a host response to contain the invading bacteria, and 191 

the restriction of this process by mycobacteria may act to subvert the host immune response and 192 

establish a latent infection. Downregulation of key chemokines such as RANTES (CCL5) and 193 

monocyte chemoattractant protein 1 (MCP-1 [CCL2]) in paratuberculosis could provide alternative 194 

biomarkers for diagnosis alongside IFN- assays . To date, there has been no discernable pattern of 195 

expression of significant chemokines such as CCL3, CCR, and CXCL11 between disease pathologies of 196 

paratuberculosis and bTB, suggesting the immunological response may be too variable and 197 

individual specific to function as accurate and repeatable biomarkers across differing populations 198 

(67, 68).   199 

 Although these combinations require further validation across animal breeds, sample types 200 

and mycobacterial species, their role as indicators of disease in MAP and M. bovis infected animals 201 

may prove to be valuable in rapid, reliable and simple detection of disease with improvements in 202 

diagnostic technologies. 203 

 204 

Transcriptomic biomarkers 205 

Many studies have investigated gene expression in paratuberculosis and bTB pathogenesis, resulting 206 

in a long list of differentially expressed genes for these diseases, and are summarised in Table 2. Key 207 

functional pathways such as antigen presentation and MHC processing and lipid metabolism are 208 

altered during mycobacterial infection (69-73). Genes from these pathways may yet provide key 209 

resilience or susceptibility biomarkers in MAP infection. 210 
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 Among the differentially regulated genes with potential as diagnostic biomarkers in 211 

mycobacterial infections are Tfrc, which encodes the transferrin receptor, and LTF, which regulates 212 

lactoferrin; they are often attributed to the pathogen’s metabolism of host iron via the action of 213 

mycobactins (74-76). Similarly, S100a8 and S100a9 are differentially regulated and have been 214 

proposed as biomarkers for comparable inflammatory bowel diseases (75, 76). Together, the 215 

S100a8/9 proteins form the heterodimer calprotectin, a biomarker for inflammation which leads to 216 

inflammatory responses and immune cell migration and has been detected in MAP lesions, 217 

suggesting these genes play a role in disease pathology (77, 78). Haptoglobin, controlled by the Hp 218 

gene, is an anti-inflammatory agent that not only disrupts neutrophil and phagosomal activity, but 219 

also disrupts bacterial iron sequestering. This response is thought to be a result of the host’s 220 

immune system limiting the harmful immunopathology of MAP infection. Matrix metalloproteinase 221 

9 (MMP9) and its inhibitor TIMP1, are both upregulated during paratuberculosis and TB and are 222 

documented as consistently up-regulated genes in TB (74, 75, 79). Two β-defensin genes have also 223 

recently been shown to be up-regulated in MAP, Defb1 and Defb10, indicating that their 224 

antimicrobial and immunomodulatory role may be indicative of host responses to bacterial infection 225 

(74). Along with this gene subset, Th1 chemokine genes such as CCL4, CCL5, CXCL9, CXCL10 and 226 

genes related to metabolism including IGF1 and TCF7L2, are up and down regulated respectively in 227 

paratuberculosis (76). A novel biomarker signature has been established from these differentially 228 

regulated genes in early MAP infections. Combinations of these 8 genes (Timp1, MMP9, Hp, Tfrc, 229 

Defb1, Defb10, S100a8, and Serpine1) have been demonstrated as potential biomarkers of various 230 

disease and exposure states of paratuberculosis (74) (Figure 2). Differences between case definitions 231 

and disease classifications between studies does however make comparison difficult, and supports 232 

the need for standardised practices (27). Although this is extremely promising for disease detection 233 

and as biomarkers for paratuberculosis, further validation in both laboratory and on-farm settings 234 

must be undertaken before their potential for identifying resilient and susceptible animals is 235 

confirmed.  236 
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 In a similar manner to human TB and paratuberculosis, early gene expression in bTB 237 

correlates to the immune response and pathology with an early increase in Th1 cytokine related 238 

genes, and a switch towards Th2 cytokines as infection progresses. A panel of transcriptomic 239 

biomarkers have been suggested including the chemokine genes CXCR3 and CCL1 and TLR2/4 genes, 240 

along with TNF, BCL2, NFKB1, IL16, IL8, EEF1G, ADAM17, IER5, PHB2, STK17B, CD84, CD81, MCL1, 241 

TBK1, ATK1, PRKCB1, and RPS6KB2 (80). While this panel is predominantly protein binding and 242 

transcription related genes, it displays the trend of immune suppression by mycobacteria and M. 243 

bovis and may provide an alternative to the current immune based diagnostics used in bTB 244 

identification.  245 

 246 

Protein biomarkers 247 

The analysis of circulating proteins and serum proteomes has also yielded promising candidates for 248 

biomarkers in MAP and other mycobacterial infections (Table 3). Mass spectrometry has detected a 249 

number of proteins either over- or under-expressed, with some, specific to MAP infection (81). 250 

Studies assessing both early and late stages of mycobacterial infection have shown a dysregulation 251 

of several pathogenically significant proteins including vitamin D-binding protein, a potential 252 

biomarker for general mycobacterial infection, found in both paratuberculosis and bTB (81-83). As 253 

vitamin D is involved in macrophage activation and is a known anti-tuberculoid agent acting via TLR 254 

signalling pathways, its expression in paratuberculosis may be attributed to the immune response in 255 

the early stages of infection. Glycoproteins, proinflammatory fetuin, alpha-haemoglobin and serine 256 

protease inhibitor are also differentially expressed proteins in both bTB and paratuberculosis, acting 257 

as biomarkers for general mycobacterial diseases in animals (81-83).  258 

 Proteomic analysis of serum proteins of MAP infected cattle has yielded further possible 259 

specific biomarker targets, such as complement proteins, actin binding proteins, and clotting factors 260 
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associated with thrombin and fibrinogen (84). These proteins of interest, along with their 261 

corresponding coding genes may provide diagnostic biomarker signatures. Transthyretin and retinol 262 

binding proteins have been identified as MAP-specific biomarkers. Vitamin A (retinol) is involved in 263 

the maintenance and differentiation of immune cells. It is transported by the negative acute phase 264 

protein transthyretin, which may be an indicator of early disease (82, 83). Transthyretin is also an 265 

indicator of malnourishment in diseases such as HIV and cancer and may show similar changes in a 266 

chronic wasting disease like paratuberculosis. Cathelicidin is specific for advanced MAP infection, 267 

possibly related to a shift in the bacterial response to induce shedding and escaping from 268 

macrophages, or a host antimicrobial control response (82). Investigation of the proteome may 269 

provide potential pathogen protein biomarker candidates, however the homologous nature of 270 

mycobacteria and issues with cross-reactivity mean that this requires much greater research and 271 

validation. Preliminary research into identifying specific proteins from the secretome has provided 272 

promising novel antigens as serodiagnostic biomarkers, although further investigation must be 273 

undertaken (85).  274 

Other suggested bTB protein biomarkers include the host proteins alpha-1-antitrypsin, alpha-1-275 

antiproteinase, and fetuin-A and the pathogen proteins ESAT-6, CFP-10, MB2515c, and Pks5 (81, 82, 276 

86). Advances in protein array chips and mass spectrometry technologies will allow discovery of 277 

other biomarkers using pathogen proteomes and circulating peptides in the future.  278 

 279 

Extracellular vesicles  280 

Extracellular vesicles (EVs) include exosomes, microparticles and apoptotic vesicles and are key 281 

cellular transport and signalling entities. The importance of these vesicles was originally 282 

underestimated, believed to be waste disposal units removing cellular debris during reticulocyte 283 

maturation (87). Both exosomes (<200 nm) and microparticles (<1000 nm) are now prime targets for 284 
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targeted drug delivery and gene therapy, with several technologies for their use in the treatment of 285 

major human diseases in development (88-90).   286 

Exosomes are released from multivesicular bodies following fusion with the plasma 287 

membrane and are formed through a series of endocytic events. Following their formation, 288 

multivesicular bodies fuse with the plasma membrane and release their cytosolic endosomal bodies, 289 

which become exosomes once liberated (91). In comparison, microparticles (also known as 290 

microvesicles and ectosomes) are formed and released via budding or ‘blebbing’ of the cellular 291 

membrane. This is a steady state process which may be upregulated following stimuli such as 292 

infection and include specifically enriched cargo for biological communication. Both exosomes and 293 

microparticles contain a range of enzymes, proteins, and RNA molecules, and have several functions, 294 

often highly dependent on the constituents and therefore their cell of origin (Figure 3).  295 

Vesicles transport mycobacterial products such as lipoarabinomannan and 296 

phosphatidylinositol mannosides, which are contained in, and released from mycobacteria-infected 297 

macrophages through EV secretion. The shuttling of both bacterial and viral components further 298 

supports the role of exosomes in immune surveillance and intracellular communication (92). These 299 

EVs secreted from macrophages are able to stimulate a pro-inflammatory response, triggering the 300 

release of TNFα, nitric oxide, and the chemokine RANTES (93-95), as well as transferring 301 

mycobacterial RNA and ultimately effecting infection outcomes (96). Similarly, EVs secreted from 302 

host neutrophils appear to work in favour of the immune response and promote clearance and 303 

mycobactericidal activity (97). 304 

Extracellular vesicles may prove to be extremely useful vaccine candidates and diagnostic or 305 

predicative biomarkers for mycobacterial diseases such as paratuberculosis and bTB. Their stability 306 

and circulating nature, as well as their ability to be isolated from minimally-invasive biological 307 

samples such as saliva, urine and blood make them prime targets. Differentially expressed proteins 308 

and molecules contained in vesicular compartments may also provide useful markers for treatment 309 
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efficacy and indicate disease resilience to mycobacterial infections. A small number of studies have 310 

identified M. tuberculosis-specific proteins in serum-derived exosomes that differentiated 311 

individuals with active and  latent TB infection (98, 99). These small-scale studies remain to be 312 

verified but suggest that further examination of the biomarker potential of extracellular vesicles is 313 

warranted.    314 

 315 

microRNA  316 

miRNA are a subset of small RNA (~22 nucleotides long) which are non-coding post transcriptional 317 

regulators. Originally considered to be genetic junk, along with other non-coding parts of the 318 

genome, miRNAs were first discovered in Caenorhabditis elegans and are now known to be master 319 

regulators of gene expression and protein translation (100). Many of these miRNAs are highly 320 

conserved (101) and play key roles in regulating mRNAs that control complex host signalling 321 

networks, as well as immune function. miRNA control the stability (i.e. degradation), translation, and 322 

suppression of specific mRNAs in order to regulate a large network of genes and proteins. They have 323 

also been indicated in various diseases and as possible drug therapy targets. Their abundance and 324 

stability in circulating extracellular vesicles such as exosomes and microparticles have made them 325 

potential candidates as disease biomarkers (102-105). Although reports into the role of miRNA in 326 

mycobacterial infections, relative to other major diseases, are sparse, their demonstrated 327 

differential expression has elevated them to the forefront of mycobacterial research in the last few 328 

years. It is currently estimated that over 60% of genes are directly regulated by miRNAs (106), 329 

exemplifying the importance of the previously disregarded non-coding aspect of the genome, 330 

particularly in regard to biomarker discovery.  331 

There are several mechanisms through which miRNA can exert their “gene silencing” effect, 332 

with the degree of miRNA-mRNA complementarity the primary determinant. In general, a high 333 

complementarity and perfect to near perfect binding will result in mRNA cleavage, while mismatches 334 
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in the miRNA-mRNA complex will reduce protein synthesis through translational repression, a more 335 

common phenomenon in animal miRNAs (107, 108).  336 

 miRNA biomarkers have been successful in the diagnosis and prediction of outcomes in 337 

cancer (109-111) and multiple studies have indicated that miRNA signatures have the potential to 338 

distinguish active TB patients from healthy controls and latent TB (112-114). One of the major 339 

obstacles to miRNA biomarker investigations is the lack of consistency and established scientific 340 

practices, as well as the lack of standardisation across experiments. Variance  in case classification, 341 

source of biological samples, and study size can affect reproducibility of results making comparison 342 

across studies difficult. Variability in miRNA expression due to tissue specificity and miRNA origin, i.e. 343 

circulating or exosomal, must also be considered when investigating potential miRNA biomarkers. 344 

Further, studies have also indicated that environmental or ethnic differences may also influence 345 

miRNA expression (115-117). Analysis of differentially expressed miRNAs in TB has yielded multiple 346 

potential biomarker sets yet a rigorous definable signature remains to be confirmed. A large number 347 

of miRNAs have been reported to be modulated during TB including the potential biomarkers miR-348 

378, miR-483-5p, miR-22, miR-29c which are upregulated, and miR-101 and miR-320b which are 349 

downregulated (118, 119). These miRNAs have been suggested as biomarkers of specific TB disease 350 

states, with sensitivity and specificity of 95.0% and 91.8% respectively (119). Similar studies have 351 

also suggested that the miRNAs miR-22, miR-25, miR-365, miR-590-5p and miR-885-5p may also be 352 

useful in diagnosing TB (118-122). The promising biomarker combinations from human TB research 353 

suggests that markers for diseases such as paratuberculosis and bTB may yet be uncovered, and that 354 

discovering signatures of resilience to infection are highly plausible. 355 

 Several recent studies have focused on miRNA as biomarkers  in paratuberculosis and 356 

bTB (123-128); however the relatively minor research effort into veterinary diseases compared to TB 357 

or similar human diseases has meant that the majority of these studies are still exploratory and 358 

further research is required to produce a true diagnostic signature. Potential bovine miRNAs which 359 
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may be key biomarkers include immune and inflammatory related miRNAs such as miR-19b, miR-360 

196b, and miR-146, which are modulated during infection and linked to bTB, TB and Crohn’s disease 361 

(124, 129-135). Although no definitive biomarkers have been elucidated, strong evidence for their 362 

modulation following MAP infection indicates that they may be significant candidates for diagnostic 363 

markers. 364 

 365 

miRNA regulation in mycobacterial infections 366 

Several key miRNAs have been identified in mycobacterial infections, and the similarity in host 367 

responses and pathogenesis between mycobacterial species allows for some extrapolation to 368 

paratuberculosis and bTB. One of the miRNAs first identified in host immune responses to 369 

mycobacteria, miR-146, targets mRNA of TNF receptor associated factor 6 (TRAF6) and IL-1 receptor 370 

associated kinase 1 (IRAK1) (136, 137). Acting on TRAF6, miR-146 dampens iNOS and therefore nitric 371 

oxide production, an important host microbicidal response (138), while IRAK1 is a key receptor-372 

associated molecule involved in activation of NF-κB transcription (139). Through targeting these 373 

molecules, which are essentially downstream signals from TLR cascades, miR-146 can control TLR 374 

and cytokine signalling through a negative feedback loop, fundamentally altering the immune 375 

response, and decreasing pro-inflammatory effects (Figure 4.).  376 

 Another major miRNA modulated by mycobacterial pathogens is miR-142-3p. This miRNA 377 

targets an mRNA that negatively regulates a key cell surface signal transducer involved in actin-378 

based cellular motility and assembly of the phagosome for internalised pathogens. miR-142-3p is 379 

overexpressed during the early stages of mycobacterial infection and therefore impairs phagocytosis 380 

of bacteria (140). miR-142-3p is also a major regulator of pro-inflammatory cytokines, decreasing 381 

production and expression of molecules such as TNFα and IL-6, also acting on IRAK1 and the TLR/NF-382 

κB pathway (141). 383 
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miR-155 inhibits autophagy and antimicrobial immune effects through ESAT6 inducing 384 

expression, preventing immune modulators Cox-2 and IL-6 induction, as well as decreasing Bach1 385 

and SHIP1 (involved in mycobacterial survival and dormancy, as well as production of Reactive 386 

Oxygen Intermediates) (142). Nitric oxide production is also limited by increased miR-155 expression 387 

in M. marinum infections, enhancing survival of pathogenic bacteria (143). As with many miRNAs, 388 

miR-155 has multiple functions including modulating the innate TLR response through acting on a 389 

number of  genes. SOCS1, TAB2 (TLR adaptor molecule) and a DC-specific adhesion molecule are all 390 

decreased following overexpression of miR-155, impacting the pathogen binding capability of 391 

dendritic cells and possibly contributing to the establishment of disease (144, 145). 392 

miRNAs targeting host cell apoptosis are also modulated by virulent mycobacteria, with 393 

miR29a and let-7e upregulated, in turn decreasing caspase 7 and 3 activity respectively (146). As 394 

caspase 3 and 7 are both executioner caspases which induce morphological changes for induction of 395 

apoptosis, their decreased expression in mycobacterial infections further aids the pathogen in 396 

intracellular survival and evasion of immune responses. miR-29 also has a role in decreasing early 397 

stage Th1 responses through targeting IFN-, with differential expression following infection with 398 

both M. bovis BCG and Listeria monocytogenes (147). miR-582-5p which regulates Forkhead box 399 

protein O1 (FOXO1) is upregulated in TB, inhibiting apoptosis by decreasing FOXO1 (148). miR-155 400 

has been implicated as a regulator promoting apoptosis via the TLR2 and PI3K-APT pathways. 401 

Pathogenic mycobacteria are able to upregulate miR-155 after activation of TLR2 signalling, and, 402 

through a series of cascades and cross-talk between pathways such as MAPK and PKCδ, induce 403 

apoptosis by activating caspase 3 and translocating mitochondrial cytochrome c (149). miR-21 is also 404 

a significant miRNA in apoptosis as it acts on IL-12p35 (IL-12A protein) to decrease IL-12 and 405 

therefore activation of Th1 and NK cells. This miRNA also functions to activate apoptosis by targeting 406 

Bcl-2, thus further modulating early Th1 responses following M. bovis  exposure (150).  407 
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miRNA are also carried within EVs, while exosomal miRNA may be a key regulator of host 408 

gene expression and immune defences in mycobacterial infections. Exosomal miR-21 and -29a for 409 

example, act as ligands for TLR signalling, suggesting several functional roles and possible roles in 410 

paratuberculosis and bTB pathogenesis (151). 411 

While these miRNAs clearly play a role in mycobacterial infection, they are only a small 412 

number of differentially regulated miRNAs observed in mycobacterial infections and the current 413 

understanding of the mycobacteria-miRNA relationships are summarised in Table 4 and Figure 5. It is 414 

clear that the regulation, and either over or under expression of these miRNAs, is altered during 415 

infection, and their effects are often related to critical events in mycobacterial pathogenesis. The 416 

interconnected nature of miRNA, mRNA, and cell signalling pathways are complex. Although current 417 

research efforts into the specific functions and modes of action of miRNAs are producing promising 418 

results much of the current research focuses on TB; greater investigation into miRNAs and their 419 

profiles in bTB and MAP is warranted. 420 

 421 

Future directions 422 

It is evident, from the nature of mycobacterial diseases, their global distribution and the spread of 423 

animal pathogens into the human sphere, that new management strategies are needed to control 424 

diseases like paratuberculosis and bTB to ensure subclinically infected animals do not enter the food 425 

chain. Directing the focus of production towards identifying animals that are resilient to these 426 

diseases may be a means to reducing the economic impact and welfare implications of subclinical 427 

infection. Biomarkers are at the forefront here, not only for diagnosis of mycobacterial infections, 428 

but also for the differentiation of clinical and subclinical states and identifying resilient animals. In 429 

addition, this type of research will undoubtedly provide the ability to characterise immune 430 

protection in mycobacterial diseases of animals, which can then be utilised to develop better 431 
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vaccines with potential for providing sterile immunity. However, this requires well-designed 432 

controlled experimental trials where resilience to disease can be identified accurately. With recent 433 

efforts globally to limit the use of antimicrobials in both humans and animals, vaccines can provide 434 

advantageous control strategies (152).  435 

The inability to adequately compare current biomarker studies hampers progress. Ideally 436 

complete expression patterns of immunologic, proteomic and transcriptomic markers during the 437 

course of infection should be studied in vivo. The generation of a complete data set would allow for 438 

key molecules to be prioritised and a possible combinational signature to be determined. While this 439 

would be a large and costly undertaking, the investigation of each of the separate biomarker 440 

candidates (e.g. cytokines/chemokines, proteins, genes) from early subclinical to late clinical 441 

infection would still provide invaluable information as to the applicability of markers for diagnosis 442 

and the host response to mycobacteria. Archived sample biobanks may be integral in these future 443 

research efforts, abrogating the cost of establishing  in vivo infection models and providing multiple 444 

sample types i.e blood products and tissue samples, as well as defined infection outcomes and the 445 

ability to profile a vast array of biomarker candidates from the same individual over multiple time 446 

points. These would also allow the validation of any potential markers across not only different 447 

animal species, but also different breeds, which may have differing responses to infection (153). A 448 

complete picture of host responses to infection could be obtained through the combination of a 449 

variety of ‘omics’ technologies including transcriptomics, proteomics and metabolomics. 450 

Biomarkers for resilience to mycobacterial infection are a promising resource for better 451 

control of for both paratuberculosis and bTB. In our estimation, miRNA are the frontrunners  for 452 

discovering biomarker signature of resilience. Not only are they ideal biomolecules because of their 453 

stability in the circulation and under storage conditions, but additionally miRNA can be isolated from 454 

a range of minimally invasive biological sources such as plasma, serum or saliva. They are master 455 

regulators of gene expression and mediate many biological and metabolic processes, thus are 456 
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upstream of the transcriptomic, proteomic and metabolomic effects. Changes in their expression 457 

and patterns of regulation are likely indicators not only of infection, but also of the disease 458 

phenotype and/or resilience to mycobacterial disease. One drawback could be their inability to be 459 

pathogen-specific; to overcome this limitation, there may be a diagnostic role for a combined 460 

pathogen-specific cytokine or chemokine (e.g. IFN-) response and miRNA signature to identify 461 

resilient animals. With rapid advancements of biomarker discovery platforms such as next-462 

generation sequencing and array technologies we envisage the capacity to develop of robust 463 

signatures for significant global diseases.464 
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SPECIES HOSTS SAMPLE IMMUNOLOGICAL MARKER REFERENCES 

M. avium subsp. 

paratuberculosis 

Sheep, cattle, goats, 

camelids, deer 

Bovine/ovine intestinal tissue 
↑: TRAF-1, IL-8, IFN-γ, TNF-α, IL-10, IL-12, TGF-β, IL-1α, IL-1β, IL-6 

↓: IL-18 
(54, 154) 

Bovine plasma + MDMs 

↑: IFN-γ, Osteopontin 

↓: IL-4 

↑↓: IL-17 

(56) 

THP-1 cell line ↑: TNF-α, IL-1β, IL-10 (155) 

Bovine PBMCs + intestinal tissue + 

lymph node 

↑: IFN-γ, IL-1α, IL-1β, IL-5, IL-6, IL-8, IL-2, IL-10, IL-4, IL-2R 

↓: IL-16, IL-18 

↑↓: TGF-β 

(55, 156) 

Murine spleen/liver/ileum ↑: IFN-γ, TNF-α, IL-4 (157) 

Caprine PBMCs 
↑: NOS2, IL-21, C2, C3, IL-34, IL-12A, TLR4, TNF,  

↓: IL-17F, IL-9, IL-9R2, IL-36β, IGF1, IL-18, IL-9, IL-5, IL-13, IL-11, Granulysin, IFN-γ 
(158) 

Whole blood (bovine) ↓: TNF-α, RANTES, MCP-1 (67) 

M. bovis 
Cattle, possums, 

badgers, buffalo 

Murine spleen/lung + bovine PBMCs ↑: IFN-γ, IL-22, CXCL9, IL-17a, IP-10, Granzyme B, IL-17Re, Granzyme A (57) 

Multinucleated giant cells ↑: TNF-α, IL-17A, TGF-β, IL-10, IFN-γ (159) 

Bovine PBMCs 
↑: IFN-γ, TNF-α, iNOS, IL-4 

↓: IL-10  
(160) 

Bovine lymph node 
↑: IFN-γ, TNF-α, TGF-β, IL-17A 

↓: IL-4,  IL-6, IL-10, IL-22 
(161-163) 

M. marinum  
Fish, frogs, humans 

(NTM) 

Goldfish spleen/kidney + leukocytes 
↑: ROI, NO, IL-1β, IFNGR, TNFR 

↑↓: SOCS3, TGF-β, IL-10 
(164) 

Murine mast cells + HMC-1  ↑: COX-2, TNF-α, NOD2 (165) 

Adult zebrafish (homogenised tissue) ↑: MMP13, TNF-α, IFN-γ, IL-1β (166) 

Human Mφ culture supernatant 
↑: IL-12p40, IL-6, TNF-α,  

↓: IL-1β 
(167) 

Kidney Mφ (goldfish) 
↑: NRAMP, IL-10, TGF-β1, SOCS3, TNF-α, IL-1β1, IFN-γ, CXCL8, IFN-γrel, IDO, CCL1 

↓: ROI 
(168) 

M. hominissuis  Pigs, humans, Human PBMCs 
↑: IL-17 

↓: IL-12p70 
(169) 

M. avium  Poultry, humans Human PBMCs + alveolar  Mφ 
↑: IL-10, IL-17, TNF-α, IFN-γ 

↓: IFN-γ, IL-12,  IL-12p70 
(169, 170) 

M. leprae 
Humans, armadillos, 

primates 

Human PBMCs ↑: IL-4, IL-6, IL-8, TNF-α, TGF-β   (171) 

Human Schwann cells 
↑: TLR2, TLR4, MyD88, Irak4, IL-18, CCL2, CCL7, CCL9, CSF-1, Mif, CXCL1 

↓: TLR1, TLR6 
(172) 

M. smegmatis 
Soil – rarely found in 

animals or humans 

RAW 264.7 cell line ↑: TNF-α, IL-6, MCP-1 (173) 

Human PB Mφ ↑: IL-1, IL-6. TNF-α, GM-CSF- (174) 

Table 1. Cytokine and chemokine responses to mycobacterial infections based on transcriptomic and proteomic data 
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 465 

SPECIES HOSTS SAMPLE GENE REFERENCES 
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M. avium subsp. 

paratuberculosis 

Sheep, cattle, 

goats, camelids, 

deer 

Whole blood (bovine) 
↑: KLRB1, MPO, LTF, SERPINE1, S100A8/9, TFRC, GBP6, PIGR, IL-10, CXCR3, CD14, ELANE, CHI3L1, HP, HGF, MMP9, 

DEFB1, DEFB10, TIMP1, PIP5K1C, IRF5, IRF7, CORO1A 

↓: IL17F, IL17F, IL22, IL26, HMGB1, IRF4 
(74, 75, 175)  

THP-1 cell line 
↑: CD14, CD68, S100A8/9, ELANE, LTF, HP, CCL4, CCL5, CXCL9, CXCL10 

↓: ELANE, IGF1, TCF7L2, MPO 
(76) 

RAW 264.7 cell line 

↑: ABCA1, APOE, LDLR, RFTN1, HMCGR, IL1A, IL1B, IL6, MCP1, TNFA, INOS, LAMP1, P53, TLR4 

PLIN2, SREBF1, RAB7 

↑↓: TFRC, CXCR31, CCNE2, COX62A, GDF15, YPEL3, AQP9, SLC40A1, TMEM154, CD74, AATK, RRAS, GADD45α, YPEL5, 

HEBP1, ENO2, MACROD1, IRF7, NFKBIζ, LCN2 

(176, 177) 

Bovine monocytes + 

WBCs + PBMCs 

↑: TGFB, TSP1, BCL2L1, TGF, IL6, MMP12, MT1A/B/E/F/H/I, 17A-HYDROXYLASE, CD40L, CRF, CRFR1, EP2, FSG-R, IL1, 

IL10, IL12, IL2, IL4, IL5, IFNG, MMP1, MMP3, MMP7, MMP9, MMP15, MMP 16, MMP19, MMP23, PAI1/2, SCC, SPARC, TGFB, 

TIMP1, TIMP2, TIMP2 V3 

↓: SFK, ADRB, cAMPPK, VTAP, TNFB, DQB, IA6, MAPK2K5, MEK5B, CD38, GIMAP6, SCD-1, 24DHCR, LDLR 

(178-180) 

M. bovis 
Cattle, possums, 

badgers, buffalo 

 Lymph nodes + tonsils 

+ spleen (wild boar) 

↑: VDR, ANX, LAP, VCAM, CXCR4, MHC-I SLA-31, B2M, MHC-II SLA-DRA, C3, C7, HSPGP96, LYZS, ARG, OPN, CUL, ARP3, 

MUT, DEFB129, BAP29, CD8A 

↑: LGALS1, C1QB, CD74, SLA 
(181, 182) 

Bovine PBMCs + 

MDMs 

↑: PPP2R5B, ZDHHC19, 28S, GPR98, PDGFA/B, ECGF1, MHCR1, AXL, CD84, CCL15, NFATC4,  TLR2, CD80, NFKB1, IL8, 

CXCL6, ADORA3 

↓: PRKCB1, PRKCA, AKT1/2, EEF2, EEF1G, GATA4, IER5, CSF2, CD14, CCL1, CHUK, NFKB1, TBK1, MIF, CCR7, BOLA, 

ADAM17, CXCR3, PHB2, STK17B, MCL1, CCL1, IL8, TLR2, TLR4, BCL2, NCOR1, UCP2, UNC84B, GAN, SFPQ, NRM, FGFR1,   

(80, 183) 

Whole blood (bovine) 
↑: CD83, CTLA4, IL1A, IL8, STAT1, TLR4,  

↓: CASP1, DEFB10, IFNGR2, IL15, KIR3DS1, MYD88, STAT2, TLR3, TREM1, TYROBP 
(184) 

M. marinum  
Fish, frogs, 

humans (NTM) 

Muscle wound tissue + 

homogenised zebrafish 

↑: ATF3, BCL3, CEBPB/D, ELF3, IRF1B, IRF3, FOSL2, JUNBA/B, NFKB, IL1B, TNF, CXCL8A/B, MMP9/13A, TIMP2B, C3/7/8/9, 

IRG1, SAA, STEAP4, HAMP, DRAM1, IRAK1, SOCS3, NCF, NOX, CYB,  ILIB, TNFAIP2/3/6 

↓: CKMA/B, MYLPFA, MYLZ3, MYL10, ACTA1B, MYOZ1A, MYOM1A, MB, MYBPC2A, MURCA, MYOM2, MYL1, MYOZ3A 

↑↓: APOA, APOE, APOB, FOSL1A, FOSAB 

(185, 186) 

M. hominissuis  Pigs, humans, Human MDMs 

↑: INHBA, CCL1/3/4/5/18/20, ILI, VEGFC, MMP1/3/10, SLAMF1, CCR7, TNFAIP6, TNIP3, IL7R, PROCR, PDGFB, CSF2, TNF, 

IL8, IL3RA, BMP6, MSC, TM4SF1, TNFRSF9/19, MRC1, LAMB3, CHST2, ETS2, PTGS2, IL10, SOCS3, SERPINB2, SERPINE1, 

TIMPI, BTG1, SOD2, CD14, PLAUR 

↓: STMN1, LTA4H, CD36 

(146) 

M. avium  Poultry, humans U937 cell line 

↑: ERBB3, EPHA3, PTPN7, LAT, CSF1, NFKB, JUN, SPI1, ARHGDIA, GNB1, GNB2L1, FGF11, ITGA5, ITGAL, ICAM1, IEX1L, 

CASP10, RPS19, TNFA, RANTES, MIP2, ILIB, IL8, IL2RA/G, TNFRSF1B, CDKN1A, TIMP1, MMP9/11, CAPN4, PI, AZU1, MT1H, 

DTR 

↓: ID2, SPN, BCL2L1, TMSB4X, AP2M1, CTSD 

(187) 

M. leprae 

Humans, 

armadillos, 

primates 

FFPE leprosy lesions ↑: NOD2, TNFSF15, RIPK, CCDC122, HLA-DR, C13ORF31, LRRK2 (188) 

Whole blood (human) 
↑: VEGF, GNLY, GZMA/B, PRF1 

↓: IGF, KIF1B, LRRK2  
(189) 

M. smegmatis 

Soil – rarely 

found in animals 

or humans 

U937 cell line 
↑: CDKN1A, ERBB3, BRF1, NSEP1, JUN, GNB1, FGF11, GRN, PGF, NDUFB7, ICAM1, IEX-L1, LIF, RANTES, MIP2, ILIB, TNF, 

IL8, SPP1, IL2RG, MMP1/9, HSPA1A, FTH1, BTG1 

↓: IQGAP1, CRHR1 
(187) 

Table 2. Differentially expressed genes in mycobacterial infections of animals 
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 466 

SPECIES HOSTS SAMPLE PROTEIN/PEPTIDE REFERENCES 

M. avium subsp. 

paratuberculosis 

Sheep, cattle, 

goats, camelids, 
Bovine serum 

↑: VDBP, thransthyretin, RBP, alpha-2 glycoprotein, SERPINA3, cathelicidin, VDBP precursor, leucine-rich alpha-2-

glycoprotein 
(82) 
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 467 

deer ↑↓: Fetuin, serine proteinase inhibitor, alpha-1-B glycoprotein, alpha-1 acid glycoprotein 

Bovine plasma 
↑: Transferrin, gelsolin α/β, actin binding protein, C1r, C3, AOC3, thrombin 

↓: COAFXIII, FCG 
(84) 

Camelid serum ↑: Hp, serum amyloid A, Fb (190) 

- 
FbpA/B, FbpC2, PirG, Wag31, MetC, PepA, Csp, modD, thioredoxin, thiol peroxidase, FadB4, FabG5_2, FabG3_2, 

AhpC, Hsp7-, Hsp65/K, superoxide dismutase, FixA, pstA, EchA20/8_1, DesA2, MoaA3 
(191) (Review) 

M. bovis 
Cattle, possums, 

badgers, buffalo 

Bovine serum 

↑: Alpha-1 antiproteinase, fetuin, VDBP, alpha-1 acid glycoprotein, alpha-2 glycoprotein 1, alpha-1-B glycoprotein, 

RBP, Pks5 

↓: SERPINA3 

(81, 82) 

Buffy coat (bovine) 

↑: TLR2/4/9, MHC1, Syngap1, Alox5, Adar, Mpo, tyrosine-protein kinase, Pxk, MHCII,  

↓: C8α/β, TINAGL1, Drosha, Ifnκ, PIK3C2B, Tyk2, P2x, IL1RL2, oligoadenylate synthase, protein kinase C, beta-

1,4-galactosyltransferase 1, CXCL2, Lif, thrombspondin-1, AP-3, azacytidine-indiced protein, CCL20 

↑↓: 8B, ADAM15, Rnf19B, PLAA 

(192) 

THP-1 cell line 

↑: Sod2, Krt99, CCL20, ICAM1, Ncf1, Tnnt1, Vps26A, Apoe, Rbm17, Agtrap, REP15, Cmtm6, Pklr, Yars2, 

CCDC124/51/93, Dpysl4, Acaa1, Mthfd2, Ckap4, Derl1, Ndrg1, LAMTOR2, TBC1D9B, Rnf2 

↓: Tma7, Mtpn, Tmsb10, Tmsb4X 

(193) 

M. marinum  
Fish, frogs, 

humans (NTM) 

Murine BMDMs, 

RAW 264.7 cell line 

& THP-1 cell line 

↑↓: ESAT-6, CFP-10, LC3, MMP13, Arp2/3, WASP, N-WASP (166, 194, 195) 

M. hominissuis  Pigs, humans, BEAS-2B cell line 
↑: Snd1, NADPH dehydrogenase, Ddx6, Cbr1, Importin, Exportin-5, Cndp2, Dynamin-1-like protein, HNRPK/L, 

Pafah1B3, GCP60, Ubap2L, glutathione synthetase, PPP2A, calnexin, Banf1, lactoferroxin-C, MBP-1 
(196, 197) 

M. avium  Poultry, humans U937 cell line 
↑↓: CAM1/2/3, PPP3R1, Dffa, Bub3, Smc1A, CDK1, CycB, HDAC2, TUBA1B, ItgB2, UBA1, ACTB, H1.4, PP1, 

PP2A, ITGA 
(198) 

M. leprae 

Humans, 

armadillos, 

primates 

- ↑↓: PGL1, ErbB2, α-DG, laminin-2, MMP1/2/9, IDO, VDR, SMAD, VD, SLC11A1 
(199, 200) 

(review) 

M. smegmatis 

Soil – rarely found 

in animals or 

humans 

Murine BMDMS & 

BMDDs 
↑↓: Calmodlin, cAMP, CREB, caspase-8, caspase-3 (201) 

Table 3. Dysregulated protein responses to mycobacterial infections of animals 

SPECIES HOSTS SAMPLE miRNAs REFERENCES 

M. avium subsp. 

paratuberculosis 

Sheep, cattle, 

goats, camelids, 
Bovine whole blood 

↑: miR-6517, miR-7857, miR-24-1, miR-24-2, miR-378c 

↓: miR-19b, miR-19b-2, miR-1271, miR-100, miR-301a, miR-32a 
(130) 
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deer 

Bovine intestinal tissue 

↑: miR-146b, miR-1247, miR-196b, miR-184 

miR-202 

↓: miR-137, miR-105a, miR-433, miR-133b 

(124) 

Murine BMDMs ↓: miR-27a-3p (202) 

M. bovis 
Cattle, possums, 

badgers, buffalo 

Bovine alveolar Mφ 

↑: miR-146b, miR-146a, miR-147, miR-29c, miR-22-3p, miR-21-3p, miR-142-5p, miR-210, miR-32, miR-125a, 

miR-155, miR-99b, miR-27a-5p, miR-149-5p, miR-28, miR-15a, miR-23a, miR-29a, miR-30b-5p, miR-151-5p 

↓: miR-92a, miR-34a, let-7a/b/c/d/e/f, miR-6529, miR-107, miR-744, miR-328, miR-423-3p/5p, miR-345-3p, miR-

128, miR-874, miR-378b, miR-296 

(126) 

HEK293T, EL4 cell lines + 

human MPMs 
↓: miR-29a (147) 

Human MDMs (BCG) 
↑: miR-135b, miR-296-5p, miR-645 

↓: miR-629 
(203) 

M. marinum 
Fish, frogs, 

humans (NTM) 

RAW 264.7, THP-1, 

HEK293T cell lines + MPMs 
↑: miR-155 (143) 

Adult zebrafish (homogenised 

tissue) 

↑: Let-7a/c/d, miR-142b, miR-146a-3p/5p, miR-146b-3p/5p, miR-15c, miR-16b, miR-181a, miR-181b, miR-20b, 

miR-21-3p/-5p, miR-219, miR-223-3p/5p, miR-23b, miR-26a, miR-29a, miR-29b, miR-430a/i, miR-457b, miR-462, 

miR-728-3p/5p, miR-731-3p/5p, miR-732 

↓: miR-10d, miR-25, miR-30b/c, miR-128, miR-150, miR-181c, miR-184, miR-204, miR-216a/b, miR-217, miR-365, 

miR-430b, miR-454b, miR-461, miR-489, miR-724, miR-727, miR-730 

(204) 

M. hominissuis Pigs, humans, Human MDMs 

↑: miR-155. miR-146a, miR-146b-5p, miR-886-5p 

↓: miR-20a, miR-191, miR-378, miR-30c, miR-423-5p. miR-374a, miR-185, miR-768-5p, miR-18 

↑↓: let-7e/i, miR-146b-5p, miR-29a, miR-193a-5p, miR- 483 

(146) 

M. avium Poultry, humans Human MDMs ↑↓: miR-29a, let-7e, miR-146a (146) 

M. leprae 

Humans, 

armadillos, 

primates 

Skin biopsy ↑: miR-21, miR-24, miR-146a, miR-451, miR-30a/b/e, miR-22, miR-181b, miR-34a, miR-93, miR-422a, miR-29c (205) 

Skin biopsy 

↑: miR-142-3p/5p, miR-146b-5p, miR-342-3p/5p, miR-361-3p, miR-3653, miR-484, miR-155, miR-146, miR-21, 

miR-150. miR-181 

↓: miR-1290, miR-429, miR-141, miR-205, miR-193b, miR-200c, miR-224 

(206) 

M. smegmatis 

Soil – rarely 

found in animals 

or humans 

Human MDMs & J774A.1 
↑: miR-125b, miR-142-3p 

↓: miR-155 
(207, 208) 

Table 4. miRNA responses to mycobacterial infections of animals 
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 1128 

Figure Legends: 1129 

Figure 1. Immunological markers predictive or associated with stages of mycobacterial infection. 1130 

Following exposure to mycobacterial pathogens, hosts may have either a successful immune 1131 

response to eliminate the bacteria before an infection is established, or may progress along the 1132 

spectrum of disease. When the pathogen remains in the host system and is able to persist, the 1133 

infection remains latent/subclinical. At this stage in latent bTB, the IFN-γ and proinflammatory 1134 

response is also elevated, and coupled with a decrease in anti-inflammatory IL-10. In 1135 

paratuberculosis, during the subclinical infection stage, there is an increase in a number of 1136 

proinflammatory cytokines. From here, the animal may successfully control the infection and 1137 

eliminate the bacteria (termed ‘Resilience’), or progress to clinical disease. An early, elevated IFN-γ 1138 

and antibody response is observed in infected sheep that progress down a pathway of Resilience to 1139 

disease. During clinical disease, the response is primarily anti-inflammatory, with a decrease in key 1140 

proinflammatory cytokines. A similar response is observed in active bTB, where the immune 1141 

responses favours anti-inflammatory cytokines such as IL-10 and TGF-β. Elevated IP-10 levels may be 1142 

predictive of animals that will develop active bTB. 1143 

Figure 2. Host biomarker responses to mycobacterial infection. Potential biomarkers for 1144 

mycobacterial infection play many different roles in the host response. Some commonly 1145 

measured biomarkers and the likelihood of either a successful host response or successful 1146 

modulation of the response by the pathogen are shown here. Vitamin-D is a key 1147 

antimicrobial agent involved in mycobacterial infections. Host upregulation of the Vitamin D 1148 

receptor (VDR) and the subsequent binding of Vitamin D (D25/calcitriol) triggers nuclear 1149 

translocation and specific cellular responses. A resulting increase in genes such as Defb1/10 1150 

and the production of antimicrobial defensins reduce bacterial burden and facilitate 1151 

mycobacterial killing. An opposing response favouring mycobacterial persistence is 1152 

associated with an increase in IL-10 and a subsequent upregulation of STAT3 transcription. 1153 

Acting through MARCH1, STAT3 is able to reduce MHCII expression and therefore reduces 1154 

further antigen presentation. Concurrently, increased levels of STAT3 block the release of 1155 

chemoattractant signals from IL-12 to prevent an influx of immune cells. 1156 

Figure 3. General extracellular vesicle structure. A phospholipid bilayer membrane 1157 

surrounds the vesicle and contains several key molecules: annexins assist in transport and 1158 

membrane fusion, lipid rafts consisting of flotillin-1, cholesterol etc. aid in internalisation, 1159 
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MHC class I and II enables peptide binding, adhesion molecules such as β2 integrin and 1160 

ICAM-1, and tetraspanins such as CD63 and CD81 are for cell recognition. The internal 1161 

compartment also contains a range of important components including miRNA, Rabs for 1162 

exosome docking, HSPs to aid in MHC peptide binding, and cytoskeletal proteins. 1163 

Figure 4. miRNA responses to mycobacterial infection. Conflicting miRNA responses are 1164 

common in bacterial infections, resulting in either pro- or anti-survival conditions, with an 1165 

example of each given here. Upon encountering mycobacteria, miR-29a can be either up or 1166 

downregulated. When miR-29a is decreased, its effect on mitochondrial membrane 1167 

potential is lessened, allowing for the release of cytochrome c and eventual activation of 1168 

caspases which result in cell death and possible bacterial clearance. In contrast, recognition 1169 

of mycobacteria by TLR2 and MyD88/TIRAP results in an increase in miR-146a, which 1170 

directly targets and reduces TRAF6. This reduction leads to a decrease in iNOS and NO 1171 

production, and an overall decline in mycobacterial clearance. The specific miRNA response 1172 

is dependent on the pathogen and host immune response and may therefore contribute to 1173 

the disease progression and phenotype. 1174 

 1175 

Figure 5. miRNA responses to mycobacterial infection. Infection and exposure to 1176 

mycobacteria results in a large-scale miRNA response with changes in different functional 1177 

and biological pathways. The above miRNAs are some  that have been observed as being 1178 

dysregulated during infection and their function identified. There are likely many other 1179 

miRNAs that are of importance in mycobacterial infections which fall into these, and other, 1180 

canonical pathways.  1181 

 1182 
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