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Liquid Biopsies in Cancer Diagnosis, monitoring and prognosis 16 

ABSTRACT 17 

Liquid biopsy, consisting in the non-invasive analysis of circulating tumor-derived material 18 

(the Tumor Circulome), represents an innovative tool in precision oncology to overcome 19 

current limitations associated with tissue biopsies. Within the tumor circulome, ctDNA and 20 

CTCs are the only components whose clinical application is FDA-cleared. Extracellular vesicles, 21 

ctRNA and tumor-educated platelets are relatively novel tumor circulome constituents with 22 

promising potential at each stage of cancer management. Here, we discuss the clinical 23 

applications of each element of the tumor circulome and the prevailing factors that currently 24 

limit implementation in clinical practice. We also detail the most recent technological 25 

developments in the field, which demonstrate potential in improving the clinical value of 26 

liquid biopsies. 27 

 28 

  29 
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Liquid Biopsies – Investigating the “Tumor Circulome”  30 

Cancer is one of the leading causes of death worldwide, with 8.8 million deaths estimated in 31 

2015i. In the USA, more than 1,735,350 cases of cancer are foreseen to be diagnosed in 2018, 32 

causing more than 609,640 deathsii. The development of “omics” technologies has led to the 33 

field of precision oncology that consists of tailoring treatment regimens to an individual’s 34 

tumor molecular characteristics [1]. The current golden standard for genetic profiling of 35 

tumors typically involves the use of tissue biopsies. Because of their invasive nature, tissue 36 

biopsies are associated with many limitations including patient risk, sample preparation, 37 

sensitivity (see Glossary) and accuracy, procedural costs and invasive testing.  This makes the 38 

procedure incompatible for clinical longitudinal monitoring [2]. Furthermore, a significant 39 

limitation of tissue biopsies is that they fail to capture intratumoral and intermetastatic 40 

genetic heterogeneity, impacting the accuracy of the test [3].  41 

Liquid biopsies present great potential in overcoming these existing sampling limitations.  42 

They consist of the sampling and analysis of liquid biological sources, typically blood, for 43 

cancer diagnosis, screening and prognosis. The “Tumor Circulome” , defined as the subset of 44 

circulating components is derived from cancer tissue andcan be directly or indirectly used as 45 

a source of cancer biomarkers in liquid biopsy [4]. These include: circulating tumor proteins, 46 

circulating tumor nucleic acids (ctDNA, ctRNA), circulating tumor cells (CTCs), tumor-derived 47 

extracellular vesicles (EV) , circulating tumor proteins and tumor-educated platelets (TEPs) 48 

(Figure 1, Key Figure). Liquid biopsies present several advantages over conventional tissue 49 

biopsies (see Table 1), and technological advancements in sample isolation (such as the 50 

development of nucleic acids extraction chips to minimize the manipulation of samples [5]) 51 

and detection platforms (such as the development of high resolution flow cytometers [6] or 52 
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single-cell Western Blot platforms [7]) are evolving to support this approach. The first 53 

important milestone in this field was reached in 2016 with the Food And Drug Administration 54 

(FDA) approval of the first companion diagnostic test for lung cancer based on the ctDNA 55 

content of a liquid biopsy [8].  56 

In this review, we detail the clinical significance and potential of liquid biopsies and provide 57 

an overview of recent reports supporting elements of the Tumor Circulome as biomarkers for 58 

the diagnosis and monitoring of cancer, with a particular focus on ctDNA, CTCs, tumor-derived 59 

EVs and ctRNAs. We also discuss factors limiting implementation in clinical practice and 60 

outline significant technological advances that may overcome these. Our focus will be on 61 

blood as the biological matrix for the liquid biopsy, however other biological fluids comprise 62 

a source of promising tumor-derived biomarkers too (see Box 1). 63 

 64 

Circulating Tumor-derived Proteins 65 

The measurement of circulating protein markers has historically been the gold standard 66 

approach used for the non-invasive diagnosis, screening and postoperative follow-up in 67 

cancer management. Notable examples of circulating tumor-derived protein markers include 68 

the  Prostate Specific Antigen (PSA) for prostate cancer screening [9] and CA 15-3 for 69 

postoperative follow-up of breast cancer recurrence [10]. These are compromised by high 70 

false positive rates, which can lead to overdiagnosis and in some cases unnecessary 71 

anticancer treatment [9].  In the case of CA 15-3, there are questions around its application 72 

in improvements in patient outcomes [10]. The use of panels or biosignatures comprised of 73 

more than one protein is a more promising approach, as the combination of multiple 74 
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biomarkers increases the diagnostic/prognostic capability of the assay by reducing the 75 

number of false positives and false negatives [11, 12].  76 

 77 

Circulating Tumor DNA (ctDNA) 78 

Circulating Tumor DNA comprises the fraction of circulating cell-free DNA (cfDNA) originating 79 

from cancer cells. This includes short nucleosome-associated fragments (80-200 bp) [13] and 80 

longer fragments (> 10 kb) encapsulated within EVs [14]. The mechanisms of ctDNA release 81 

into circulation include apoptosis, necrosis, lysis of CTCs and active secretion from the tumor 82 

[15]. The proof of the suitability of ctDNA as cancer biomarker came with the identification of 83 

KRAS gene mutations in ctDNA from the blood of pancreatic cancer patients [16].  84 

Clinical significance of ctDNA analysis 85 

Both qualitative and quantitative information can be obtained from ctDNA analysis 86 

[13].Quantitative information can be obtained from the measurement of the mutant allele 87 

fraction (MAF, the percentage of mutant allele in a given locus) and is a reflection of tumor 88 

burden [13]. It finds application in the detection of minimal residual disease (MRD) and 89 

occult metastases [17] and in the monitoring of treatment response and therapeutic 90 

effectiveness [18]. CtDNA levels provide a “real time” snapshot of tumor bulk because of its 91 

short half-life (around 2.5 hours) [13]. The detection of ctDNA after treatment is a high 92 

sensitivity and specificity predictor of relapse [19]. 93 

Qualitative information can be sourced through the profiling of mutations, 94 

duplications,amplifications, deletions and translocations in ctDNA (Figure 1), allowing the 95 

identification of genetic alterations associated with response, hence supporting decision-96 
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making for personalized management [13]. For example, the first ctDNA-based companion 97 

diagnostic test (cobas® EGFR Mutation Test v2 – Roche Diagnostics), recently approved by 98 

the FDA [8], is used to guide the use of Epidermal Growth Factor Receptor (EGFR)-Tyrosine 99 

Kinase Inhibitors on the basis of specific EGFR-sensitizing mutations in patients with non-100 

small cell lung cancer (NSCLC). Other qualitative information obtainable through ctDNA 101 

analysis includes assessment of methylation status. For example, a screening test for 102 

colorectal cancer, Epi proColon®, has been recently approved by FDA and analyzes the 103 

methylation pattern of the promoter of the SEPT9 gene, a region known to be 104 

hypermethylated in colorectal cancer when compared to normalnon-malignant samples [20]. 105 

Technological approaches and current limitations 106 

The currently available technologies for ctDNA analysis are based on polymerase chain 107 

reaction (PCR) or next-generation sequencing (NGS). Allele-specific PCR was the first 108 

approach used in ctDNA detection [16] and a quantitative PCR (qPCR) variation of this 109 

technique is currently adopted by the cobas® EGFR test [8]. Considering that the fraction of 110 

ctDNA in total cfDNA is usually very low, often less than 0.01% [21], more sensitive 111 

technologies have been developed and successfully used for ctDNA analysis, such as digital 112 

PCR (dPCR) [22], droplet digital PCR (ddPCR) [23] and Beads, Emulsion, Amplification, 113 

Magnetics (BEAMing) [24]. Although very sensitive, quick and relatively inexpensive, PCR-114 

based assays are limited by low multiplexing capacity, allowing for analysis of a restricted 115 

number of loci in parallel [13].  116 

The sensitivity of NGS-based technologies is lower than that of PCR-based technologies and 117 

inversely proportional to the number of loci analyzed, with Whole Exome Sequencing (WES) 118 

having the lowest sensitivity (≥5% MAF) [13]. Approaches to enhance the sensitivity of NGS 119 
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include considering patient- or cancer-specific gene panels, such as in the Cancer 120 

Personalized Profiling by deep Sequencing (CAPP-Seq) technology [25], or strategies to 121 

suppress the background noise generated by random errors occurring during library 122 

preparation. These strategies involve tagging each template molecule with Unique Molecular 123 

Identifiers (UMIs). These are used by different NGS platforms, such as eTAm-Seq™ (Enhanced 124 

Tagged Amplicon Sequencing) [26]. Another approach to enhance sensitivity includes the 125 

selective nuclease digestion of non-mutated DNA, which results in an increase in MAF and 126 

has enabled mutation detection down to 0.00003% MAF [27]. 127 

Despite its potential, the use of ctDNA as a liquid biopsy has many limitations. Detection 128 

sensitivity is a serious concern, especially in early cancer detection where the low amount of 129 

ctDNA may result in a MAF lower than the limit of detection of existing techniques [13]. The 130 

sampling of other body fluids, proximal to the putative site of the tumor, can increase the 131 

detection rate, at least in individuals at risk due to, for example, hereditary predisposition. 132 

This is mainly because, especially at early stages, a proximal body fluid may have a higher 133 

concentration of tumor-derived DNA than blood [28]. Another concern in early detection is 134 

the predictive value of single or small sets of mutations, as cancer-associated mutations can 135 

be found in plasma of healthy individuals as a result of clonal hematopoiesis [13]. One 136 

approach to overcome this challenge is to use the CancerSEEK platform, which associates the 137 

analysis of 8 tumor-derived proteins to ctDNA mutation profiling and has a specificity of >99% 138 

[29].  139 

Another limitation impeding the implementation of ctDNA analysis into clinical practice is the 140 

lack of standardized protocols for pre-analytical sample preparation and ctDNA purification. 141 

Current procedures are complex and may cause ctDNA degradation and blood cell lysis [30]. 142 
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A platform allowing a quick, single-step purification of ctDNA from blood is desirable, and lab-143 

on-a-chip systems have potential to address this need [5]. 144 

 145 

Circulating Tumor Cells (CTCs) 146 

CTCs are a population of tumor cells that have detached from the primary tumor and can be 147 

found in the peripheral blood of patients. Their presence is thought to be fundamental to the 148 

development of metastasis [31]. CTCs present systemically through active intravasation, with 149 

epithelial-to-mesenchymal (EMT) transition as a fundamental step [32], or through passive 150 

shedding from the primary tumor, . This latter a mechanism is supported by the  presence of 151 

CTC aggregates or Circulating Tumor Microemboli (CTMs) in the blood [33].  152 

Clinical significance of CTCs and analytical technologies 153 

The information that can be obtained from CTCs are quantitative as well as phenotypic 154 

(qualitative) through single cell genomic/transcriptomic/proteomic profiling (Figure 1). They 155 

have great potential as tools for diagnosis, monitoring, prognosis and prediction of response 156 

to therapy, and also for the discovery of novel drug targets [34]. Furthermore, the ex vivo 157 

culture of CTCs has an important translational value, because it allows to perform 158 

personalized drug sensitivity tests with the aim of basing treatment decision-making on 159 

evolving tumor mutational profiles and drug sensitivity patterns found in individual patients 160 

[35]. 161 

The simplest information obtainable from CTCs is their number, which is a prognostic 162 

predictor for many cancers including metastatic breast, colon and prostate cancers [36]. 163 

Currently the only FDA-cleared clinical application of CTCs is the CellSearch® platform used 164 
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for enumeration of epithelial  CTCs [36]. The power of CTC counts as a criterion for the 165 

selection of the first-line treatment in metastatic breast cancer is currently being investigated 166 

in the METABREAST trial (Clinical Trial Number: NCT01710605). 167 

With regards to the genetic and genomic information obtainable from CTCs, the technologies 168 

that can be used are similar to those of ctDNA analysis, and range from qPCR and dPCR-based 169 

mutational profiling to targeted NGS and whole genome sequencing [37]. Additionally, CTCs 170 

can be analyzed by cytogenetic analyses such as Fluorescence In Situ Hybridization (FISH) for 171 

the identification of chromosomal rearrangements [38]. NGS technologies have fundamental 172 

importance for single-CTC genomic and transcriptomic characterization, in the study of tumor 173 

heterogeneity and in comparative analysis with tissue biopsies [39]. Although the fields of 174 

single-cell genomics and transcriptomics have experienced significant developments, single-175 

CTC protein analysis is somewhat premature in comparison, with immunocytochemistry and 176 

flow cytometry being primarily used, both of which have poor multiplexing capacity.  New 177 

technologies are however emerging and Sinkala and colleagues recently developed a 178 

microfluidic-based single-cell Western Blot assay (scWB) which was used to assess the levels 179 

of 8 proteins in three metastatic cancer patient-derived single CTCs [7]. 180 

Despite numerous analytical platforms and technologies available for CTC analysis, their 181 

translation into clinical practice is limited by their isolation from blood. Challenges include 182 

their extreme rarity, fragility and physical and phenotypic heterogeneity [34]. Currently 183 

available strategies for CTC enrichment and isolation exploit their biological and physical 184 

properties, while functionality assays allow CTCs identification (Box 2 and Table 2). Each of 185 

these alternatives has advantages and drawbacks, and only their combination can support a 186 

comprehensive characterization. 187 
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 188 

Extracellular Vesicles (EVs) 189 

EVs are membranous particles released from all cell types in physiological and pathological 190 

conditions, as well as following different types of stimuli including proteases, ADP, thrombin,  191 

inflammatory cytokines, growth factors, biomechanical shear and stress inducers and 192 

apoptotic signals [40]. They can be found in almost every body fluid, especially in blood [41]. 193 

Once considered a simple means to eliminate unneeded cellular components from the 194 

cytoplasm of cells, during the last decade EVs have been recognized as fundamental 195 

mediators of intercellular communication, regulating and participating to a plethora of 196 

physiological and pathological processes including cancer [41].  Based on their biogenesis, 197 

content and secretory pathways, EVs can be divided into two broad categories: exosomes and 198 

microvesicles [41]. 199 

Clinical significance of EVs as cancer biomarkers 200 

The suitability of EVs as cancer biomarkers lies in the fact that the molecular cargo they carry 201 

can be considered a molecular fingerprint of the cell of origin [42]. Compared to ctDNA and 202 

CTCs, whose implementation in clinical cancer diagnostics is hampered by challenges in their 203 

isolation, analytical sensitivity and by stability concerns, the potential advantages of EVs are 204 

many. EVs are typically produced and released in abundant quantities and in greater amounts 205 

compared to  CTCs [43]. Likewise, the stability of the vesicular cargo is maintained through a 206 

protecting  outer lipid membrane [44]. 207 

Similarly to ctDNA and CTCs, EVs can be source of quantitative and qualitative information. 208 

Quantitative information comprising EVs numbers can inform the presence of malignant 209 
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disease and tumor burden. For example, circulating exosome levels are increased in breast 210 

and pancreatic cancer [45] and the number of circulating microparticles (MPs) is higher in 211 

multiple myeloma (MM) patients compared to healthy individuals [46]. Furthermore, 212 

circulating MP levels demonstrated potential for the diagnosis and prognosis of advanced 213 

NSCLC [47]. 214 

Qualitative information through the molecular characterization of EV constituents, including 215 

nucleic acids and proteins (Figure 1) , are the most readily obtained (Figure 1) [42]. The RNA 216 

content of EVs, including both coding and non-coding RNAs, has been widely studied [43] . 217 

The DNA content of exosomes has recently gained attention as a biomarkers source in a study 218 

in which mutations in KRAS and TP53 have been detected in serum exosomes from pancreatic 219 

cancer patients [14]. In another study, the identification of exosomal KRAS mutations proved 220 

better than CA 19-9 for prognostic stratification of patients with pancreatic ductal 221 

adenocarcinoma (PDAC) [48].  222 

EVs carry proteins in their lumen and in their membrane, and numerous reports have been 223 

published demonstrating the important role of EV proteins as possible cancer biomarkers 224 

[42]. Melo et al. demonstrated the ability of circulating exosomal Glypican-1 (GPC1) to 225 

distinguish PDAC from healthy donor samples with a reported accuracy of 100% [45]. More 226 

recently, Moon et al. demonstrated the suitability of EV Del-1 [49] and Fibronectin [50] as 227 

biomarkers for early breast cancer diagnosis. Furthermore, our group demonstrated that the 228 

levels of circulating CD138+ MPs increase in MM and observed a significant prognostic 229 

potential for CD138+ MPs in predicting risk of relapse and therapeutic response in individual 230 

patients [46]. Finally, the levels of AnnexinV+ EpCAM+ Asialoglycoprotein Receptor-1 231 

(ASGPR1)+ circulating MPs are diagnostic of hepatocellular carcinoma and 232 
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cholangiocarcinoma [51], and the levels of CD147+ EpCAM+ MPs are predictors of colorectal 233 

carcinoma [52]. 234 

Technologies for EVs isolation and analysis and recent advances 235 

One important limitation to the clinical application of EVs as liquid biopsy is the lack of 236 

standardized protocols for sample handling and EV isolation and analysis, which could impact 237 

reproducibility in the clinical setting [53]. Currently used EV isolation procedures often consist 238 

of many biospecimen handling steps and can subject EVs to different types of physical and 239 

chemical insults, which may damage EVs and/or modify their biological and physical 240 

properties. Another factor influencing the reproducibility of EV studies is the lack of 241 

standardized guidelines defining EVs nomenclature and definition, and the control 242 

experiments needed for validation. In order to overcome these limitations, a comprehensive 243 

collection of guidelines and recommendations has been very recently updated by the 244 

International Society for Extracellular Vesicles [54]. 245 

Similarly to CTCs, conventional EVs isolation strategies exploit physical (density, size) and 246 

biological (expression of surface markers) properties [55]. Density-based approaches, such as 247 

differential centrifugation/ultracentrifugation and density gradient centrifugation, are the 248 

most commonly used methods for EV isolation. Among these, differential ultracentrifugation 249 

is considered the gold-standard technique, especially for exosome purification. Although 250 

widely used, these techniques rely on expensive equipments, are time-consuming and don’t 251 

guarantee pure yields, often resulting in a compromise between purity and recovery [55]. 252 

Size-based techniques include filtration and size exclusion chromatography (SEC). Filtration 253 

can result in high yields and purity, but again is limited in terms of EVs adherence to the filters 254 
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and vesicle damage due to high pressure [56]. SEC allows a superior recovery of EVs compared 255 

to ultracentrifugation [56]. 256 

Immunoaffinity capture methods use magnetic beads conjugated to antibodies recognizing 257 

EV surface markers. An advantage of these methods is that they produce EV fractions with 258 

high purity, allowing the isolation of specific subsets of EVs based on the surface marker used. 259 

This feature, on the other hand, could be a limitation because it may overlook potentially 260 

important EV subpopulations lacking the expression of the selected marker [55]. A novel 261 

development of immunoaffinity capture is its integration into microchips allowing in-situ 262 

immunoassay analysis [57].  263 

Another commonly used isolation method, especially for exosomes, is polymer precipitation. 264 

This method involves the use of polymers (such as polyethylene glycol (PEG)) to reduce the 265 

solubility of EVs, in order to precipitate them with a rapid low-speed centrifugation. Although 266 

producing high recovery rates, this methodology has low purity [58]. 267 

Recently emerging methodologies for EV isolation use electric fields. Lewis et al. developed 268 

an Alternating Current Electrokinetic (ACE) Chip capable of performing exosome capture from 269 

whole blood and in-situ immunofluorescent analysis in 30 minutes. They validated this chip 270 

by assessing the suitability of GPC-1 and CD63 levels as diagnostic markers of PDAC [59]. 271 

Finally, another promising category of potential novel approaches to EV isolation relies on 272 

microfluidics [58]. The available microfluidic approaches are based on different EV properties, 273 

eg: nanoscale size-based filtration [60], antibody-functionalized microfluidic channels [61] 274 

and spiral inertial microfluidic devices [62]. In a recent report, Ko et al. developed a magnetic 275 

nanopore sorting platform that has been used to isolate specific cancer-derived EVs. They 276 

used this system to identify, in a mouse model of PDAC, a miRNA signature to train a machine 277 
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learning algorithm for the classification of distinct cancer states [63]. Microfluidics 278 

technologies are set to boost the development of lab-on-a-chip systems for fast, cost-279 

effective, integrated isolation and analysis of EVs, towards the development of EV-based 280 

point-of-care diagnostics.  281 

Together with the isolation methods, EV detection methods are also experiencing advances 282 

in development, especially with regards to the analysis of protein cargo. Common analytical 283 

technologies include Western blot (WB), Enzyme-linked immunosorbent assay (ELISA), mass 284 

spectrometry (MS) and flow cytometry (FCM) [64]. With the exception of FCM, these 285 

techniques focus primarily on bulk EV analysis, without assessing their individual variability 286 

[58]. FCM is currently used for single-MPs characterization [46, 51, 52], but fails to analyze 287 

single exosomes due to their small size. Exosome FCM analysis currently involves the binding 288 

of multiple exosomes to larger beads [45]. Recently, Kibria et al. developed a microFCM 289 

platform which was capable of assessing the expression of CD47 in single circulating 290 

exosomes from breast cancer patients [6]. Another technique capable of allowing single-EV 291 

protein phenotyping, at a higher size resolution than current flow cytometers, is a variation 292 

of Nanoparticle Tracking Analysis (NTA) in which fluorescent antibodies are used to identify 293 

EVs expressing a given marker [65]. Despite better size resolution of NTA, a great advantage 294 

of FCM is its higher multiplexing capacity. 295 

 296 

Circulating Tumor RNA (ctRNA) 297 

The fraction of circulating cell-free RNA originating from cancer cells is referred to as 298 

circulating tumor RNA (ctRNA). The existence of extracellular RNA was first documented in 299 

1978 [66] and the first report about its potential as cancer biomarkers was shown years later 300 
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[67]. Compared to DNA, RNA is a relatively unstable molecule, whose naked half-life in plasma 301 

is approximately 15 seconds [68]. Its stability is enhanced by its association with proteins [69], 302 

proteolipid complexes [67] and extracellular vesicles [44]. 303 

Clinical significance of ctRNA as cancer biomarker and current limitations 304 

Nearly all known classes of RNA have been found in systemic circulation and, to a certain 305 

extent, each one of them has potential to serve as cancer biomarkers [70]. Similar to other 306 

components of the tumor circulome, ctRNA is source of quantitative and qualitative 307 

information. In fact, although expression profiles of coding and non-coding RNAs (ncRNAs) 308 

represent the most important source of information, the identification of tumor-specific 309 

fusion transcripts or alternative splice events is also possible [71]. The most important classes 310 

of ctRNA potentially suitable as biomarkers are mRNAs, miRNAs and long non-coding RNAs 311 

(lncRNAs) (Figure 1). Their analysis is performed with techniques ranging from qRT-PCR or 312 

dPCR-based assessment of single or small panels of RNAs to the comprehensive 313 

characterization of RNAs (especially miRNAs) signatures via RNA-Seq [70]. 314 

Circulating exosomal mRNA has been used to investigate the mutational status of KRAS and 315 

BRAF in patients with colorectal cancer (CRC) [72], and exosomal EGFRvIII mRNA has potential 316 

for the diagnosis of EGFRvIII-positive high-grade gliomas [73]. In another report, the detection 317 

of androgen receptor splice variant 7 (AR-V7) in plasmatic exosomes by ddPCR has been 318 

shown to be a good predictor of resistance to hormonal therapy in prostate cancer [74]. 319 

Numerous lung cancer-related gene fusions are also readily identified in both vesicular and 320 

non-vesicular mRNA and have value as biomarkers [75]. Among the non-vesicular fraction of 321 

ctRNAs, circulating human Telomerase Reverse Transcriptase (hTERT, catalytic subunit of the 322 
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Telomerase Complex) mRNA has demonstrated a greater diagnostic and prognostic accuracy 323 

than PSA for prostate cancer [76]. 324 

With regards to miRNAs, plasma exosomal miR-196a and miR-1246 levels have potential for 325 

the early diagnosis of pancreatic cancers [77], and panels of miRNAs have been shown to be 326 

reliable biomarkers for diagnosis [78] or prognosis [79] of lung cancer. More recently, a serum 327 

exosomal miRNA signature has proven to be an innovative tool for the differential diagnosis 328 

of gliomas [80].  329 

A novel promising source of RNA biomarkers are long-noncoding RNAs (lncRNAs). For 330 

example, plasma exosome LINC00152 levels have been linked to gastric cancer [81], and the 331 

combination between two mRNAs and one lncRNA in serum exosomes has diagnostic 332 

potential for colorectal cancer [82]. Furthermore, serum exosomal HOTAIR lncRNA has 333 

applicability in diagnosis and prognosis of glioblastoma multiforme [83]. More recently, a 334 

panel of five circulating lncRNAs has been studied as a promising diagnostic biomarker for 335 

gastric cancer [84]. 336 

To date, the most important limitations for the implementation of ctRNAs in the clinical 337 

setting involve the pre-analytical and analytical steps. Although circulating RNAs are 338 

protected by the association with different molecules and structures, they are unstable in 339 

plasma if stored at 4°C, and limited by the speed of extraction [85]. Furthermore, different 340 

extraction protocols have different recovery rates, and there is currently no consensus on an 341 

optimal extraction protocol [85]. Again, lab-on-a-chip devices seem to offer a potential 342 

solution to this issue, allowing rapid and integrated purification and analysis of samples while 343 

minimizing their handling. A proof-of-concept of this is the microdevice developed by Potrich 344 

et al., which is capable of selectively extracting miRNAs from cell culture supernatant and 345 
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allows in situ reverse transcription and qPCR analysis [86]. Another example is the Integrated 346 

Comprehensive Droplet Digital Detection (IC 3D) system, a microfluidic platform capable of 347 

quantifying extremely low concentrations of miRNAs directly from plasma in 3 hours [87]. 348 

 349 

Tumor-Educated Platelets (TEPs) 350 

TEPs are perhaps the latest components of the tumor circulome to be considered for 351 

biomarker analysis. The concept of “platelet education” by cancer refers to the presence of 352 

specific RNA signatures in platelets of cancer patients. This was first reported in 2010 and 353 

2011 with the observations that: in metastatic lung cancer patients, 197 platelet genes were 354 

downregulated and several genes were differentially spliced compared to non-cancer 355 

controls [88]; in glioma, cancer-derived microvesicles are actively taken up by platelets and 356 

transfer their RNA content, harboring a cancer-characteristic RNA signature revealed by 357 

microarray [89]. Best et al. in 2015 characterized TEPs extracted from a patient cohort across 358 

6 cancer types via RNA-Seq, distinguishing patients with localized or metastatic tumor from 359 

healthy individuals with 96% accuracy and locating the anatomical position of the tumor with 360 

71% accuracy. This paved the way for “pan-cancer and multiclass cancer diagnostics” [90]. In 361 

more recent work, the same group applied Particle-Swarm Optimization (PSO)-enhanced 362 

algorithms swarm intelligence-enhanced algorithms to platelet RNA-Seq libraries to generate 363 

a panel of biomarkers capable of distinguishing lung cancer patients from healthy individuals 364 

and from those with lung inflammatory conditions [91].  365 

 366 
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TEPs is minimally described and tumor proteins are not (reference Fig1 ). Is there a way to put 367 

these too classes in better context with the Figure? So that readers can follow Fig.1 and text 368 

better? In this current draft…I feel that it seems that the authors abruptly ended TEPs and 369 

forgot about tumor proteins. Some explanation is required. 370 

Controversies on the use of Liquid Biopsies in cancer management 371 

Despite reports demonstrating potential of liquid biopsies in addressing the current 372 

needs in cancer management, numerous controversies remain on their utility. This is 373 

particularly true for ctDNA and CTCs, which have already found application in clinical 374 

management.  In a recent report Torga et al. [92] compared the performance of two 375 

commercially available NGS-based ctDNA tests for metastatic prostate cancer, finding an 376 

astonishingly low concordance (7.5% patients studied) between the two tests. The 377 

discordance was attributed to issues in study design and sample analysis, raising current 378 

limitations of preanalytical and analytical standardization in the field. Furthermore, with very 379 

few exceptions, most of the ctDNA assays available have limited evidence of clinical validity 380 

and utility in advanced cancer. Likewise, their utility in early-stage cancers, treatment 381 

monitoring or MRD detection remains to be established [93]. Additionally, with regards to 382 

CTCs, although their clinical validity has been demonstrated, particularly for their prognostic 383 

capacity in metastatic disease, evidence of their clinical utility is still missing,  preventing their 384 

implementation into standard clinical practice [94]. Numerous large-scale clinical trials are 385 

clearly needed, and some are currently in progress to address this unmet need.   386 

 387 
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Current standards for patient stratification and treatment selection include the analysis of 389 

tumor genetic alterations from tissue biopsies. Despite their undoubted value, tissue biopsies 390 

have important limitations, being highly invasive procedures that fail to capture tumor clonal 391 

heterogeneity. Liquid biopsies, consisting in the analysis of circulating tumor-derived factors 392 

(the Tumor Circulome), are gaining exceptional attention as a valuable alternative. The tumor 393 

circulome is source of different classes of tumor-derived biological components. Novel 394 

technologies are being developed to further improve the analysis of the tumor circulome, 395 

with the aim of fully exploring the complexity of the information obtainable from a simple 396 

blood draw. 397 

The studies reviewed here underline the tremendous potential of liquid biopsies, and the 398 

development of novel technologies allows researchers to characterize each single component 399 

of the tumor circulome with increasing precision. Liquid Biopsies are being positioned as a 400 

game-changing tool in personalized cancer management. However, their clinical application 401 

has been comparatively slow, hampered by multiple technical challenges (listed in Table 3). 402 

As a consequence, several problems still need to be resolved to firmly establish the role of 403 

liquid biopsies in the clinical setting (see Outstanding Questions). The lack of standardization 404 

of pre-analytical and analytical variables is a significant limitation in the field. A liquid biopsy 405 

ideally should be cost effective, fast, reproducible and ensure sample integrity. One approach 406 

via which this can be achieved is through automated chip-based devices allowing for the 407 

analysis of biomarkers from whole blood without the need for lengthy and costly purification 408 

steps.  While complex chip systems such as the ACE chip remain costly, alternative polymeric 409 

microfluidic devices such as the spiral microfluidic chip used for CTC isolation are, in 410 

comparison, cost effective [95]. Although much work is still needed to comprehensively define 411 
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the future role of liquid biopsies in cancer diagnosis, monitoring and prognosis, the promising 412 

results reported so far testify to the potential of this approach in changing the current 413 

paradigms of cancer management. 414 

  415 
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TEXT BOXES 416 

Box 1 – Liquid biopsy of othernon-blood  biological specimens body fluids biological 417 

specimens different from other than blood 418 

Although the “standard” concept of liquid biopsy consists in the sampling of blood, virtually 419 

all body fluids are suitable as liquid biopsy. The anatomic localization of primary or metastatic 420 

tumors influences the presence of tumor-derived material in the corresponding body fluids. 421 

Common body fluids  include urine, saliva, sputum, stool, cerebrospinal fluid (CSF) and pleural 422 

effusions. Many of these have demonstrated great potential as a source of cancer biomarkers 423 

[96, 97]. 424 

Urine: Urine is a valuable source of ctDNA for  urogenital cancers such as prostate, bladder 425 

and cervical cancers  and non-urogenital malignancies such as NSCLC, Colorectal Cancer (CRC) 426 

and gastric cancer [98], and its EV content is source of several candidate biomarkers [99]. The 427 

first liquid biopsy test on urine, Progensa® PCA3 Assay was, FDA approved in 2012iiito aid the 428 

decision-making of a repeat prostate biopsy in case of a first negative biopsy. This test 429 

measures the level of Prostate Cancer Antigen 3 (PCA3) lncRNA, which is increased ini more 430 

overthan 95% of primary prostate tumors [100]. Another promising urine-based test is the 431 

ExoDx® Prostate(IntelliScore)iv, a Laboratory-Developed Test (LDT) based on the analysis of 432 

the levels of three exosome-associated RNAs overexpressed in high-grade prostate cancer 433 

which is used to “rule-out” potentially unnecessary prostate biopsies. 434 

Saliva: Salivary biomarkers include ctDNA for head and neck squamous cell carcinoma [101], 435 

and microRNAs (miRNAs) for detecting early malignancy in potentially malignant oral  cancers 436 
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[102]. Furthermore, EV-associated miRNAs have the potential to be used as biomarkers of 437 

oral squamous cell carcinoma [103]. 438 

CSF: CSF, thanks to its direct contact with the central nervous system (CNS), is set to become 439 

an important source of biomarkers for CNS-restricted cancers, potentially overcoming the 440 

relative scarcity of circulating biomarkers (especially ctDNA) in these diseases caused by the 441 

blood-brain-barrier [104]. CSF-derived ctDNA has proven to represent genetic alterations of 442 

brain tumors better than plasma ctDNA [105], and a miRNA CSF signature for glioblastoma 443 

has been recently reported [106]. 444 

Other bodily fluids: The analysis of stool-derived DNA has been recently validated as a 445 

powerful diagnostic tool for colorectal cancer [107], while sputum DNA and protein content 446 

has promising potential in the context of lung cancer [108]. Pleural effusions, finally, are 447 

source of DNA biomarkers for lung cancer [109] and malignant pleural mesothelioma [110], 448 

and the presence of Epithelial Cell Adhesion Molecule (EpCAM)+ microparticles allows 449 

distinction between malignant and non-malignant pleural effusions [111]. 450 

The studies reported here are examples of the enormous potential of non-blood liquid 451 

biopsies as biomarkers trove. The association between information obtained from blood and 452 

non-blood samplings will surely represent a precious added value in the field of liquid biopsy. 453 

 454 

Box 2 - Strategies for CTC isolation, enrichment and identification  455 

Based on biological properties: Approaches based on biological properties of CTCs exploit the 456 

expression of cell surface markers for their isolation and selection [34]. The most used marker 457 

for positive selection is EpCAM, which is a calcium-dependent transmembrane glycoprotein 458 
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that mediates cell adhesion in epithelia and is, detected by the CellSearch® platform [36]. 459 

CellSearch® integrates immunomagnetic enrichment of EpCAM+ cells and staining with anti-460 

cytokeratine (CK), anti-CD45 and DAPI [36]. A limitation of EpCAM-dependent approaches is 461 

that many CTCs don’t express EpCAM  as they undergo Epithelial-to-Mesenchimal Transition 462 

(EMT), thus underestimating CTC counts [112]. To overcome this, other markers must be 463 

considered. For example, Gao and colleagues enriched lung cancer CTCs using anti-EpCAM, 464 

anti-Mucin 1(MUC1) and anti-EGFR antibodies [113]. Alternative approaches, preferable 465 

because they include EpCAMlow and EpCAM- populations, leaving CTCs unstained, involve the 466 

immunomagnetic depletion of CD45+ leukocytes [114]. Other EpCAM-based strategies 467 

include microfluidic platforms such as the CTC-Chip [115] and the NanoVelcro system [116], 468 

and devices for the in vivo capture of CTCs directly into patients’ veins, such as the GmbH 469 

CellCollector device [117]. 470 

Based on physical properties: Other enrichment technologies exploit CTCs’ physical 471 

properties. CTC isolation by size is possible as CTCs are generally larger than leukocytes [118]. 472 

Size-based approaches include filtration methods, such as the Isolation by Size of Tumor cells 473 

(ISET®) [118] and Metacell® [119] devices. Limitations of filtration include difficulty of 474 

detaching cells from the filter and loss of cell viability [37]. To overcome these, label-free 475 

microfluidics devices were developed, such as Parsortix™[120]. More recently, CellSearch® 476 

and Parsortix™ were sequentially combined to separately isolate EpCAM+ and EpCAMlow/- 477 

CTCs from blood of metastatic breast cancer patients, simultaneously analyzing the matched 478 

CTC populations [121]. Another example of size- based CTC enrichment is the high-throughput 479 

spiral inertial microfluidic biochip, which has been clinically validated in breast and lung 480 

cancer [122]. 481 
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Technologies exploiting density include differential centrifugation [123] and platforms 482 

such as MagDense [124]. Other technologies involve exploiting the differences between 483 

dielectric properties of CTCs and white blood cells (WBCs) and form the basis of  484 

Dielectrophoresis (DEP)-based platforms [125]. DEP can behas been associated with Lateral 485 

Field Flow Fractionation (LFFF)  to improve the isolation of spiked breast cancer cells from 486 

regular blood cells [126]. A similar technology is the DEPArray, a microfluidics platform that 487 

combines DEP and imaging and has been used to accurately sort single breast cancer cells 488 

following CellSearch® enrichment [127].  489 

CTC functional assays support CTCs identification based on functional characteristics, 490 

overcoming limitations attributed to their heterogeneity. The Vita-Assay™ exploits the ability 491 

of CTCs to digest a Cell Adhesion Matrix (CAM), measuring the uptake of CAM proteins on a 492 

coated culture dish via fluorescence. [128]. The EPISPOT Assay detects viable CTCs through 493 

detection of specific proteins released following culture on substrates functionalized with 494 

specific antibodies [129]. The TelomeScan® platform exploits the activation of telomerase in 495 

most cancers, allowing identification of CTCs by using adenoviruses that selectively replicate 496 

in cells expressing functional hTERT, expressing GFP [130]. 497 

  498 
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Table 1 – Advantages of Liquid Biopsies over conventional Tissue Biopsies 499 

 Tissue Biopsy Liquid Biopsy 

Invasiveness High Minimal 

Pain Yes No 

Risk of complications Yes No 

Time needed Time-consuming Quick 

Tumor heterogeneity 

representation 

Low/null High/total 

Tumor region selection 

bias 

Yes No 

Compatibility with 

longitudinal monitoring 

No Yes 

  500 
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Table 2 – Examples of CTCs isolation, enrichment and identification strategies 501 

Category Principle Technique / Platform Ref. 

Biological 

Properties 

Surface marker 

expression 

EpCAM+ Enrichment / 

CellSearch® 

[36] 

EpCAM+ + other surface 

markers 

[113] 

CD45+ Depletion [114] 

GmbH Cell Collector (in vivo 

capture) 

[117] 

Surface marker 

expression - 

Microfluidics 

CTC-Chip [115] 

NanoVelcro [116] 

Physical Properties Size - Filtration ISET® [118] 

Metacell® [119] 

Size - Microfluidics Parsortix™ [120] 

Spiral inertial microfluidic 

chip 

[122] 

Density Differential Centrifugation [123] 

MagDense [124] 

Dielectric Properties DEP [125] 

DEP-LFFF [126] 

DEPArray [127] 

 Functional Assays CAM digestion Vita-Assay™ [128] 
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Protein Release during 

Culture 

EPISPOT Assay [129] 

Telomerase Expression TelomeScan® [130] 

  502 
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Table 3 – Limitations of Liquid Biopsies  503 

Liquid Biopsy 

Component 

Limitations Solutions Ref. 

Circulating Tumor 

DNA (ctDNA) 

Low Sensitivity of 
mutation detection 
(when MAF is low) 

Unique Molecular 
Identifiers 

Nuclease digestion of 
non-mutated DNA 

Sampling of alternative 
body fluids 

[26] 

 

[27] 

[28] 

Low predictive value of 
single / small sets of 
mutations 

Analyze large mutations 
sets and / or associate 
mutations with other 
classes of biomarkers 
(e.g. proteins) 

[29] 

Lack of standardized 
pre-analytical handling 
protocols, sample 
degradation,poor 
reproducibility 

Layout of standardization 
guidelines 

Automated purification / 
analysis chips minimizing 
sample handling 

[30] 

 

[5] 

Circulating Tumor 

Cells (CTCs) 

Poor efficiency of 
isolation from blood 
because of marker 
rarity, fragility, physical 
and phenotypic 
heterogeneity 

Combined use of 
different methodologies 
for enrichment / isolation 
(e.g. CellSearch + 
Parsortix) 

[121] 

Extracellular Vesicles 

(EV) 

High variability between 
isolation techniques – 
lack of standardized 
protocols 

Comprehensive 
standardization 
guidelines (e.g. MISEV 
2018) 

Automated purification / 
analysis chips (e.g. ACE 
Chips) 

[54] 

 

 

[59] 

Lack of single-EV protein 
expression analysis 
techniques (especially 
for exosomes) 

Development of high-
resolution flow 
cytometers 

Fluorescence-based 
Nanoparticle Tracking 
Analysis 

[6] 

 

[65] 
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Circulating Tumor 

RNAs (ctRNAs) 

Pre-analytical handling 
variability,RNA 
instability 

Layout of sample 
handling standardization 
guidelines  

Automated purification / 
analysis chips minimizing 
sample handling 

[85] 

 

[87] 

Abbreviations used:- ACE: Alternating Current Electrokinetic; MAF: Mutant Allele Fraction; 504 

MISEV: Minimal Information for Studies of Extracellular Vesicles, ACE: 505 

  506 
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GLOSSARY: 507 

Allele: variant form of a given gene 508 

BEAMing; Beads, Emulsion, Amplification, Magnetics, highly sensitive dPCR method which 509 

combines emulsion PCR and flow cytometry to identify and quantify DNA mutations 510 

CA 19-9,: Cancer Antigen 19-9. It is a portion of the Sialyl-Lewis A antigen. Its presence is 511 

highly correlated with advanced epithelial cancers. 512 

Clonal hematopoiesis, the condition in which a substantial proportion of mature blood cells 513 

is derived from a single dominant hematopoietic stem cell lineage. Clonal hematopoiesis has 514 

been linked to a greater than 10-fold increased risk of developing a hmtological  515 

cancerhematological cancer 516 

CAPP-Seq; Cancer Personalized Profiling by deep Sequencing, a sensitive method of analysis 517 

consisting of the sequencing of cancer-specific (personalized) panels of genes to identify 518 

cancer-specific mutations 519 

Companion diagnostic: , medical device, often an in vitro test, providing information that is 520 

essential and required for the safe and effective use of a corresponding drug. It is often 521 

developed simultaneously with the corresponding drug.  The cobas® EGFR Mutation Test v2 522 

described in the text, for example, consists of a PCR-based analysis of a set of mutations, 523 

insertions and deletions on the EGFR gene and is used to inform on the use of erlotinib and 524 

osimertinib in NSCLC 525 

DAPI:, 4′,6-diamidino-2-phenylindole. It is aA fluorescent dye that binds to AT-rich regions on 526 

DNA and is used to stain nuclei. 527 

Commented [MK(54]: Please remove the common terms 
that I highlight below as “not needed” and also un-bold them 
in the main text. Thank you. 

Commented [GDR55R54]: done 

Commented [MK(56]: Please give example of a common 
companion diagnostic…. 

Commented [GDR57R56]: done 



Page 31 of 43 
 

dPCR; Digital PCR, a biotechnological improvement of conventional PCR in which each DNA fragment is amplified in a separated reaction after segregation of the single fragments through different approaches. This allows an absolute quantification of the number of copies of a determinate gene or variation thereof, which is more reliable compared to the relative quantification obtained by conventional PCR (which requires the construction of a titration curve) a quantitative PCR method that is used for the absolute quantification of 528 

DNA, without the need of a calibration curve with samples of known quantities. In dPCR, the 529 

initial sample mix (which is prepared like a common qPCR) is split into several individual wells 530 

before the amplification step. Following PCR amplification, the absolute quantification of the 531 

target is calculated using Poisson statistics, based on the number of positive and negative 532 

wells for the target sequence. 533 

ddPCR; Droplet Digital PCR, a variation of dPCR in which the sample is partitioned in a large 534 

number of tiny water-oil emulsion droplets, containing on average one fragment of starting 535 

material each, before the analysis. The partition of the sample in small droplets in emulsion 536 

has the advantage, compared to dPCR, to increase the number of partitions analyzed and, 537 

therefore, the resolution of the analysis 538 

EMT, Epithelial-to-Mesenchymal Transition: a process in which epithelial cells lose their 539 

polarization and adhesion properties, gaining migratory properties and thus differentiating in 540 

mesenchymal cells. 541 

Genetic Heterogeneity: the presenceof different genetic clones, within the same tumor 542 

GFP: Green Fluorescent Protein 543 

Intravasation:, the process by which cancer cells invade blood or lymphatic vessels through 544 

the basal membrane 545 

hTERT: human Telomerase Reverse Transcriptase: the catalytic subunit of the Telomerase 546 

Complex 547 

LDT:; Laboratory-Developed Test, a type of in vitro diagnostic test that is designed, 548 

manufactured and used within a single laboratory 549 
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Loci: (plural of locus) particular positions of genes on a chromosome 550 

serum concentration of a protein) in the same patient over a period of time. 551 

Methylation: transfer of a methyl (-CH3) group on a molecule 552 

Necrosis: , traumatic cell death resulting from acute cellular injury 553 

Next-Generation Sequencing: high-throughput DNA sequencing technologies 554 

PSO; Particle-Swarm Optimization, is a population based stochastic optimization technique 555 

that  shares many similarities with Genetic Algorithms.  556 

 557 

PCR: Polymerase Chain Reaction: technique used to amplify (increase the number of copies 558 

of) a specific DNA sequence 559 

Sensitivity: , proportion of positive individual/samples correctly identified as positivein a 560 

binary classification test (positive/negative; healthy/diseased) the sensitivity measures the 561 

proportion of actual positives that are correctly identified as positive by the test. It is also 562 

called true positive rate (TPR) 563 

Specificity: in a binary classification test, the specificity measures the proportion of actual 564 

negatives that are correctly identified as negative by the test. It is also called true negative 565 

rate (TNR)proportion of negative individual/samples correctly identified as negative 566 

WES; Whole Exome Sequencing, a genomic technique used for sequencing all the protein-567 

coding genes in a genome (exome) 568 

  569 
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Figure Legend: 863 

Figure 1, Key Figure– Components of the Tumor Circulome 864 

The Tumor Circulome comprises all the tumor-derived elements circulating in the 865 

bloodstream that can be used, directly or indirectly, as a source of cancer biomarkers. It 866 

includes circulating tumor proteins, TEPs, ctDNA, tumor-derived EVs, CTCs, tumor-derived EVs 867 

and their constituents, and ctRNAs and TEPs.  Each of these components has provide one or 868 

more levels of information. 869 

 The measurement of the concentration of single proteins or panels composed of multiple 870 

tumor proteins is the current gold standard used in cancer management.  for relapse 871 

detection. As single proteins may not be totally informative, the use of panels of proteins is a 872 

current trend. The information detectable from ctDNA include;s mutations, deletions, gene 873 

amplifications, methylation patterns and translocations. CTCs provide a rich source of  874 

genomic, proteomic, transcriptomic and cytogenetic information and can be cultured ex vivo 875 

to perform personalized drug sensitivity testing The The ex vivo culture of CTCs allows 876 

clinicians to perform personalized drug sensitivity tests to help in the treatment decision-877 

making process.  constituents  of Extracellular Vesicles (EV) provides a “molecular fingerprint” 878 

of the tumor cells of origin, and their DNA , RNA and protein (both surface and intraluminal) 879 

content provides a rich source of  cancer biomarkers. ctRNA, including EV-associated 880 

circulating RNA, includes different RNA classes. Among these, miRNA expression panels and 881 

lncRNA expression are good sources of quantitative biomarker information. Furthermore, 882 

qQualitative information such as the presence of tumor-specific alternatively spliced 883 

transcripts and gene fusion transcriptsalternative splicing and gene fusions can also be 884 

obtained from this source. The platelets of cancer patients or tumor educated platelets (TEPs) 885 
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are also source of biomarker information,  containing tumor-derived RNAs, generating 886 

specific platelet cancer signatures, and tumor-induced alternatively spliced transcripts. 887 

Abbreviations used- CTC: Circulating Tumor Cells; ctDNA: circulating tumor DNA; ctRNA: 888 

circulating tumor RNA; EV: Extracellular vesicle; lncRNA: long non-coding RNA; miRNA: 889 

microRNA; mRNA: messenger RNA; nc RNA: non-coding RNA; TEP: tumor-educated platelet. 890 

 891 
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