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Abstract: The bin-normalized frequency domain block LMS (NFBLMS) algorithm 17 

demonstrates high convergence speed in active noise control (ANC) applications; however, it 18 

suffers from a biased steady-state solution when the adaptive filter length is not sufficient. A 19 

modified FBLMS (MFBLMS) algorithm has been proposed recently to solve the problem 20 

with guaranteed optimal steady-state performance, but its convergence speed is lower than 21 

that of the NFBLMS algorithm. In this paper, an improved algorithm is proposed by 22 

combining the NFBLMS and MFBLMS algorithms. Based on the analysis of the initial 23 

convergence trajectory of the NFBLMS algorithm, an effective switching strategy is 24 

designed, which enables the MFBLMS algorithm after the NFBLMS algorithm approaches 25 

its steady state and switches back to the NFBLMS algorithm when an environmental change 26 

is detected. The simulation results using the measured acoustic transfer functions are 27 

presented to demonstrate that the proposed algorithm gains both high convergence speed and 28 

optimal steady-state performance from the NFBLMS and MFBLMS algorithms. 29 

Keywords: active noise control; frequency domain adaptive algorithm; insufficient filter 30 

length. 31 
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I. INTRODUCTION 33 

Active noise control (ANC) has wide applications in sound barriers, cars and 34 

headphones0-4 due to its benefits of attenuating low-frequency noise without bulky passive 35 

structures. For the common feedforward control system, the filtered-x LMS (FXLMS) 36 

algorithm is widely utilized because of its simplicity and stability.5-10 However, as noted by 37 

many researchers, the time domain FXLMS algorithm suffers from low convergence speed.11 38 

Many effective alternatives, such as the frequency domain block least mean square (FBLMS) 39 

algorithm,12-15 subband algorithm,16,17 and variable step size (VSS) algorithm,18 have been 40 

proposed. 41 

The normalized FBLMS (NFBLMS) algorithm, obtained by normalizing the stepsize 42 

of the FBLMS algorithm according to the reference signal power in each frequency bin,  43 

theoretically has a uniform convergence mode in each frequency bin.19,20 Although the 44 

NFBLMS algorithm has high convergence speed for colored noise, its mean squared error 45 

(MSE) is large with insufficient adaptive filter length, which is a common scenario in ANC 46 

system due to the existence of the secondary path between the control source and the error 47 

sensor. 21,22,23 A modified FBLMS (MFBLMS) algorithm has been proposed, which can 48 

guarantee the optimal steady-state behavior at cost of some computational complexcities.24 49 

Unfortunately, the convergence speed of the MFBLMS algorithm has been found to be 50 

generally lower than that of the NFBLMS algorithm.25 51 

In this paper, a quantitative analysis of the initial convergence behavior of the NFBLMS 52 

algorithm is presented first, and then a switching mechanism between the NFBLMS and the 53 

MFBLMS algorithms is designed based on this. The benefits of both the NFBLMS and the 54 

MFBLMS algorithms are combined in the proposed algorithm, ensuring both the high 55 

convergence speed and the optimal steady-state behavior. Simulations with the measured 56 

ANC transfer functions are carried out to validate the efficacy of the proposed algorithm. 57 
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Throughout this paper, lowercase letters are used for scalar quantities, bold lowercase for 58 

vectors and bold uppercase for matrices. Subscript f denotes a frequency domain 59 

representation of each signal and k is reserved for the block index. 60 

 61 

II. THE FREQUENCY DOMAIN ALGORITHM  62 

A block diagram of a common feedforward ANC system is shown in Figure 1, where 63 

Hr(z) is the transfer function from the noise source to the reference sensor, Hp(z) and Hs(z) 64 

are the transfer functions of the primary and the secondary paths,  sĤ z  is the modeled 65 

secondary path transfer function, and W(z) is the control filter. 66 
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Figure 1. Block diagram of the FxLMS algorithm 69 

 70 

To reduce the computational complexity and increase the convergence speed, the 71 

NFBLMS15 and MFBLMS24 algorithms can be applied in the ANC system. If the secondary 72 

path is perfectly modeled, i.e.,    s s
ˆ H z H z , the frequency domain algorithm for ANC 73 

can be simplified as the adaptive system identification algorithm,21 as shown in Figure 2, 74 

where x(k) and e(k) denote the filtered signal vector and the error signal vector in the time 75 

domain respectively, xf(k) and ef(k) denote the filtered signal vector and the error signal 76 

vector in the frequency domain respectively, wf(k) is the control filter in the frequency 77 

domain, and ξ is the vector containing the normalizing factors for each frequency bin. The 78 
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length of the control filter is N, and the block length of the algorithm is usually also set as N, 79 

so the length of the DFT operation is 2N. The red line and the blue line indicate the signal 80 

flow of the NFBLMS and MFBLMS algorithms, respectively. The black line indicates the 81 

signal flow of both algorithms. 82 

The commonly used update equation of the constrained NFBLMS algorithm is 24 83 

        H

f f ,0 f f f1 2   Nk k k kw w Q M X e , (1) 84 

where the superscript H represents the conjugate transpose operation, μ is step size 85 

normalized by ξ, Xf(k) = diag[xf(k)], Mf = diag[ξ], and ξ is usually set as the reciprocal of the 86 

reference signal power, so that 87 

     
1

H

f f f



   E k kM X X . (2) 88 

QN,0 = FGN,0F−1, Q0,N = FG0,NF−1, F represents a 2N×2N discrete Fourier transform (DFT) 89 

matrix, and 90 
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The filter update equation of the MFBLMS algorithm is given by24 92 

        H

f f ,0 f ,0 f f1 2   N Nk k k kw w Q M Q X e . (4) 93 

The difference between Eqs. (1) and (4) is that there is one more QN,0 in Eq. (4). 94 

When the adaptive filter is of insufficient length, the steady-state solution of the 95 

NFBLMS algorithm deviates from the optimal Wiener solution while the MFBLMS 96 

algorithm remains converging to the Wiener solution.26 However, the convergence speed of 97 

the MFBLMS algorithm has been found to be slower than that of the NFBLMS algorithm due 98 

to …..25 Therefore it is reasonable to combine the high convergence speed of the NFBLMS 99 

algorithm and the optimal steady-state behavior of the MFBLMS algorithm, and the key is to 100 

design an effective switching strategy. 101 

 102 
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Figure 2. Block diagram of the NFBLMS (red) and MFBLMS (blue) algorithms 104 

 105 

III. THE PROPOSED ALGORITHM 106 

In the NFBLMS algorithm, it has 26  107 
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where vf(k) = wf(k) − wf,o(k), wf,o(k) is the steady-state adaptive filter in the frequency 109 

domain, and ef,o(k) is the steady-state error in the frequency domain. It is usually assumed 110 

that the elements of the frequency bins of the filtered signal behave like independent complex 111 

Gaussian stationary random variables,27 whose modulus square satisfies a chi-square 112 
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distribution with 2 degrees of freedom.28 E[QN,0MfXf
H(k)Q0,Nef,o(k)] = 0, QN,0 ≈ I/2 and Q0,N 113 

≈ I/2 for large enough N, E[QN,0MfXf
H(k)Q0,NXf(k)] ≈ I/4, and QN,0MfXf

H(k)Q0,NXf(k) is 114 

approximated as a diagonal matrix. 19  115 

    To confirm the analysis results, Figure 3 shows the value distribution Q0,N and 116 

QN,0MfXf
H(k)Q0,NXf(k) when N = 2048, with noise signal generated by passing the Gaussian 117 

white noise through the transfer function H(z) = (1−0.5z−1)10/(1−0.6z−1)10. It is clear that both 118 

matrices are close to an ideal diagonal matrix, and the diagonal element of Q0,N is around 0.5 119 

while the diagonal element of QN,0MfXf
H(k)Q0,NXf(k) is around 0.25, as anticipated from the 120 

analysis. 121 

 122 

  123 

(a)          (b) 124 

Figure 3. Distribution of matrix coefficients with (a) Q0,N; (b) QN,0MfXf
H(k)Q0,NXf(k). 125 

 126 

Let 127 

      H

,0 f f 0, f2 N Nk k kΦ Q M X Q X . (6) 128 

When the initial value of the adaptive filter is far enough away from the steady-state solution, 129 

μQN,0MfXf
H(k)Q0,Nef,o(k) is considerably smaller than vf(k) at the initial stage of the filter 130 

updating process and is negligible. Substituting Eq. (6) in Eq. (5) yields 131 

      f f+1     k k kv I Φ v . (7) 132 
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The error of the NFBLMS and MFBLMS algorithms can both be described as24 133 

        f 0, f f f   Nk k k ke Q d X w , (8) 134 

where df(k) is the desired signal in the frequency domain. It can be seen from Eq. (8) that 135 

 
           
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Q X v Q e
. (9) 136 

When the initial value of the adaptive filter is far away from the steady-state solution, ef(k) − 137 

Q0,Nef,o(k) ≈ ef(k) at the initial stage. Eq. (9) can be simplified as 138 

      f 0, f f Nk k ke Q X v . (10) 139 

According to the independence assumption,20 vf(k) is only related to the past observations 140 

and is independent of the information of the current block. Multiplying both sides of Eq. (10) 141 

with their respective conjugate transpositions and then taking expectation leads to 142 
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. (11) 143 

Let Jm(k) = E[ef
H(k)ef(k)], substituting Eq. (7) in Eq. (11) yields 144 
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. (12) 145 

Since Φ(k) is only related to Xf(k), Φ(k) is independent of Xf(k + 1) due to the independence 146 

assumption. Note the matrices in Eq. (12) are all approximated as diagonal matrices, so Eq.  147 

(12) can be expressed as 148 
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.149 

 (13) 150 
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Known by the characteristics of the chi-square distribution,29 E[Φ(k)] = 0.5I and E{[ΦH(k) – 151 

0.5I][Φ(k) – 0.5I]} ≈ 0.25I, then 152 
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, (14) 153 

where b = (1 ‒ μ / 2)2 + μ2 / 4. 154 

According to the independence assumption, vf(k) is independent of Φ(k). Assume that 155 

the noise is stationary, then substituting Eq. (14) in Eq. (13) leads to 156 
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. (15) 157 

In practice, Jm(k) is initialized using the instantaneous squared error J(k) = ef
H(k)ef(k) and 158 

the update process is carried out as 159 

        m m m1 1       J k bJ k J k bJ k , (16) 160 

where α is a small regularization coefficient to mitigate the variation of the instantaneous 161 

estimate. It can be expected that Jm(k) decreases fast at the initial stage and remains 162 

comparatively stable when the filter approaches the steady-state. Therefore a reasonable 163 

criterion to determine the convergence state of the NFBLMS algorithm is to calculate the 164 

difference of Jm(k) as ΔJ(k) = Jm(k − 1) − Jm(k). When ΔJ(k) is smaller than a preset threshold 165 

ΔTHR, the NFBLMS algorithm reaches the steady-state and the proposed algorithm should 166 

switch to the MFBLMS algorithm. 167 
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When the secondary path is fixed but the position of the noise source or the reference 168 

sensor changes, the control process needs to switch back to the NFBLMS algorithm to 169 

guarantee a higher convergence speed. The steady-state tracking parameter is set as 170 

  
    
    

T

f 0, f

T

f 0, f

 
N

N

E k k
k

E k k

e Q e

x Q x
. (17) 171 

When ζ(k) suddenly increases above a threshold ζTHR, the ANC system needs to be 172 

re-initialized to the NFBLMS algorithm. 173 

The schematic diagram of the switching strategy is shown in Figure 4. To prevent 174 

frequent switching between the two algorithms, each algorithm needs to run continuously at 175 

least for M blocks after a switch. The proposed algorithm is initialized with the NFBLMS 176 

algorithm. When ΔJ(k) < ΔTHR, the NFBLMS algorithm is assumed to reach steady-state, and 177 

the proposed algorithm is switched to the MFBLMS algorithm. When the MFBLMS 178 

algorithm converges close to the Wiener solution, ζ(k) fluctuates around the minimum value. 179 

In order to set a reasonable ζTHR, the proposed algorithm switches to the NFBLMS algorithm 180 

for a short while and obtains a larger ζ(k) that can be set as ζTHR. After that, the proposed 181 

algorithm switches back to the MFBLMS algorithm. When ζ(k) > ζTHR, a considerable 182 

change of the acoustic environment is detected and the proposed algorithm switches to the 183 

NFBLMS algorithm for a high convergence speed. 184 

 185 
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Figure 4. The switching strategy of the proposed algorithm. 187 

 188 

In the proposed frequency-domain algorithm, the high convergence speed of the 189 

NFBLMS algorithm and the optimal steady-state behavior of the MFBLMS algorithm are 190 

combined efficiently with a limited increase of the computational burden. Furthermore, the 191 

proposed algorithm can also track the variation of the acoustic environment and re-converges 192 

efficiently when the position of the noise source or the reference sensor is changed. 193 

IV. SIMULATIONS 194 

The performance of the proposed algorithm is demonstrated by comparing with the ANC 195 

systems based only on the NFBLMS or the MFBLMS algorithms with the measured data. 196 

The measurements were conducted in a normal room with a sampling rate of 16 kHz, where 197 

the noise signal is generated by passing the Gaussian white noise through a low-pass filter 198 

H(z) with cut-off frequency of 6 kHz, as shown in Figure 5.  199 

 200 
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 201 

Figure 5 Frequency response of H(z) used in the measurements. 202 

 203 

The noise source was placed in two positions shown in Figure 6, resulting in different 204 

reference transfer functions, Hr1(z) and Hr2(z), and different primary transfer functions, 205 

Hp1(z) and Hp2(z). All the measured impulse responses, including Hs(z), are shown in Figure 206 

7. The acoustics feedback from the control source to the reference sensor is removed with 207 

feedback neutralization.
错误!未找到引用源。 208 
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 209 

Figure 6. The positions of sources and sensors in the measurements. 210 

 211 
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 212 

Figure 7. The impulse responses used in the measurements. 213 

 214 

The measurement data is divided into two sections. The first section is obtained with the 215 

noise source 1, and the second section is obtained with the noise source 2. The control filter 216 

length is set as 1024, the signal block length is 1024 and the FFT of 2048 points is utilized 217 

in the proposed algorithm. The step sizes of all algorithms are set to guarantee both the high 218 

convergence speed and the stability of the system. The results are averaged over 10 219 

independent trials. The comparison of the convergence of the three algorithms in the ANC 220 

system is shown in Figure 8. 221 

 222 
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Figure 8. The convergence curves of the three algorithms 223 

 224 

In Figure 8, the NFBLMS algorithm convergences faster to a biased steady-state within 225 

0.7 s, while the MFBLMS algorithm suffers from significantly longer convergence time but 226 

with a much lower MSE. The proposed algorithm switches effectively to the MFBLMS 227 

algorithm at about 1.0 s and converges to the lower MSE. This demonstrates clearly the 228 

benefit of the combination of both the NFBLMS algorithm and the MFBLMS algorithm. 229 

When the position of the noise source is changed at 42 s, the noise control performance of all 230 

the three algorithms deteriorate quickly as expected. Then the proposed algorithm switched 231 

to the NFBLMS algorithm to have fast convergence speed. When the NFBLMS algorithm 232 

approaches the steady-state, the MFBLMS algorithm is again launched, resulting in a lower 233 

residual noise than that achieved by the NFBLMS algorithm. 234 

 235 

V. CONCLUSIONS 236 

An improved active noise control algorithm combining the benefits of the NFBLMS and 237 

MFBLMS algorithms is proposed based on an effective switching strategy between these two 238 

algorithms. The proposed algorithm launches the NFBLMS algorithm initially and switches 239 

to the MFBLMS algorithm when the NFBLMS algorithm converges close to its steady state, 240 

resulting in both high convergence speed and optimal steady-state performance of the 241 

system. Simulations using real measured acoustic impulse responses validate the efficacy of 242 

the proposed algorithm in a feedforward active noise control system. 243 
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