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Abstract—Joint communication and radio sensing (JCAS) in
millimeter wave (mmWave) systems requires the use of steerable
beam. For analog antenna arrays, a single beam is typically
used, which limits the sensing area to within the direction
of the communication. Multibeam technology can overcome
this limitation by separately generating package-level direction-
varying sensing subbeams and fixed communication subbeams
and then combing them coherently. In this paper, we inves-
tigate the optimal combination of the two subbeams and the
quantization of the beamforming (BF) vector that generates
the combined beam. When either full channel matrix or only
the angle of departure (AoD) of the dominating line-of-sight
(LOS) path is known at the transmitter, we derive closed-form
expressions for the optimal combining coefficients that maximize
the received communication signal power. For quantization of
the BF vector, we focus on the two-phase-shifter array where two
phase shifters are used to represent each BF weight. We propose
novel joint quantization methods by combining the codebooks of
the two phase shifters. The mean squared quantization error is
derived for various quantization methods. Extensive simulation
results validate the accuracy of the analytical results and the
effectiveness of the proposed multibeam optimization and joint
quantization methods.

Index Terms—Multibeam, beamforming, joint communication
and radio sensing, quantization, phase shift.

I. INTRODUCTION

Joint communication and radio sensing (JCAS, also known
as Radar-Communications) techniques have received strong
interests from both academia and industry. JCAS integrates
radio communication and sensing into one system, sharing the
same transmitted signals [1]–[6]. Rooting in traditional radar
technology, radio sensing here is referred to as information
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retrieval for environment surrounding radio transceivers, based
on estimating the position, speed and feature signal of objects,
activities, and events. JCAS systems have appealing features
such as low-cost, resource-saving, reduced size and weight,
and mutual sharing of information for improved communica-
tion and sensing performance [7].

Millimeter wave (mmWave) is particularly promising for
JCAS due to its very wide bandwidth and hence fine resolu-
tion capability. However, there are also particular challenges
associated with its usage of beamforming (BF). For mmWave,
BF with steerable beam is essential for overcoming large
propagation attenuation, supporting mobility, and estimating
sensing parameters such as angle-of-arrival (AoA) and angle-
of-departure (AoD) of signals. To reduce hardware cost, BF in
mmWave systems is typically realized by using analog antenna
array or hybrid array [8]. A mmWave JCAS system using low-
cost and low-resolution analog-to-digital converters (ADC) is
also investigated in [9], where the Cramér Rao bound (CRB)
for sensing and the achievable data rate for communication
are characterized with respect to ADC’s quantization step.

Although extensive studies have been conducted on BF
for sensing and communication separately [10]–[12], the re-
sults cannot be directly applied to BF and beam-steering in
mmWave JCAS with analog or hybrid array. The primary
challenge is that communication and sensing have different
requirements for BF. Radio sensing often requires time-varying
directional scanning beams, while a stable and accurately-
pointing beam is usually demanded by communication.

BF design for JCAS systems has been investigated in
[3]–[5], [13]–[15]. For digital multiple-input-multiple-output
(MIMO) systems, flexible system design and optimization can
be realized due to the multiple degrees of freedom in the
spatial domain. As a result, beams with multiple mainlobes
can be generated to support communication and sensing in
different directions. In [4], sparse antenna array and BF opti-
mization are studied for JCAS MIMO systems. In [5], wave-
form optimization is studied for minimizing the difference
between the generated signal and the desired sensing wave-
form under the constraints of signal-to-interference-and-noise
ratio (SINR) for multiuser MIMO communications. In [15],
globally optimal waveforms are derived for multiple desired
radar beam patterns, using the metric of minimizing multiuser
interference for communications. Unfortunately, these problem
formulations are based on digital MIMO systems and are not
suitable for a cost-effective, compact, and computationally
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efficient analog antenna array where there are much lower
degrees of freedom in optimization due to a single RF chain
of the array. For example, these MIMO designs can optimize a
digital BF precoding matrix, but with an analog array, we can
only optimize an analog BF weighting vector. For JCAS with
analog BF, most studies such as [3], [13], [14] only consider
a single beam for communication and sensing, hence sensing
is restricted to the communication direction. In a relevant yet
different context, BF design for other dual function systems
such as joint wireless information and power transfer has also
been investigated in [16], [17]. Such designs also consider
joint optimization of two cost functions, but they use very
different objective functions and are also based on digital
MIMO systems.

In [6], [18], multibeam technology is introduced for
mmWave JCAS, with the use of analog antenna arrays. In
that work, multibeam is defined as a BF waveform with two
or more mainlobes (also called subbeams) generated by a
single analog array at a time. It provides a fixed communica-
tion subbeam along with direction-varying scanning subbeams
across different packets. Several methods are proposed for
generating the multibeam in [6]. Our multibeam scheme is
shown to be superior in balancing complexity and performance
by separately generating two basic beams for communication
and sensing and then combining them according to the desired
directions. In this paper, we improve the multibeam method in
[6] by addressing two important problems: the optimal com-
bination of separately generated sensing and communication
beams, and the quantization of the combined BF vector for
practical systems with only discrete phase shifting values.

The first problem arises from the fact that two separately
generated beams can counteract each other if they are simply
added up, particularly when their mainlobes point to adjacent
directions. An adaptive coefficient is applied in [6] to combine
the two subbeams coherently to increase the BF gain. The
computation of this combining coefficient in [6] is simple
but not optimized. We note that some existing studies on
constructive interference for multiuser MIMO communications
[19] and radar-communication coexistence systems [20] can
potentially apply symbol-level precoding to align multiuser’s
signals so that the signals can be combined at each user’s
receiver constructively. Although their goal is similar to ours,
our problem here is different as only a single symbol is
transmitted from all antennas and there is no interference
between the sensing and communication subbeams. This leads
to different optimization strategies, as will be described in
Section III.

The second problem is due to the fact that practical analog
arrays only have phase shifters with discrete phase shifting
values, while in [6] only continuous and non-quantized BF
vectors are considered. Quantization of BF vectors can cause
large mismatches on BF waveform and degradation on BF gain
[21], [22], particularly when BF weights can only be quantized
as discrete phase shifting values. Recently, a two-phase-shifter
(2-PS) scheme is proposed for BF weight quantization in [23].
Using two phases can potentially represent any element in
a normalized BF vector with a negligible quantization error,
when the number of quantization bits is sufficiently large.

Basic performance analysis for the 2-PS arrays is provided
in [23], but detailed quantization methods are not presented.

In this paper, for the multibeam method in [6], we first study
the optimization of coefficients for combining communication
and sensing subbeams, and then investigate several methods
for quantizing the combined BF vector and characterize the
quantization error. Our main contributions in this paper are
summarized below.

• We derive the optimal coefficients for combining com-
munication and sensing subbeams. These coefficients can
maximize the received signal power in two cases: (1)
when the full channel matrix H is known, and (2) when
the (estimated) AoD of the dominating path is known.
The optimality is analytically proven and validated by
simulation results.

• We introduce several quantization methods for quantizing
the BF vector, particularly for the 2-PS arrays. We
propose a novel joint quantization method that combines
the codebooks of the two phase shifters. With the new
codebooks, particular the one established by introducing
a fixed phase shifting value to one of the phase shifters,
we show that even scalar quantization can achieve per-
formance close to the non-quantized case when there are
more than 3 quantization bits in each phase shifter. We
also develop improved golden section search-quantization
(IGSS-Q) method that enables better scalar quantization
by considering the property of vector quantization.

• We analytically evaluate and compare the mean squared
quantization error (MSQE) for several 1-PS and 2-PS
quantization methods. These analytical results are shown
to match the simulated results well.

Extensive simulation results are provided and compared to
other schemes to validate the optimality of the derived com-
bining coefficients in terms of signal power, the effectiveness
of the quantization methods, and the match between analytical
and simulated quantization errors.

The rest of this paper is organized as follows. We introduce
the system model, formulate the problem and address our
principle of multibeam optimization in Section II. The optimal
combining coefficients are investigated in Section III. We then
study the quantization methods in Section IV, and analytically
evaluate the quantization error for these methods in Section V.
In Section VI, extensive simulation results are provided, and
finally, concluding remarks are provided in Section VII.

Notations: (·)H , (·)∗, (·)T , (·)−1, and (·)† denote the Her-
mitian transpose, conjugate, transpose, inverse, and pseudo-
inverse, respectively. |·|, ‖·‖, and ‖·‖2 denote the element-wise
absolute value, the norm, and the Euclidean norm, respectively.
E(·) denotes the expected value. arg(·) denotes the argument
of a complex number.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we briefly review the system model, present
the concept of multibeam technologies based on one analog
array, and discuss the principle of our multibeam optimization.
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A. System Model

Our work on multibeam generation inherits the JCAS sys-
tem proposed in [6]. In the system, two nodes perform two-
way point-to-point communications in the time division duplex
(TDD) mode and simultaneously sensing the environment to
determine locations and speed of nearby objects. Each node
uses two spatially separated analog antenna arrays to enable
radio sensing while transmitting the signal. In each array, we
assume that both the amplitude and phase of the signal at
each antenna can be adjusted, which can be realized by active
phased arrays [24], [25] or the two-phase-shifter passive array
that is the focus of this paper. Only a single RF and baseband
module is used and connected to the two arrays. Below we
only briefly describe the essential system setup to make this
paper self-contained. Readers are referred to [6] for more
details of the system and the multibeam JCAS technology.

We consider M -element antenna arrays where antenna
elements are equally spaced at an interval of half wavelength.
We assume planar wave-front and consider a narrow-band
beamforming model. The array response vector is given by

a(θ) = [1, ejπ sin(θ), · · · , ejπ(M−1) sin(θ)]T . (1)

A quasi-static channel model can be used for both commu-
nication and sensing, although the values of their parameters
are different. Consider L multipath signals with AoDs θt,`
and AoAs θr,`. For simplicity, we assume that transmitter and
receiver arrays have the same number of antennas M , and
the results in this paper can be straightforwardly extended
to arrays with different numbers of antennas. The quasi-
static physical channels between the transmitting and receiving
antennas can then be represented as

H =

L∑
`=1

b`δ(t− τ`)ej2πfD,`ta(θr,`)a
T (θt,`), (2)

where for the `-th path, b` is its amplitude of complex value,
τ` is the propagation delay, and fD,` is the associated Doppler
frequency. Note that as discussed in [6], these channel param-
eters are generally different for communications and sensing
for active sensing, and are the same for passive sensing. We
do not differentiate between active and passive sensing in this
paper, and the results here are generally applicable to both.
We consider typical multipath mmWave channels where there
exists a line-of-sight (LOS) path and (L−1) non-line-of-sight
(NLOS) paths. The LOS path is assumed to be dominating in
terms of signal power.

Let the transmitted baseband signal be s(t), and the trans-
mitter and receiver BF vectors be wt and wr, respectively.
The received signal for either sensing or communication can
be written as:

y(t) = wT
r Hwt s(t− τ`) + wT

r z(t) (3)

=

L∑
`=1

b`e
j2πfD,`t(wT

r a(θr,`))(a
T (θt,`)wt)s(t− τ`) + wT

r z(t),

where z(t) is the independently and identically distributed
additive white Gaussian noise (AWGN) vector at the receiv-
ing antennas. Consequently, the received signal-to-noise ratio

(SNR) can be written as

γ =
||wT

r Hwt||2

||wr||2
· σ

2
s

σ2
n

, (4)

where σ2
s is the mean power of s(t) and σ2

n is the variance of
AWGN.

B. Multibeam for JCAS

We want to generate a BF waveform with one subbeam
(mainlobe) for communication and another one or more sub-
beams for sensing which may need to scan areas in different
directions from communication. For this purpose we proposed
two multibeam generation methods in [6].

Both methods in [6] use an iterative least square (ILS)
method to generate the BF vectors according to the desired
beam patterns, which are usually specified as the magnitude of
the BF waveform. The first method generates two BF vectors
for communication and sensing respectively based on their
desired beam pattern. Then it combines the two BF vectors
using a phase shifting term ejϕ and power distribution factor
ρ, as shown below

wt =
√
ρwt,c +

√
1− ρejϕwt,s, (5)

where wt,c and wt,s are the respective BF vectors for com-
munication and sensing, the power distribution factor ρ (0 <
ρ < 1) controls the power allocation between two BF vectors.
The value of ρ can be flexibly set. For a given shape of
the BF waveform, it is shown in [6] that BF pointing to a
different direction can be easily generated by multiplying a
phase shifting sequence to the basic BF vectors. The second
method generates a single BF vector directly based on the
desired joint BF waveform for communication and sensing.

The second method has the advantage in generating a BF
waveform with the shape closer to the desired one. However,
the first method is more appealing owing to the following
advantages. 1) It provides great flexibility for varying BF
directions and power distribution between communication and
sensing; 2) It potentially enables the constructive combination
of communication and sensing subbeams at the communica-
tion receiver to improve the received signal power, especially
when the two subbeams are overlapped. One example of the
multibeam is shown in Fig. 1.

C. Principle of Our Multibeam Optimization

In this paper, we further study the first multibeam generation
method, by proposing in-principal optimal solutions to the
phase shifting term and investigating its performance under
practical situation with quantized magnitude and phase for the
BF vectors.

The optimization of multibeam generation in (5) involves
both ρ and ϕ. Here, we consider a sub-optimal two-stage
process for determining the values of ρ and ϕ. In the first
stage, ρ can be decided based on the required communication
performance and the sensing ranges; and in the second stage,
ϕ is uniquely optimized for any given ρ. Although suboptimal,
this two-stage process is well suitable for practical mmWave
systems, where the channel fading varies fast due to the small
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Fig. 1. Example of two separately generated subbeams and the combined
multibeam using Method 1 in [6]. Communication subbeam points at 0
degree, and scanning subbeam points at -12.3 (top subfigure) and 10.8 (bottom
subfigure) degrees.

wavelength of mmWave signals, while the path loss can remain
stable over a relatively long period. Over this period, we only
need to update ϕ in response to fast-changing channel fading.

The value of ρ depends on specific communication and
sensing requirements. It can be adjusted to trade off between
the performances of communication and sensing. When sens-
ing is given priority, the required power for sensing can be
first decided based on the desired sensing distance, and then
the proper modulation and coding scheme can be decided for
communication. When communication is given priority, the
power can be allocated to meet the communication capacity,
while being reserved to meet the requirement for a minimal
sensing distance. In either case, the allocation is straightfor-
ward. Hence we ignore detailed design of ρ here and focus
on optimizing the value of ϕ for a given ρ. As will be shown
later, the optimized ϕ can significantly increase the received
signal power for communications.

When optimizing ϕ, we focus on its impact on communica-
tion signals. This is because its impact on sensing waveform
is generally much weaker. Firstly, the proposed methods
generally cause insignificant variation of the BF waveform, as
we will see later (in Figs. 6 and 7 in Section VI). Secondly,
the combined beam pattern only deviates notably from the
desired one when the sensing and communication subbeams
are very close in directions. In our multibeam scheme, the
reflected signals of the communication subbeam is also used
for sensing. In this case, the combined beam still provides
good coverage for the targeted sensing area as the total energy
of the beam remains unchanged and concentrated in these
directions.

Compared to existing globally optimal solutions such as
those reported in [5], [15], low complexity and fast adapta-
tion to time-varying channels are the key advantages of our
multibeam scheme. For a given shape of the BF waveform, it
was shown in [6] that BF pointing to a different direction can
be easily generated by multiplying a phase shifting sequence
to the basic BF vectors with the computational complexity
of O(M). Since the BF vector for generating the basic

BF waveform can typically be pre-computed and stored in
the system, the complexity for computing wt,s and wt,c is
negligible. The complexity of finding the optimal ϕ is O(M)
(or O(M2)), when the dominating AoD (or the full channel
matrix) is known at the transmitter, as will be shown in Section
IV. Therefore, the complexity of our multibeam schemes is
much lower than the global optimization schemes for MIMO
JCAS systems, e.g., in [5], [15].

To the best of our knowledge, no globally optimal solution
for JCAS systems with an analog array has been reported.
To provide a benchmark for comparison, we propose the
following heuristic BF design

wBM = λw?
WF + (1− λ)w?

Gain,

wBM = wBM/‖wBM‖, (6)

where w?
WF is the BF vector minimizing the mean squared

error (MSE) between the generated BF waveform and the
desired one, and w?

Gain is the BF vector maximizing the
received signal power for communication, and 0 ≤ λ ≤ 1
is the weighting factor. By adjusting λ, the combined BF
vector wBM can prioritize and balance between the conformity
of the generated BF waveform for sensing and the received
signal power for communication. In Section VI.A, we will
numerically generate the benchmark BF vectors wBM under
different values of λ, and compare their performance with our
proposed schemes.

III. OPTIMAL PHASE ALIGNMENT FOR JCAS

In this section, we first demonstrate the impact of the
phase shifting term ejϕ on the received signal power, and
then propose approaches for determining optimal ϕ in two
scenarios, where (1) the full channel matrix and (2) the AoD
of the dominating path is known at the transmitter.

A. Impact of Combining Coefficient

The combing coefficient, i.e., the phase shifting term ejϕ

in (5), can have a significant impact on the received signal
power for communication. An example can be seen from Fig. 4
that will be presented in Section VI.A. In [6], we developed
a method for determining ejϕ, which is effective but not
optimized. Let q denote the right eigenvector corresponding
to the maximum eigenvalue of H when H is known. When
only the dominating path direction is known, q denotes the
conjugate of the array steering vector at that direction. The
method simply aligns the phases of the two outputs qHwt,c

and qHwt,s via letting

ejϕ =
qHwt,c(q

Hwt,s)
H

|qHwt,c(qHwt,s)H |
. (7)

Although this guarantees that the two subbeams can be con-
structively added up at the communication receiver, it is not
optimal. This is because w needs to be normalized to ||w||2
which may not be the smallest for the choice of ejϕ in
(7). Thus the overall optimality is not guaranteed by simply
aligning the phase like in (7).
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B. Optimal Solution when H is Known at Transmitter

When H is known at the transmitter, eigenbeam is the ideal
beamforming, and the transmitter and receiver BF vectors, wt

and wr, shall be the left and right eigenvectors of H. However,
wt needs to vary over packets and hence cannot always be
the eigenvector. Hence we do not particularly consider the
optimization of wt,c and wt,s, but study how to optimize the
phase parameter ϕ for any given wt,c and wt,s. The optimal ϕ,
ϕopt, is obtained when the receiver SNR is maximized, which
can be formulated as

ϕopt = arg max
ϕ
{γ; ||wt||2 = 1} = arg max

ϕ

||wT
r Hwt||2

||wr||2||wt||2
,

(8)

where the transmit BF vector wt is normalized to ensure equal
transmission power for different wt values. For wr, we assume
that maximal ratio combining (MRC) [26] is applied in the
analog domain and wr = (Hwt)

∗. We can then rewrite (8) as

ϕopt = arg max
ϕ

wH
t HHHwt

||wt||2
,

with wt =
√
ρwt,c +

√
1− ρejϕwt,s.

(9)

Since an MRC receiver maximizes the received power, we can
see the equivalence between maximizing the received SNR and
power here.

Let g1(ϕ) = wH
t HHHwt and g2(ϕ) = |wt|2. Equation (9)

can be rewritten as

ϕopt = arg max
ϕ

(
f(ϕ) ,

g1(ϕ)

g2(ϕ)

)
,

with

g1(ϕ) =ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2

+ PejϕwH
t,cH

HHwt,s + Pe−jϕwH
t,sH

HHwt,c,

g2(ϕ) =ρ‖wt,c‖2 + (1− ρ)‖wt,s‖2 + PejϕwH
t,cwt,s

+ Pe−jϕwH
t,swt,c, (10)

where P ,
√
ρ(1− ρ).

By studying the monotonicity of f(ϕ), we can find the
optimal phase combiner as

ϕopt =

{
π + µ0 − γ + 2lπ, when X1 ≥ 0,
µ0 − γ + 2lπ, when X1 < 0,

l = 0,±1,±2 · · · (11)

where

γ , arctan(X2/X1), µ0 , arcsin (
L√

X2
1 +X2

2

),

X1 ,2P |a1| cos(α1)+

2P |a2|[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] cos(α2),

X2 ,− 2P |a1| sin(α1)+

2P |a2|[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] sin(α2),

L ,− 4P 2|a1||a2| sin(α1 − α2),

a1 =|wH
t,cH

HHwt,s|, a2 = |wH
t,cwt,s|,

α1 = arg(wH
t,cH

HHwt,s), α2 = arg(wH
t,cwt,s).

The detailed derivation is provided in Appendix A, and the
existence of µ0 via |L| ≤

√
X2

1 +X2
2 is proven in Appendix

B. The complexity of calculating ϕopt here is O(M2).

C. Optimal Solution when only Dominating AoD is Known at
Transmitter

It is generally challenging to get the full knowledge on the
channel matrix H, while it is more practical to estimate the
dominating AoD. Here, we derive the optimal phase ϕ̃opt that
maximizes the power at the dominating AoD θt. The problem
can be formulated as

ϕ̃opt = arg max
ϕ

‖aT (θt)w̃t‖2

||w̃t||2

with w̃t =
√
ρwt,c +

√
1− ρejϕwt,s,

(12)

where a(θt) is the steering vector at the dominating AoD θt.
Let g̃1(ϕ) = ‖aT (θt)w̃t‖2 and g̃2(ϕ) = ||w̃t||2. Then (12)
can be rewritten as

ϕ̃opt = arg max
ϕ

g̃1(ϕ)

g̃2(ϕ)
,

with

g̃1(ϕ) =ρ‖wH
t,ca
∗‖2 + (1− ρ)‖wH

t,sa
∗‖2

+ PejϕwH
t,ca
∗aTwt,s + Pe−jϕwH

t,sa
∗aTwt,c,

g̃2(ϕ) =ρ‖wt,c‖2 + (1− ρ)‖wt,s‖2

+ PejϕwH
t,cwt,s + Pe−jϕwH

t,swt,c.

Similar to the process in Section III-B, we can obtain ϕ̃opt
as

ϕ̃opt =


π + µ̃0 − γ̃ + 2lπ, when X̃1 > 0,

µ̃0 − γ̃ + 2lπ, when X̃1 < 0,

l = 0,±1,±2 · · ·
(13)

where

γ̃ , arctan(X̃2/X̃1), µ̃0 , arcsin (L̃/

√
X̃2

1 + X̃2
2 ),

X̃1 ,− 2P ã2ã3 cos(α̃2 + α̃3)

+ 2P ã1(ρã2
2 + (1− ρ)ã2

3) cos(α̃1)

X̃2 ,− 2P ã2ã3 sin(α̃2 + α̃3)

+ 2P ã1(ρã2
2 + (1− ρ)ã2

3) sin(α̃1)

L̃ ,− 4P 2ã1ã2ã3 sin(α̃2 + α̃3 − α̃1),

ã1 =|wH
t,cwt,s|, ã2 = |wH

t,ca
∗|, ã3 = |aTwt,s|,

α̃1 = arg(wH
t,cwt,s), α̃2 = arg(wH

t,ca
∗), α̃3 = arg(aTwt,s).

(14)

The detailed derivation is provided in Appendix C. The
complexity of calculating ϕ̃opt is O(M).

IV. QUANTIZATION OF BF VECTOR WITH PHASE
SHIFTERS

In practical analog arrays, beamforming weights can typ-
ically be represented only as quantized and discrete values
instead of continuous ones. In this section, we study the impact
of BF vector quantization on multibeam generation, by using
phase shifters in the array only. After obtaining wt via (5) and
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(a) Option 1: parallel structure (b) Option 2: serial structure

Fig. 2. Optional parallel and serial structures with two phase shifters.

(11) (or (13)), the quantization is applied to the final BF vector
wt = {wi} = {|wi|ejψi}, i = 1, · · · ,M , where ψi = ∠(wi).
Let b be the number of quantization bits in each phase shifter.
We assume that the discrete phase values are equally spaced
over [0, 2π] with a quantization step of ∆ = 2π2−b.

We study two cases when a single and double phase shifters,
abbreviated as 1-PS and 2-PS, are used respectively. The
two optional structures for 2-PS are shown in Fig. 2. As
shown in [23], the 2-PS array can provide significantly reduced
quantization errors compared to 1-PS, at increased hardware
cost.

In this paper, we will mainly study element-wise scalar
quantization. Although vector quantization can achieve better
performance than element-wise quantization, its complexity is
higher. As we will see in Section VI, element-wise quantiza-
tion, particularly for the 2-PS array, can achieve performance
approaching to a non-quantized one when the number of
quantization bit b is moderately large, e.g., b > 3. When b
is small, formulating BF vector quantization as non-coherent
detection problems can be an effective approach for reducing
quantization distortion at an affordable complexity, e.g., trellis
based searching algorithms [27], [28] or maximum likelihood
(ML) detection algorithms [29], [30].

For the 1-PS array, the element-wise quantization can be
represented as

β̂(i) = arg min
β̂∈B
|mod2π(ψi − β̂)| (15)

where β̂ ∈ B = {0,∆β , 2∆β , . . . , (2
b − 1)∆} with quantiza-

tion step ∆β , and mod2π(x) stands for x modulo 2π.

Since the 1-PS array only represents a value with unit
magnitude, the resulting amplitude mismatches can cause
notable sidelobe even using phase shifters with infinite number
of quantization bits [21], [22]. This can cause a waste of
energy and difficulty for the angle of arrival estimation in
multibeam sensing. This problem may be solved by adding
power amplifiers/attenuators for each phase shifter. It can also
be solved by using the 2-PS array, which is the main approach
being investigated in this paper.

Next, we study several methods for determining the phase
shifting values in the two 2-PS structures, including a novel
joint quantization method that is particularly promising, as will
be shown analytically and numerically later.

A. Separate Quantization of Individual Phase Shifts

For the parallel and serial structures in Fig. 2, the phase
shifting values satisfy

wi = |wi|ejψi = ejβ
(i)
1 + ejβ

(i)
2 , (16a)

and

wi = |wi|ejψi = ejβ
(i)
1 (1 + ejβ

(i)
2 ), (16b)

respectively. Thus, the ideal non-quantized phase values for
the parallel and serial structures can be derived as

β
(i)
1 = ψi + arccos(|wi|/2), β

(i)
2 = ψi − arccos(|wi|/2),

(17a)

β
(i)
1 = ψi − arccos (

|wi|
2

), β
(i)
2 = 2 arccos (

|wi|
2

), (17b)

respectively.
A straightforward and simple way to decide the quantized

phase shifts is then through quantizing each of them separately.
This is given by

β̂
(i)
1 = arg min

β̂1∈B1

|mod2π(β
(i)
1 − β̂1)|,

β̂
(i)
2 = arg min

β̂2∈B2

|mod2π(β
(i)
2 − β̂2)|, (18)

where β̂1 ∈ B1 = {0,∆β1
, 2∆β1

, . . . , (2b1−1)∆β1
} and β̂2 ∈

B2 = {0,∆β2 , 2∆β2 , . . . , (2
b2 − 1)∆β2} are the sets of the

quantized phase values. ∆β1 and ∆β2 are the quantization
steps depending on the number of quantization bits b1 and
b2 respectively. As pointed out in [23], when the quantization
step is sufficiently small, this method can leads to negligible
quantization error.

B. Joint Quantization Using Combined Quantization Code-
books

In this scheme, we generate a combined codebook from
the two separate codebooks B1 and B2 for the two phase
shifters. That is, given the code β̂1 ∈ B1 and β̂2 ∈ B2, we
combine and generate a new combined codebook C with code
ĉ, and ĉ = ejβ̂1 + ejβ̂2 . Note that the codes in C do not have
unit magnitude any more. This scheme will output the same
quantization codebook for the two structures in Fig. 2.

Consider a pair of generalized quantization codebooks

B1 = {0,∆β1
, 2∆β1

, . . . , (2b1 − 1)∆β1
},

B2 = {φ, φ+ ∆β2 , . . . , φ+ (2b2 − 1)∆β2},
(19)

where φ, 0 ≤ φ ≤ ∆β2
/2, is a constant for any fixed phase

shifter. Such a constant phase shift can be realized easily by,
e.g., a fixed length of delay line in the circuit. This phase shift
can effectively increase the number of codes in the combined
codebook as we shall see shortly.

We consider a typical case when the quantization step and
bits are the same for the two phase shifters. In this case, it is
easy to see that if φ = 0, there will be 2b repetitive values out
of the total 22b codes in C. The reduced number of distinct
codes will lead to increased quantization errors. We can let φ
be a non-zero value to increase the number of non-identical
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Real Part

Imaginary Part

(a) Constellation of codebook C1
with φ = 0.

Real Part

Imaginary Part

(b) Constellation of codebook C2
with φ = ∆β2

/2.

Fig. 3. Two types of Constellations when b = 2.

codes and reduce the average quantization error. Even when
the quantization steps for the two phase shifters are the same,
a different φ can also lead to different quantization errors.

Hence in principle we can optimize the value of φ to get
the minimum quantization error. However, the optimization
is tricky as both the total number of different codes and
their values have notable impact on the final quantization
performance. So we leave general optimization of φ as an
open problem.

In this paper, we will compare two cases with φ = 0 and
φ = ∆β2/2. In the second case, we get nc2 = 22b different
codes. Fig. 3 displays the constellation plot for the combined
codebook C1 and C2 corresponding to these two cases. These
constellation points are normalized so that E[|ĉk,i|2] = 1/M ,
consistent with the norm of the BF vector, where ĉk,i is the
i-th element of Ck. The normalization factor is given by

h1 =

√√√√ M

2b−1

2b−1∑
i=1

ĉ2k,i =
√

2 + 22−b
√
M,

and

h2 =

√√√√M

2b

2b∑
i=1

ĉ2k,i =
√

2M, (20)

for C1 and C2, respectively.
For the codebook Ck, we can then apply the element-wise

quantization for each BF weight wi and obtain

ŵi = arg min
ĉ∈Ck
|wi − ĉk,i|2. (21)

As we are going to show in Section VI, the element-wise
quantization algorithm based on our proposed codebooks can
already achieve sufficiently good performance with only a
small number of quantization bits.

C. Quantization with Optimized Scaling Factor

In the last subsection, our codebook Ck was normalized
to hk, but hk are statistical values which cannot guarantee
the instantaneous optimality for quantizing a particular BF
vector wt. With the goal of finding a better solution, we
propose an algorithm, what we call as IGSS-Q, based on the
improved golden section search (IGSS) algorithm [31]. The
IGSS algorithm is an efficient one-dimension linear searching

Algorithm 1 IGSS-Q Algorithm

Input: a1, a2, Lmax, ε0, ρ =
√

5−1
2 .

1) l = 0, a(0)
1 = a1, a(0)

2 = a2, d(0) = a
(0)
2 − a

(0)
1 ,

x
(0)
1 = a

(0)
1 + (1− ρ)d(0), x(0)

2 = a
(0)
1 + ρd(0); go to 2).

2) d(l) = a
(l)
2 − a

(l)
1 ; If l ≤ Lmax & |d(l)| > ε0, go to 3);

otherwise, go to 5).
3) Calculate e(a(l)

1 ), e(x(l)
1 ), e(x(l)

2 ) and e(a(l)
2 ) through (24);

Then [I
(l)
min, emin] = min{e(a(0)

1 ), e(x
(0)
1 ), e(x

(0)
2 ), e(a

(0)
2 )},

where I(l)
min is the index value and I

(l)
min ∈ {1, 2, 3, 4}. Go to

4);
4) With the results in 3), update the values of a(l)

1 , a(l)
2 , x(l)

1 ,
x

(l)
2 , and l, through the IGSS method in [31], (23) and (24).

Go to 2);
5) νmin = arg min

x
(l)
i

{e(x(l)
i )}, i = 1 or 2, break.

6) Compute q̂i via (23) and νmin.
Output: νmin, q̂ = [q̂1, q̂2, · · · , q̂M ]T

method that relaxes the unimodal requirement for the classic
golden-section search method.

Our IGSS-Q method solves the following problem

νopt = arg min
ν
‖νwt − q̂(ν)‖22 (22)

iteratively. In each iteration, q̂(ν) is obtained by scalar quan-
tization with Ck and the i-th element of q̂(ν) is given by

q̂i = arg min
ĉ∈Ck
|νwi − ĉk,i|2, (23)

where i ∈ {1, · · · ,M}. For a fixed ν and the q̂i values
obtained in (23), the quantization error e(ν) can be expressed
as

e(ν) =

M∑
i=1

|νwi − q̂i|2. (24)

The IGSS-Q method starts with setting the initial search-
ing interval ν ∈ [a1, a2] and then defines interior points
x1 and x2 to divide the golden section in this interval. In
each iteration, the IGSS-Q method finds the corresponding
quantized values and compute the errors via (23) and (24) for
ν = a1, a2, x1, and x2. By comparing e(a1), e(a2) with e(x1)
and e(x2), the searching interval is updated and narrowed
down gradually. Repeat this process until e(x1) − e(x2) is
smaller than a preset tiny positive threshold ε0 or the maximal
iteration times Lmax is reached. The detailed process of the
IGSS-Q method is provided in Algorithm 1.

The computational complexity of IGSS-Q is low and can be
approximately represented as O(MLmax), where Lmax is the
number of iterations. With the output q̂ from the algorithm,
we can get the quantized BF vector as

ŵt =
q̂

‖q̂‖
, q̂ = [q̂1, q̂2, · · · , q̂M ]T . (25)

V. QUANTIZATION ERROR ANALYSIS

In this section, we analyze element-wise quantization error
for the 1-PS and 2-PS quantization schemes presented in
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Section IV. We use the mean squared quantization error
(MSQE) as the performance metric, which is defined as

ε = E[
1

M

M∑
i=1

(|wi − ŵi|2)], (26)

where ŵi is the quantized BF weight. For both 1-PS quan-
tization and 2-PS separate quantization, we provide more
accurate analytical results compared with [23]. For 2-PS joint
quantization, our analytical results are new, as well as the
quantization scheme itself.

A. 1-PS Array

When only one phase shift is used to represent a BF
weight, the ith element of the quantized BF vector can be
represented as ŵi = 1√

M
ej(ψi+δψ), where δψ denotes the

phase quantization error. Assume that δψ is uncorrelated with
ψ and uniformly distributed over [−∆ψ/2,∆ψ/2). The MSQE
in this case can be expanded to

ε0 = E(|ŵi − wi|2) =

∫ ∆ψ
2

−
∆ψ
2

|ŵi − wi|2
1

∆ψ
dδψ

=
1

M
+ E(|wi|2)− 2E(|wi|)√

M
(

2

∆ψ
sin

∆ψ

2
).

(27)

When b is large, and in the extreme case ∆ψ → 0, we have

lim
∆ψ→0

ε0 =
1

M
+ E(|wi|2)− 2E(|wi|)√

M

= E[(|wi| −
1√
M

)2] + Var(|wi|)

≥ Var(|wi|), (28)

where Var(|wi|) is the variance of |wi|. This clearly shows
that the quantization error does not vanish by only using
phase shifting values to represent the BF weights with varying
magnitudes. There will be an error floor despite the value of
the quantization step.

B. 2-PS with Parallel Structure Using Separate Quantization

When phase shifts are quantized, ŵi = ejβ
(i)
1 +δβ1 +

ejβ
(i)
2 +δβ2 , where δβ1

and δβ2
are the phase quantization errors

(referring to (16a)). The MSQE ε1 is then given by

ε1 =4 + 2E[cos (β1 − β2)]− 2E[cos (β1 − β2)]·
{E(cos δβ1)− E(cos δβ2)− E[cos (δβ1 − δβ2)]}
− 2E(cos δβ1 + cos δβ2).

(29)

The quantization errors δβ1
and δβ2

are assumed to be uncor-
related and uniformly distributed over [−∆β1

/2,∆β1
/2) and

[−∆β2/2,∆β2/2), respectively. It can be calculated that

E(cos δβ1
) =

2

∆β1

sin (
∆β1

2
),

E(cos δβ2
) =

2

∆β2

sin (
∆β2

2
),

E[cos (δβ1 − δβ2)] = E[cos (δβ1 + δβ2)]

=
4

∆β1
∆β2

sin (
∆β1

2
) sin (

∆β2

2
),

E(sin δβ1
) = E(sin δβ2

) = 0,

E[sin (δβ1
− δβ2

)] = E[sin (δβ1
+ δβ2

)] = 0.

Since E[cos (β1 − β2)] = E(
|wi|2 − 1

2
), (29) can be ex-

pressed as

ε1 =3 + E(|wi|2) + E(|wi|2)[
4

∆β1
∆β2

sin (
∆β1

2
) sin (

∆β2

2
)

− 2

∆β1

sin (
∆β1

2
)− 2

∆β2

sin (
∆β2

2
)]− 2

∆β1

sin (
∆β1

2
)

− 4

∆β1∆β2

sin (
∆β1

2
) sin (

∆β2

2
)− 2

∆β2

sin (
∆β2

2
).

(30)

When x is small, the function sinx can be approximated as
sinx ≈ x− x3

6 using the Taylor series expansion for sinx. To
this end, (30) can be approximated as

ε1 ≈
∆2
β1

12
+

∆2
β2

12
− (E(|wi|2)− 1)

∆2
β1

∆2
β2

576
. (31)

Note that the first two terms in (31) are just the results in [23].
Our result here provides a closer approximation to the MSQE
ε1.

In the extreme case of ∆β1
→ 0, ∆β2

→ 0, we can get

lim
∆β1

, ∆β2
→0

ε1 = 0. (32)

This shows that with the 2-PS parallel structure, the MSQE
can reach zero when the quantization bit b is sufficiently large,
even when the actual BF weights have varying amplitudes.

C. 2-PS with Serial Structure Using Separate Search

For the 2-PS array with the serial structure, ŵi =

ej(β
(i)
1 +δβ1

)[1 + ej(β
(i)
2 +δβ2

)]. Thus, the MSQE ε2 can be
written as

ε2 =4 + 2E(cosβ2)[1− 2

∆β1

sin (
∆β1

2
) +

2

∆β2

sin (
∆β2

2
)]

− 2E(cosβ2 + 1)
4

∆β1
∆β2

sin (
∆β1

2
) sin (

∆β2

2
)

− 4

∆β1

sin (
∆β1

2
).

Since E(cos(β2)) = E( |wi|
2

2 − 1), ε2 can be rewritten as

ε2 =2 + E(|wi|2)[1− 2

∆β1

sin (
∆β1

2
) +

2

∆β2

sin (
∆β2

2
)

− 4

∆β1∆β2

sin (
∆β1

2
) sin (

∆β2

2
)]− 4

∆β2

sin (
∆β2

2
).
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Using sinx ≈ x− x3

6 , we can approximate ε2 as

ε2 ≈
1 + E(|wi|2)

12
∆2
β1
− E(|wi|2)

576
∆2
β1

∆2
β2
. (33)

Similarly, we can show that

lim
∆β1

, ∆β2
→0

ε2 = 0. (34)

D. 2-PS Using Joint Quantization

We consider the case when the two phase shifters have the
same number of quantization bits.

To derive a closed-form MSQE expression, we approximate
the quantization error |δc| for each BF weight as a variable
following a uniform distribution over [0, δc,max]. On the com-
plex plane, δc,max can be computed as the maximum of all the
distances between any point aejα to its nearest constellation
points ĉ. For simplicity, when analyzing δc,max, we only
consider the case when a ≤ |ĉ|max since the probability of
a > |ĉ|max is low. The MSQE metric for joint quantization
becomes

ε = E[
1

M

M∑
i=1

(|νminwi − ŵi|2)].

When element-wise scalar quantization is used, νmin = 1.
1) MSQE for Codebook C1: For the normalized codebook

C1 with φ = 0, δc,max is the distance between (0, 0) to the
nearest points, and is given by δc,max =

√
2−2 cos ∆
ν1,min

. The
corresponding MSQE is

εc1 = [E(|δc|)]2 + Var(|δc|) =
2− 2 cos ∆

3E[ν2
1,min]

. (35)

When the quantization step is small, 1− cos ∆ ∼ ∆2

2 , and
(35) can be approximated as

εc1 ≈
∆2

3E[ν2
1,min]

≈ ∆2

3h2
1

=
∆2

3(2 + 22−b)M
. (36)

Note that (36) is also the MSQE for element-wise scalar
quantization using codebook C1. This implies that scalar quan-
tization using the proposed codebook can achieve comparable
performance to IGSS-Q, when quantization bits are sufficiently
large.

2) MSQE for Codebook C2: For codebook C2 with φ =

∆/2, we show in Appendix D that δc,max =

√
2−2 cos ∆

2

ν2,min
. The

MSQE in this case can be obtained as

εc2 =
2− 2 cos (∆

2 )

3E[ν2
2,min]

. (37)

When ∆ is small, 1 − cos ∆
2 ∼ ∆2

8 , and (37) can be
approximated as

εc2 ≈
∆2

3h2
2

=
∆2

24M
. (38)

Similarly, (38) is also the MSQE for element-wise scalar
quantization using codebook C2.

When ∆→ 0, we have

lim
∆→0

εc1 = 0, lim
∆→0

εc2 = 0. (39)

E. Comparison of MSQE for Different Quantization Methods

Referring to the approximated values of MSQE in (31),
(33), (36), and (38), we compare the performance for these
quantization methods.

Since ||wt|| = 1, we see 0 < |wi| < 1. According to
(31) and (33), it can be found that ε2 < ε1, which indicates
that for 2-PS, separate quantization using the parallel structure
can achieve slightly better performance than using the serial
structure, when the quantization step is reasonably small.

From (20), we can find that for b ≥ 2,
√

2M < h1 ≤
√

3M .
Therefore, εc1 satisfies

∆2

9M
≤ εc1 <

∆2

6M
.

For large arrays with more than, e.g., M = 8 antennas, it
can be readily verified that

εc2 < εc1 < ε2 < ε1. (40)

This indicates that joint quantization using the codebook C̃2
achieves the smallest quantization error.

In Table I, we summarize the comparison results for these
quantization methods.

VI. SIMULATION RESULTS

In this section, simulation results are presented to verify the
proposed combination and quantization methods. For all sim-
ulations, a uniform linear array with M = 16 omnidirectional
antennas (spaced at half wavelength) is used. We assume that
the basic reference beam for communication and sensing are
pointed at zero degree. The 3dB beamwidth for a linear array
with Ks antennas is approximately 2 arcsin( 1.2

Ks
) in radius.

We generate the basic beams with Ks = 16 and Ks = 12 for
the communication and sensing subbeams, respectively. The
reason for using a wider subbeam for scanning is to cover the
sensing directions from -60 to 60 degrees with fewer times
of scanning. The desired actual pointing directions of the 8
scanning subbeams is at -54.3, -37.8, -24.4, -12.3, 10.8, 22.8,
35.9 and 51.9 degrees. Note the nonuniform actual scanning
directions are because of the requirement of applying the
simple displaced BF waveform generation method as described
in [6]. The power distribution factor ρ is set as 0.5 unless noted
otherwise.

In the simulation, wt,c is set pointing to the dominating
AoD, and wt,s is generated by multiplying a phase-shifting
sequence to the basic sensing subbeam to change the pointing
directions, as described in [6]. For all results on the received
signal power, an MRC receiver is assumed to be used, and they
are normalized to the power value when the whole transmitter
array generates a single beam pointing to the dominating AoD.

Assume there is an LOS path between the transmitting and
receiving nodes for communication. All the other multipath
components are uniformly distributed within an angular range
of 14 degrees centered at the LOS direction. The mean power
ratio between the LOS and the NLOS signals is 10dB.
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TABLE I
COMPARISON OF PHASE SHIFTER STRUCTURES AND DIFFERENT SEARCHING METHODS.

1-PS Array 2-PS Arrays
Separate Search Joint Search

MSQE ε0 ε1 > ε2 εc1 > εc2, lowest overall
lim
b→∞

εi, i = 0, 1, 2 E[(|wi| − 1
M

)2] +D(|wi|) > 0 0

Number of Phase Shifters M 2M
Hardware Complexity normal relatively complex

Drawbacks large error floor exists large error more constellation points to be compared and stored
Computation Complexity O(2bM) O(2b+1M) O(2ncM) (Scalar) O(2ncM2) (IGSS-Q)

-200 -150 -100 -50 0 50 100 150 200
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

N
or

m
al

iz
ed

 P
ow

er

Fig. 4. Normalized signal power at the receiver (Rx) and at the dominating
AoD versus combining phase ϕ for a fixed sensing subbeam pointing at 10.8◦,
for a random channel realization.

A. Non-quantized Results

We first demonstrate the effect of improved received signal
power via optimizing the combining coefficient value as
proposed in Section III. Non-quantized BF vector is used.
Denote the cases when the full channel or only the dominating
AoD is known at transmitter as “H-known” and “AoD-known”,
respectively.

In Fig. 4, we present the signal power at the receiver and at
the dominating AoD ‖aT (θt)w̃t‖2 with varying phase values
ϕ, when the scanning beam points to 10.8◦. The optimal values
obtained by our solutions for “H-known” and “AoD-known”,
together with the actual one via exhaustive search, are also
shown for comparison. We can see that there is up to about
30% variation of the power at receiver and 20% variation at the
dominating AoD between the optimal and non-optimal phase
values, and the derived optimal phase values match the actual
ones very well.

Fig. 5 demonstrates how the normalized mean received
signal power varies with the value of the power distribution
factor ρ when the optimized combining phase values are used.
The figure shows that the proposed optimization methods
efficiently increase the received signal power, almost linearly
with the increasing of ρ.

In Fig. 6, we use a dual y-axis plot to illustrate how
the mean normalized received power (left y-axis, curves are
denoted as “Power”) and the MSEs of BF waveform (right
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Fig. 5. Normalized mean received signal power versus power distribution
factor ρ for optimized ϕ when the sensing subbeam points to 10.8◦.

y-axis, curves are denoted as “MSE”) for the benchmark
BF design in (6). The vector w?

WF in (6) is generated using
Method 2 in [6], and w?

Gain generates the beam pointing to the
dominating communication AoD. Although w?

Gain is unrelated
to the power distribution factor ρ, w?

WF is a function of ρ
and hence both the received power and MSE are affected by
ρ. Each BF waveform is normalized to its peak value before
the MSE is evaluated. This figure demonstrates that, for most
values of λ, our proposed scheme outperforms the benchmark
in either signal power or waveform conformity. There does
exist a small range of λ values where the benchmark can
achieve better performance in terms of both metrics. Note
that, however, finding such better solutions is computational
intensive, involving exhaustive search of λ, and ILS with
iterative matrix inversion operations for generating each new
w?

WF.
Fig. 7 shows how the MSE of BF waveform and normalized

received signal power change with the scanning directions for
several methods, where we specifically study the case when
scanning directions are close to communication. Each result
is averaged over 5000 channel realizations. These methods
include deriving the combining phase from (7) (i.e., Method 1
in [6] and denoted as “M1 in [6]”), the two proposed optimiza-
tion methods with “H-known” and “AoD-known”, the joint
design method (Method 2) in [6] (denoted as “M2 in [6]”),
and the benchmark design. The λ value for the benchmark
design is decided by first finding a set of λ values that lead to
larger power than the one obtained by “AoD-known”, and then
selecting the one from the set leading to the minimum MSE.
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Fig. 6. Comparison with the benchmarking balanced BF design in (6) when
the sensing subbeam points to 10.8◦. The curves with legends of “Power” and
“MSE” represent the mean normalized received power (left y-axis) and the
MSE of waveform (right y-axis), respectively. The dash and solid curves are
for ρ = 0.4 and ρ = 0.5, respectively. For ρ = 0.4 and ρ = 0.5, the mean
received power values for using our proposed combining phase with AoD-
known are 0.7766 and 0.7023, respectively, and the MSEs of BF waveform
are 0.5123 and 0.6629. The range of λ values within each black square box
represent where the benchmarking design can achieve better performance in
both signal power and waveform for one ρ.

The communication subbeam always points to the dominating
AoD at 0 degree. From the figure, no monotonicity can be
observed between the MSE of BF waveform and the interval
between the pointing directions of scanning and communica-
tion subbeam. The MSE gaps between these schemes, except
for the joint design, are typically small. The received signal
power generally decreases with the increase of the interval, as
expected. The proposed methods improve the received signal
power. The power gap between our proposed methods and
the design in (7) is generally small. This is partially due to
the large power ratio (10dB) between the dominating LOS
path and NLOS paths used in the simulation. When the ratio
reduces to 5dB, we observe approximately a 25% gap in the
experiments. In the experiments, we also observe that the
range of λ, where the benchmark design outperforms our
methods, varies with the scanning direction and its span is
mostly smaller than 0.1. Details are not presented here due to
page limits.

B. Quantized Results

In Fig. 8, we show MSQE versus the number of quantization
bits for various quantization methods. Apart from those studied
and analysed in this paper, we also compute and plot the
MSQE in [23], which is denoted as “εx-Lin2017” in the
legend. The values of wi = |wi|ejψi in wt are generated
randomly with |wi| following a uniform distribution over [0, 2)
and with ψi following a uniform distribution over [0, 2π). The
vector of wt is then normalized so that its norm is 1. The
MSQE is averaged over 105 realizations for the simulated
values. From the figure, we can see that most of the analytical
results match the simulated ones very well, except for εc1.
The analytical results provided in this paper are shown to
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Fig. 7. Variation of MSE of BF waveform and normalized mean received
signal power with the scanning directions of sensing subbeam.
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Fig. 8. MSQE versus number of quantization bits for various quantization
schemes.

offer better accuracy than the one in [23], although the
difference is small for this simulated example. When b > 2,
the simulated εc1 deviates from the analytical εc1 derived in
Section V-D. This is because for Codebook C1, many of the
largest distances between any two nearest constellation points
are smaller than δc,max. Therefore, the uniform distribution
assumption in SectionV-D is not accurate enough. Overall,
the joint quantization method using Codebook C2 achieves the
lowest quantization error, as we have shown analytically in
(40).

Fig. 9 shows how the BF radiation pattern varies with the
number of quantization bits for our proposed joint quantization
schemes, together with 1-PS vector quantization using the
fast block noncoherent decoding (FBND) method [29] for
comparison. From Fig. 9(a), we can see that for 1-PS, the
sidelobe of the waveform for the quantized BF vector is quite
large, even when the number of quantization bits is as large as
5. There is also a notable distortion in the mainlobe. So vector
quantization cannot either improve the quantization error floor
for the case with only quantized phase values. Comparatively,
joint quantization for 2-PS achieves good match in the main-
lobe with the non-quantized one and much lower sidelobe, as
can be seen from Fig. 9(b), 9(c) and 9(d). For example, when
the number of quantization bits is larger than 3, the power level
of the sidelobe of the quantized results with codebook C2 is
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(a) FBND quantization for 1-PS.
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(b) Joint quantization for 2-PS with
Codebook C1.
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(c) Joint quantization for 2-PS with
Codebook C2.
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Fig. 9. BF radiation pattern for different number of quantization bits. The scanning beam points to −12.3◦.

very close to the non-quantized one. It can also be observed
that IGSS-Q can slightly reduce the sidelobe when b ≥ 4,
compared with element-wise scalar quantization.

We now further look at the impact of quantization on the
received signal power and signal demodulation performance.

In Fig. 10, we show the received signal power for the 1-
PS FBND quantization and the joint IGSS-Q method with
Codebooks C1 and C2 (denoted as “Codebook 1” and “Code-
book 2”), when the total number of quantization bits in each
method is the same. Even in this case, the received signal
power achieved by the two joint quantization methods is still
larger at the angles close to the communication direction.

Fig. 11 shows the estimated average bit error rate (BER) for
different quantization methods with b = 4 in the case where
H is known. 16 quadrature amplitude modulation (QAM) is
used. We can see that BER performance benefits significantly
from the array gain, and our proposed joint quantization meth-
ods achieve BER approaching the non-quantized case. Be-
tween the proposed methods, the vector-wise IGSS-Q methods
can slightly outperform the element-wise scalar quantization
methods. An SNR loss of about 2dB can be observed at
BER = 10−3 compared to the case where all energy is used
for communication. This implies an approximately 1dB gain
with the use of our proposed phase combining coefficients and
quantization methods. Otherwise, a loss of 3dB or more may
occur due to the equal split of power between sensing and
communication subbeams.

To summarize, in terms of both BF waveform and the
received signal power and demodulation performance, we can
conclude that the proposed joint quantization method with
codebook C2 can achieve performance approaching to the non-
quantized one.

VII. CONCLUSIONS

We have now studied the optimization of the coefficient for
combining communication and sensing BF vectors and then
the quantization of the combined BF vector, for the multibeam
JCAS scheme proposed in [6]. We considered the cases
when either the full channel knowledge or the dominating
AoD is known, and provided closed-form expressions for the
optimal combining coefficients that maximizes the received
signal power in each case. Considering the practical constraint
that BF weights in analog arrays are of discrete values,
we investigated various element-wise quantization methods,
particularly for the structures where two phase shifters are
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Fig. 10. Comparison of normalized received signal power for 2-PS using
IGSS-Q method and 1-PS using FBND method with the same number of 6
total quantization bits.

used to represent one BF weight. We proposed a novel joint
quantization method using a combined codebook for the two
phase shifters (2-PS). This method is shown to achieve BF
waveform closely matching the one with non-quantized BF
vector, as well as the received signal power, using a medium
number of quantization bits. We also provided analytical
expressions of the mean squared quantization error (MSQE)
for these quantization methods. Simulation results match these
analytical MSQE results well. Overall, the joint quantization
method can approach the performance of non-quantized BF
vector, and hence is very promising for the multibeam JCAS
system.

The work in this paper can be enriched in various aspects.
For example, the joint quantization method can be further
improved by exploiting the noncoherent decoding methods
[30], [32], and the underlying analog array can be replaced
by more powerful hybrid arrays [8]. Although our proposed
BF optimization methods generally cause insignificant BF
waveform variation, a BF optimization scheme that directly
takes the sensing requirement into formulation can lead to
more accurate control of BF waveform. Our method can
potentially be extended to the case where more than one
sensing subbeam is generated to speed up scanning, at the
cost of a reduced power allocated to each subbeam and
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hence reduced sensing distance. Depending on the scattering
environment, multiple combining coefficients may need to be
optimized for communication, but the impact of combining
coefficients on sensing is still limited to the sensing subbeam
adjacent to the communication subbeam.

APPENDIX A
DERIVATION OF ϕOPT

We study the monotonicity of f(ϕ) and try to look for its
maximum via its derivatives. The first-order derivative of f(ϕ)
with respect to ϕ is

f ′(ϕ) =
g′1(ϕ)g2(ϕ)− g′2(ϕ)g1(ϕ)

g2(ϕ)2
. (41)

Obviously, g2
2(ϕ) > 0. Let the numerator in (41) be h(ϕ), and

let wH
t,cH

HHwt,s = a1e
jα1 and wH

t,cwt,s = a2e
jα2 , where

a1 ≥ 0 and a2 ≥ 0. We have

h(ϕ) = −2Pa1 sin(ϕ+ α1)− 4P 2a1a2 sin(α1 − α2)+

2Pa2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] sin(ϕ+ α2)

= X1 sin(ϕ) +X2 cos(ϕ) + L,

where X1, X2, L are given in (12). By considering the sign
of X1, h(ϕ) can be represented as

h(ϕ) =

{ √
X2

1 +X2
2 sin(ϕ+ γ) + L, when X1 ≥ 0

−
√
X2

1 +X2
2 sin(ϕ+ γ) + L, when X1 < 0,

where γ = arctan(X2/X1).
Since h(ϕ) is a periodic function and the period is 2π, we

study the monotonicity of f(ϕ) in one period. During a period
of length π, f(ϕ) keeps increasing if h(ϕ) > 0, and keeps
decreasing otherwise. So at the transition point where h(ϕ) =
0, we can obtain either the maximum or minimum of f(ϕ).
From h(ϕ) = 0, we can get

ϕ =

{
−µ0 − γ, when X1 ≥ 0
µ0 − γ, when X1 < 0,

(42)

where µ0 , arcsin (
L√

X2
1 +X2

2

).

To make sure that µ0 exists, |L| ≤
√
X2

1 +X2
2 needs to

be satisfied. In Appendix B, we prove that this is always
guaranteed.

By studying the monotonic of h(ϕ), the maximum of f(ϕ)
can then be found, as shown in (11).

APPENDIX B
EXISTENCE OF µ0

From (11), it can be observed that if µ0 exists, the existence
of ϕopt is guaranteed. Therefore, we need to prove

L2

X2
1 +X2

2

6 1. (43)

That is
4P 2|a1|2|a2|2 sin2(α1 − α2) 6

|a1|2 + |a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2

− 2|a1||a2|[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] cos(α1 − α2).

The right part of the inequality can be converted to

|a1|2 + |a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2 cos2(α1 − α2)

− 2|a1||a2|[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2] cos(α1 − α2)

− |a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2 cos2(α1 − α2)

+ |a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2 =

[|a1| − |a2|[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]cos(α1 − α2)]2︸ ︷︷ ︸
1©

+ |a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2 sin2(α1 − α2)︸ ︷︷ ︸
2©

.

It can be easily verified that the term 1© > 0. For the term 2©,

|a2|2[ρ‖Hwt,c‖2 + (1− ρ)‖Hwt,s‖2]2 sin2(α1 − α2)

> |a2|2[2
√
ρ
√

1− ρ‖Hwt,c‖2‖Hwt,s‖2]2sin2(α1 − α2)

> 4P 2|a1|2|a2|2 sin2(α1 − α2).

Therefore, (43) is proven.

APPENDIX C
DERIVATION OF ϕ̃OPT

Similar to Appendix A, we evaluate the sign of h̃(ϕ) =
g̃′1(ϕ)g̃2(ϕ)− g̃′2(ϕ)g̃1(ϕ) for different values of ϕ. Let
wH
t,cwt,s = ã1e

jα̃1 , wH
t,ca
∗ = ã2e

jα̃2 , and aTwt,s = ã3e
jα̃3 ,

where ã1, ã2, ã3 ≥ 0, we can define

h̃(ϕ) =X̃1 sin(ϕ) + X̃2 cos(ϕ) + L̃,

where X̃1, X̃2, L̃ are defined in (14).
Thus h̃(ϕ) can be further written as

h̃(ϕ) =


√
X̃2

1 + X̃2
2 sin(ϕ+ γ) + L, when X̃1 ≥ 0

−
√
X̃2

1 + X̃2
2 sin(ϕ+ γ) + L, when X̃1 < 0,

where γ̃ , arctan(X̃2/X̃1). Applying the derivation similar
to that in Section III-B and Appendix A, we can obtain ϕ̃opt
in (13). The existence of µ̃0 can be proven using the similar
process to Appendix B, and hence is omitted here.
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Fig. 12. Constellation plot used for analyzing dmax for Codebook C2 (b =
3).

APPENDIX D
COMPUTATION OF δc,max FOR CODEBOOK C2

Owing to the symmetry of the constellation, we can select
a circular segment (the shaded region in Fig. 12(a)) to analyze
δc,max. In this segment, the points that can achieve the
maximal distance between two adjacent constellation points
are marked as Oi, i = 1, 2, · · · , 2b−1, as shown in Fig. 12(b).
Obviously, every Oi locates on the y-axis. Note that for the
simplicity, in the following analysis, we let the normalization
factor h2 = 1, which is independent of the position relation-
ship between constellation points. According to (16), it can be
easily proven that for the constellation points Ai,

|AiO| = ri−1 =

√
2− 2 cos [(i− 1)∆ +

∆

2
], i = 1, 2, · · ·

(44)

Assume that there exists O1, making |A1O1| = |A′2O1| =

|A1O| = r0 =
√

2− 2 cos ∆
2 . Then |A′2O| = |OM1|+|A2M |.

According to the cosine rule, |OM1| = 2|A1O| cos2 (∆
4 ).

Thus,

|A′2O| = |OM1|+ |A2M | = |OM1|+ (|OM1| − |A1O|)

= 4r0 cos2 (
∆

4
)− r0 =

√
2− 2 cos (

∆

2
)(2 cos (

∆

2
) + 1)

=

√
2− 8 cos3 (

∆

2
) + 6 cos (

∆

2
).

(45)

Since cos ( 3∆
2 ) = 4 cos3 (∆

2 )− 3 cos (∆
2 ), from (44) we get

|A2O| =
√

2− 2 cos (
3∆

2
) =

√
2− 8 cos3 (

∆

2
) + 6 cos (

∆

2
).

We can then find that A′2 overlaps with A2. This implies that
in the sector AOB, d ≤ δc,max = r0.

According to the Cosine law, if Oi(yie
j2π) satisfies

|AiOi| = |Ai+1Oi|, there is

r2
i + y2

i − 2riyi cos (
∆

4
) = r2

i+1 + y2
i − 2ri+1yi cos(

∆

4
).

Solving this equation, we get yi =
ri+1 + ri

2 cos (∆
4 )

. Therefore,

|AiOi|2 =
r2
i+1 + r2

i − 2riri+1 cos (∆
2 )

2 cos(∆
2 ) + 2

. (46)

Assuming |AiOi|2 = r2
0 = 2− 2 cos (∆

2 ), we have

r2
i+1 + r2

i − 2riri+1 cos (
∆

2
) = 2− 2 cos ∆. (47)

According to the Cosine law again, the left part of (47)
can be seen as |AiBi+1|. Because of the symmetry of the
constellation, |AiBi+1| equals to the distance between two
constellation points with similar positional relationship:

|AiBi+1| = |(1 + ej(
∆
2 +i∆))− (1 + ej(

∆
2 +i∆+∆))|

= |ej∆ − 1| = 2− 2 cos ∆.
(48)

Therefore, |AiOi|2 = r2
0 is proven. In summary, for all

the points distributed inside the outermost layer of the con-
stellation points, the maximal error distance δc,max = r0 =(√

2− 2 cos ∆
2

)
/h2.
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