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Abstract. In today’s information environment there is an increasing reliance on 

online and social media in the acquisition, dissemination and consumption of 

news. Specifically, the utilization of social media platforms such as Facebook 

and Twitter has increased as a cutting edge medium for breaking news. On the 

other hand, the low cost, easy access and rapid propagation of news through so-

cial media makes the platform more sensitive to fake and anomalous reporting. 

The propagation of fake and anomalous news is not some benign exercise. The 

extensive spread of fake news has the potential to do serious and real damage to 

individuals and society. As a result, the detection of fake news in social media 

has become a vibrant and important field of research.  In this paper, a novel ap-

plication of machine learning approaches to the detection and classification of 

fake and anomalous data are considered. An initial clustering step with the K-

Nearest Neighbor (KNN) algorithm is proposed before training the result with a 

Recurrent Neural Network (RNN). The results of a preliminary application of the 

KNN phase before the RNN phase produces a quantitative and measureable im-

provement in the detection of outliers, and as such is more effective in detecting 

anomalies or outliers against the test dataset of 2016 US Presidential Election 

predictions. 
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1 Introduction 

In today’s information environment, data is being collected, stored and analyzed 

more extensively to make predictions about client behavior, weather patterns and other 

natural disasters, espionage and many other sequences that would be beneficial to detect 

and predict ahead of time. For many data mining algorithms to return beneficial infor-

mation that has some utility in adding predictive value, the underlying dataset needs to 

be true, accurate and computable. For this reason, among many others, it is important 

that algorithms are in place which enable the detection of fake or otherwise anomalous 

data.[7] 

News is pervasive, and fake new is even more so. Fake news at the very least con-

tributes to the misinformation of society. Taken to extremes, fake news can damage 
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entire cohorts of people, societies, institutions and even whole countries. The most re-

cent example of the seriousness of this damage can be seen with the 2016 US Presiden-

tial Elections. Many accusations have been made that foreign interests and local groups 

with vested interests have influenced the integrity and progression of the election. The 

net result of these accusations are the undermining of the confidence in US sovereign 

processes and a significant blow to the moral of the citizens of the United States in 

general.  

The damaging effects of misinformation is well known and have been studied for 

some time. There are valid social, ethical and moral reasons to identify, contain and 

control the creation and dissemination of fake and misleading information. We use this 

rational to motivate our work on the identification and classification of false and mis-

leading information. 

In the second section of this paper, the related work is discussed. The current state 

of the art is examined and the methodologies, motivations and rational are compared. 

From these works, a novel methodology is derived, and presented in section three. The 

results of the methodology are then presented in section 4, followed by a discussion 

and conclusion in section 5. The paper closes with a discussion on further areas of re-

search. 

2 Related Work 

Shu et al [7] outline the human cost of fake, false and misleading information on society 

as a whole, and we begin there by making a strong case for the need to identify and 

contain misinformation. Shu makes the point that fake news is very hard to detect from 

the news item itself, and we need to resort to meta-data such as likes and retweets, 

friends and followers.Further justification for the utility of meta-data can be found in 

Akcora [2]. This paper focuses on the clustered behavior of the friend and follower 

network in Twitter. Users tend to friend and follow other users with the content they 

are interested in, and in this way Akcora identifies clusters of users who may exhibit 

the same behavioral patterns. 

Telang [8] introduces the use of location data to model the spatio-temporal charac-

teristics of Twitter data, conducting experiments in the identification of spatial patterns 

in sentiment data and the identification of the temporal aspects of weather data. The 

innovation in Telang is that they model anomalies as spatial or temporal deviations 

from the normal distribution. That is to say, if an event occurs out of spatial or temporal 

locality to the mean, it is deemed to be anomalous.  A further development by Oancea 

(thesis, cannot cite) is the use of statistical noise in combination with a Kalman Filter. 

The resultant algorithm is called an Extended Kalman Filter, which can not only process 

linear data, but data that is non-linear and differentiable.  

 Zhao et al. [10] discusses the use of a novel graphical representation of anomalous 

data on Twitter. The data is presented as nodes in time, which change color and shape 

based on the activity surrounding or spawned by that node. In this way, it is possible to 

track the changing nature of the Twitter data landscape in real-time, with rich visual 
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detail. Rere et al. [6] discusses the use of deep learning to make computing more effi-

cient and to reduce the cost of computing chips, but doesn’t remark on the mechanisms 

by which such occurs. The paper is not available in full, but the discussion centers 

around improving the training speed via a process called “simulated annealing”. 

Thom et al. [9] further discusses the utilization of geolocation information from 

Twitter data. The paper focuses on using Twitter geolocation information to detect 

anomalies in spatiotemporal data. This approach can be useful for detecting emerging 

threats and disasters. 

 

Macneil et al. [5] discusses the use of biologically probable weighting algorithms to 

improve the convergence behavior and stability of recurrent neural networks. Akbari et 

al. [1] delves into the detection of anomalies using a KNN algorithm, by detecting 

points that do not conform to a normalized cluster.  

3 Methodology  

3.1 Definition of Fake News 

Fake news has existed since the existence of news itself. Where there has been the 

dissemination of news for the purposes of knowledge and information, there have been 

parties which wish to subvert the news for the purposes of propaganda and disinfor-

mation. It comes as no surprise then, that the occurrence of fake news increased expo-

nentially with the advent of the printing press and the widespread adoption of the news-

paper, printed books and other media. Today, there are many different forms of media 

being used to create, update and disseminate news. The trend is to move from a digest 

format to more real-time and close to real-time avenues. One such avenue is Twitter. 

In fact, Twitter stands today as the most breaking source of news available. 

To detect and classify fake and anomalous news, what constitutes such news must 

be defined and quantified. As there is no standard definition of fake news, a discussion 

on what qualifies as fake news for the purposes of this paper needs to be defined. A 

working definition of fake news is that it is intentionally and verifiably false. That is, 

fake news has the deliberate intent to mislead the consumer and the authenticity of the 

news itself is deliberately falsified or, at the very least, questionable. This definition 

implies a two-fold test of accuracy. These points are authenticity and intent. 

For this definition to be applicable, fake news has to be unquestionably verified as 

false, possibly by a human reader or a machine learning algorithm. The next criterion 

is that the news has been created to deliberately mislead consumers. Some literature 

treats satire as fake news, even though satire is deliberately designed to be entertain-

ment oriented and makes its use of deceptiveness clear to the consumer. Other literature 

treats any deceptive news as fake news, including hoaxes, fabrications and satire. In 

this paper, we constrain ourselves to a very explicit definition of fake news -  

 

Fake news is a news article that is intentionally and verifiably false.[7] 
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3.2 Proposed Algorithm 

A methodology was proposed whereby the Euclidean proximity of data points could 

be exploited to reveal some hidden underlying features of the data. The spatially en-

hanced data can then be passed through a further processing phase that can augment the 

detection of probable anomalies. After some preliminary research on various current 

algorithms, it was proposed that a clustering algorithm be chained to an artificial neural 

network and the data evaluated against such a composite classifier.  

A few clustering algorithms were considered, but the most favorable clustering al-

gorithm for the purposes of this experiment was the K-Nearest Neighbor (KNN) algo-

rithm due to its lack of parametric requirements [11,12]. As a result, the KNN algorithm 

makes no assumptions about the probability distributions of the data points being pro-

cessed [12]. This is a very important feature of KNNs, since it ensures that any pertinent 

spatial linearity or coherence is preserved for any subsequent processing.  

For the second phase of the methodology, it was proposed that the KNN data be 

passed through a Recurrent Neural Network (RNN). The RNN was trained on the out-

put of a preceding KNN phase and then the results of the classifier chain were tested 

against a novel dataset.  

 

3.3 Clustered RNN Pseudocode  

 

The pseudocode for the classifier process is as follows: 

 

Load(datafile); 

Set optimizedRNN = rnn(seed=41, learningrate = 0.5, 

epochs = 5000, momentum = 0.1, transferfunction = “Gom-

pertz”); 

For k  = (1, 10, 20) 

 model = KNN (k, datafile); 

 trainedModel[k] = optimizedRNN(model); 

End For 

Return trainedModel[]; 

 

The data file is first loaded. Next, the RNN training node is created with optimized 

parameters passed as an argument. The training phase is now ready to begin. For each 

of the value for k, the KNN is trained and then passed to the optimized RNN node. This 

is done for three values of k, and the results are returned in a vector. 
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4 Results 

4.1  Dataset 

The dataset of 2016 US Presidential Election results is used for prediction and to test 

the proposed algorithm. The classifier is  first trained on the actual election results and 

then tested against the result predictions to ascertain how effective the classifier opti-

mizations were in predicting voting behavior. To ensure that our algorithm would be 

applicable to real-world scenarios, the data we obtained was from the 2016 US Presi-

dential Elections. The first set of data that is obtained was the actual (final) result of the 

US election vote counting. This data was presented as the number of votes the Demo-

crat Party had won, as a percentage of the total votes. We used this data set as the 

training input for both the KNN and the RNN phases .The second set of data that was 

obtained were predictions of the election results before the election had finished and 

the votes had been counted. There were a number of data points in the data set that was 

not required, and the data had to be cleaned and formatted for use in the experiments 

that were being conducted. The cleaned version of this data formed the testing set for 

both the KNN and RNN algorithms. 

4.2 KNN Clustering Features 

It was decided to use standardized algorithms available with R. This would ensure that 

the results were replicable, accurate and testable. To obtain an accurate idea of the be-

havior of the KNN algorithm with the dataset in question, a range of k values were 

used. The k-values used with the KNN algorithm were 1, 10 and 20. Following the 

training phase, the combined algorithm (Clustered RNN) was tested against a novel 

dataset to evaluate whether the classifier improved the accuracy of anomaly detection.  
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Fig. 1. - KNN Cluster (Mean 10) 

 

As can be seen in Figure 1, an application of KNN with a mean of 10 does little to 

cluster the data sufficiently enough to be useful in the prediction of outliers. There are 

some patterns that are starting to form, and it is advantageous to attempt to increase the 

expression of these patterns with a further application of the KNN algorithm.  



7 

 

Fig. 2. - KNN Cluster (Mean 20) 

In the next iteration of the experiment, we apply the KNN clustering algorithm with 

a mean of 20. As can be seen from Figure 2, the adjustment of the mean parameter has 

started to cluster the data points quite nicely. From this application of the KNN algo-

rithm, it can be seen that there are three points in the middle of the graph that have not 

conformed to either the top cluster or the bottom cluster. For the purposes of the exper-

iment, we consider these points as anomalous, or outliers to the normal distribution. 

The first graph (Figure 1) shows the result of training an un-optimized RNN against 

the 2016 US election datasets. The RNN is already somewhat effective in predicting 

the spatio-temporal distribution of the test dataset (predictions)against the benchmark 

dataset (winners). However, we wish to delve a little further into the parameters that 

we train our RNN with, in an attempt to present the most optimal training scenario for 

our data mining experiment. 

To improve the behavior of our prediction model, we next attempted to optimize the 

RNN portion of the algorithm before adding the clustering step. We assume that the 

RNN optimization behavior correlates linearly with the application of a clustering al-

gorithm, so it stands to reason that optimizing the RNN would yield more accurate 

results. We investigated a number of scenarios to optimize the RNN and through ex-

perimentation, have come to use the following parameters for the RNN – 

 

 Seed – 41 (for replicability) 

 Learning Rate – 0.5 

 Epochs – 5000 

 Momentum – 0.1 
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 Transfer Function - Gompertz 

 

We present this optimized RNN with respect to the first (unoptimized) RNN and 

note the improvement in accuracy.  

 
 

 

Fig. 3. - RNN without Optimization 

As we can see from the graph (Figure 2) the optimizations applied to the second 

RNN enable it to produce results with more spatio-temporal coherence than the first 

iteration. The prediction accuracy of the optimized RNN has increased significantly. It 

follows that any clustering algorithm applied to the RNN as a pre-processing step will 

benefit from this optimization in at least a linear fashion. 

 

For the next phase in the experiment, we aim to combine the optimized RNN with a 

k nearest neighbor clustering algorithm (KNN). We used a number of different param-

eters for the KNN, with different distance parameters. What we found was that the final 

clustered RNN result was highly sensitive to the KNN distance parameter used. For the 

KNN training phase of the algorithm, we used the following parameters –  

 

 K value – 10, 20 
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We show the result of running the complete algorithm (KRNN) with a mean value 

of 1. From what we can see, there is very little difference between the optimized RNN 

and a KRNN with a mean of 1. The results are shown graphically in Figure 3.  

To examine what significance the clustering parameters have on the final results, we 

attempt another trial with our experiment, setting the mean value to 10. As can be seen 

in Figure 4, the final result is more spatio-temporally coherent than running the algo-

rithm with a mean of 1.  

 

 

Fig. 4. - Optimized RNN 
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Fig. 5. -KRNN with Mean 1 

 

Fig. 6. - KRNN with Mean 10 
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For the final test, we change the k parameter to a distance of 20 and re-execute the 

algorithm. As can be seen in Figure 5, there is qualitatively an improvement of the 

spatial behavior of the data, but not a great decrease in the prediction error. 

 

Fig. 7. -KRNN with Mean 20 

 

From inspection of the KRNN.10 and KRNN.20 results, we find that there is a signifi-

cant improvement in spatial coherence when we first cluster the data before feeding it 

through an RNN phase. The predicted data points have better spatial coherence and are 

aligned to the training set a lot more closely than they were with a single application of 

RNN alone. From the results of the experiment, it is obvious that applying a clustering 

phase before the RNN phase results in predictions that are spatially closer to the actual 

results. 

5 Conclusions  

The experiments and results show that clustered RNNs are highly sensitive to the initial 

clustering step. The distance chosen affects the distribution of the final points signifi-

cantly.  It was also noted that the distribution of the test dataset does not vary in a linear 

fashion with respect to the Euclidean distance selected in the KNN step. Further work 

in this area can focus on generating distribution maps of the KNN stage to further op-

timize the results that are obtained. Another area that begs examination is the use of 

different clustering algorithms or even the application of more pre-processing algo-

rithms before the RNN step. Our future work will also focus on comparison with other 

Fake news detection techniques. 
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