
Using complex events to represent domain
concepts in graphs

Riley T Perry, Cat Kutay, Fethi Rabhi

Computer Science and Engineering, The University of NSW

Abstract. We have developed an event based visualisation model for
analysing patterns between news story data and stock prices. Visual
analytics systems generally show a direct mapping from data to visual-
isation. We show that by inserting an intermediate step, which models
an expert manipulating data, we can provide unique results that display
patterns within the data being investigated and assist less expert users.

1 Introduction

As volumes of data grow the tools used to explore and analyse that data need
to become more sophisticated. Some of the analysis process used by data ex-
perts can be incorporated into a visual model. Specifically we examine whether
modelling financial data as events using Complex Event Processing (CEP) [2]
techniques helps with data visualisation, analytics, and Exploratory Data Anal-
ysis (EDA).

An event can be defined as anything that happens, or is interpreted as hap-
pening at a particular time. Examples of events include banking transactions,
financial trades and quotes, aircraft movements, updates in social media sites
(e.g. Facebook), and sensor outputs [8]. EDA [1] is a term that describes tech-
niques used to identify patterns and information in large amounts of data. Exist-
ing systems provide poor support for the grouping of data to extract conceptual
patterns. This work proposes a visualisation model for presenting event data so
as to incorporate expert techniques in data collation and pattern representation
for event models.

The paper is structured as follows: Section 2 describes the proposed approach,
introduces complex event processing concepts and contains definitions for the
visualisation model. In section 3 the models and concepts are applied to financial
data. Section 4 contains a brief evaluation of the visualisation. Finally, section
5 presents our conclusions and potential future work.

2 Proposed Approach

Our approach is to use a CEP model combined with an existing formal visu-
alisation model (figure 1). Together these models allow us to visualise event
occurrences on a graph, an example of which can be seen later in figure 5. The
CEP and visualisation models are described next and the combined models are
presented.



2

Fig. 1. The combined models

2.1 CEP Model

The role of the CEP model is to map simple events to complex events via pattern
matching algorithms. Complex events are ultimately made up of simple events,
which are usually raw events, a record of an occurrence in the real world. By
utilizing a concept called CEP aggregation we can create event hierarchies to
model higher level concepts.

Aggregation is a series of levels related to event complexity. Level one events
are all simple events. All levels above level one are made up of complex events.
The CEP model in this paper is inspired by previous work using Thomson
Reuters stock market data feeds [6].

Events in a complex event are linked by relational mapping. Events can be re-
lated by time, causality and aggregation. E.g. events can be part of a price change
and form a time sequence of changes in the price. Causality between events im-
plies that preceding events had to happen to cause the latter event. The history
of causes is called the causal vector. Aggregation can happen between events
and they can be combined to form a more complex event. For example a news
story from start to end may contain many individual news events. Formally, our
events become complex when they involve aggregation.

Aspects An event is defined by the following aspects:

Form α - The main attribute store for an event.
Significance β - The type of activity the event describes within its form.
Relativity γ - A series of events that caused the event.

Formally, an event E occurred at time t and is uniquely identified by its identifier
i. E is defined as a tuple: E = (α, β, γ). From left to right, α = (i, t, A). α contains
the event identifier, timestamp, and n attributes where A = {a1, a2, . . . , an} and
ai is an attribute. β is single event type identifier which is usually the name of
the event. γ is an ordered list of event identifiers: γ = [i1, i2, . . . , in] which are



3

identifiers for the events that directly caused E to occur. Events in γ may be
complex or simple. If γ = ∅ then E is a simple event, otherwise E is complex.

When modelling an event in the visualisation we wish to retain the ability to
decompose back to the component events. Hence when large scale patterns are
identified we can examine the separate attributes of the complex event. Hence
the CEP mapping must be reversible.

Event Patterns The purpose of defining event patterns is to use them to find
patterns in event data and generate new events based on these matches. The
event patterns can be implemented programmatically for flexibility or reduced
to a set of simple set of primitive operations as part of a pattern language.

2.2 Visualisation Model

To make meaningful statements about, and compare and contrast various vi-
sualisation techniques we are using a model of the visualisation process. The
model gives us a language for talking about the differences between visualisa-
tions. The proposed model was created by Matthew Alexander Hutchins as part
of his doctoral thesis [3]. Here we consider visualisation spaces as algebras and
mappings between them are morphisms. His model a formal model with data
(D), task (T ), and scene (S) spaces. His model can be seen in figure 1 and is
the part of the figure contained within the box. The model translates data to
a format that can be directly mapped to display elements on the screen. Space
D contains data in its original format. Space T is the mapping from D to form
an algebra suitable for visual representation and S is the data display on the
screen. In Hutchins’ model the mapping of data to the task space (D → T )
automatically incorporates the data manipulation techniques used by experts
in that particular domain. Hence we extend the model with a pre-mapping to
incorporate CEP as representing export pattern matching.

Spaces D, T , and S are defined below. These definitions are taken from [9].

Definition 1 A space is an algebra. The space is represented by {Σ,G,K}
Where Σ is a collection of sets, G represents functions with domains in Σ
and co domains in Σ+ and K represents constants from sets in Σ. Σ =
{H1, H2, . . . ,Hn} where n = the number of sets. G = {G1, G2, . . . , Gn}
where n = the number of functions. K = {K1,K2, . . . ,Kn} where n = the
number of constants.

Definition 2 A morphism between algebrasA = {ΣA, GA,KA} andB = {ΣB , GB ,KB}
is a set of functions P with domains in ΣA and co domains in ΣB.

Definition 3 A function p is a relation from set H1 to set H2 if for every x ∈ H1

there is a unique y ∈ H2 such that (x, y) ∈ p. This can be represented by
p : H1 → H2.

An instance of the model is a tuple (d, t, s) where t = Mp(d), s = Fp(t)
Where d, t, and s represent the entire snapshot of values for spaces D, T , and
S respectively.



4

2.3 Combined Model

We propose an extension to the visualisation model where data is event based
and D is made up of simple and complex events. The raw data, which is made up
of simple events, is contained in the space R. CEP is used between R and D to
add complex events to D (also shown in figure 1). The conceptual understanding
of entities and relationships in the semantic structure of the data is modelled
using CEP structures.

3 Application to Financial Data Analysis

The combined models are now applied to financial data and suggested interface
is presented.

3.1 Using the CEP Model: R → D

R contains Price Updates and News Updates, which are simple events. The trans-
lation from R to D runs all simple events through a series of event pattern
instances. Complex events will be created by these pattern instances. Simple
events are then mapped directly to D and any complex events created are also
mapped to D. These patterns are described next as part of an event hierarchy.

Level One Events

News Update A simple news update event (NU) is an indivisible news related
message. Each message consists of various codes including a story identifier
called the PNAC. Simple news updates, when combined, form a partial or
complete News Story. News stories, described next, are complex events.

Price Update A simple Price Update event (PU) contains the trading price,
volume, and trading timestamp (or period) for a particular security.

Level Two Events Events above level one are complex events. We describe
here the type of complex events and how they are formed.

News Story A News Story (figure 2), NS with news events NU1,NU2, . . . ,NUn

can be represented by a simple tree diagram like this: NS sits in a two
level abstraction hierarchy. NU1,NU2, . . . ,NUn all share the same PNAC
but may be different occurrences of same news story. Attributes of NS are
drawn or derived from this pool. CEP is a realtime technology used to make
decisions quickly. A set of definitive Pattern rules for NS can be hard to
determine as a story can span several days with many events, or just be
comprised of an instantaneous single event.

Price Jump PJ (figure 3) is a Price Jump which contains positive price update
events PU1 and PU2. An example of a price jump for the running example
is a price increase of over 2 points for a certain stock.



5

NS

NU1 NU1
. . . NUn

Fig. 2. A news story hierarchy

PJ

PU1 PU2

Fig. 3. A price jump hierarchy

Level Three Events We then have higher level hierarchies of aggregation,
when combined event stories with pricing, that can have attributes of their own.
This allows us to build higher level concepts which can in turn be metrics for
analysis and further aggregation.

News Story Plus A News Story Plus (figure 4), NS+, event is generated
when there is a price jump within (and related to) the time period for a
news story. Given a news story NS and a price jump PJ extra information
can be gained from combining and doing calculations on the attributes of
both. The concept of a news story plus (shown below) sits in three level CEP
event abstraction hierarchy. Timestamps for NU1,NU2, . . . ,NUn always

NS+

NS

NU1 NU2
. . . NUn

PJ

PU1 PU2

Fig. 4. A news story plus hierarchy

fall within the boundaries of PU1 and PU2, i.e.: NU1
(t) >= PU1

(t) and
NUn

(t) <= PU2
(t). Preferably timestamps should be at regular intervals

and should match exactly. i.e. NU1
(t) = PU1

(t) . . .NUn
(t) = PU2

(t).
It’s useful at this point to introduce a variable, ε = event level−1, to represent
the event level for display purposes. A news story plus for example has an ε
of 2.



6

3.2 Using the Visualisation Model

The mapping of CEP (complex and simple) events D →T can be described as
mapping from a pool of events to a three dimensional space of discrete points.
T → S is realised by filtering/zooming via the interface, which maps a subset
of these points to a 2 dimensional plane. When visualizing an event on a two-
dimensional plane t (time) will usually be mapped to the x axis. There are two
distinct classes of significance of simple event for visualisation purposes:

2D One of which will apply to both the x (time) axis and a single form attribute
for the y axis. An example is a price update.

1D One of will apply to the x axis. An example is an individual news update.

The mappings between visualisation spaces are now described in detail.

3.3 Mapping D → T

The data space of CEP events D is then mapped onto the Task space T . The
set of mapping functions is given as M : D → T .

From Section 2.2, D = {ΣD, GD,KD} and T = {ΣT , GT ,KT }, where ΣD =
{d1, d2, . . . , dn} and d1, d2, . . . , dn are simple or complex events with the excep-
tion that relativity (γ) is separated into a set of functions GD = {g1, g2, . . . , gn}.
M = {m1,m2, . . . ,mn} where m1,m2, . . . ,mn are mapping functions from D to
T . KT = {k1, k2, . . . , kn} where n = the number of constants and k1, k2, . . . , kn
are task attributes x and y. Each event has an x, y position on a cartesian plane
relative to the smallest x and y attributes as atomic units in a meta space of
planes. Each ε (event level) in E is mapped to a different plane. This is based
on the hierarchy level determined by the relativity. Events of the same type are
always on the same plane.

Simple Events D → T A set of functions M maps data (events) to the
task space. The mapping is a homomorphism represented by functions: D =
{e1, e2, . . . , en} where each entry is a set of attributes for an event E. Below an
instance of an event in D is referenced with De.
T = {(e1, x1, y1, z1 = 0), (e2, x2, y2, z2 = 0), . . . , (en, xn, yn, zn = 0)}

The mapping for a news update is MNU : D → T and (x, y, Eroot) ∈ MNU

where Te.x = M1(De) = (e.t/tmin). To work out x position we must work out the
minimum non zero timestamp increment tmin beforehand by iterating through
all elements of D. i.e. the smallest non zero difference between all timestamps
in D. y is always 0.

The mapping for a price update is MPU : D → T and (x, y, Eroot) ∈ MPU

where Eroot = PU (Price Update) and, Te.y = M2(De) = (De.price/pricemin).
To work out x position we must work out the minimum non zero price change
pricemin beforehand by iterating through all elements of D. i.e. the smallest non
zero difference between all prices in D.

If the event is the Root Event (Eroot), a price update, then the event is
mapped to a 2D plane, otherwise all planes are 1D and x based.



7

Complex Events D → T A z axis is introduced where each entry is a set of
attributes for an event E.

T = {(e1, x1, y1 = 0, z1), (e2, x2, y1 = 0, z2), . . . , (en, xn, yn = 0, zn)}
The basic mapping for all complex events is the same. MCE : D ∈ T and

(x, z, Eo) ∈MCE where Te.x = MCE(De) = (e.t/tmin); Te.z = MCE(De) = (z =
ε); where ε determines the z order of the plane.

Again, to work out x position we must work out the minimum non zero
timestamp increment tmin beforehand by iterating through all elements of D.
i.e. the smallest non zero difference between all timestamps in D.

UI Mapping T → S Again based on the definition from [9], for F : T → S,
S = {ΣS , GS ,KS} and F = {f1, f2, . . . , fn} where f1, f2 . . . , fn are functions
from T to S. K = {k1, k2, . . . , kn} where n = the number of constants and
KS = {s1, s2, . . . , sn) where s1, s2, . . . , sn are scene attributes.

S represents direct visual elements on a display device. All events and 3D
coordinates are stored in a 3D matrix in T (represented by x, y, and z compo-
nents).

These provide the components for the mapping from the events to the visu-
alisation space which provides the homomorphisms between the task and visual
spaces.

The proposed user interface has 3 distinct sections. They are: An Attribute
Panel, Display Panel (figure 1), and a Filter Panel. The display panel is the main
graph and displays Swin, where the root event sets up the x, y plane. Events are
then stacked based on their Z-order (z). There is always a selected event, Esel.
The attributes in the attribute panel are those of the selected event and are
drawn from KT . The filter panel allows the removal of members of T and the
display panel displays all, or part of the filtered members of T depending on
zoom and stacking controls which are based on relativity, i.e. GT . Of particular
interest is filtering out x, y ranges (zooming), i.e. Swin = { a window in Tx, Ty} =
{xstart, xend, ystart, yend} and showing only events within the selected event’s
relativity.

With the display panel in figure 5 when we want more information on the
news story plus event we would simply click on the event, in this case a large
square in the top left corner. What appears then, in the panel below the arrow,
is just the news story plus event and its constituent events. These parent events,
and in turn, their parents, are shown here.

A news story plus occurs when a news story is generated that contains a
positive price jump. You can see that the price jump (the two price updates)
did indeed occur over the life of the news story, which started with news update
1 and was finalised with news update 2. Under the news story plus event there
are three distinct events: news story, news update 2, and price update 2.



8

Fig. 5. The display panel

4 Visualisation Evaluation

A key method by which we may validate a process in science is the principle
of falsifiability, championed by Karl Popper [4]. According to [5] a falsifiable
images is a “valid pictorial representation of the truth”. Falsifiability of a visual
representation of data involves establishing the necessary and sufficient condition
of the validity of the mapping between image and data, in the following format:

Consistent The data is consistent with the image through a homomorphism,
and

Representative The image is representation of the data without distortion

The visualisation model should be such that you can detect in the image patterns
that represent patterns that can then be verified in the data. Since mappings
D → T are structure-preserving homomorphisms, the visualisation model map-
ping is falsifiable, or, the events are detectable in the final visualisation are
present in D.

Other visualisation systems generally only show data representations of the
R space. The event based version shows higher level entities and a hierarchy of
those entities which represent the output of CEP patterns.

5 Conclusions and Future Work

By thinking of the domain conceptually and using these concepts within a vi-
sualisation framework we can enhance more simplistic visualisation techniques.



9

Future work would include building different CEP models, the usability of a
prototype developed from this model against multiple visualisation systems, and
developing an iterative model to change or add CEP patterns on the fly.

Another promising area for future research is in formal validation and visu-
alisation falsifiability. A potential way to analyse the value of modeling tool is to
verify that the visualisation is falsifiable. For this we are developing an algebraic
formalism could be used to describe the CEP process from R→ D.

References

1. Tukey, J. A.Exploratory Data Analysis, Addison-Wesley (1977).
2. Luckham, A.D.C.: The Power of Events: An Introduction toComplex Event Pro-

cessing in Distributed Enterprise Systems. Addison-Wesley, Reading (2002).
3. Hutchins, M.A. (1999) Modelling Visaualization Using Formal Algebra, A thesis for

Doctor of Philosophy in The Australian National University, CSIRO ICT Centre,
Canberra, Australia.

4. K. Popper, The Logic of Scientific Discovery, Routledge/Taylor & Francis e-Library,
2005.

5. Andrew J. Hanson, Putting Science First: Distinguishing Visualizations from Pretty
Pictures. Computer Graphics and Applications, IEEE, 34, 4. 2014.

6. Calum S. Robertson, Fethi A. Rabhi, Maurice Peat. A (2012) Service-Oriented Ap-
proach towards Real Time Financial News Analysis University of New South Wales,
Smart Services CRC, Sirca, University of Sydney.

7. Reuters NewsScope Archive v2.0 User Guide v2.4 Date of Issue: 29th May 2008.
8. W. Chen and F.A. Rabhi, An RDR-Based Approach for Event Data Analysis, In

J.G. Davis, H. Demirkan and H.R. Motahari-Nezhad (eds), Service Research and
Innovation, Lecture Notes in Business Information Processing Volume 177, 2014, pp
1-14.

9. T. Mala*, P. Bhargavi and T.V. Geetha, GVP model based temporal visualisation
of user-centric data, International Journal of Metadata, Semantics and Ontologies
Volume 3, Issue 4, 2008, pp 305-317.


