
“© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.”

On-line 3D active pose-graph SLAM based on key poses
using graph topology and sub-maps

Yongbo Chen1,2, Shoudong Huang1, Robert Fitch1, Liang Zhao1, Huan Yu2 and Di Yang2

Abstract— In this paper, we present an on-line active pose-
graph simultaneous localization and mapping (SLAM) frame-
work for robots in three-dimensional (3D) environments using
graph topology and sub-maps. This framework aims to find
the best trajectory for loop-closure by re-visiting old poses
based on the T-optimality and D-optimality metrics of the
Fisher information matrix (FIM) in pose-graph SLAM. In
order to reduce computational complexity, graph topologies
are introduced, including weighted node degree (T-optimality
metric) and weighted tree-connectivity (D-optimality metric), to
choose a candidate trajectory and several key poses. With the
help of the key poses, a sampling-based path planning method
and a continuous-time trajectory optimization method are
combined hierarchically and applied in the whole framework.
So as to further improve the real-time capability of the method,
the sub-map joining method is used in the estimation and
planning process for large-scale active SLAM problems. In
simulations and experiments, we validate our approach by
comparing against existing methods, and we demonstrate the
on-line planning part using a quad-rotor unmanned aerial
vehicle (UAV).

I. INTRODUCTION

In an unknown environment, active SLAM is to choose
good trajectories for improving the SLAM result and per-
forming the given tasks, such as coverage. In this paper, we
present a 3D on-line active pose-graph SLAM framework.

Popular frameworks in this area, including model pre-
dictive control (MPC) [1] and partially observably Markov
decision process (POMDP) [2], try to choose the best future
trajectory via some indexes. Most of these indexes focus on
the uncertainty level [3] and the data association award [4]
of the future SLAM results. Recently, the Theory of Optimal
Experimental Design (TOED) [5], including A-, D-, E- and
T-optimality metrics, is widely applied in active SLAM
and similar areas, such as active perception [5] and sensor
selection [6]. A comparison of these criteria is presented
in [7]. Recent work [8] shows that the monotonicity property
of different metrics is greatly affected by the representation
of uncertainty and the orientation of the robot pose.

Active SLAM can be viewed as a highly non-convex
optimal control problem with a large search space. To gen-
erate candidate paths efficiently is also very important. The
frontier-based exploration method [9] leads active SLAM
into a discrete optimization domain by choosing a small sub-
set of future way-points. Traditional shortest path planning

1Yongbo Chen, Shoudong Huang, Robert Fitch and Liang Zhao
are with Faculty of Engineering and Information Technology,
University of Technology Sydney, Ultimo, NSW, 2007 Australia
Yongbo.Chen@student.uts.edu.au

2Yongbo Chen, Huan Yu and Di Yang are with Beijing Institute of
Technology (BIT), Beijing, 100081 China

algorithms, such as A* [10], RRT* [11] and D* [12], are
also used in active SLAM to generate candidate paths.

In generating candidate actions based on these TOED
metrics, active SLAM becomes computationally expensive.
Therefore, most of the work in this area tries to reduce
the computational complexity of the objective function of
this problem. In the earlier literature, based on the Ex-
tended Kalman Filter (EKF) and the Extended Information
Filter (EIF), the MPC framework is applied to limit the
size of the planning problem by limiting its horizon [1].
In [13], based on the D-optimality metric, the authors
develop a computationally efficient approach for decision
making under uncertainty by applying the matrix determinant
lemma and reusing calculation among all candidates. A
conservative diagonal information matrix is introduced to
reduce the computational complexity of the D-optimality
objective function of the candidate actions in [14].

This paper presents an on-line active pose-graph SLAM
framework using graph topology and sub-maps. First, by
using RRT-style expansions, many random candidate paths
are generated. Based on the weighted node degree and
the weighted tree-connectivity, several key poses belonging
to the best path are selected. Based on these key poses,
considering the robot dynamic model, a continuous-time
trajectory optimization problem is formulated and solved by
the quasi-Newton method. In this process, sub-map planning
and estimation are used to improve real-time capabilities.

The main contributions of this work are as follows:

• Hierarchical evaluation with a fast but general-
performance method using weighted node degree for all
candidate paths, and a slow but fruitful method using
weighted tree-connectivity for a selected set of paths.

• Application of sub-map planning and estimation, to
improve computational efficiency.

• Application of real-time sampling-based planning and
continuous-time optimization in active SLAM.

• Introduction of key poses to build a hierarchical frame-
work.

II. PROBLEM DESCRIPTION

Assume that the robot is performing some tasks in an un-
known environment such as coverage, exploration or search.
Our active pose-graph SLAM framework is used to reduce
pose uncertainty and further helps to finish the original tasks.
The active SLAM problem considered in this paper is to
mostly retain the main originally designed path while finding
good additional loop-closure trajectories between the current

pose and the previous poses to reduce the uncertainty of
pose-graph SLAM subject to resource limitations.

For example, suppose the robot is performing a coverage
task in an unknown space. When the pose uncertainty in
pose-graph SLAM is large, in moving from the current pose,
the robot needs to revisit a previous pose and finally return
back to perform the original task. Fig. 1 shows a system
using our method. Compared to the MPC framework [15],
this method can be easily applied in different tasks, and does
not need to run in every step.

Fig. 1. Role of our active SLAM method in the robot system

III. POSE-GRAPH SLAM

A. Graph Preliminaries

The pose-graph SLAM problem can be represented as a
weighted weakly-connected directed graph G = (V, E , ω),
where V = {0, 1, 2, · · · , np}, E ⊆ V × V and |E| = m.
Each node Pi ∈ V denotes a robot pose, and each edge
ek = (ik, jk) ∈ E represents the k-th relative measurement
between two robot poses Pi and Pj . Without loss of gener-
ality, the first node P0 is anchored for the SLAM problem.

The node degree of pose Pi is denoted as di, which
means the number of measurements connected by the i-
th node. The set of poses connected with pose Pi is
denoted as Vi. The reduced weighted Laplacian matrix
corresponding to the pose-graph G is defined as L ,
AΣA>, where A ∈ {−1, 0, 1}np×m means the reduced
incidence matrix after anchoring P0 to the origin, and Σ =
diag{ω(e1), ω(e2), · · · , ω(em)} is a diagonal matrix whose
diagonal elements are the weights of the graph edges.

B. Synchronization on Rn × SO(n)

2D/3D pose-graph SLAM, belonging to synchronization
problem on Rn × SO(n), n = 2, 3, consists of estimating
the values of a set of np unknown poses P1, · · · , Pnp ∈
Rn × SO(n) given m noisy relative rotations RjR

>
i and

relative coordinate transformations R>i (xj−xi). We assume
that the noisy measurement follows [16]:

pij = R>i (xj − xi) + yij , yij ∼ N (0,Σij)

Hij = ZijRjR
>
i , Zij ∼ Lang(In×n, κij),

(1)

where N (0,Σij), Σij = δ2ijIn×n means the ran-
dom vector following the isotropic Gaussian distribution,
Lang(In×n, κij) means the isotropic Langevin distribution
with mean In×n and concentration κij ≥ 0.

Given a set of noisy measurements pij and Hij , the pose-
graph SLAM problem is to obtain a maximum-likelihood
estimate for the poses Pi = (xi,Ri) ∈ {Rn × SO(n)}np :

max
Pi

∑
ek∈E

κijtr(HijRiR
>
j)−

δ−2ij
2
‖pij −R>i (xj − xi)‖2.

(2)
For this pose-graph SLAM problem, the SE-sync

method [16] is applied to solve it. This method is one of
the state-of-the-art algorithms, which shows the outstanding
computational efficiency and certifiably globally optimal
property. After the computational enhancements, it is as fast
as some highly optimized libraries, like g2o [17].

C. FIM and optimality design metrics

The FIM I of the pose-graph SLAM result is a tool to
assess the quality of the measurement network. Based on
I = J>ΣJ , in which J is the Jacobian matrix for (1), the
FIM I2D for 2D SLAM with block-isotropic Gaussian noise
is shown in [18]:

I2D =

[
LR2

w 4>w
4w L

SO(2)
w + diag{ψ1, · · · , ψnp}

]
, (3)

where LR2

w and L
SO(2)
w are the reduced weighted Laplacian

matrices after using the Kronecker product operation, ψi =∑
j∈V +

i
δ−2ij ‖xi−xj‖2, i = 1, · · · , np, the specific structure

of 4w is shown in [18]. A similar result for 3D SLAM is
shown in [19].

The D-optimality and T-optimality design metrics are
two important metrics directly using the FIM without the
inverse operation. The D-optimality and T-optimality metrics
are, respectively, to maximize the log-determinant function
log(det(InD)) and the trace function trace(InD).

IV. RELATION BETWEEN DESIGN METRICS AND GRAPH
TOPOLOGY

In this section, the D- and T-optimality design metrics
are shown to have a strong relationship with the graph
structures, including weighted node degree and weighted
tree-connectivity, of the SLAM measurement network.

A. T-optimality metric and weighted node degree

Based on (3), for both 2D and 3D situation, we can get
the T-optimality design metric of the FIM:

trace(InD) = trace(LRn

w)

+trace(LSO(n)
w) +

np∑
i=1

∑
j∈V +

i

δ−2ij ‖xj − xi‖2,
(4)

The specific derivation is shown in [19].
For many real-world pose-graph SLAM problems, com-

pared with trace(LRn

w) and trace(L
SO(n)
w), the last term∑np

i=1

∑
j∈V +

i
δ−2ij ‖xj−xi‖2 is relatively small, so we have:

trace(InD) ≈trace(LRn

w) + trace(LSO(n)
w)

=

np∑
i=1

∑
j∈Vi

(
ωij + nδ−2ij

)
,

(5)

where ωij = 2κij (for 2D) is the weight of the rotation graph
edge and its 3D value is shown in [19],

∑
j∈Vi

(
ωij + nδ−2ij

)
is the weighted value of the graph edge connected with the
i-th node, named weighted node degree. It is easy to find that
maximizing the T-optimality metric is almost equivalent to
maximizing the weighted node degree. The weighted node
degree is a computationally efficient metric with a similar
effect for the T-optimality-based active SLAM problem.

B. D-optimality metric and weighted tree-connectivity

In [18], the lower and upper bounds of the D-optimality
metric of the FIM are shown as:

L ≤ log(det(I2D)) ≤ U
L = log(det(LR2

w)) + log(det(LSO(2)
w))

U = log(det(LR2

w)) +

n∑
i=1

log(λi(L
SO(2)
w) + λ∞),

(6)

where λ∞ = max
i=1,2,··· ,np

∑
j∈V +

i
δ−2ij ‖xi − xj‖2 means the

biggest eigenvalue of diag{ψ1, · · · , ψnp} for the 2D case. A
similar result for the 3D case is shown in [19].

We assume that the SLAM result is ‘near-optimal’. For
many real-world datasets, compared with the eigenvalues of
the rotation group λi(L

SO(2)
w), the term λ∞ is relatively

small, so we have:

U ≈ L ⇒ log(det(InD)) ≈ L. (7)

It is easy to find that optimizing the D-optimality metric
is almost equivalent to optimizing the lower bound of the
FIM. The lower bound L is known as the weighted tree-
connectivity of the SLAM measurement network [18].

The computational complexity of the weighted tree-
connectivity is much smaller than the original metric due
to its lower dimension and sparser structure. Based on
Algorithm 1 in [19], it can be computed much faster than
the log-determinant function of the dense matrix.

C. Comparison among the four metrics

The weighted node degree and the weighted tree-
connectivity metrics have similar performance and better
computational efficiency than T- and D-optimality, respec-
tively. For two new metrics, from the computational com-
plexity point of view, the weighted node degree is cheaper
than the weighted tree-connectivity. However, from the effec-
tiveness point of view, we have found that the weighted tree-
connectivity can identify the uncertainty levels of two graphs
with similar weighted node degree [19]. Thus, weighted
tree-connectivity is a relatively expensive metric with good-
performance.

Based on the above discussion, we have a basic idea
for determining the loop-closure trajectory. Weighted node
degree is a good metric to be used in large-scale search for
rough candidate actions, and weighted tree-connectivity is
suitable for sophisticated search within a small elite group.
This idea leads to the hierarchical evaluation strategy listed
in the first dot point of our contributions.

V. ON-LINE ACTIVE SLAM FRAMEWORK

A. RRT-connect and weighted node degree for initial search

First, Nc+1 potential old loop-closure poses is uniformly
obtained by dividing the path into several small segments:
S = {P1, Pr(i′/Nc), P2r(i′/Nc), ..., PNcr(i′/Nc)}, where r(?)
means the maximal integer smaller than ?. For every poten-
tial old loop-closure pose in S, seeing it as the target and the
last pose Pi′ as start point, we can generate NRRT candidate
paths based on the RRT-connect method [20]. So we have
NRRT (Nc + 1) candidate paths.

Then, for every candidate path, because the noise level is
in general proportional to the number of points which are
visible in both two poses, we can count its weighted node
degree by the weighted number of the common features.

Finally, the best paths are chosen by sorting all the virtual
weighted node degrees of the candidate paths. They make
up the best elite group with Ne paths.

B. Tree-connectivity for elite search and key poses selection

For this small elite group, every path is evaluated by the
weighted tree-connectivity metric.

Then, the best path is obtained by choosing the one with
the largest weighted tree-connectivity. In this best path, all
the poses, which are the nodes in RRT-connect, are divided
into Nk sub-sets uniquely. In the k-th sub-set, the poses are
sorted by their weighted node degrees and the best pose
is defined as the k-th key pose P̂k. The benefit of the
application of the sub-set is to avoid the situation where key
poses are located at adjoining positions, which reduces the
effectiveness of the key poses in a smooth path.

C. Fast trajectory planning

Based on the above method, Nk key poses are found to
guarantee the performance of the selected result. In order to
reduce the length of the random sampling path and assign
the smooth continuous velocity along the path, we apply a
continuous-time trajectory planning method [21] to pass the
key poses and connect the start point and the target.

In every dimension (x, y and z), the robot trajectory is
represented as a high-degree polynomial spline with N -th
order, whose variable is time t:

fµ(t) = A>T (t), µ = x, y, z, (8)

where A = [a0, a1, ..., aN]
> and T (t) =

[
t0, t1, ..., tN

]>
.

The coordinates of the key poses and the end constraints
are set as the fixed derivatives dF [21]. The remaining
free derivatives dP , which are the optimized variables, are
the free waypoints in the spline. The mapping between the
polynomial coefficients A and the derivatives meets:

A = T̂−1M
[
d>F d>P

]>
, (9)

where T̂ = [T (t0) T (t1) · · · T (tN)]
> is a mapping ma-

trix from polynomial coefficients to the end-derivatives,
t0, · · · , tN are the reach time corresponding to the deriva-
tives, M is the re-ordering matrix.

The objective function of the trajectory planning problem
is to avoid obstacles and to minimize the snap:

J = ω1J1 + ω2J2

J1 =

∫ tN

t0

∑
µ=x,y,z

dkfµ(t)

dtk
dt, J2 =

∫ tN

t0

c(f)

∥∥∥∥dfdt
∥∥∥∥ dt,

(10)
where f = [fx(t), fy(t), fz(t)], c(f) is the potential cost to
avoid an obstacle. Its computation is introduced in Section V-
E. In our simulation, the coefficient k is set as 4. Using (12),
the objective function in (13) can be derived as:

J1 = [dF dP]M>T̂−>QT̂−1M
[
d>F d>P

]>
, (11)

where Q is the Hessian matrix of J1.
Then this trajectory optimization problem is solved based

on the quasi-Newton method with known gradient. The
specific gradient equation is shown in [21].

D. Special amendment for directional sensor

The above method is suitable only for omni-directional
sensors, because the trajectory passes through key poses
without a direction constraint. In order to apply this frame-
work with a directional sensor, like a camera, a velocity
constraint is introduced in the trajectory planning problem.

For every key pose P̂k, we need to set its speed V (P̂k)
based on the RRT-connect result and set its reaching time
T ∗(tk). Except the fixed derivative corresponding to the
key pose, an additional fixed derivative P̂ addk needs to
be introduced into the continuous-time trajectory planning
problem and its corresponding time is T ∗(tk) + ∆t:

P̂ addk = P̂k + V (P̂k)∆t, (12)

where ∆t is very small to ensure the velocity direction.
This simple operation can be used in any pose with the
velocity direction constraint. An example of the continuous-
time trajectory planning problem with the velocity constraint
is shown in Fig. 2.

Fig. 2. An example of the continuous-time trajectory planning result with
velocity constraint based on the fixed derivatives and free derivatives.

E. Map representation

Focusing on the pose-graph SLAM, we assume that the
environment has been constructed on-line by some tools
such as Octomap [21] or SDF tools [22]. In order to avoid
obstacles in the following planning process, for a waypoint
s in the planning space, we can first identify whether it is in

collision with obstacles, and then get the closest point and
the distance d(s) between this waypoint and the obstacles.
In this way, a potential field c(s) using the Euclidean Singed
Distance Field is built as described in [21]. In this process,
in order to avoid the frequent computations of c(s) and its
gradient in the continuous-time trajectory optimization, they
are computed in the mapping process by GPU or individual
processor cores quickly before the continuous-time trajectory
planning process and then be called using the hash table by
the help of the grid representation of the planning space.

F. Whole framework summary

In this section, we summarize all the steps used in our
framework and show how to apply it in performing the
original task (Algorithm 1).

Algorithm 1: On-line active pose-graph SLAM method
Input: Robot parameters, original task
Output: Best active SLAM trajectory

1 while Original task hasn’t been finished do
2 if Pose Uncertainty is accepted (Ĉi′i′ < Index1) then
3 Keep performing the original task;
4 else
5 if Robot resource is enough then
6 Planning 1:
7 Step 1: Output all potential loop-closure poses

with equal interval: S;
8 Step 2: Generate multiple RRT-connect paths

based on S and last pose Pi′ , evaluate their
weighted node degrees and choose elite group;

9 Step 3: Evaluate weighted tree-connectivity,
choose best path and select key poses;

10 Step 4: Build continuous-time trajectory planning
problem based on fixed key poses.

11 end Planning 1
12 repeat
13 Control robot to follow continuous-time

result;
14 if Reach target of Planning 1 result then
15 Planning 2:
16 Generate multiple RRT-connect paths

based on current pose and Pi′ , then run
rest operations in Step 2-4 again;

17 end Planning 2
18 end
19 until Go back to last pose Pi′ ;
20 else
21 Keep performing original task;
22 end
23 end
24 end

VI. SUB-MAP PLANNING AND ESTIMATING

Even though the proposed method only needs to evaluate
the weighted tree-connectivity of the small elite group, it
is still expensive for a large-scale problem. So this paper
uses the sub-map estimation and planning idea to improve
accuracy of the local map and its real-time ability [23].

When the size of the problem is larger than a threshold
(np > Index2), a new sub-map is built. All the pose-graph
structure before this pose is saved and a new pose-graph
SLAM problem is built. The target of the global task is

transformed into local coordinates based on the coordinate
frames of the sub-maps. The active SLAM method is applied
based on the new pose graph without considering other
sub-maps. It is noted that we divide the sub-maps by the
measurements. There are some common poses in different
sub-maps, which serve as loop-closures.

VII. SIMULATIONS AND EXPERIMENTS

A. Simulation
For the simulation, the whole system including the dy-

namic model, control method, constructed map and active
SLAM method, is implemented in MATLAB on a laptop
PC with Intel Core i7-7700HQ @ 3.5 GHz and 8GB RAM.

In order to get the measurements following the noisy
assumption shown in (1), based on the singular value decom-
position, the noise-free relative rotation and translation are
obtained from the 3D points observations, and then, the ran-
dom noises are sampled by N (0,Σij) and Lang(In×n, κij).
The indexes κij and δij are set to be proportional to the
feature number Nv which are visible both from Pi and Pj
[24].

TABLE I
COMPARISON OF TRAJECTORY LENGTH AND COMPUTATIONAL TIME

Average planning time Trajectory length
Algorithm Mean (s) STD (s2) Mean (m) STD (m2)

Task

Non - - 25.44 -
Ours 2.52 0.37 41.63 1.46

Con-D 7.65 0.38 41.02 1.72
Con-T 6.29 0.63 43.92 3.71

1 RRT-D 8.45 0.53 41.16 0.78
RRT-T 6.90 0.55 42.88 0.87

Task

Non - - 15.20 -
Ours 1.45 0.56 28.35 4.21

Con-D 6.00 0.79 27.09 3.29
Con-T 5.18 0.89 27.17 1.94

2 RRT-D 6.45 1.16 30.41 0.44
RRT-T 5.81 0.53 29.69 0.70

1) A small-scale simulation: In this part, we present a
simulation environment in a 7m×7m×1m space with several
regular obstacles as shown in Fig. 4. The original task of the
robot is to pass several way-points (Blue pentagrams) with
a velocity 0.1m/s. The simulation time step ∆t is set as 1s.
The noise parameter δ−2ij and κij for the control input are
105 and 104 in every step. The noise parameter δ−2ij and
κij for the odometry are 20Nv and 104Nv . Index1, Nc and
NRRT are respectively set as 1× 10−3, 10 and 5. The sub-
map idea is not used in this small-scale simulation. In other
words, only one sub-map is used in each simulation. The
maximal one-way loop-closure trajectory is limited below
4m. In order to avoid frequent loop-closure, in one sub-map,
the active SLAM method is only allowed to be triggered
twice (Ns = 2). Limiting the number of the triggered times
and length of the loop-closure trajectory are our ways to
handle the limitation of the robot resources. There are other
ways to do that.

We compare our method with some other methods. The
simulation of following the way points without active loop
closure is named as non-active method (Non). The simula-
tions, which use continuous-time trajectory planning method

to directly re-visit the potential loop-closure poses with-
out using RRT-connect method, based on the T- and D-
optimality metrics are named as continuous-time with D/T-
opt (Con-D/T). The simulations, using RRT-connect method,
are named as RRT-connect with D/T-opt (RRT-D/T). Be-
cause of the randomness, for every task, based on different
methods, we run the simulations 10 times, and then apply
the cumulative distribution function (CDF) to evaluate the
covariance of the robot position at every step [25]. The
uncertainty comparison results are shown in Fig. 3. We also
show the statistical results of the trajectory length and the
average simulation time of Planning 1 and Planning 2 of one
simulation in Table I (The data association of the common
features for the predicted poses is included in the planning
time). One of the trajectories and final estimated results for
tasks 1 (398 Poses) and 2 (208 Poses) using our method is
shown in Fig. 4.

Fig. 3 and Table I show that our method has the best
performance in uncertainty reduction and planning speed. In
other 10 simulations with 10 different paths, we find that the
mean position covariances improve 37% on average by the
additional 71% path compared with non-active method. In
Fig. 4, we see that the active SLAM is triggered twice be-
cause of the weak-connectivity of the measurement network.
Relative measurements are shown by the blue lines, and the
red circles are the estimated robot poses at last step.

2) Large-scale simulation with multiple sub-maps: Even
though the space is small, because of the low velocity and
the large number of features, there are more than 104 relative
pose measurements in tasks 1 and 2. It is hard to solve the
active SLAM problem in real-time. In order to reduce the
computational complexity, the sub-map idea is used. Index2
is set as 150. Simulation results with 9 sub-maps and more
than 105 relative measurements are shown in Fig. 6.

With the help of sub-maps, the planning and SLAM
algorithms are limited to 2s and 1.5s, respectively, in every
sub-map for the above simulations.

B. On-line experiments

For the on-line experiments, based on a real quad-rotor
UAV platform, the planning method shown in Algorithm 1
is implemented on-line in C++ on a desktop PC with Intel(R)
Core(TM) i7-4790K CPU @ 4.0GHz with 32 GB of DDR3
1600MHz RAM. The map is constructed off-line. The virtual
relative measurements are obtained by the global localization
system using the relative poses and adding expected noise.
Pose-graph SLAM is performed on-line but not at every step.
The final trajectory is shown in Fig. 5. The planning parts of
the active SLAM are triggered twice, shown by the yellow
lines. The experiments show that the planning part can be
finished on-line in 0.2-0.4s (2-5Hz) with about 80 poses in
the pose-graph.

VIII. CONCLUSIONS

This paper presents an on-line active pose-graph SLAM
method for a robot operating in a 3D unknown environment.
This method performs active SLAM by adding loop-closure

(a) CDF of the covariance in the robot position at every time step of task 1 (b) CDF of the covariance in the robot position at every time step of task 2

Fig. 3. CDF for task 1 and 2 based on 10 simulations (The high position covariance means worse performance. We would like a CDF that gets closed
to y-axis and reaches 1 as quickly as possible. The red line (Our method) shows good performance (gets closed to y-axis with high ratio) in all lines)

Fig. 4. Active SLAM trajectory, estimated pose graph results and relative measurements for task 1 and 2 in a
small environment simulation Fig. 5. On-line active SLAM (Com-

posite trajectory)

Fig. 6. Active SLAM, real and estimated trajectory results in 9 submaps

trajectories to reduce pose uncertainty. It uses the RRT-
connect sampling-based path planning method and nonlinear
continuous-time trajectory planning method based on key
poses. In this process, the cheap metrics combining the
weighted node degree and weighted tree-connectivity are
used to choose the key poses and its corresponding best loop-

closure trajectory. Simulations and experiment show that our
method has good performance and can be run in real-time.

REFERENCES

[1] C. Leung, S. Huang, N. Kwok and G. Dissanayake, “Planning under
uncertainty using model predictive control for information gathering,”
Robotics and Autonomous Systems, vol. 54, no. 11, 898-910, 2006.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains, Articial Intelligence,
vol. 101, no. 1, pp. 99-134, 1998.

[3] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous
domain: A generalized belief space approach for autonomous naviga-
tion in unknown environments,” The International Journal of Robotics,
vol. 34, no. 7, pp. 849-882, 2015.

[4] S. Pathak, A. Thomas, and V. Indelman, “A unified framework for
data association aware robust belief space planning and perception,”
The International Journal of Robotics Research, vol. 37, no. 2-3, pp.
287-315, 2018.

[5] S. Wenhardt, B. Deutsch, E. Angelopoulou, and H. Niemann, “Ac-
tive visual object reconstruction using D-, E-, and T-optimal next
best views,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2007, pp. 1-7.

[6] S. Liu, S.P. Chepuri, M. Fardad, E. Maazade, G. Leus, and P.K.
Varshney, “Sensor selection for estimation with correlated measure-
ment noise,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
2016, pp. 3509-3522.

[7] H. Carrillo, I. Reid, and J. A. Castellanos, “On the comparison of un-
certainty criteria for active SLAM,” in IEEE International Conference
on Robotics and Automation (ICRA), 2012, pp. 2080-2087.

[8] M.L. Rodrı́guez-Arévalo, J. Neira, and J.A. Castellanos, “On the
Importance of Uncertainty Representation in Active SLAM.” IEEE
Transactions on Robotics, vol. 34, no. 3, 2018, pp. 829-834.

[9] M. Keidar and G. A. Kaminka, “Efficient frontier detection for robot
exploration,” The International Journal of Robotics Research, vol. 33,
no. 2, 2014, pp. 215-236.

[10] A. Kim and R.M. Eustice, “Active visual SLAM for robotic area cov-
erage: Theory and experiment,” The International Journal of Robotics
Research, vol. 34, no. 4-5, 2015, pp. 457-475.

[11] J. Vallvé and J. A. Cetto, “Active pose SLAM with RRT*,” in IEEE
International Conference on Robotics and Automation (ICRA), 2015,
pp. 1050-4729.

[12] I. Maurović, M. Seder, K. Lenac and I. Petrović, “Path Planning
for Active SLAM Based on the D* Algorithm With Negative Edge
Weights,” IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 99, no. 1, pp. 1-11, 2017.

[13] D. Kopitkov, and V. Indelman, “Computationally Efficient Belief
Space Planning via Augmented Matrix Determinant Lemma and Reuse
of Calculations,” IEEE Robotics and Automation Letters, vol. 2, no.
2, 2017, pp. 506-513.

[14] V. Indelman, “No Correlations Involved: Decision Making Under Un-
certainty in a Conservative Sparse Information Space,” IEEE Robotics
and Automation Letters, vol. 1, no. 1, 2016, pp. 407-414.

[15] Y. Chen, S. Huang, and R. Fitch, “Efficient Active SLAM based on
Submap Joining, Graph Topology and Convex Optimization,” in IEEE
International Conference on Robotics and Automation (ICRA), pp.
5159-5166, 2018.

[16] D.M. Rosen, L. Carlone, A.S. Bandeira and J.J. Leonard, “SE-Sync:
A certifiably correct algorithm for synchronization over the special
Euclidean group,” arXiv preprint arXiv:1612.07386, 2016.

[17] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 3607-3613,
2011.

[18] K. Khosoussi, M. Giamou, G.S. Sukhatme, S. Huang, G. Dissanayake,
and J.P. How, “Reliable graph topologies for SLAM,” The Interna-
tional Journal of Robotics Research, 2018.

[19] Y. Chen, K. Khosoussi, S. Huang, L. Zhao, and G. Dis-
sanayake, “Cramér-Rao bounds and optimal design metrics for
pose-graph SLAM,” 2018. https://github.com/cyb1212/A-submitted-
paper/blob/master/main.pdf

[20] J.J. Kuffner and S.M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 995-1001, 2000.

[21] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E.
Galceran, “Continuous-time trajectory optimization for online UAV
replanning,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 5332-5339, 2016.

[22] F. Gao, Y. Lin, and S. Shen, “Gradient-based online safe trajectory
generation for quadrotor flight in complex environments,” in IEEE/RSJ
International Conference on intelligent Robots and Systems (IROS),
pp. 3681-3688, 2017.

[23] L. Zhao, S. Huang, and G. Dissanayake, “Linear SLAM: A linear
solution to the feature-based and pose graph SLAM based on submap
joining,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2013, pp. 24-30.

[24] R. Mur-Artal and J.D. Tards, “Orb-slam2: An open-source slam system
for monocular, stereo, and RGB-D cameras,” IEEE Transactions on
Robotics, vol. 33, no. 5, pp. 1255-1262, 2017.

[25] H. Carrillo, P. Dames, V. Kumar, and J.A. Castellanos, “Autonomous
robotic exploration using a utility function based on Rényi’s general
theory of entropy,” Autonomous Robots, vol. 42, no. 2, pp. 235-256,
2018.

	Clipboard Data(1)
	Fitch_OnlineActive3DPoseGraph_ICRA19

