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Online Estimation of Ocean Current from Sparse GPS Data for
Underwater Vehicles
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Abstract— Underwater robots are subject to position drift
due to the effect of ocean currents and the lack of accurate lo-
calisation while submerged. We are interested in exploiting such
position drift to estimate the ocean current in the surrounding
area, thereby assisting navigation and planning. We present a
Gaussian process (GP)-based expectation-maximisation (EM)
algorithm that estimates the underlying ocean current using
sparse GPS data obtained on the surface and dead-reckoned
position estimates. We first develop a specialised GP regression
scheme that exploits the incompressibility of ocean currents to
counteract the underdetermined nature of the problem. We then
use the proposed regression scheme in an EM algorithm that
estimates the best-fitting ocean current in between each GPS
fix. The proposed algorithm is validated in simulation and on
a real dataset, and is shown to be capable of reconstructing
the underlying ocean current field. We expect to use this
algorithm to close the loop between planning and estimation
for underwater navigation in unknown ocean currents.

I. INTRODUCTION

Ocean monitoring offers tremendous economic value with
various applications such as oceanographic research [1],
military surveillance [2], and oil and gas source localisation
[3]. Various autonomous platforms have been used in such
ocean monitoring tasks, including autonomous underwater
vehicles (AUVs) [4], underwater gliders [5], and even passive
platforms without any actuation [6].

A main challenge in underwater robotics is the effect of
ambient ocean current. Due to lack of GPS while submerged,
ocean currents can cause considerable position drift. This has
a strong impact on the utility of the gathered data, as most
ocean monitoring tasks concern spatial phenomena [7]. Thus,
there has been substantial work on navigation and planning
in flow fields [8—11]. However, most of this work assumes
that the flow field is given a priori, e.g. from an external
database [12-14]. Unfortunately, the spatiotemporal resolu-
tion or accuracy provided by most databases is insufficient
for the purpose of navigation, as noted in [10].

We are interested in estimating the ocean current online,
without any prior information. This idea was recently ex-
plored as a deterministic, discrete estimation problem based

This work is supported by an Australian Government Research Training
Program (RTP) Scholarship, Australia’s Defence Science and Technology
Group, Blue Ocean Monitoring, and the University of Technology Sydney.

LAuthors are with the University of Technology Sydney, Ul-
timo, NSW 2006, Australia brian.lee@student.uts.edu.au,
{chanyeol.yoo, shoudong.huang, rfitch}@uts.edu.au

2 Author is with Blue Ocean Monitoring Ltd, Subiaco, WA 6008, Aus-
tralia ben.hollings@blueoceanmonitoring.com

3 Author is with the Defence Science and Technology Group, Department
of Defence, Australia stuart.anstee@dst.defence.gov.au

-35.09

Dead-reckoning
-35.095 o GPS

e it

-35.1

-35.105

-35.11

Lat.

-35.115

-35.12

-35.125

-35.13
150.77 150.78 150.79 150.8 150.81 150.82

Lon.
Fig. 1. Result of a Slocum G3 underwater glider operation in Jervis Bay,
Australia. The dead-reckoned position (yellow solid line) differ substantially
from GPS measurements on surface (orange circle) due to ambient current.
Orange dashed line shows the drift, which we use for estimating ocean
current. Inset: trajectory inside the white box.

on a prior oceanic model [15] augmented by the drift of
the vehicle. Here, we also exploit drift as a source of
information, but focus on a continuous, probabilistic form.
Drift is measured between the true position, measured by
GPS at the surface, and the dead-reckoned trajectory. As
GPS is unavailable underwater, the dead-reckoning estimate
drifts substantially from the true trajectory. In the case of
underwater gliders, this disparity is typically in the order of
a few hundred metres, as shown in Figs. 1 and 2.

We propose an expectation-maximisation (EM) algorithm
for estimating ocean current given GPS measurements and
a dead-reckoned trajectory. The problem is severely under-
determined as the position drift is the sum of current along
the trajectory. We present a Gaussian process (GP) regression
technique that incorporates the concept of incompressibilty to
provide a physically meaningful constraint. Our algorithm is
demonstrated both in simulation and using two experimental
datasets collected by underwater gliders. The simulation
results show that the algorithm is capable of estimating
accurately, starting from a uniform prior on current. With the
experimental datasets, we could not compare to a baseline
due to lack of other sources of data at the site, but the esti-
mated current aligns with observed drift and also aligns with
the shoreline, which is an expected pattern. The significance
of this result is that we can now attempt to close the loop
between estimation and planning, hence enabling underwater
navigation in unknown ocean current.



II. RELATED WORK

To estimate ocean currents online, one approach is to
consider current as a low-frequency disturbance and then
apply an extended Kalman filter (EKF) [16] or nonlinear
observer [17] in conjunction with acoustic sensors. How-
ever, modelling current as a temporal phenomenon clearly
overlooks its spatial structure, and acoustic sensors typically
require a stationary reference (e.g., the seabed) [18].

An approach that does consider the spatial nature of the
problem is presented in [19]. The authors examine the feasi-
bility of ocean current estimation through simply calculating
the average current velocity by dividing the position drift by
time. Unsurprisingly, the estimate is increasingly unreliable
as distance between diving and surfacing locations grows,
and no predictive capability is provided.

An improvement to this concept was presented in [15]. The
work proposes the ‘motion tomography’ algorithm, which
reconstructs the local ocean current from GPS measurements
using techniques from the computed tomography (CT) lit-
erature. The algorithm represents the ocean as a discrete
grid and iteratively solves a linear system based on a
prior obtained from an oceanic model, such as [14]. The
authors in [20] develop a similar technique with dense GPS
measurements. In comparison, the algorithm we propose in
this paper does not require prior information other than
sparse GPS measurements. Because we use a GP, we can
incorporate prior current measurements at any location, if
available, and estimate current at any location with associ-
ated uncertainty. Further, our proposed method accounts for
the incompressibility of the ocean current, which not only
enhances the physical fidelity, but also aids with the quality
of the estimates as will be shown later. Using a GP also
aligns better with planning, as evident in previous work such
as [8,10,21]. The techniques we use in this paper are in line
with the Bayesian system identification literature [22], and
are inspired by its rigorous theoretical analysis.

IIT. PROBLEM FORMULATION

Suppose we have a continuous-time dynamic model of an
underwater vehicle:

Xy = v + w(xy), (D

where x; € R? is the position of the vehicle at time ¢, v; €
R? is the velocity through water at time ¢, w € C*(R?) is
the ocean current modelled as a smooth 2D vector field. For
simplicity, we do not take into account the vertical motion
of the vehicle. The continuous-time model is discretised as:

Xep1 = X¢ + (Ve + W(xy))At, 2

where At is the sampling time.

The vehicle’s velocity through water v; is known, whereas
the current w(x) is unknown. The vehicle estimates its
own position based on dead-reckoning assuming zero ocean
current while submerged. The initial estimate derives from
the last GPS measurement prior to dive-in. Namely,

Xip1 = X¢ + VAL 3
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Fig. 2. Data from Slocum G3 glider operation near Perth, Australia. Black
bottom-facing triangles: dive-in points. Black solid line: dead-reckoned
estimates (X¢). Red circles: GPS measurements (yr, ). Red dashed lines:
the drift (Axr,)

The vehicle attempts to reach a target point using its dead-
reckoned position estimate. When the vehicle’s estimate is
within a pre-set tolerance range from the target point, the
vehicle climbs up to the surface and updates its position using
GPS. We denote the time of surfacing events as 75, € [1,T],
Tk < Tk+1. The GPS measurements are assumed to have
1.i.d. Gaussian measurement error. Namely,

Yr. = X7, + €k (4)

ex ~ N(0,0.1). (5)

For the periods in between each GPS measurement, we
use shorthand notation X, = X, ., for true trajec-
tory, Xk = erq:m for dead-reckoned trajectory, Wy =
{w(xr,_,),...w(xr,)} for current along trajectory, and

Yk = Y-, for GPS measurements respectively.

As the dead-reckoned estimates do not take ocean current
into account, there is a substantial disparity between the
dead-reckoned estimate and the GPS measurement. Through-
out the rest of the paper, we refer to this disparity as drift,
and denote it by Axy. In other words:

Xy = ¥, — %, ©)

We will use the concept of a cycle to describe the three
behaviours: 1) dive-in, 2) manoeuvre and 3) surfacing, as
depicted in Fig. 2. Namely, a cycle ¢, = {Axk,f(k} is a
tuple containing the dead-reckoned trajectory, X, and the
measured drift Axy.

Although the current w(x) throughout each cycle is
unknown, we know that the drift measurements are related
to the current. The ultimate aim of this paper is to solve the
following maximum a posteriori (MAP) estimation problem.

Problem 1 (Ocean current estimation). Suppose we have
a sequence of cycles Cy., = c1¢y---cy. Find an optimal
estimate for ocean current w*(x) over the space of 2D
smooth vector fields C°°(R?) that maximises the posterior
probability:

w*(x) = argmax P(w(x)|Ci.k). @)

w(x)€EC>(R2)



Intuitively, solving the MAP problem implies that we find
the ocean current w(x) that is the best trade-off between
fitting 1) the drift measurements, Ax; and 2) a constraint
on the general behaviour of ocean current, which we will
discuss in Sec. IV. The constraint is necessary because there
are infinitely many possibilities of ocean current vectors that
sum up to the drift measurement Axy. In other words, the
problem is underdetermined.

Finding a direct solution to Problem 1 is difficult be-
cause there can be infinitely many relations between drift
measurements Axj and ocean current vectors w(x) over
the trajectory of vehicle x;. In this paper, we make the
following assumption about how current vectors at different
positions w(x) and the drift measurements are related.

Assumption 1 (Conditional independence). For all x € R?
such that x # x¢, w(x) is conditionally independent of Cy .,
given the current along trajectory, Wy, = {Wy,--- Wi}
In other words, w(x) is indirectly related to Cy.j; through
Wl:k-

With the assumption, the overall problem can be re-written
in a form that reveals two sub-problems:

P(w(x) | Crx) = /P(W(X) | Wi ) P(Wig | Cra)dW ik
®)
where the sub-problems are to 1) estimate the current at a
remote location given the current along the trajectory (i.e.,
P(w(x) | Wi.k)), and 2) estimate the current experienced

along the vehicle’s trajectory given drift measurements (i.e.,
P(Wik | Crx)).

IV. GP REGRESSION OF INCOMPRESSIBLE FLOW
FIELDS

In this section, we solve for Subproblem 1, where we
estimate the oceanic flow at a query position given flow
at other locations (i.e., P(w(x) | Wy.x)). We model the
oceanic flow with a GP, and impose the assumption of
incompressibility. We first introduce incompressibility and
the concept of a streamfunction, then exploit the properties
of the streamfunction to derive an incompressible GP. In-
compressibility also serves as a useful constraint for solving
Subproblem 2. We demonstrate an example with real ocean
dataset to illustrate that the incompressible GP outperforms
the standard for modelling ocean currents.

A. Incompressibility and Streamfunction

In this work, we model the ocean current as a planar, time-
invariant and incompressible flow field. Planarity implies that
the ocean current has no z-component, which describes the
horizontal stratification of oceanic flow well (see, e.g., [23]).

A flow field is incompressible [24] when

V- w(x) =0, 9)

where V- is the divergence operator. Intuitively, incompress-
ibility implies that ‘the amount of water coming into a point
is equal to the amount exiting the area’. As we do not expect

to see surplus or deficit of water entering an area in the ocean,
incompressibility is an appropriate description.

If a planar flow is incompressible, it can be represented
by a streamfunction ¢ : R? — R. Given a streamfunction
¢(x), one can compute the current w(x) as:

_0x0]"

w(x) = [(%(x) 4t

& (10)

B. Streamfunction-based GP Representation

In this section, we show how to enforce the incompress-
ibility condition in a GP model using a streamfunction. First,
consider a streamfunction modelled as a GP:

d(x) ~ GP(0,k(lx —x']])), (11)

where k(||x — x'||) is a kernel function.

Because the derivative of a streamfunction ¢ is flow
field w as shown in (10) and the derivative of a GP is
another GP [25], our flow field can be represented by a
GP. In infinite-dimensional Bayesian estimation, derivative
operators apply to functions as do matrices to vectors [26].
Recall that if Cov(A) = XA for a vector-valued random
variable A, Cov(MA) = MY A M7 given a matrix M.

The deri\?tive operators can be written as D

8% f% and D' = 32, f%] for the function case,
and the flow field is represented by:

W(X) = D¢<X) ~ GP(Ov K(X,X/)), (12)
where the kernel function K is given by:
K(x,x') = Dh(|x - x|)D’
ﬁl; 9%k
=1 %, M. (13)
Oxdy Ox2

From the first line to the second line in (13), we used the
stationarity of the kernel. It is important to note that (13)
can be computed analytically given a choice of kernel for
the streamfunction [25,27].

Using the GP representation of flow field w with the
kernel function in (13), we can predict a set of current
vectors W(X?) = [w(x¥) w(x%)] given previous
measurement data W (X?) = [w(x]) w(x}))]. The
predictions are given as a set of normal random variables:

P(W(X?) | W(XP)) = N(u(X?), B(XV)), (14
with mean and covariance:

wX?) =KhoKppWo (15)

2(X?) =Kqo ~ KhoKppKpe, (16)

where the matrices K'"J) = [(K(xP,xP)]. K%’g =

[K(XiD,X?)}, and Kgé) = [K(x?,x?) are constructed

blockwise. It is important to note that the predicted mean
and covariance do not rely on discretisation; the prediction
can be made at any arbitrary point. Further, GP regression
allows prediction of ocean current distant from the GPS
measurements, depending on the lengthscale used for GP.
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Fig. 3. Comparison of the proposed and the standard multi-output GP. Blue: true data. Green: the training data used for regression. Red: estimated current.
Gray: reconstructed streamline (only available with the proposed incompressible GP). Data were selected to emulate current estimated along a trajectory
at each cycle. The proposed incompressible GP is capable of identifying large-scale eddy-like patterns, and hence offers better extrapolation.

C. Comparison with Standard GP

We discuss how the incompressible GP is a better rep-
resentation of the oceanic currents with a real dataset in
Fig. 3. We selected a representative eddy from the east
Australian current data provided by the Australian Bureau
of Meteorology. Then, we selected training samples along
a line to emulate the current estimated along a trajectory.
These training samples were extrapolated with GPs having
the proposed incompressible kernel and the standard squared-
exponential kernel Ksp = diag(ksp(x, %), ksp(x,x')).

The standard kernel only fits a smooth vector field to the
training samples. Meanwhile, the proposed incompressible
GP extrapolates the ocean current much more accurately even
with the limited training samples. An apparent benefit is that
we can reconstruct eddy-like patterns [13], which leads to
a better extrapolation for the flow along a future trajectory
given the estimate along the present trajectory.

V. EXPECTATION-MAXIMISATION FOR
CURRENT ESTIMATION

In this section, we solve Subproblem 2, which concerns es-
timating the current along trajectory. For simplicity, we will
focus on estimating the flow along trajectory sequentially,
given each incoming GPS measurements. In doing so, we are
making a Markov assumption, where we fix the estimate of
current along previous trajectories, W.,_1, when estimating
the current along trajectory, Wy. It substantially reduces the
computational complexity of the problem, as the algorithm
is incremental. More precisely, we assume:

P(Wl:k | Cl:k)

=P(Wy | Cr, Wik—1)P(Wi—1 | Crip—1), a7

which shows the problem reduces to estimating the current
along present trajectory, given GPS measurements and pre-
vious current estimates (i.e. P(Wg | Cr, Wi.x—1)).

The main challenge in estimating the current along tra-
jectory arises from the strong causality between the trajec-
tory itself and the current along the trajectory. To predict
the current along trajectory, we must know the trajectory
beforehand, and to predict the trajectory, we must know the
current along trajectory. The challenge is solved through an

EM algorithm. In each iteration, ¢, the EM algorithm iterates
over estimating the trajectory X, called the expectation step
(E-step) and 6), and estimating the current along trajectory

¢ given X, called the maximisation step (M-step). In
effect, we iteratively ‘guess’ the true trajectory, estimate the
flow using the guess, and refine the guess on trajectory using
the estimated flow.

Subproblem 2 is re-written in the EM formulation:

P(Wi | Cr, Wip—1)
oc/P(Wk | Xk, Cr, Wik—1)P(Xy | Wy, Cp)dX
=Ex,1wy.ci [P(Wg | Xi, Cp, Wi—1)]. (18)

In the E-step (Sec. V-A), we find P(Xi | W} ', Cy,) and
evaluate the expectation (18). In the M-step (Sec. V-B), we
find

t = argmaxEX;@lWifl’Ck [P(W | X%, Cr, Wi 1)l
W
(19)
A. E-step

In the E-step, we need to compute the expectation in (18).
In (2), notice that the only source of uncertainty derives from
the fact that w(x) is a GP. Therefore, given current, the tra-
jectory is fully known. Formally, the conditional distribution
of the trajectory becomes a Dirac delta distribution:

P(X}, | Wi ', Cr) = 8(X, — (X + BW, 1), (20)

where B(W) = [Atl,] if i < j, and B9 = [0242]
otherwise. Iy and 0542 denote identity and zero matrices.
As such, the expectation integral collapses to a mere
evaluation at: _ '
i =Xy +BW, L 1)

B. M-step

In the M-step, we maximise the expectation taken in
Sec. V-A. As shown in Sec. V-A, the expectation (18) is
a simple evaluation at (21). As w(x) is a GP, this yields a
prior given by a Gaussian random variable:

Excijwi-t 00 [POWh | X Wi1)] = N(u(X}), 5(X})).
(22)
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Fig. 4. Simulation results. Trajectory converted to lat-long for end-to-end testing. Black solid line: dead-reckoned trajectory. Green dashed line: reconstructed
trajectory. Red markers: GPS. Red dashed line: drift. Blue arrows: true flow field. Green arrows: estimated flow field. Uncertainty refers to trace of covariance.
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Fig. 5. Convergence of Alg. 1 with the standard multi-output GP (blue,
triangle) and the incompressible GP (red, circle) for 100 different gyre
patterns. Error normalized by the magnitude of the true current. 99%
confidence interval is shown.
where £(X%) and 2(X%) are calculated using GP prediction
equations (15) and (16) given the current estimated with
previous drift measurements, Wy._.

Notice that we can write Axy, in terms of Wy, as:

= CWy + €, (23)

where C' = At [IQ I
joint normal random variables:

12]. Thus, W}C and Ax;, are

Exi Wil Cp [P(W}, Axy, | X}, Wig—1)]

(e

The merit of this formulation is that the maximising
solution is now given in closed form, because maximising the
posterior (19) is equivalent to finding the conditional mean
using (24). This is given by [28]:

(Xz )CT
CZ(X;;)CT'FO_ZIQXQ ’

(24)

7 (Axy, (25)

Wi = u+2CT (CSCT +01) - Cp),

where ;= p(X%) and ¥ = B(X%).

Algorithm 1 GP-EM algorithm for ocean current estimation

1: GP < InitialiseEmptyGP

2: while Vehicle is operational do

3:  if Drift measurement Ax,, available then

4 Initialise X < X
5: for i=1 ...N do
6
7
8

Update estimate of W}, using (25) with Xit
Update estimate of X} using (21) with W7,

GP « UpdateGP(GP, WY XN

C. Implementation

The algorithm for solving Subproblem 2 is shown in
Alg. 1. We initialise the algorithm with a zero-mean GP
without any measurements (Alg. 1 line 1). From lines 4
to 7, we estimate the true trajectory and the current along
the trajectory, X and Wy using our EM algorithm based
on incoming GPS measurement. The current along trajectory
is then added to the measurement set of the GP, as ‘pseudo-
target’ [22]. As more measurements become available, the
GP produces better prior for the iteration. We found that the
Markov assumption reduces the computation time substan-
tially with minimal performance sacrifice.

VI. RESULTS

In this section, we present case studies of our algorithm
with simulated example and real dataset collected from Tele-
dyne Webb G3 Slocum gliders. We used the squared expo-
nential kernel [29] for the streamfunction, having lengthscale
of ¢ = 35km, and self-variance of o3, = 0.5m?s~2. The
kernel for the current vectors was computed analytically
with (13). The hyperparameters were found by maximising
the likelihood of a dataset from the Australian Bureau of
Meteorology using a standard procedure [29].

A. Simulation Results

We validate the performance of the proposed framework
with simulated ground truth. We simulated an underwater
vehicle travelling in a flow field, with true and dead-reckoned
estimates evolving as (2) and (3). The vehicle is given four
waypoints, and surfaces when its dead-reckoned position
estimate obtained using (3) is within 100 metres from the



current target waypoint. For the purpose of validation, we
ran the proposed algorithm on a double-gyre model. The
results are shown in Fig. 4.

From Figs. 4a to 4c, it can be seen that the algorithm
actively improves the estimate of current as the mission pro-
gresses. In Fig. 4a, it can be seen that the estimate after only
one cycle is as good as the average current method in [19].
However, by the fourth cycle, it can be seen that the estimated
and the true flow fields are already in good agreement, with
minor disparity. By the eighth cycle, the estimated and the
true flow fields are almost indistinguishable. The uncertainty
of the estimated current also decreases.

To examine the convergence of the proposed algorithm
further, we performed a Monte Carlo simulation with 100
randomly generated double gyre patterns. We took the error
between predicted and true currents, normalised by the mag-
nitude of the true current. The convergence was compared
with a standard GP with squared-exponential kernel function
K(x,x/) = diag(ksg(x,x), ksp(x,%/)) having identical
parameters, but without incompressibility assumption. The
result is shown in Fig. 5.

Figure 5 shows that the algorithm gradually learns any
randomly generated flow field, which is demonstrated by the
decrease in normalised error for both standard and the pro-
posed incompressible GP. However, the incompressible GP
shows a much faster rate of convergence and a lower steady-
state error than the standard. The result clearly indicates
that our incompressible GP outperforms over the standard
in describing oceanic flows as shown in Fig. 3.

B. Field Results

The proposed algorithm was tested in two field trials with a
Slocum G3 underwater glider, one near Jervis Bay, Australia,
and one in open ocean near Perth, Australia. The result from
the Jervis Bay trial is shown in Fig. 6a, and the Perth trial in
Fig. 6b. The glider was tasked to visit designated waypoints
and communicate the current cycle ¢, when on surface. For
the purpose of experiment, we disabled the onboard average
current correction [19] to ensure the dead-reckoned estimates
evolve as (3).

For the Jervis Bay trial in Fig. 6a, it can be seen that
the estimated current is remarkably consistent with what
is expected near a bay: ocean flow comes in from the
open ocean, and the majority enters the bay, with only a
small perpendicular component to the bay’s shoreline. This
indicates that the proposed incompressible GP accurately
models the correlation between ocean currents at different
points, as inocompressibility is a physical attribute of the
real ocean.

For the Perth trial in Fig. 6b, the proposed algorithm
estimates a flow field that agrees with the observed drifts
(pointing 45° southwest) while the prediction offered by
Australian Bureau of Meteorology did not agree with the
drifts (pointing 45° southeast). The discrepancy emphasises
the importance of our online estimation framework since the
offline prediction may be inaccurate. Also, the resolution
of the offline prediction is discrete and very sparse due
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Fig. 6. Field trial results showing estimated current (blue arrow), position
from GPS (red circle), dead-reckoned path (black line) and estimated path
(dashed green)

to limited computation power for forecasting while our
algorithm offers spatially continuous prediction. Therefore
the proposed framework enables more accurate planning over
uncertain ocean currents.

VII. CONCLUSION AND FUTURE WORK

We developed an EM algorithm for estimating ocean
current from sparse GPS data. The performance of the
algorithm is improved by using a GP regression scheme that
takes into account the physical concept of incompressibility.
The proposed algorithm was tested with both simulated and
experimental data, with positive results. Our future work
includes extending the algorithm to consider time- and depth-
variation of ocean current and relaxing the incompressibil-
ity assumption by adding a small divergent component to
account for Ekman divergence [30]. We would also like
to combine the proposed algorithm with motion and task
planning algorithms [11,31], and experimentally validate the
performance of the whole framework. The streamfunction
representation used in this paper also gives rise to an elegant
and efficient method for optimal path planning [32]. Further-
more, the framework could achieve faster convergence with
multiple robots by partitioning the environment [33].
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