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Abstract—Protograph LDPC (P-LDPC) codes and large-scale
multiple-input multiple-output (LS-MIMO) are cornerstones of
5G and future wireless systems, thanks to their powerful error-
correcting capability and high spectral efficiency. To alleviate the
high complexity in signal detection/decoding that dramatically
grows with the number of antennas (in the order of tens or even
hundreds), low-resolution analog-to-digital converters (ADCs)
and joint detection and decoding using factor graph have recently
attracted paramount interest. Unlike high-resolution ADCs, by
using a small number of bits to quantize the received signal, low-
resolution ADCs help reduce the hardware cost and power con-
sumption of the RF circuit of practical LS-MIMO transceivers.
Such a very much desirable reduction comes at the cost of addi-
tional quantization noise, introduced by low-resolution ADCs.
This work aims to provide a unified framework to analyze
the impact of the low-resolution ADCs on the performance
of P-LDPC codes in practical LS-MIMO systems. It is worth
noting that the previous analytical tools that have been used to
evaluate the performance of P-LDPC codes do not account for
the quantization noise effect of the low-resolution ADCs and the
fact that the covariance of quantization noise depends on the
fading channels. This article addresses this shortcoming by first
leveraging the additive quantization noise model. We then derive
the expression of extrinsic information for the belief-propagation
LS-MIMO detector. The mutual information functions, which
are the core elements of our proposed protograph extrinsic
information transfer (PEXIT) algorithm, are analyzed for LS-
MIMO communication systems. Our proposed PEXIT algorithm
allows us to analyze and predict the impact of the low-resolution
ADCs on the performance of P-LDPC codes, considering various
input parameters, including the LS-MIMO configuration, the
code rate, and the maximum number of decoding iterations,
and the code structure. Based on our extensive analytical and
simulation results, we found that the performance of 3-bit and 4-
bit ADC systems only have a small gap to that of the unquantized
systems. Especially when the 5-bit ADC scheme is applied, the
performance loss is negligible. This finding sheds light on the
practical design of LS-MIMO systems using P-LDPC codes.
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I. INTRODUCTION

A. Motivation

Both protograph LDPC (P-LDPC) codes1 and large-scale
MIMO (LS-MIMO) have attracted considerable interest and
found their applications in 5G and future wireless systems.
This is thanks to LDPC’s powerful error-correcting capability
and low complexity encoder/decoder structures [2] that can
be adapted to the joint detection and decoding using factor
graphs in LS-MIMO [3]–[8]. To simultaneously reap up the
advantages of both P-LDPC and LS-MIMO, one needs to
address the complexity of their signal detection and decoding
- that dramatically grows with the number of antennas (in the
order of tens or even hundreds in LS-MIMO).

This large number of antennas used in LS-MIMO systems
gives rise to technical challenges at both the radio frequency
(RF) module and the baseband signal processing stage. At
the RF interface, using multiple pairs of the analog-to-digital
converter (ADC) and digital-to-analog converter (DAC) at
the receiver side increases not only the hardware cost but
also the power consumption since the hardware cost and the
power consumption of ADCs and DACs grow linearly with the
bandwidth and exponentially with the number of quantization
bits, respectively. For that, an attractive solution is to replace
the power-hungry high-resolution ADCs with low-power low-
resolution ADCs (see [9] and references therein). At the based
band signal processing stage, conventional signal detectors,
e.g., the maximum likelihood detection (MLD) [10], [11],
[12] that is often regarded as the most powerful detection
scheme for the conventional MIMO system with 2-8 antennas
is not computationally pragmatic. Since the complexity of this
detector grows exponentially with the number of antennas
[11], these detectors are no longer suitable for LS-MIMO
systems with tens or hundreds of antennas. To circumvent the
complexity issue, the joint detection and decoding based on
the factor graph has been proposed as an attractive alternative
[4], [12].

Given the above, this work aims to propose a unified
framework to analyze the impact of the low-resolution ADCs
on the performance of the P-LDPC codes used in LS-MIMO
communication systems.

1A P-LDPC code is defined by a small bipartite graph, so-called a
protograph [1]. From the small graph, a larger derived graph is built to form
a practical LDPC code by applying a “copy-and-permutation” operation.
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B. Related Works

To design and evaluate the performance of P-LDPC codes,
one often relies on the original protograph extrinsic informa-
tion transfer (PEXIT) algorithm (using the iterative decoding
threshold). Nguyen et al. in [13], applied the original PEXIT
algorithm, which was derived for AWGN channels [14], to
design NND code, which obtains the coding gain over the
classical AR4JA code by Divsalar [15]. Authors in [16] intro-
duced a modified version of the PEXIT algorithm in [14] for
spatial diversity communication systems. However, this PEXIT
variant is only applicable to the conventional MIMO systems
with the space-time code and receiving diversity schemes. It
does not apply to LS-MIMO communications systems where
the message-passing joint detection and decoding algorithm is
employed.

In [4], authors applied the standard extrinsic information
transfer (EXIT) chart proposed in [17] to design the irregular
LDPC codes for LS-MIMO channels. By optimizing both vari-
able and check degree distributions, a resulting code achieves
significant coding gain, up to 1.8 dB, over the previous off-
the-shelf codes. Even though the framework in [4] is derived
for the joint message-passing detection and decoding for LS-
MIMO channels, the EXIT algorithm used in [4] is not suitable
for the protograph codes [14]. In addition, none of the previous
versions of the EXIT algorithm considered the impact of low-
resolution ADCs on protograph LDPC codes in LS-MIMO
channels. Unlike high-resolution LDPC LS-MIMO systems,
e.g., [4], the low-resolution ADCs incurs quantization noise
whose covariance also depends on the fading channels.

To overcome the drawbacks of the previous frameworks,
this work aims to study the impact of low-resolution ADCs
whose quantization noise is often modeled as additive noise in
quantized MIMO systems (see [5], [7] and therein references).
To that end, we adopt the iterative joint detection and decoding
algorithm and the soft interference cancellation (instead of the
maximum ratio combining in earlier works, e.g., [5]). That
allows us to leverage the message-passing on graph models
in the LDPC coded LS-MIMO systems [4], [18]. We also
use the uniform scalar quantizer, instead of the non-uniform
scalar quantizer. The uniform scalar quantizer is robust to
the input distribution, and the maximum quantization error
is limited [19]2. Note that most of the previous works focus
on deriving the achievable rate of LS-MIMO channels with
low-resolution ADCs [5], [6], [7], [8], [9], [20], in which the
mutual information approach does not account for practical
channel coding and modulation schemes. By contrast, the main
focus of this work is on practical LS-MIMO communications
systems where the protograph LDPC codes are employed.

C. Contributions

We aim to develop an analytical tool to investigate the
impact of the low-resolution ADCs as well as to provide the
engineering insights for the protograph LDPC code design and
evaluation in LS-MIMO systems. Our major contributions are
summarized as follows:

2The framework in this paper can be extended to the non-uniform scalar
quantizer straightforwardly.

• Adopting the additive quantization noise model (AQNM)
model, we propose the protograph LDPC coded commu-
nications over LS-MIMO channels with low-resolution
ADCs in the RF module and the joint detection and
decoding in the baseband signal processing module.

• Using the Gaussian approximation approach, we de-
rive the extrinsic information expression of the belief-
propagation detector, in which the quantization noise
effect and the residual interference noise are taken into
account.

• We analyze the extrinsic information functions and pro-
pose a new PEXIT algorithm, which is a powerful tool to
analyze the asymptotic performance of protograph LDPC
codes in LS-MIMO channel with low-resolution ADCs.

• We employ the proposed PEXIT algorithm to evaluate
the performance of both punctured and non-punctured
protograph LDPC codes under various input parameters
including the ADC resolution, the LS-MIMO configura-
tion, the maximum number of iterations, and the code
rate.

• We carry out extensive Monte-Carlo simulations to val-
idate the proposed PEXIT algorithm. We found that the
performance curves of 3-bit and 4-bit ADC systems
have small gaps to that of the high-resolution system.
Especially when 5-bit ADC is used, the performance loss
is negligible.

D. Outline

The rest of this paper is organized as follow: Section II
presents the LS-MIMO channel model. The joint detection and
decoding receiver with soft interference cancellation technique
is presented in Section III. In Section IV, we propose a new
version of the PEXIT algorithm, which is employed to study
the impact of the low-resolution ADCs on the performance
of the LS-MIMO communication systems using protograph
LDPC codes. In Section V, we apply the proposed PEXIT
algorithm to study the performance of LS-MIMO communica-
tion systems under various input parameters including the LS-
MIMO configuration, the code rate, the number of iterations
and the code structure. Section VII concludes the paper.

II. CHANNEL MODEL

Consider a wireless fading multiple-input-multiple-output
(MIMO) channel with M transmitting and N receiving an-
tennas with low-resolution ADCs, as shown in Fig. 1. A
block of Kc information bits is first encoded by a P-LPDC
encoder that produces a codeword with a length of Nc coded
bits. The coded bits c ∈ {0, 1} are passed to a binary-
phase-shift-keying (BPSK) modulator whose output is given
by s = (−1)c ∈ {+1,−1}. In one channel use, using the
spatial multiplexing scheme [21], M modulated symbols are
transmitted over M transmitting antennas. It thus requires
L = dNc/Me channel uses to transfer all Nc coded bits.

The received signal model is given by

r = Hx + w. (1)
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Fig. 1: The channel model of the LS-MIMO coded communication.
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Fig. 2: Additive quantization noise model.

Here, x = [x[1], x[2], · · · , x[M ]]T is the transmitted symbol
whose elements belong to the BPSK modulation alphabet. The
average symbol energy Es = E(‖x‖2) is normalized to 1.
H ∈ CN×M is channel matrix whose entries h[n,m] in the
n-th row and m-th column of H are modeled as i.i.d complex
Gaussian with zero mean and unit variance CN (0, 1). In this
work, the perfect channel state information (CSI) is assumed
to be available at the receiver, but not at the transmitter. The
vector w = [w[1], w[2], · · · , w[N ]]T ∈ CN×1 is complex
additive white Gaussian noise vector whose entries obey i.i.d
complex Gaussian with zero mean and N0 variance (i.e.,
CN (0, N0)). Finally, r = [r[1], r[2], · · · , r[N ]]T ∈ CN×1 is
the received signal vector whose element r[n] is the received
signal at the n-th antenna.

The received signal at each receive antenna is first converted
from the analog form to the digital form by a pair of low-
resolution Σ-bit ADCs: One Σ-bit ADC is for the in-phase
(real) component of the signal and the other Σ-bit ADC is for
the quadrature (imaginary) component of the signal. Let Φ be
the quantization operator, the relation between the input and
output of the Σ-bit ADC block is given by

y = Φ(rre) + jΦ(rim), (2)

where rre and rim are the real and imaginary components of
the received signal r, respectively. Furthermore, the quantizer
Φ is the scalar one (i.e., each element in the vector is quantized
separately).

In this paper, adopting the additive quantization noise model
(AQNM) in MIMO systems with low-resolution ADCs [5],
[7], we consider the quantization noise as the additive noise
component to the input signal. According to the AQNM model

in Fig. 2, the relationship between the input and output of the
quantizer in (2) can be written as below [5]

y = ϕr + wΦ, (3)

where ϕ = 1 − ρ and ρ is the inverse of the signal-to-
quantization-noise ratio. wΦ is the additive Gaussian noise
vector that is assumed uncorrelatd with r. For a given channel
realization matrix H, the variance of wΦ[n], n = 1, 2, · · · , N
is given by [5]

σ2
wΦ[n] = ϕ(1− ϕ)

(
M∑
m=1

|h[n,m]|2+N0

)
, (4)

which depends on the fading channel gains h[n,m] and the
additive Gaussian noise at the receiver antenna. Here N0 is
again the variance of the additive Gaussian noise in (1).

Here we assume uniform quantizers [22] but our following
analysis is also applicable to non-uniform ones. With the
assumption of the channel model in (1), the input signals of
the Σ-bit ADCs in Fig. 1 are continuous random variables
with infinite support. Therefore, the input signal, r[n], is first
truncated to have the finite support in the range [−Ls, Ls] as
below:

r[n] =

 −Ls, r[n] < −Ls;
r[n], −Ls ≤ r[n] ≤ Ls;
Ls, r[n] > Ls.

(5)

where r[n] be the truncated version of the received signal r[n].
Generally, the optimal value of Ls depends on the probability
density distribution of the input signal and the number of
quantization levels [23]. However, for sake’s simplicity, the
value of Ls is chosen according to the three-sigma rule as
in [24] to find the truncation limit for the received signal
r[n], n = 1, 2, · · · , N as below:

Ls = 3σr[n] = 3× (0.5 + 0.5×N0)
1
2 . (6)

.
With the uniform scalar quantizer, the quantization noise

power is well approximated as ∆2

12 [19], [23], where ∆ = 2Ls
2Σ

is the quantization step and Σ is the number of quantization
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bits used in the ADCs. As a result, the parameter ϕ in (4) is
approximated by

ϕ = 1− 3

22Σ
. (7)

Note that the parameter ϕ depends only on the resolution of
the ADCs, not on Ls since we assume that the noise due
to truncation is negligible in comparison with the quantization
noise. The quantized signal y is sent to the joint detection and
decoding module to restore the original transmit information
bitstream. In the following section, we present the joint de-
tection and decoding module for LS-MIMO communications
systems with low-resolution ADCs.

III. JOINT DETECTION AND DECODING RECEIVER FOR
LOW-RESOLUTION ADC LS-MIMO SYSTEMS

When the number of antennas is in order of tens or
hundreds, the conventional MIMO detection algorithms such
as zero-forcing, minimum mean square error spatial filtering,
sphere decoding, and maximum likelihood detector are com-
putationally prohibitive [11], [12]. Alternatively, the message-
passing algorithm is an attractive solution to deal with the
complexity issue. Nonetheless, the previous message-passing
algorithms are derived for high-resolution LS-MIMO systems.
One cannot directly apply these algorithms to the LS-MIMO
systems with low-resolution ADCs due to the extra additive
quantization noise as well as the change in the amplitude of
the input signal given in (3). This section aims to derive a
new message-passing algorithm that takes into account the
quantization effect of the low-resolution ADCs.

To describe the joint detection and decoding algorithm, we
use a double-layer graph, as shown in Fig. 3. The double-
layer graph has three types of nodes, namely: 1) L × N
observation nodes representing the received signal sequence
y; 2) Nc = L×M symbol nodes that represent the transmit
symbol sequence x; 3) Finally, there are K = Nc−Kc check
nodes that represent the check equations of given P-LDPC
codes. The connection of the variable node and the check node
is governed by the parity matrix of the LDPC code. In one
channel use, the N observation nodes and the M symbol nodes
are fully connected to form a graph for the MIMO detection
part (i.e., one observation node is connected to all M symbol
nodes). In the graph for the LDPC decoding part, there are
Nc variable nodes that represent the codeword bit sequence c.
With the BPSK modulation scheme, the one-one mapping is
used to map a codeword bit to a transmit symbol. Therefore,
the variable node and the symbol node are merged in a single
node on the double-layer graph. Consequently, the two terms,
the variable node and symbol node, are used interchangeably
in this paper.

In the iterative joint detection and decoding algorithm, there
are five types of messages passed over the graph as follows:
• α[n,m] is the message passed from the n-th observation

node to the m-th symbol node.
• a[m, k] is the message passed from the m-th variable

node to the k-th check node.
• b[k,m] is the message passed from the k-th check node

to the m-th variable node.

⋯ ⋯

⋯ ⋯

m M

1 n N

Symbol node
/ Variable node

Observation node 𝐿𝑁⋯

LM⋯

⋯1 k 𝐾
Check node

𝜶

𝒂𝒃

𝜷

1

Fig. 3: Double-layer graph for joint detection and decoding
receiver.

• β[m,n] is the message passing from the m-th symbol
node to the n-th observation node.

• Γ[m] is the a posteriori log-likelihood ratio (LLR) value
of the symbol x[m].

In the sequel, we describe the operation of the message
passing joint detection and decoding receiver with soft symbol
cancellation.

A. Message Passed From Observation Nodes To Symbol Nodes

The received signal at the n-th observation node is given as

y[n,m] = ϕr[n] + wΦ[n] (8)

= ϕ
M∑
m=1

h[n,m]x[m] + ϕw[n] + wΦ[n]

= ϕh[n,m]x[m] + ϕ

M∑
t=1,t6=m

h[n, t]x[t]︸ ︷︷ ︸
Interference

+ϕw[n] + wΦ[n].

In comparison with the unquantized system (or high-
resolution system), the received signal at the n-th antenna for
the symbol x[m] has one extra noise component (quantization
noise), and its signal strength is affected by the quantization
process with a factor ϕ.

In this paper, the parallel interference cancellation technique
[12] is employed to cancel the inter-substream interference in
(8). The soft symbol is first estimated based on the extrinsic
message passed from the m-th symbol node to the n-th
observation node. Let x̂[n,m] denote the soft symbol obtained
from the message passed from the n-th observation node to
the n-th symbol node. For the BPSK modulation scheme3, the
soft symbol is given by

x̂[n,m] = tanh

(
β[m,n]

2

)
, (9)

where β[m,n] is the extrinsic message passed from the m-
th symbol node to the n-th observation node. We assume

3It is straightforward to extend to higher-order modulation schemes, as
shown in [12].
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that β[m,n],∀n = 1, 2, · · · , LN,∀m = 1, 2, · · · , LM are
uncorrelated and satisfies the consistency condition [25]. The
soft symbol in (9) is now used to cancel the interference from
the received signal at the n-th observation node for the m-th
transmit symbol, x[m], as below

ŷ[n,m] = y[n,m]− ϕ
M∑

t=1,t6=m

h[n, t]x̂[n, t], (10)

where ŷ[n,m] is the received signal of the transmitted symbol
x[m] at the n-th observation node after the interference
cancellation.

Generally, the soft symbol x̂[n,m] is an imperfect replica
of the transmitted symbol x[m]. Therefore, the residual inter-
ference remains in the signal ŷ[n,m] after cancellation. Let
z[n,m] be the residual interference plus noise components.
We have

z[n,m] = ϕ
M∑

t=1,t6=m

h[n, t](x[n, t]− x̂[n, t]) (11)

+ϕw[n] + wΦ[n].

We can now rewrite ŷ[n,m] as below

ŷ[n,m] = ϕh[n,m]x[m] + z[n,m]. (12)

By approximating the residual interference as additive Gaus-
sian noise, the power of the residual interference plus noise
components, z[n,m], is calculated as

Ψ[n,m] = ϕ2
M∑

t=1,t6=m

|h[n, t]|2(1− |x̂[n, t]|2) (13)

+ϕ2N0 + ϕ(1− ϕ)

(
M∑
m=1

|h[n,m]|2+N0

)
.

The message passed from the n-th observation node to the
m-th variable node is the log-likelihood ratio (LLR) and given
by

α[n,m] = ln
Pr(ŷ[n,m]|H, x[m] = +1)

Pr(ŷ[n,m]|H, x[m] = −1)
(14)

=
4ϕ

Ψ[n,m]
R(h∗[n,m]ŷ[n,m]).

There are total N messages sent to a given symbol node (or
transmit symbol), and the sum of all the messages is equivalent
to the channel message (i.e., Lch) in the conventional message-
passing algorithm [17]. Compared to the expression derived
in [11], the new expression in (14) takes into account the
quantization noise effect via the parameter ϕ and Ψ[n,m],
which depend on the resolution of the ADCs and the fading
channels as aforementioned. When the low-resolution ADCs
is used, the factor 4ϕ/Ψ[n,m] in (14) decreases as ϕ is
proportional to the resolution of the ADCs. The channel
message, α[n,m] sent to the variable nodes in (14) therefore
decreases. Ultimately, the performance of the channel decoder
is degraded accordingly. In the high-resolution limit (i.e.,
Σ → ∞) where the parameter ϕ → 1 and the third term
of (13) is significantly small, and thus the channel message of

the low-resolution ADC approaches that of the high-resolution
one in [11]. Our extensive experiments with both analysis
and simulation reveal that the performance of the LS-MIMO
systems with the 5-bit ADC approaches that of the LS-MIMO
system with high-resolution one.

B. Message Passed From Variable Nodes To Check Nodes

Considering the m-th variable node, two types of messages
are sent to this node. The first type of messages is from the N
observation nodes belonging to the part of the MIMO detection
graph, and the other type of messages is from the check nodes
belonging to the part of the LDPC decoding graph. As a result,
the extrinsic message from the m-th variable node to the k-th
check node is the sum of all the messages from the observation
nodes and the check nodes except the message from the k-th
check node. We have

a[m, k] =
∑

t∈No(m)

α[t,m] +
∑

t∈Nc(m)\k

b[t,m], (15)

where Nc(m) is the set of check nodes connected to the m-
th variable node, and No(m) is the set of observation nodes
connected to the m-th variable node.

In comparison with the conventional PEXIT, the first term
on the right hand side of (15), i.e.,

∑
t∈No(m) α[t,m], plays

the role of the channel LLR message. That the channel
LLR message follows the symmetric Gaussian distribution is
one of the essential assumptions in the development of the
PEXIT algorithm [14]. To justify the Gaussian assumption in
this paper, we use a rate-1/2 AR3A code to carry out the
Monte Carlo simulations for different MIMO configurations
at SNR = 5.6 dB. Also, the blocklength and the maximum
number of iterations are set to 9600 bits and 10, respectively.
Denote the first term as L-value, the probability density func-
tions (pdf) of the L-value are plotted in Fig. 4 where the solid
curves are for the theoretical results, and the dashed curves are
for the simulation results. Note that, Fig. 4 shows the pdfs for
the 5-bit ADC only. For the other ADC resolutions, readers
are referred to Fig.14 - Fig.17.

The pdf curves indicate that the assumption of Gaussian
distribution is generally reasonable for all 10 × 10, 20 × 20,
30 × 30, and 100 × 100 MIMO configurations. The biggest
discrepancy occurs to the case of the 10× 10 MIMO config-
uration. However, the difference between the two happens in
the small area around the mean of the L-value. Furthermore,
this phenomenon happens to all ADC resolutions. In the
tail areas, the theoretical and the simulation curves are tight
together. The disparity becomes negligible when the number
of transmitting antennas increases to 20. In the particular case
of 100 transmitting antennas, there is no distinction between
the theoretical and simulation curves. As a result, the PEXIT
algorithm, proposed in the later section, will be more accurate
when the number of transmitting antennas is large.

C. Message Passed From Check Nodes to Variable Nodes

The message from the k-th check node to the m-th variable
node is identical to the conventional message-passing algo-
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Fig. 4: Pdfs of L-value at the output of the detector: AR3AR code, 5-bit ADC, 10 iterations, code rate R = 1/2 , blocklength:
9600 bits

rithm [17] and given by

b[k,m] = ln
1−

∏
t∈Nv(k)\m

1−ea[t,k]

1+ea[t,k]

1 +
∏
t∈Nv(k)\m

1−ea[t,k]

1+ea[t,k]

, (16)

where Nv(k) is the set of variable nodes connected to the k-th
check node. In practical implementation, the computation of
b[k,m] is simplified by using the tanh(·) function.

D. Message Passed From Symbol Nodes To Observation
Nodes

As mentioned above, the m-th symbol node receives mes-
sages from both the observation nodes and the check nodes.
The extrinsic message sent from the m-th symbol node to the
n-th observation node is the sum of all the messages except
the message from the n-th observation node. As a result, the
message from the m-th variable node to the n-th observation
node is given by

β[m,n] =
∑

t∈No(m)\n

α[t,m] +
∑

t∈Nc(m)

b[t,m], (17)

where No(m) and Nc(m) are the sets of all observation nodes
and check nodes that are connected to the m-th symbol node,
respectively.

E. A posteriori messages of codeword bits
The posterior LLR of the m-th transmit symbol at the end of

each iteration is the total messages from both the observation
nodes and the check nodes, and it is given by

Γ[m] =
∑

n∈No(m)

α[n,m] +
∑

k∈Nc(m)

b[k,m]. (18)

The posteriori LLR is sent to the hard decision device to
produce the decoded version of the codeword bit using the
following rule:

ĉ[m] =

{
0, Γ[m] > 0;
1, Otherwise. (19)

where ĉ[m] denotes the decoded version of c[m]. And thus,
the decoded sequence of the information b̂ is obtained.

The message-passing process stops when all check equa-
tions are satisfied, or the maximum number of iterations is
reached. Otherwise, the message-passing process repeats with
a message update from the observation nodes in Subsection
III-A.

IV. PROPOSED PEXIT ALGORITHM FOR
LOW-RESOLUTION ADC LS-MIMO SYSTEMS

The PEXIT algorithm has been widely used as a powerful
tool to predict the performance of protograph LDPC codes for
various channel models [14], [16]. However, it was designed
for high-resolution systems, single-input single-output (SISO)
or conventional MIMO systems. In this section, taking into
account the impact of the low-resolution ADCs, we propose
a new PEXIT algorithm that is suitable for the joint message-
passing detection and decoding in LS-MIMO systems.

A. Joint MIMO-LDPC Protograph

The joint MIMO-LDPC protograph is depicted in Fig. 5.
This protograph is a down-scaled version of the double-layer
graph in Fig. 3. To facilitate the information flow analysis
below, we separate the variable nodes and the symbol nodes
into two entities, and they are linked by a forward combiner
for the forward information flow and a backward combiner for
the backward information flow, respectively.

The MIMO part of the joint MIMO-LDPC protograph has
N observation nodes, M symbol nodes, and M × N edges.
This part is duplicated L times to obtain the same MIMO
part of the double-layer graph in Fig. 3. Here again, L is
the number of channel uses. Whereas, the LDPC part of the
joint MIMO-LDPC protograph has P variable nodes, Q check
nodes, and a set of edges to connect the variable nodes and
check nodes together. The edge connection is defined by a
proto-matrix G of size Q× P . The element G[q, p] indicates
the number of parallel edges that connect the q-th check node
to the p-th variable node. In order to obtain the LDPC part of
the double-layer graph in Fig. 3, the LDPC part of the joint
MIMO-LDPC protograph is first copied δ = Nc

P = LM
P times

and then the permutation operation is applied on δ variable-
to-check pairs (edges), corresponding to the same edge type
of the original protograph [26]. Note that the number of check
nodes Q = (Nc−Kc)

δ = (1−R)× P .
We define 5 main types of mutual information, correspond-

ing to the 5 messages on the double-layer graph in Fig. 3, on
the joint MIMO and LDPC protograph, as follows:

1) Iα[n,m] is the extrinsic mutual information between the
LLR value α[n,m] sent by the n-th observation node to
the m-th variable node and the m-th corresponding coded
bit.
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Fig. 5: Joint MIMO-LDPC Protograph.

2) Ia[p, q] is the extrinsic mutual information between the
LLR value a[p, q] sent by the p-th variable node to the
q-th check node and the p-th corresponding coded bit.

3) Ib[q, p] is the extrinsic mutual information between the
LLR value b[q, p] sent by the q-th check node to the p-th
variable node and the p-th corresponding coded bit.

4) Iβ [m,n] is the extrinsic mutual information between the
LLR value β[m,n] sent by the m-th symbol node to
the n-th observation node and the m-th corresponding
symbol.

5) IΓ[p] is the posteriori mutual information between the a
posteriori LLR value Γ[p] and the corresponding code-
word bit of the p-th variable node.

Besides, we denote the punctured label Pp of the p-th
variable node as 0 if the p-th variable node is punctured (i.e.,
the codeword bits corresponding to this variable node are not
transmitted) and 1 otherwise.

B. Forward Mutual Information Flow

The forward mutual information flow is the direction in
which the extrinsic mutual information flows from the obser-
vation nodes, goes through the symbol nodes and the variable
nodes, and ends at the check nodes as shown in Fig. 5a. In
the following, the mutual information functions that flow in
the forward direction are analyzed.

1) Mutual Information Iα[n,m]: The m-th symbol node
receives N LLR values sent from all N observation nodes
due to the broadcast nature of the radio signal in LS-MIMO
channels. For a fixed channel realization matrix H, the LLR
messages transferred from the n-th observation node to the

m-th variable node, α[n,m] derived in (14), is given

α[n,m] =
4ϕ

Ψ[n,m]
R(h∗[n,m]ŷ[n,m]) (20)

=
4

Ψ[n,m]
R(ϕ2|(h[n,m]|2x[m] + ϕz[n,m]))

=
4

Ψ[n,m]
(ϕ2|h[n,m]|2x[m] + ϕR(h∗[n,m]z[n,m])).

Without loss of generality, we assume that the all-zero code-
word is transmitted. And thus, the LLR value α[n,m] is given
by

α[n,m] =
4

Ψ[n,m]
(ϕ2|h[n,m]|2+ϕR(h∗[n,m]z[n,m])).

(21)
Since E[z[n,m]z∗[n,m]] = Ψ[n,m] with E(·) is expecta-

tion operator, we have(
ϕ2|h[n,m]|2+ϕR(h∗[n,m]z[n,m]

)
∼ (22)

N
(
ϕ2|h[n,m]|2, ϕ

2|h[n,m]|2Ψ[n,m]

2

)
.

Consequently, we have

α[n,m] ∼ N
(
σ2
α[n,m]

2
, σ2
α[n,m]

)
, (23)

with

σ2
α[n,m] =

8ϕ2|h[n,m]|2

Ψ[n,m]
. (24)

The LLR α[n,m] satisfies the symmetric Gaussian distribution
for a given channel realization [16]. We achieve the result in
(23) with assumption that the interference plus noise compo-
nents z[n,m] is approximated i.i.d complex Gaussian random
variable. For the high-resolution case, it was verified by both
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EXIT chart analysis and simulation result that this assumption
is reasonable when the number of receive antenna is large [27].

2) Mutual Information From Symbol Nodes to Variable
Nodes: The m-th symbol node receives total M messages
from the M observation nodes. Let α[m] be the total message
that the mth symbol node receives, we have

α[m] =
N∑
n=1

α[n,m]. (25)

According to (23), the total message also follows the
Gaussian distribution with mean and variance as follows:

α[m] ∼ N (
σ2
α[m]

2
, σ2
α[m]), (26)

where

σ2
α[m] =

N∑
n=1

σ2
α[n,m] =

N∑
n=1

8ϕ2|h[n,m]|2

Ψ[n,m]
, (27)

and thus the extrinsic mutual information, Iα[m], is obtained
by the following equation

Iα[m] = J(σα[m]) (28)

with J(x) is given in [17].
Note that the Iα[m] plays the same role as the channel

mutual information Ich, coupled from the channel to the
variable node, in the conventional PEXIT algorithm [14]. We
interpret Iα[m] as a generic version of Ich where both the
residual interference and the quantization noise effect are taken
into account. In the case of the high-resolution limit of the
ADCs and the perfect interference cancellation, the expression
of Iα[m] is identical to that of Ich.

Let us discuss the impact of the low-resolution ADCs on
the extrinsic mutual information. From (28) and (27), we
observe that the resolution of the ADCs influences on the
extrinsic mutual information with factor of ϕ2/Ψ[n,m]. As the
resolution decreases, the mutual information Iα[m] decreases.
Consequently, the required minimum channel signal to noise
ratio (SNR) is thus higher to make the PEXIT chart converge.
By building the connection between the resolution of the
ADCs and the mutual information, we can investigate the
theoretical performance of difference protograph LDPC codes
with various input parameters. Especially, we can use the
analytical results to predict the impact of the low-resolution
ADCs as well as find out at which ADC resolution we can
approach the performance of the high-resolution system.

Under the assumption of the infinite code length (i.e.,
Nc → ∞) the code bits belonging to a particular variable
node are transmitted by all transmit antennas/symbol nodes
with an equal probability of 1/M . Therefore, the functionality
of the forward combiner is to calculate the average mutual
information from all symbol nodes and then send to the
variable nodes. Let Iα denote the average mutual information
from all symbol nodes, we have

Iα =
1

M

M∑
m=1

Iα[m], (29)

where Iα[m] is given in (28).

As a result, the channel mutual information flowing from
the symbol nodes to the p-th variable node is given by

Iα[p] = PpIα,∀p = 1, 2, · · · , P. (30)

3) Mutual Information Flow From Variable Nodes to Check
Nodes: The expression for the mutual information transferred
from the p-th variable node to the q-th check node, Ia[p, q], is
identical to that of the conventional PEXIT algorithm in [14]
and given by

Ia[p, q] = J

(√
[J−1(Iα[p])]2 + σ2

b [p]

)
, (31)

where

σ2
b [p] =

∑
t∈Nc(p)\k

G[t, p][J−1(Ib[t, p])]
2, (32)

where J−1(x) is given in [17].
In (32), Nc(p) is the set of check nodes that connect to

the p-th variable node. It is worth noting that [J−1(Iα[p])]2

in (31) is equivalent to σ2
ch in the original version of the

PEXIT algorithm for AWGN channels [14] and the modified
version for the spatial diversity system in [16]. In [16], the
authors illustrated that the channel LLR messages do not
follow a symmetric Gaussian distribution in the case of a
SIMO Rayleigh fading channel. However, it is not the case for
the LS-MIMO systems because each channel LLR message,
which is expressed in (27), is a sum of N LLR messages from
N observation nodes. As a result, leveraging the law of large
number, it is reasonable to assume that channel LLR messages
follow a symmetric Gaussian distribution. We verify this fact
via the Monte Carlo simulation with results which are shown
in Fig. 4 and Fig.14 - Fig.17.

C. Backward Mutual Information Flow

The back mutual information flow is the direction in which
the extrinsic mutual information flows from the check nodes,
goes through the symbol nodes and variable nodes, and ends
at the observation nodes as shown in Fig. 5b. In what follows,
we present the mutual information functions that flow in the
backward direction.

1) Mutual Information Flow From Check Nodes to Variable
Nodes: The calculation of the mutual information transferred
from the q-th check node to the p-th variable node is identical
to that of the conventional PEXIT algorithm in [14]. We have
Ib[q, p]

Ib[q, p] = 1− J (σa[q]) , (33)

where

σ2
a[q] =

∑
t∈Nv(q)\p

G[q, t][J−1(1− Ia[t, q])]2. (34)

2) Mutual Information Flow From Variable Nodes to Sym-
bol Nodes: Let Ib[p] denote the total mutual information that
the p-th variable node receives from the check nodes. We can
express the total mutual information as below

Ib[p] =
∑

q∈Nc(p)

Ib[q, p]. (35)
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Under the same assumption of the infinite code length,
the probability that a symbol node transmits the codeword
bit from the p-th variable node is 1/(

∑P
p=1 Pp). Therefore,

the functionality of the backward combiner is to calculate
the average mutual information over all the variable nodes
before sending it to the symbol nodes. The average mutual
information from the variable nodes to symbol nodes is given
by

Ib =
1

(
∑P
p=1 Pp)

P∑
p=1

PpIb[p]. (36)

3) Mutual Information From Symbol Nodes To Observation
Nodes: The mutual information transferred from the m-
th symbol node to the n-th observation node, Iβ [m,n], is
calculated as

Iβ [m,n] = J

(√
σ2
α∗ [m] + σ2

b

)
, (37)

where

σ2
b = [J−1(Ib)]

2 (38)

σ2
α∗ [m] =

∑
t∈No(m)\n

[J−1(Iα[t,m])]2 (39)

=
∑

t∈No(m)\n

σ2
α[t,m] =

∑
t∈No(m)\n

8ϕ2|h[t,m]|2

Ψ[t,m]

D. The APP mutual information

Calculate IΓ[p] for the p-th variable node

IΓ[p] = J

(√
σ2
α + σ2

b [p]

)
, (40)

where

σ2
b [p] =

∑
t∈Nc(p)

G[t, p][J−1(Ib[t, p])]
2 (41)

E. Proposed PEXIT Algorithm

The proposed PEXIT algorithm is obtained by applying
the mutual information functions in previous subsections with
parameters of a given MIMO configuration, M ×N , and the
size of proto-matrix G, Q × P , and the channel parameter
Eb/N0, and the resolution of the ADCs, Σ. The LS-MIMO-
PEXIT algorithm is described below:

Step 0: Initialization:
• Calculate R = P−Q∑P

p=1 Pp

• Calculate N0 = M
R(Eb/N0)

• Calculate ϕ = 1− 3× 2−2Σ

• Set Iβ = 0
• Generate F LS-MIMO channel realization matrices
H1, H2, · · · , HF

Step 1: Observation to variable update
• For f = 1, 2, · · · , F

– For m = 1, 2, · · · ,M and n = 1, 2, · · · , N

∗ Calculate σβ = J−1(Iβ)

∗ Generate βf [m,n] ∼ N (±σ
2
β

2 , σ
2
β)

∗ Estimate soft information x̂f [m,n] =

tanh
(
βf [m,n]

2

)
∗ Calculate Ψf [n,m]

Ψf [n,m] = ϕ2
M∑

t=1,t6=m

|hf [n, t]|2(1− |x̂f [t, n]|2)

+ϕ2N0 + ϕ(1− ϕ)

(
M∑
m=1

|hf [n,m]|2+N0

)
– For m = 1, 2, · · · ,M
∗ Calculate Iα,f [m]

Iα,f [m] = J


√√√√ N∑
n=1

8ϕ2|hf [n,m]|2
Ψf [n,m]


• Calculate the average of Iα,f over all the channel real-

izations

Iα[m] =
1

F

F∑
f=1

Iα,f [m],∀m = 1, 2, · · · ,M.

• For p = 1, 2, · · · , P , calculate Iα[p]

Iα[p] = Pp

(
1

M

M∑
m=1

Iα[m]

)
.

Note that if the p-th variable node is punctured, then Pp =
0.

Step 2: Variable to check update
• For p = 1, 2, · · · , P and q = 1, 2, · · · , Q, calculate
Ia[p, q]

– if G[p, q] 6= 0

Ia[p, q]=J

√ ∑
t∈Nc(p)\q

G[t, p][J−1(Ib[t, p])]2 + σ2
α[p]


with

σα[p] = J−1(Iα[p]).

– If G[p, q] = 0, Ia[p, q] = 0.
Step 3: Check to variable update
• For q = 1, 2, · · · , Q and p = 1, 2, · · · , P

– if G[q, p] 6= 0

Ib[q, p] = 1− J

√ ∑
t∈Nv(q)\p

G[q, t][J−1(1−Ia[t, q])]2


– If G[q, p] = 0, Ib[q, p] = 0

Step 4: Symbol to observation update
• For f = 1, 2, · · · , F

– For m = 1, 2, · · · ,M and n = 1, 2, · · · , N

Iβ,f [m,n] = J
(√

σ2
α∗
f
[m] + σ2

b

)
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with

σα∗
f
[m] =

∑
t∈No(m)\n

8ϕ2|hf [t,m]|2

Ψf [t,m]

and

σb = J−1(Ib) = J−1

(∑P
p=1

∑Q
q=1 Ib[q, p]∑P

p=1 P [p]

)
• For m = 1, 2, · · · ,M and n = 1, 2, · · · , N

Iβ [n,m] =
1

F

F∑
f=1

Iβ,f [n,m]

Step 5: APP-LLR mutual information calculation
• For p = 1, 2, · · · , P

IΓ[p] = J


√√√√σ2

α[p] +

Q∑
q=1

G[q, p][J−1(Ib[q, p])]2


with

σα[p] = J−1(Iα[p])

Step 6: Repeat Step 1 - Step 6 until IΓ[p] = 1, ∀p =
1, 2, · · · , P .

The proposed PEXIT algorithm converges when the select
Eb/N0 is above the threshold. Hence, the threshold (Eb/N0)∗

is the lowest value at which the mutual information between
the APP-LLR messages and the corresponding codeword bits
converges to 1. As can be seen, the proposed PEXIT algorithm
for the low-resolution ADCs differs from the conventional
PEXIT algorithm [14] in all steps, except Step 3. Specifically,
the impact of the low-resolution ADCs is taken into account
(in steps 1 and 4) to calculate the mutual information func-
tions.

In the following section, we exploit the proposed PEXIT
algorithm to analyze the performance of the LS-MIMO com-
munication systems with low-resolution ADCs.

V. ANALYSIS OF PROTOGRAPH CODES

We now use the proposed PEXIT algorithm derived in
Section IV-E to analyze the performance of the off-the-shelf
protograph LDPC codes for LS-MIMO systems. In particular,
we pick four protograph LDPC codes whose proto-matrices
are given in (42) - (45).

GAR3A =

 1 2 1 0 0
0 2 1 1 1
0 1 2 1 1


3×5

(42)

GNND =


2 1 0 0 0 1 0
3 0 1 1 1 1 0
1 0 2 2 1 2 1
2 0 0 0 0 0 2


4×7

(43)

The AR3A code in (42) was previously designed for the
AWGN channel [15]. This code not only possesses excellent
performance at both waterfall region and the error-floor region
in the AWGN channel but also was proven in [16] to out-
perform other LPDC codes including the (3, 6)-regular code,

the irregular LDPC code [28] and the AR4JA code in the
Rayleigh-fading channel with spatial diversity. In the same
punctured class with the AR3A code, we pick the NND code
designed in [13]. The protograph of this code has four check
nodes and seven variable nodes. Both the AR3A code and
NND code, the variable with the highest degree is punctured
to obtain the corresponding code rate of 1/2.

GUCHI =


3 3 0 0 1 0 0 0
2 3 0 1 0 1 0 0
3 2 1 0 0 2 1 1
0 0 2 2 2 0 2 1


4×8

(44)

GNTH =


3 3 1 0 0 0 0 1
3 2 0 0 1 0 1 0
3 1 0 1 2 1 0 0
3 0 2 2 0 1 1 1


4×8

(45)

In the non-punctured family, we pick two codes, so-called
UCHI code [29] and NTH code [26] whose proto-matrices are
given in (44) and (45), respectively. The graphs of both UCHI
code and NTH code have four check nodes and eight variable
nodes. Moreover, they both have a code rate of 1/2.

In this research work, we limit the resolution of the ADCs
from 2 to 5 bits. The reason we do not include the 1-bit
ADC, which was extensively used [8], [30], is that 1-bit ADC
outputs only the sign of the input signal, not the amplitude.
Accordingly, it requires special treatment to calculate the soft-
output in the message-passing algorithm [8], and we will
investigate 1-bit ADC in a separate work.

Employing the proposed PEXIT algorithm, we obtain the
iterative decoding thresholds for those four selected codes
with different ADC resolutions and LS-MIMO configurations.
Particularly, Table I and Table II present the analytical results
for 10 × 10 LS-MIMO and 100 × 100 LS-MIMO channels,
respectively. Here, we use a small number of iterations that
is suitable for low-delay and low complexity systems. Results
with higher iterations are also reported below.

The iterative decoding threshold results indicate that the
NND code has poorer performance than the AR3A code in all
test cases of the ADC resolution. Note that the iterative decod-
ing threshold is the minimum required channel SNR such that
the decoder decodes the noisy signal with an arbitrarily small
error. Therefore, the lower the iterative decoding threshold, the
better the P-LDPC code is. At the 2-bit ADC resolution, the
threshold gaps between the AR3A code and the NND code
are 0.8 dB for 10× 10 LS-MIMO configuration and 0.75 dB
for 100×100 LS-MIMO configuration, respectively. At the 5-
bit ADC resolution, the gaps are slightly reduced to 0.69 dB
and 0.64 dB. Based on the formula of complexity level4, the
complexity of the NND code is 16.67% higher than that of the
AR3A code. This fact hints that if one chooses the NND code
for LS-MIMO channels with low-resolution ADC over the
AR3A code without performance analysis, the decision will

4The complexity level of an iterative decoder for a protograph code is
approximately expressed as the product of the number of decoding iterations
and the number of edges on the graph [31]
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NND code AR3A code UCHI code NTH code
2-bit ADC 4.83 4.03 3.62 3.41
3-bit ADC 4.11 3.40 3.04 2.86
4-bit ADC 3.95 3.26 2.90 2.74
5-bit ADC 3.91 3.22 2.87 2.70

Unquantized 3.91 3.22 2.86 2.70

TABLE I: Iterative decoding threshold: 10 × 10 MIMO, 10
iterations, code rate of 1/2.

NND code AR3A code UCHI code NTH code
2-bit ADC 4.59 3.84 3.46 3.29
3-bit ADC 3.95 3.29 2.94 2.79
4-bit ADC 3.80 3.16 2.82 2.68
5-bit ADC 3.77 3.13 2.79 2.65

Unquantized 3.76 3.12 2.79 2.64

TABLE II: Iterative decoding threshold: 100×100 MIMO, 10
iterations, code rate of 1/2.

lead to not only the high complexity but also the performance
loss- in comparison with the AR3A code.

When we fix a P-LDPC code and vary the resolution levels,
for example, looking at the NND code in Table I, one can
see that changing from the 2-bit ADC resolution to the 3-bit
ADC resolution can improve the iterative decoding threshold
of about 0.72 dB. The gain of the iterative decoding threshold
in changing the resolution level from the 3-bit ADC to the 4-bit
ADC is 0.16 dB. Moreover, the iterative decoding threshold
gap between the 5-bit ADC and the unquantized (or high-
resolution) is at most 0.01 dB. This very tiny gap between the
5-bit ADC case and the unquantized case suggests that the
5-bit ADC should be the maximum resolution one should use
in the LS-MIMO communication systems while the penalty
for the performance is negligible.

Lowering the ADC resolution to 3-bit or 4-bit leads to a
bigger performance gap compared with the high-resolution
one. For example, looking at the AR3A code, the threshold
gaps are 0.18 dB and 0.04 dB for the 3-bit ADC and the 4-
bit ADC, respectively. The same conclusion is applied to the
other three codes as well as 100 × 100 LS-MIMO channels.
Let us look at the analytical expressions in (13) and (14) to
understand this phenomenon deeply. At the 5-bit resolution,
the value of the parameter ϕ is very close to that of the high-
resolution (see Table III) and approaches 1. Consequently,
the third term in (13) is significantly small in comparison
with the residual interference plus Gaussian noise component.
Ultimately, the impact of the quantization process vanishes. In
the same token, we can also observe the behavior of the 3-bit
and 4-bit ADCs.

Now, we fix the LS-MIMO configuration to 10 × 10 and
the AR3A code with a code rate of 1/2, and we vary the
number of iterations. The iterative decoding thresholds of the
AR3A code are given in Table IV. Examining the performance
improvement when changing from 5 iterations to 10 iterations,
one can see that the threshold gap is 2.79 dB and 2 dB

Σ 2 3 4 5 12 (high-resolution)
ϕ 0.8125 0.9531 0.9883 0.9971 0.9999

TABLE III: Relation between Σ and ϕ

5-Ite. 10-Ite. 15-Ite. 20-Ite. 50-Ite.
2-bit ADC 6.82 4.03 3.12 2.68 2.02
3-bit ADC 5.74 3.40 2.61 2.23 1.64
4-bit ADC 5.49 3.26 2.49 2.11 1.55
5-bit ADC 5.44 3.22 2.46 2.09 1.53

Unquantized 5.42 3.22 2.45 2.09 1.53

TABLE IV: Iterative decoding threshold: 10 × 10 MIMO
configuration, AR3A code with code rate of 1/2, 10 − 50
iterations.

at the 2-bit ADC resolution and the 5-bit ADC resolution,
respectively. It means that if we double the complexity level,
the iterative threshold is improved at about 2 dB. Nevertheless,
the gain tends to decline when increasing the number of
iterations further. For example, at the 2-bit ADC resolution,
if increasing from 10 iterations to 20 iterations, the threshold
gap is just 1.35 dB. The gap is smaller when the number
of iterations increases. This suggests that the performance
gain is diminished when increasing the number of iterations.
It is interesting to observe that at any number of iterations,
the maximum threshold gaps of the 3-bit ADC and 4-bit
ADC resolutions are 0.32 dB and 0.07 dB, respectively. This
indicates that the performance loss of using the 3-bit or 4-
bit ADC resolution is within the acceptable level. In the 5-bit
ADC resolution, the maximum threshold gap, happening at 5
iterations, is 0.02 dB. We, therefore, expect the performance
of 5-bit ADC approaches that of the unquantized one.

We now look at the thresholds of the AR3A code with a
code rate of 1/2 and 10 iterations, as shown in Table V. As we
see, the thresholds decrease as the number of receive antennas
increases. Special attention should be given to the scenarios
when the number of receiving antennas is from 30 and above.
In these scenarios, the thresholds of 3-bit and 4-bit ADCs are
very close to the threshold of the unquantized case. Therefore,
we expect that we can have a very tight performance gap
between 4-bit ADC and unquantized case.

With the help of the modified PEXIT algorithm, we can
also investigate the performance of the protograph LDPC
code when the code rate varies. Table VI shows the iterative
decoding thresholds of AR3A family with the code rate
ranging from 1/2 to 9/10. The gap between the 2-bit ADC
and the 3-bit ADC increases when the code rate increases. For
example, at the code rate of 1/2, the gap between the 2-bit
ADC and the 3-bit ADC is 0.63 dB. Whereas, the gap between
those two corresponding ADC resolutions is 2.93 dB at the
code rate of 9/10. It is also that the gap between the 5-bit
ADC and the unquantized is at most 0.03 dB (at high code
rate). As a result, we expect to have a tiny performance gap
between the 5-bit ADC system and the unquantized one.

With the analysis of iterative decoding thresholds of the
protograph LDPC codes in various input parameters, we can
close this section with a conclusion that the 3-bit ADC and
4-bit ADC has small threshold gaps to the unquantized one
and the 5-bit ADC can approach the performance of the
unquantized one for LS-MIMO channels. The small iterative
decoding threshold gaps are translated to the slight differences
in the bit error rate (BER) curves. This fact will be verified in
Section VI.
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10 × 10 10 × 20 10 × 30 10 × 40 10 × 50 10 × 60 10 × 70 10 × 80
2-bit ADC 4.03 0.01 −2.03 −3.40 −4.44 −5.27 −5.96 −6.55
3-bit ADC 3.40 −0.25 −2.20 −3.53 −4.54 −5.35 −6.03 −6.61
4-bit ADC 3.26 −0.31 −2.24 −3.56 −4.56 −5.37 −6.05 −6.63
5-bit ADC 3.22 −0.33 −2.25 −3.57 −4.57 −5.38 −6.05 −6.63

Unquantized 3.22 −0.33 −2.25 −3.57 −4.57 −5.38 −6.05 −6.63

TABLE V: Iterative decoding threshold: AR3A Code, code rate of 1/2, 10 iterations, 10×10 - 10×80 LS-MIMO configurations.

1/2 2/3 3/4 4/5 5/6 6/7 7/8 8/9 9/10
2-bit ADC 4.03 5.06 5.92 6.63 7.22 7.76 8.22 8.64 9.04
3-bit ADC 3.40 4.02 4.53 4.93 5.24 5.51 5.74 5.94 6.11
4-bit ADC 3.26 3.79 4.23 4.58 4.86 5.08 5.27 5.45 5.60
5-bit ADC 3.22 3.74 4.16 4.49 4.76 4.98 5.17 5.33 5.47

Unquantized 3.22 3.72 4.14 4.47 4.74 4.95 5.14 5.30 5.44

TABLE VI: Iterative decoding threshold: AR3A Code, 10× 10 LS-MIMO, 10 iterations, code rate from 1/2
to 9/10.
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Fig. 6: Comparison BER: 10× 10 MIMO, 10 iterations, code rate R = 1/2 , blocklength: 9600 bits
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Fig. 7: Comparison BER: 100× 100 MIMO, 10 iterations, code rate R = 1/2 , blocklength: 9600 bits
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Fig. 8: BER performance vs. Σ-Bit ADC: 10× 10 MIMO, 10 iterations, code rate R = 1/2 , blocklength: 9600 bits
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Fig. 9: BER performance vs. Σ-Bit ADC: 100× 100 MIMO, 10 iterations, code rate R = 1/2 , blocklength: 9600 bits

VI. SIMULATION RESULTS

In Section V, we have represented the analytical results of
protograph LDPC codes with a variety of operation scenarios.
In the following, we report simulation results to validate
the analytic results and provide insights on the impact of
the low-resolution ADCs on the performance of LS-MIMO
communications systems.

A protograph LDPC code (or an equivalent LDPC code)
is constructed by copy-and-permutation operation on a proto-
graph, a process known as protograph lifting. Our protograph
codes are derived from protographs in two lifting steps. First,
the protograph is lifted by a factor of 4 using the progressive
edge growth (PEG) algorithm [32] to remove all multiple
parallel edges. Then, the second lifting factor is chosen to
match the required code block length. For example, the AR3A
code with the proto-matrix size of 3 × 5 and rate of 1/2,
the second lifting factor is 600 to achieve the ultimate code
block length of 9600 bits. The PEG algorithm was applied to
determine a circulant permutation of each edge class to avoid
short-length cycles. The decoder is a standard message-passing
decoder, in which the maximum number of iterations is set to
10 in all scenarios except the one that we explore the impact of
iterations on the performance of LS-MIMO communications
systems. LLR clipping and other decoding parameters are set
according to [33].

The simulation results in Fig. 6 - Fig. 9 verify the analytical
results in Table I and Table II. We observe that the simulation
results are in good agreement with the analytical results in
Section V. In particular, as analyzed above, the NND code has
the worst performance among the four selected codes at all the
ADC resolution levels. Also, the performance gap between the
NND code and the AR3A code is biggest. The small iterative
decoding thresholds of the UCHI code and the NTH code is
interpreted as a small gap in BER curves, as shown in Fig. 6
and Fig. 7.

There is a very tiny difference in iterative decoding thresh-
olds of 5-bit ADC and unquantized one as shown in Table
I and Table II. The simulation results validate this analytical
result. We see that BER curves of all four codes at the 5-bit
ADC and the unquantized one are very tight in both 10× 10
and 100× 100 LS-MIMO configurations.

Consider the performance of a single code in Fig. 8 and Fig.
9, we see that the performance gap between the 2-bit ADC
and the 3-bit ADC is around 1.4 dB which is larger than the
iterative decoding threshold gap, about 0.8 dB, obtained by the
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Fig. 10: BER vs. code rate: AR3A Code, 10× 10 MIMO, 10
iterations, code rate R = 1/2−9/10 , block length: 9600 bits

modified PEXIT algorithm. This phenomenon is well-known
for the PEXIT algorithm due to the Gaussian approximation
in the LLR messages [14]. However, the analytical results
can predict exactly performance trends of the code under the
various ADC resolution levels. Let us take a closer look at the
BER curves of the AR3A code in Fig. 8 and Fig. 9, the BER
gap of the 3-bit ADC and the unquantized one is about 0.4 dB
(the threshold gap is 0.18 dB) and the BER gap of the 4-bit
ADC and the unquantized one is about 0.1 dB (the threshold
gap is 0.04 dB). Similar observations are seen for the other
selected codes. These simulation results verify the analytical
results that a small performance loss occurs at the 3-bit and
4-bit ADC resolutions in LS-MIMO channels.

The modified PEXIT algorithm can give accurate predict
performance of protograph codes in other operation scenarios,
including the LS-MIMO configuration and the code rate. For
instance, the iterative decoding thresholds, as shown in Table.
VI, can predict that there is a tiny performance difference
between 5-bit ADC system and unquantized system. The
simulation results show that the curves of 5-bit ADC systems
approach the curves of the unquantized systems in all code rate
from 1/2 to 8/9. The accurate performance prediction of the
modified PEXIT algorithm holds for the cases with various
MIMO configurations and decoding iterations, as shown in
Fig. 12 and Fig. 11. Special attention should be given to Fig.
12 where one can see that the 4-bit ADC curves approach
the curve of the unquantized one when the receive antenna is
from 30 to 80. This behavior can be observed by looking at
the iterative decoding threshold in Table. V.
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Fig. 13 shows the BER performance of 5-bit ADC system
and the unquantized one under various code blocklength. We
see that the performance gap is very tiny at all the code
blocklengths from 120 bits to 9600 bits. Note that the modified
PEXIT algorithm is derived under the assumption that the code
blocklength is infinite. However, the simulation results confirm
that 5-bit ADC resolution can approach the performance of the
unquantized one for short blocklengths as well.

VII. CONCLUSION

We derived a new version of the PEXIT algorithm for LS-
MIMO communications systems with low-resolution ADCs.
The proposed PEXIT algorithm can predict the behavior of
the protograph LDPC codes under various input parameters,
including the LS-MIMO configuration, the code rate, the
maximum number of iterations, and the code structure. We
found that there is small performance loss when using 3-bit
or 4-bit ADC resolution in comparison with the unquantized
one. The performance of the 5-bit ADC system approaches
that of the unquantized one in all test cases.
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Fig. 14: Pdfs of L-value at the output of the detector: AR3AR code, 10 × 10 MIMO, 10 iterations, code rate R = 1/2 ,
blocklength: 9600 bits
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Fig. 15: Pdfs of L-value at the output of the detector: AR3AR code, 20 × 20 MIMO, 10 iterations, code rate R = 1/2 ,
blocklength: 9600 bits
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Fig. 16: Pdfs of L-value at the output of the detector: AR3AR code, 30 × 30 MIMO, 10 iterations, code rate R = 1/2 ,
blocklength: 9600 bits
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Fig. 17: Pdfs of L-value at the output of the detector: AR3AR code, 100 × 100 MIMO, 10 iterations, code rate R = 1/2 ,
blocklength: 9600 bits


