Elsevier required licence: © <2019>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The definitive publisher version is available online at https://doi.org/10.1016/j.marpolbul.2019.110556

Transcriptome profiling analysis of the seagrass, Zostera muelleri under copper stress Nasim Shah Mohammadi<sup>1</sup>, Pimchanok Buapet<sup>2,3</sup>, Mathieu Pernice<sup>1</sup>, Bethany Signal<sup>1</sup>, Tim Kahlke<sup>1</sup>, Leo Hardke<sup>4</sup> and Peter J. Ralph<sup>1</sup> <sup>1</sup> University of Technology Sydney (UTS), Climate Change Cluster (C3), Broadway, Ultimo, NSW 2007, Australia. <sup>2</sup> Plant Physiology Laboratory, Department of Biology, faculty of Science, Prince of Songkla University, Hat Yai, Songkhla Thailand. <sup>3</sup> Coastal Oceanography and Climate Change Research Center, Prince of Songkla University, Hat Yai, Songkhla, Thailand. <sup>4</sup> School of Earth and Environmental Sciences, University of Queensland, Brisbane QLD 4072 Australia Corresponding Author: Mathieu Pernice Mathieu.pernice@uts.edu.au Kevwords Seagrass, Trace metals, RNA-sequencing, Transcriptomics **Declarations of interest:** none. **Abstract** Copper (Cu) in an essential trace metal but it can also contaminate coastal waters at high concentrations mainly from agricultural run-off and mining activities which are detrimental to marine organisms including seagrasses. The molecular mechanisms driving Cu toxicity in 

seagrasses are not clearly understood yet. Here, we investigate the molecular responses of the Australian seagrass, *Z. muelleri* at the whole transcriptomic level after 7 days of exposure to 250 μg Cu L<sup>-1</sup> and 500 μg Cu L<sup>-1</sup>. The leaf-specific whole transcriptome results showed a concentration-dependent disturbance in chloroplast function, regulatory stress responses and defence mechanisms.

This study provided new insights into the responses of seagrasses to trace metal stress and reports possible candidate genes which can be considered as biomarkers to improve conservation and management of seagrass meadows.

#### 1. Introduction

Globally, coastal habitats are increasingly affected by a wide range of anthropogenic discharges which often contain high levels of trace metals (Cambridge & McComb 1984; Waycott et al. 2009; Leng et al. 2015). Once introduced to the marine environment, they are taken up by seagrasses via roots and shoots (Howley et al. 2006). Consequently, as a food source for many marine organisms, seagrasses represent a trophic pathway for the distribution of trace metals into the marine food chain (Ward 1987; Kalay, Ay & Canli 1999; Campanella et al. 2001; McGeer et al. 2004; Navratil & Minarik 2005). Trace metals are not only detrimental to the health of fishes, dugongs, turtles and marine invertebrates that feed on contaminated seagrass tissues, but also to human health as the trace metals subsequently find their way into our foods through contaminated seafood (Basha & Rani 2003; Canli & Atli 2003; Wang et al. 2005).

In particular, agricultural run-off and acid mine drainage often contain high concentrations of Cu (Tokar et al. 2013). Under normal conditions, Cu is vital for the function of many key enzymes and proteins including superoxide dismutase and plastocyanin (Katoh 1977; Barón, Arellano & Gorgé 1995; World Health Organization 1996; Kaufman Katz et al. 2003;

 Nagajyoti, Lee & Sreekanth 2010; World Health Organization 2011). However, high concentrations of Cu in the environment can cause deleterious effects to living organisms including seagrasses at both physiological and molecular levels (Barón, Arellano & Gorgé 1995; Gupta & Gupta 1998; Theophanides & Anastassopoulou 2002; Yruela 2005; Stern 2010). More specifically, the alteration of the function of transporters and ion channels as a result of excess level of Cu can cause intra-cellular redox imbalances (Cambrollé et al. 2013; Tiecher et al. 2017) as well as cellular damage via the over-production of reactive oxygen species (Girotto et al. 2013; Tiecher et al. 2017). Zostera muelleri is a fast growing species of seagrasses in the family of Zosteraceae found predominantly in coastal regions of Eastern and Southern Australia (den Hartog 1970; Kenworthy et al. 2006; Wissler et al. 2011; Davey 2017). The destructive effects of hyperaccumulation of Cu in the family of Zosteraceae, have been reported previously as irreversible suppression in photosynthesis efficiency (Prange & Dennison 2000; Macinnis-Ng & Ralph 2002, 2004b; Buapet et al. 2019) and over production of reactive oxygen species (ROS) (Greco et al. 2019; Buapet et al. 2019). In higher plants, regulatory scavenging mechanisms for the detoxification of Cu include chelation (Sancenón et al. 2003; Yruela 2009), alteration to less toxic ionic form (Gill & Tuteja 2010; Thounaojam et al. 2012) and sequestration into vacuoles (Himelblau & Amasino 2000). However, less in known about the toxicity responses of seagrasses to Cu stress. Transcriptomic profiling can be useful to better understand the toxicology response of seagrasses to a range of environmental stress factors. Recent reports of complete genomes of Z. muelleri and Z. marina (Lee et al. 2016; Olsen et al. 2016) have opened new avenues to deepen our understanding about the molecular basis of stress responses in the family of Zosteraceae (Franssen et al. 2011 and 2014; Kong et al. 2014; Pernice et al. 2015; Schliep et al. 2015Kumar, Padula, et al. 2016; Pernice et al. 2016; Martin-Guirao et al. 2017; Ruocco et

al. 2017; Lin et al. 2018). However, with few exceptions (Davey et al. 2017; Procaccini et al. 2017; Ruocco et al. 2017; Lin et al. 2018), most of the differential gene expression studies so far are limited to few targeted genes and do not investigate the effect of certain stress factors at the whole transcriptome level. In addition, none of these studies have investigated the molecular responses of *Z. muelleri* to Cu stress. According to the Australian trace metal field measurement study in South coast of New South Wales (2018), Cu is measured between 0.01 – 0.08 μg/L in water (McVay et al. 2018). However, the Cu toxicity level in the family of Zosteraceae, that negatively affects the physiology state of the plant was previously reported to be higher and within the range of 0.1 - 10 mg Cu L<sup>-1</sup> (Clijsters & Assche 1985; Macinnis et al. 2002; Prange & Dennison 2000; Ralph & Burchett 1998b). Additionally, the physiological response of Z. muelleri under 250 and 500  $\mu g$  Cu  $L^{-1}$  (corresponding to 3.9 and 7.8  $\mu M$ , respectively) has been recently studied after 1, 3 and 7 days showing a concentration and time-dependent decline in effective quantum yield (\$\phi PSII\$) and maximum quantum yield (\$F\_v/F\_m\$) parameters (Buapet et al. 2019). In the same study, a RT-PCR investigation illustrated an elevation in ROS production, as well as up-regulation of the transcript expression of antioxidant enzymes including glutathione peroxidase (gpx), catalase (cat – only for 250 µg Cu L<sup>-1</sup>), superoxide dismutase (Cu/Zn sod) and ascorbate peroxidase (apx) after day 7 (Buapet et al. 2019). Therefore, in this study we continued our investigation using whole transcriptomic analysis to further investigate how transcriptome of Z. muelleri altered under 250  $\mu$ g Cu L<sup>-1</sup> and 500  $\mu$ g Cu L<sup>-1</sup> after 7 days of Cu exposure and identify which genes were specifically expressed in

## 2. Materials and Methods

response to this Cu stress.

#### 2.1. Sample collection and aquaria setup

Samples were collected at Pittwater, New South Wales, Australia (33°38'45.6"S. 151°17′12.8′′E) in July 2016 at the approximate depth of one meter. Whole vertical plants of Z. muelleri were collected and transferred to the aquarium facility at the University of Technology Sydney (UTS) within 2-3 hours of collection and in dark containers to avoid additional stress as previously described by Davey et al. (2017). Aquaria were prepared according to Buapet et al. (2019). Briefly, six aquaria (two tank replicates for control and two for each treatments) were established with conditions mimicking the natural environment at the sampling time, i.e. salinity of 30 ppt and

temperature of 21°C and diel cycle of 12 hour light : 12 hour dark with maximum light intensity of 200 µmol photons m<sup>-2</sup> s<sup>-1</sup> at midday. One LED aquarium light (Cidley 250W), one submerged pump (Elite mini, Hagen, Canada) and one air stone were also equipped for each tank. The sediment for planting seagrasses was as a mixture of 50% washed sand and 50% natural sediment (4 - 5 cm for each tank). Individual plants (30 - 40) were rinsed with artificial seawater (30 ppt) to remove epiphytes and transplanted randomly into each aquaria.

2.2. Experimental design

Plants were kept in 6 allocated aquaria to acclimatise to the closed-system conditions for 18 days with daily monitoring of photosynthetic efficiency using Diving-PAM (Walz GmbH, Effeltrich, Germany) until stable effective quantum yield (φPSII) was measured (data not shown) as previously mentioned in Buapet et al. (2019). Afterwards, a stock solution of  $CuCl_2$  was prepared to make the final concentration of 250  $\mu g$  Cu  $L^{-1}$  and 500  $\mu g$  Cu  $L^{-1}$  and added to treatment tanks as a single dose at midday on day 0. Leaves of three biological replicates were harvested randomly from allocated tanks for each treatments on day 7 for RNA extraction. Collected leaves were rinsed with saline water, tap dried and were frozen in liquid N<sub>2</sub> prior to storage at – 80°C for further analysis.

5

10

25

37

2.3. RNA extraction

Frozen leaf tissue (80 – 100 mg) from each treatments (control, 250 and 500 µg Cu L<sup>-1</sup>) were ground into a fine powder using a pre-chilled pestle and mortar. RNA extraction was performed using an Ambion PureLink RNA Mini kit (Fisher Scientific) according to the manufacturer's instructions. On-column DNA digestion was performed during RNA extraction using Ambion PureLink DNase set (Thermo Fisher Scientific).

# 2.4. Library preparation and RNA sequencing

Nine RNA samples (three for control and three for each treatments) were sent to the Ramacciotti Center for Genomics (University of New South Wales, Australia) for quality control and sequencing. Quality and quantity measurement were conducted using a 2100 Bioanalyzer (Agilent Technology) with quality cutoff for RNA Integrity (RIN) numbers of > 6. Library preparation was performed using TruSeq mRNA standard total library preparation kit (Illumina) for sequencing of 380 million base-pair reads (42 million pair-end reads per sample) using a HiSeq2500 system from Illumina.

### 2.5. Genome-guided transcriptome assembly and annotation

The quality of raw reads were checked using FastQC software (version 0.11.05) (Andrews 2017; Davey et al. 2017). Adaptors and low quality reads were trimmed using Trimmomatic (version 0.2.35) with the following settings: ILLUMINACLIP: TruSeq3-PE2.fa: 2:30:10; LEADING:14; TRAILING:14; SLIDING-WINDOW: 4:10; MINLEN: 90 (Bolger, Lohse & Usadel 2014; Davey et al. 2017). Trimmed reads were aligned to the reference genome using the STAR RNA aligner (version 2.5.2b) (Dobin et al. 2013). Functional annotations of transcripts were taken from the Z. muelleri genome annotation file (Lee et al. 2016). Read

counts were created using HTSeq (version 0.6.1) (Love, Anders & Huber 2014) and the counts were imported into the R package DESeq2 (version 3.7) for differential gene expression analysis (Anders, Pyl & Huber 2015; Love et al. 2015). Conditions of 250 and 500  $\mu$ g Cu L<sup>-1</sup> were compared to the control and genes with corrected cut-off p-value of < 0.05 were reported. Heatmaps were generated from z-scaled variance stabilized counts from DESeq2 using R package ComplexHeatMap.

The genome of *Z. muelleri* is not completely annotated yet. Therefore, the FASTA file of significantly expressed genes in both 500  $\mu$ g Cu L<sup>-1</sup> and 250  $\mu$ g Cu L<sup>-1</sup> were submitted in Blast2Go (version 5.0.5) for gene identification based on the best hit in NCBI database (cutoff e-value of 1 × 10 <sup>-3</sup>) as well as for sister species, *Z. marina*. In case on multiple gene

description, the common name between two searches were selected. GO distribution of

expressed genes for both Cu treatments were exported for most induced biological process,

molecular function and cellular process using Blast2Go data analysis.

Lastly, the functional classification of correspondent proteins were reported using

BlastKOALA (version 2.1) https://www.kegg.jp/blastkoala/.

**3. Results** 

### 3.1. Transcriptome assembly and functional annotation

Extracted RNA from control and treated samples generated an average of 22 million Illumina pair reads per sample. The quality check of raw reads (using FastQC package) gave an average quality score of 30 (1:1000 probability of incorrect base), which was sufficient for the further quantitative analysis of the transcriptome. After trimming low quality reads and adaptors using Trimmomatic, an average of 84.6% of the reads were mapped back to the reference genome unambiguously. The converted text files from HTSeq were used for differential expression analysis with DESeq2. DESeq2 results revealed significant changes in

the transcriptome expression of both 250 µg Cu L<sup>-1</sup> and 500 µg Cu L<sup>-1</sup> samples in comparison to the control (Figure 1). Among 39 and 96 differentially expressed genes in 250  $\mu g$  Cu  $L^{\text{-}1}$ and 500 µg Cu L<sup>-1</sup>, respectively (in comparison to control samples), 30 genes were in common to both treatments. Additionally, 6 genes were not identified in either BLAST search or in Z. muelleri (InterProScan database) for both treatments. For the remaining genes, a total of 76 genes were up-regulated and 29 genes were down-regulated in our Cu treatments (Table 1). The list of GO identification, their correspondent log 2 fold change as well as their DESeq2 results can be found in Appendix A-D. The list of genes in both Cu treatments were searched for GO distribution using BLAST2GO (version 5.2.5) (Figure 2). The most highly induced biological processes in response to Cu

was metabolic processes which comprise a range of metabolite categories including organic substances, nitrogen compounds, macromolecules and proteins. At the molecular function level, 70% of the genes were identified in binding category including genes involved in binding of ions, organic compounds, cofactors, ribonucleotides and ATP. The most affected cellular component were membrane (27%) mostly as integral and intrinsic components of membrane.

Lastly, the functional classification of correspondent proteins were investigated as a combined search for both treatments using BlastKOALA (Figure 3). Genetic information processing and biosynthesis of other secondary metabolites were the most affected pathways.

### 3.2. Changes in the expression of genes in Z. muelleri in response to Cu stress

Based on the results of functional classification of related proteins to our expressed genes, it is shown that genetic information processing and secondary metabolites biosynthesis were the most induced pathways in response to 250  $\mu g$  Cu  $L^{-1}$  and 500  $\mu g$  Cu  $L^{-1}$  and selected for further investigation. Additionally, according to Buapet et al. (2019), photosynthesis and

defense mechanisms (enzymatic and chemical) were induced in response to Cu stress and therefore, genes linked to chloroplast function and defense mechanisms were also targeted for further investigation in this study. As a result, a total of 16 significantly expressed genes were selected for the study of toxicity response of Z. muelleri under elevated levels of Cu (Table 2 and Figure 4). Surprisingly, no genes related to photosystem subunits were expressed significantly in chloroplast compared to control after 7 days of Cu stress. However, two genes related to chloroplast function were up-regulated; the first gene was chloroplast caseinolytic protease (Clp) subunit 4 which was upregulated (-3.82 log 2 fold change) in 500 µg Cu L<sup>-1</sup> only. The second gene was Dna J which was also upregulated in both Cu treatments (-1.7 and -1.8 log2 fold change in 250 and 500 µg Cu L<sup>-1</sup>, respectively). The second gene was the enzyme, ferredoxin nitrite reductase. The expression of ferredoxin nitrite reductase was significantly down-regulated in both Cu treatments with 4.26 and 5.95 log2 fold change in 250 and 500 µg Cu L<sup>-1</sup>, respectively. Enzymatic defense mechanism (oxidative response) was shown to be affected after 7 days of Cu exposure in 500 µg Cu L<sup>-1</sup> only. Peroxidases (P7-like, 12 and 5) were up-regulated with -2.62, -3.92 and -3.86 log 2 fold change, respectively. Glutathione s transferase (T1) was also up-regulated with -3.42 log 2 fold change. A mixed pattern was recorded in two genes encoding enzymes involved in chemical defense mechanisms in both Cu concentrations; Cytochrome P450 (89A2-like) was up-regulated with an average log 2 fold change of -2.26 in both Cu concentrations whereas Cytochrome P450 (84 A1-like) was down-regulated with log 2 fold change of 1.93 at 500 μg Cu L<sup>-1</sup> only. Proline dehydrogenase 2 was the second enzyme which also down-regulated with log 2 fold change of 2.49 at 250 µg Cu L<sup>-1</sup> only.

- Lastly, we identified up-regulation of heavy metal-associated isoprenylated plant protein 3-
- like (HIPP3) with an average of -1.6 log 2 fold change at 500 μg Cu L<sup>-1</sup>.

#### 4. Discussion

- Investigation of differential gene expression of Z. muelleri in response to increased levels of
- Cu illustrated sensitivity of this seagrass species to Cu as previously reported in the family of
- Zosteraceae (Lee et al. 2004; Lin et al. 2018, Buapet et al. 2019). As a result, two main Cu-
- specific responses were observed in this study:
- 4.1. Elevated Cu concentrations impacted the chloroplast function and regulatory stress
- responses with no significant effect on photosystem subunits
- There are previous reports showing that photosystem subunits especially PSII are sensitive to
- Cu stress in higher plants and seagrasses at the physiological level (Buapet et al. 2019;
- Cedeno-Maldonado, Swader & Heath 1972; Mohanty, Vass & Demeter 1989; Arellano et al.
- 1995; Jegerschoeld et al. 1995; Ralph & Burchett 1998; Prange & Dennison 2000; Macinnis-
- Ng & Ralph 2002a, 2004a; Dattolo et al. 2014). However, we did not find any statistical
- differences in the expression levels of any photosystem subunits in our results at the
- molecular level. Cu toxicity is reported to change the conformation and function of the
- photosystem over time (Yruela 2005). However, it seems like the significant damage will be
- mostly recorded at much higher Cu concentrations in short term studies. For example, Leng
- et al (2018) reported down-regulation of PSII subunits in grape vine leaves after 24 hours of
- Cu exposure at much higher concentrations of Cu (100 µM) than our experiment (3.9 and 7.8
- μM). Additionally, Lin et al. (2018) reported Cu-induced transcriptomes associated with
- photosynthesis pathways in Z. japonica after 7 days exposure to 50 µM of Cu. Therefore,
- these results could be indicated that the destructive effects of Cu on photosystem subunits in

Z. muelleri might need longer exposure time to manifest significantly at the molecular level when Cu concentrations are less than 10  $\mu$ M.

Although there were no significant damage recorded in photosystem subunits in our results, we investigated whether the repairing system of photosystem was activated in our Cu treatments. Previous studies have shown that phytohormones can have a direct or indirect role in regulating and repairing PSII under abiotic stress factors (Gururani, Venkatesh & Tran 2015). For example, in higher plants, auxin is shown to increase the ability of energy trapping by PSII reaction centres under Cu stress (Ouzounidou & Ilias 2005). Jasmonic acid is another suggested phytohormone with repairing activity for PSII under Cu stress in higher plants (Maksymiec, Wojcik & Krupa 2007). We had one gene in our results identified as GH3 auxin-responsive promoter/ jasmonic acid at 500 μg Cu L<sup>-1</sup> and shown to be up-regulated. This result could indicate that the PSII was partially damaged and the repairing mechanism was activated at 500 μg Cu L<sup>-1</sup>.

We also found two regulatory stress response genes in our results with concentration-dependent responses; the first one was DnaJ which has previously reported to have role in tolerance to oxidative stress in plants (Chen et al 2010). We identified up-regulated chaperone protein dnaJ 8, chloroplastic-like at 500 µg Cu L<sup>-1</sup> as well as dnaJ homolog subfamily B member 1 at 250 µg Cu L<sup>-1</sup>. The second gene was chloroplast caseinolytic protease (Clp) system (subunit 4) which plays a role in chloroplast homeostasis by regulating Cu transporter PAA2 in thylakoid (Shen et al 2007). This gene was also up-regulated in our results at 500 µg Cu L<sup>-1</sup> only. Tapken et al (2015) suggested that Clp chaperones are susceptible to increase level of Cu and degrade PAA2 activity in *Arabidopsis* which might to be the similar case in *Z. muelleri* as well. However, we did not find any significance result in PAA2 Cu transporter activity to prove it.

 Conversely, there was a strong down-regulation in Ferredoxin nitrite reductase observed in both Cu treatments. Ferredoxin nitrite reductase is shown to assist with chlorophyll biosynthesis by providing NH<sub>4</sub><sup>+</sup> for glutamate biosynthesis in chloroplast (Alipanah et al 2015). The fact that this enzyme is down-regulated in both Cu treatments might indicate that a possible role of glutamate biosynthesis pathway in repairing chloroplast in response to Cu stress was not active or damaged in *Z. muelleri* after 7 days of exposure.

### 4.2. Induced enzymatic and chemical defense mechanism in response to Cu stress

ROS production via Haber-Weiss and Fenton reaction is the first stress response towards most of the common stress factors in plants (Hall 2002; Halliwell 2006). Activation of two enzymatic defense mechanism to quench over-expression of ROS seemed to be active after 7 days of Cu exposure; Peroxidase (POX) and glutathione s transferase (GST). Peroxidase is a key enzyme in terrestrial plants for scavenging over-produced ROS (Hiraga et al. 2001). Glutathione s transferase (GST) also has a protective function and is a carrier for photochemicals (Edwards, Dixon & Walbot 2000). Both enzymes were up-regulated in our results at 500 µg Cu L<sup>-1</sup> only. Cu exposure was previously hypothesized to inhibit some antioxidant enzymes activity by binding to their sulfhydryl groups of proteins and alter their structure (Yruela 2009; Pena et al. 2012, Buapet et al. 2019). However, peroxidase and glutathione s transferase seemed to be unaffected by Cu in Z. muelleri. Secondary stress responses also play a significant role against the stress factors at later stages of toxicity (Jonak, Nakagami & Hirt 2004; Opdenakker et al. 2012; Jalmi et al. 2018). CytP450 is shown to have a role in detoxification of lead and cadmium in plant and fungi as suggested by Zhang et al. (2015). Our results indicated that CytP450 82 A2-like (and not 84 A1-like) may play a role in Cu detoxification in Z. muelleri in response to 500 µg Cu L<sup>-1</sup> only.

Proline, is also shown to be involved in secondary defense mechanisms and protecting cellular components during stress (Rhodes & Hanson 1993; Ashraf & Foolad 2007). Proline dehydrogenase, which is involved in the transportation of proline to the mitochondria was down-regulated at 250 µg Cu L<sup>-1</sup> only in our results. Proline accumulation was previously reported in detoxification of salt and drought stress by stabilizing sub-cellular structures and scavenging free radicals (Öztürk & Demir 2002; Hsu, Hsu & Kao 2003; Kishor et al. 2005). The mechanism is thought to be via breaking-down of proline inside mitochondria to induce oxidative phosphorylation and ATP production to recover the damage. In our results, proline dehydrogenase was down-regulated at 250 µg Cu L<sup>-1</sup> only. Therefore, proline seemed not to be involved in recovering any mitochondrial damage under Cu treatments used in this study. Lastly, heavy metal-associated isoprenylated plant protein 3-like (HIPP3) which is previously reported to have a role in regulation of biotic and abiotic stress response (Zschiesche et al 2015) was only shown to be significantly up-regulated at 500 µg Cu L<sup>-1</sup>. Therefore, it seems like HIPP3 could have a role in regulation of Cu stress in *Z. muelleri* in a concentration-dependent manner.

It is important to note that because we used individual plants for this experiment, it is possible that the plants' condition might have been affected compared to natural conditions but the relative differences found between the plants exposed to the different treatments remain valid. Some of the gene regulations observed at the whole transcriptome level in this study were also observed using RT-qPCR in a study recently published (Buapet et al, 2019),

concentration of Cu exposure seemed to play a critical role in Cu toxicity responses of Z.

further supporting our RNA-seq results. To summarise, our results showed that the

muelleri. Enzymatic defense mechanism (peroxidase and glutathione s transferase), chemical

defense mechanisms (CytP450) and regulatory stress mechanisms were activated in Cu stress.

Our study provided a knowledge base for the development of specific biomarkers for Cu toxicity in the seagrass, *Z. muelleri*. However, future studies can enrich this data by investigating the limitations of this study. For example in a recent study, Buapet et al, 2019 found that Cu bioaccumulation in leaves of *Z. muelleri* plants saturated after day 3. Therefore it is possible that our results could reflect a progressive reduction in seawater Cu availability due to removal by sediments and/ or experimental system itself. Additionally, investigation of Cu-contaminated seagrass tissue from contaminated sites as biologically relevant samples can enrich our close-system experiment dataset. Furthermore, investigation of multiple Cu exposure in order to retain the specific Cu concentration throughout the experiment could also be informative when compared to single dose of Cu addition in this study.

## 5. Acknowledgement

This work was co-funded by a UTS IRS Scholarship to Nasim Shah Mohammadi. A top-up research grant from Joyce W. Vickery Fund (Linnean society of New South Wales) to Nasim Shah Mohammadi was also used for sequencing expenses. Nasim Shah Mohammadi would like to acknowledge the NSW DPI collection permit (P12/0020-1.3) used to collect *Z. muelleri* seagrass for this experiment as well as a special thanks for Graeme Poweleski, Paul Brooks and Mikael Kim for their help with sample collection.

#### 6. References

- Alipanah, L., Rohloff, J., Winge, P., Bones, A.M. & Brembu, T.J.J.o.e.b. 2015, 'Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum', vol. 66, no. 20, pp. 6281-96.
- Anders, S., Pyl, P.T. & Huber, W. 2015, 'HTSeq—a Python framework to work with high-throughput sequencing data', *Bioinformatics*, vol. 31, no. 2, pp. 166-9.

- Andrews, S. 2017, 'FASTQC. A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/Accessed 05 November2017'. Arellano, J.B., Lázaro, J.J., López-Gorgé, J. & Baron, M. 1995, 'The donor side of Photosystem II as the copper-inhibitory binding site', *Photosynthesis Research*, vol. 45, no. 2, pp. 127-34. Ashraf, M. & Foolad, M. 2007, 'Roles of glycine betaine and proline in improving plant abiotic stress resistance', Environmental and Experimental Botany, vol. 59, no. 2, pp. 206-16. Barón, M., Arellano, J.B. & Gorgé, J.L. 1995, 'Copper and photosystem II: a controversial relationship', *Physiologia plantarum*, vol. 94, no. 1, pp. 174-80. Basha, P.S. & Rani, A.U. 2003, 'Cadmium-induced antioxidant defense mechanism in freshwater teleost Oreochromis mossambicus (Tilapia)', Ecotoxicology and environmental safety, vol. 56, no. 2, pp. 218-21. Bolger, A.M., Lohse, M. & Usadel, B. 2014, 'Trimmomatic: a flexible trimmer for Illumina sequence data', Bioinformatics, vol. 30, no. 15, pp. 2114-20. Breeze, E., Harrison, E., Page, T., Warner, N., Shen, C., Zhang, C. & Buchanan- Wollaston, V. 2008, 'Transcriptional regulation of plant senescence: from functional genomics to system biology', *Plant Biology*, vol.10, no.s1, pp.99-109. Buapet, P. 2017, 'Photobiology of Seagrasses: A Systems Biology Perspective', Systems Biology of Marine Ecosystems, Springer, pp. 133-65.
- Buapet, P., Shah Mohammadi, N., Pernice, M., Kumar, G. M., Kuzhiumparambil, U., and
  Ralph, P., 2019. Cu excess promotes inhibition of photosynthetic parameters and
  changes in expression of antioxidant enzymes in *Zostera muelleri*, *Aquatic Toxicology*, vol. 207, pp. 91-100.

- Burdett, H.L., Keddie, V., MacArthur, N., McDowall, L., McLeish, J., Spielvogel, E., Hatton,
  A.D. & Kamenos, N.A. 2014, 'Dynamic photoinhibition exhibited by red coralline
  algae in the red sea', *BMC plant biology*, vol. 14, no. 1, p. 139.

  Cambridge, M. & McComb, A. 1984, 'The loss of seagrasses in Cockburn Sound, Western
  Australia. I. The time course and magnitude of seagrass decline in relation to
  industrial development', *Aquatic Botany*, vol. 20, no. 3, pp. 229-43.

  Cambrollé, J., García, J., Ocete, R., Figueroa, M. & Cantos, M. 2013, 'Growth and
- Cambrollé, J., García, J., Ocete, R., Figueroa, M. & Cantos, M. 2013, 'Growth and photosynthetic responses to copper in wild grapevine', *Chemosphere*, vol. 93, no. 2, pp. 294-301.
- Campanella, L., Conti, M., Cubadda, F. & Sucapane, C. 2001, 'Trace metals in seagrass, algae and molluscs from an uncontaminated area in the Mediterranean', *Environmental Pollution*, vol. 111, no. 1, pp. 117-26.
- Canli, M. & Atli, G. 2003, 'The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six Mediterranean fish species', *Environmental Pollution*, vol. 121, no. 1, pp. 129-36.
- Carter, R. & Eriksen, R. 1992, 'Investigation into the use of *Zostera muelleri (Irmisch ex Aschers)* as a sentinel accumulator for copper', *Science of the total environment*, vol. 125, pp. 185-92.
- Cedeno-Maldonado, A., Swader, J. & Heath, R.L. 1972, 'The cupric ion as an inhibitor of photosynthetic electron transport in isolated chloroplasts', *Plant physiology*, vol. 50, no. 6, pp. 698-701.
- Chen, K.-M., Holmström, M., Raksajit, W., Suorsa, M., Piippo, M. & Aro, E.-M.J.B.p.b. 2010, 'Small chloroplast-targeted DnaJ proteins are involved in optimization of photosynthetic reactions in Arabidopsis thaliana', vol. 10, no. 1, p. 43.

Clijsters, H. & Assche, F. 1985, 'Inhibition of photosynthesis by heavy metals', Photosynthesis Research, vol. 7, no. 1, pp. 31-40. Davey, P.A. 2017, 'Molecular physiological responses and acclimation of the seagrass species Z. muelleri to light limitation'. Doctoral dissertation Davey, P.A., Pernice, M., Ashworth, J., Kuzhiumparambil, U., Szabó, M., Dolferus, R. & Ralph, P.J. 2017, 'A new mechanistic understanding of light-limitation in the seagrass Zostera muelleri', Marine environmental research. Demmig-Adams, B., Garab, G., Adams III, W. & Govindjee, U.o.I. 2014, 'Nonphotochemical quenching and energy dissipation in plants, algae and cyanobacteria'Springer. Den Hartog, C. 1970, The seagrasses of the world, North-Holland Publishing Company, Amsterdam. Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M. & Gingeras, T.R. 2013, 'STAR: ultrafast universal RNA-seq aligner', *Bioinformatics*, vol. 29, no. 1, pp. 15-21. Edwards, R., Dixon, D.P. & Walbot, V. 2000, 'Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health', Trends in plant science, vol. 5, no. 5, pp. 193-8. Fariduddin, Q., Yusuf, M., Hayat, S. & Ahmad, A. 2009, 'Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in *Brassica juncea* plants exposed to different levels of copper', Environmental and Experimental Botany, vol. 66, no. 3, pp. 418-24. Franssen, S.U., Gu, J., Winters, G., Huylmans, A.-K., Wienpahl, I., Sparwel, M., Coyer, J.A., Olsen, J.L., Reusch, T.B. & Bornberg-Bauer, E. 2014, 'Genome-wide transcriptomic

responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated

heatwave confirm functional types', Marine genomics, vol. 15, pp. 65-73.

- Franssen, S.U., Gu, J., Bergmann, N., Winters, G., Klostermeier, U.C., Rosenstiel, P.,
  Bornberg-Bauer, E. & Reusch, T.B. 2011, 'Transcriptomic resilience to global
  warming in the seagrass *Zostera marina*, a marine foundation species', *Proceedings of*the National Academy of Sciences, vol. 108, no. 48, pp. 19276-81.
- Geiger, D.R., Servaites, J.C. & Fuchs, M.A. 2000, 'Role of starch in carbon translocation and partitioning at the plant level', *Functional Plant Biology*, vol. 27, no. 6, pp. 571-82.
- Gill, S.S. & Tuteja, N. 2010, 'Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants', *Plant Physiology and Biochemistry*, vol. 48, no. 12, pp. 909-30.
- Girotto, E., Ceretta, C.A., Rossato, L.V., Farias, J.G., Tiecher, T.L., De Conti, L., Schmatz,
  R., Brunetto, G., Schetinger, M.R. & Nicoloso, F.T. 2013, 'Triggered antioxidant
  defense mechanism in maize grown in soil with accumulation of Cu and Zn due to
  intensive application of pig slurry', *Ecotoxicology and environmental safety*, vol. 93,
  pp. 145-55.
- Greco, M., Sáez, C.A., Contreras, R.A., Rodríguez-Rojas, F., Bitonti, M.B. & Brown, M.T.

  2019, 'Cadmium and/or copper excess induce interdependent metal accumulation,

  DNA methylation, induction of metal chelators and antioxidant defences in the

  seagrass Zostera marina', *Chemosphere*, vol. 224, pp. 111-9.
- Gupta, U.C. & Gupta, S.C. 1998, 'Trace element toxicity relationships to crop production and livestock and human health: implications for management', *Communications in Soil Science and Plant Analysis*, vol. 29, no. 11-14, pp. 1491-522.
- Hajduch, M., Rakwal, R., Agrawal, G.K., Yonekura, M. & Pretova, A. 2001,

  'High- resolution two- dimensional electrophoresis separation of proteins from

  metal- stressed rice (*Oryza sativa L.*) leaves: Drastic reductions/fragmentation of

- ribulose- 1, 5- bisphosphate carboxylase/oxygenase and induction of stress- related
- 446 proteins', *Electrophoresis*, vol. 22, no. 13, pp. 2824-31.
- Hall, J. 2002, 'Cellular mechanisms for heavy metal detoxification and tolerance', *Journal of*
- *Experimental Botany*, vol. 53, no. 366, pp. 1-11.
- Halliwell, B. 2006, 'Reactive species and antioxidants. Redox biology is a fundamental theme
- of aerobic life', *Plant physiology*, vol. 141, no. 2, pp. 312-22.
- Hare, P.D., Cress, W.A. & Van Staden, J. 1998, 'Dissecting the roles of osmolyte
- accumulation during stress', *Plant, cell & environment*, vol. 21, no. 6, pp. 535-53.
- 453 Hego, E., Vilain, S., Barré, A., Claverol, S., Dupuy, J.W., Lalanne, C., Bonneu, M., Plomion,
- 454 C. & Mench, M. 2016, 'Copper stress- induced changes in leaf soluble proteome of
- 455 Cu- sensitive and tolerant *Agrostis capillaris L.* populations', *Proteomics*, vol. 16, no.
- 456 9, pp. 1386-97.
- Hettipathirana, T. 2011, 'Determination of metals in soils using the 4100 MP-AES', Australia.
- 458 Himelblau, E. & Amasino, R.M. 2000, 'Delivering copper within plant cells', *Current opinion*
- *in plant biology*, vol. 3, no. 3, pp. 205-10.
- 460 Hiraga, S., Sasaki, K., Ito, H., Ohashi, Y. & Matsui, H. 2001, 'A large family of class III plant
- peroxidases', *Plant and Cell Physiology*, vol. 42, no. 5, pp. 462-8.
- Howley, C., Morrison, R.J. & West, R.J. 2006, 'Accumulation of metals by the seagrass, Z.
- *capricorni* in Lake Illawarra', *Wetlands (Australia)*, vol. 21, no. 2, pp. pp. 142-55.
- 464 Hsu, S., Hsu, Y. & Kao, C. 2003, 'The effect of polyethylene glycol on proline accumulation
- in rice leaves', *Biologia Plantarum*, vol. 46, no. 1, pp. 73-8.
- Jalmi, S.K., Bhagat, P.K., Verma, D., Noryang, S., Tayyeba, S., Singh, K., Sharma, D. &
- Sinha, A.K. 2018, 'Traversing the Links between Heavy Metal Stress and Plant
- 56 468 Signaling', Frontiers in plant science, vol. 9, p. 12.

- Jegerschoeld, C., Arellano, J.B., Schroeder, W.P., van Kan, P.J., Baron, M. & Styring, S.
- 470 1995, 'Copper (II) inhibition of electron transfer through photosystem II studied by
- EPR spectroscopy', *Biochemistry*, vol. 34, no. 39, pp. 12747-54.
- Jonak, C., Nakagami, H. & Hirt, H. 2004, 'Heavy metal stress. Activation of distinct mitogen-
- activated protein kinase pathways by copper and cadmium', *Plant physiology*, vol.
- 474 136, no. 2, pp. 3276-83.
- Kalay, M., Ay, Ö. & Canli, M. 1999, 'Heavy metal concentrations in fish tissues from the
- Northeast Mediterranean Sea', Bulletin of environmental contamination and
- *toxicology*, vol. 63, no. 5, pp. 673-81.
- Katoh, S. 1977, 'Plastocyanin', *Photosynthesis I*, Springer, pp. 247-52.
- Kaufman Katz, A., Shimoni- Livny, L., Navon, O., Navon, N., Bock, C.W. & Glusker, J.P.
- 480 2003, 'Copper- Binding Motifs: Structural and Theoretical Aspects', Helvetica
- *chimica acta*, vol. 86, no. 5, pp. 1320-38.
- Kenworthy, W., Wyllie-Echeverria, S., Coles, R., Pergent, G., Pergent-Martini, C., Larkum,
- A., Orth, R. & Duarte, C. 2006, 'Seagrasses: biology, ecology and conservation',
- 484 Springer Dordrecht.
- Kishor, P.K., Sangam, S., Amrutha, R., Laxmi, P.S., Naidu, K., Rao, K., Rao, S., Reddy, K.,
  - Theriappan, P. & Sreenivasulu, N. 2005, 'Regulation of proline biosynthesis,
- degradation, uptake and transport in higher plants: its implications in plant growth and
- abiotic stress tolerance', *Current Science*, pp. 424-38.
- 489 Kong, F., Li, H., Sun, P., Zhou, Y. & Mao, Y. 2014, 'De Novo Assembly and
- Characterization of the Transcriptome of Seagrass Zostera marina Using Illumina
- 491 Paired-End Sequencing', *PLoS ONE*, vol. 9, no. 11, p. e112245.
- Kumar, M., Padula, M.P., Davey, P., Pernice, M., Jiang, Z., Sablok, G., Contreras-Porcia, L.
- & Ralph, P.J. 2016, 'Proteome analysis reveals extensive light stress-response

reprogramming in the seagrass Zostera muelleri (Alismatales, Zosteraceae) metabolism', Frontiers in plant science, vol. 7. Lee, H., Golicz, A.A., Bayer, P., Jiao, Y., Tang, H., Paterson, A.H., Sablok, G., Krishnaraj, R.R., Chan, C.-K.K. & Batley, J. 2016, 'The genome of a southern hemisphere seagrass species (Zostera muelleri)', Plant physiology, p. pp. 00868.2016. Lin, H., Sun, T., Zhou, Y., Gu, R., Zhang, X. & Yang, W. 2018, 'Which genes in a typical intertidal seagrass (Zostera japonica) indicate Copper-, lead-, and cadmium pollution?', Frontiers in Plant Science, vol. 9, p. 1545. Love, M., Anders, S. & Huber, W. 2014, 'Differential analysis of count data-the DESeq2 package', Genome Biol, vol. 15, p. 550. Love, M.I., Anders, S., Kim, V. & Huber, W. 2015, 'RNA-Seq workflow: gene-level exploratory analysis and differential expression', F1000Research, vol. 4. Macinnis-Ng, C.M. & Ralph, P.J. 2004a, 'In situ impact of multiple pulses of metal and herbicide on the seagrass, Zostera Capricorni', Aquatic Toxicology, vol. 67, no. 3, pp. 227-37. Macinnis-Ng, C.M. & Ralph, P.J. 2004b, 'Variations in sensitivity to copper and zinc among three isolated populations of the seagrass, Zostera capricorni', Journal of *Experimental Marine Biology and Ecology*, vol. 302, no. 1, pp. 63-83. Macinnis-Ng, C.M. & Ralph, P.J. 2002, 'Towards a more ecologically relevant assessment of the impact of heavy metals on the photosynthesis of the seagrass, Zostera capricorni', *Marine Pollution Bulletin*, vol. 45, no. 1, pp. 100-6. Marín-Guirao, L., Entrambasaguas, L., Dattolo, E., Ruiz, J.M. & Procaccini, G. 2017, 

'Molecular mechanisms behind the physiological resistance to intense transient

warming in an iconic marine plant', Frontiers in plant science, vol. 8, p. 1142.

 no. 3, pp. 455-62.

| McGeer, J., Henningsen, G., Lanno, R. & Fisher, N. 2004, Issue paper on the bioavailability       |
|---------------------------------------------------------------------------------------------------|
| and bioaccumulation of metals, US Environmental Protection Agency.                                |
| McVay, I., Maher, W., Krikowa, F., Ubrhien, R.J.E.g. & health 2018, 'Metal concentrations         |
| in waters, sediments and biota of the far south-east coast of New South Wales,                    |
| Australia, with an emphasis on Sn, Cu and Zn used as marine antifoulant agents', pp.              |
| 1-17.                                                                                             |
| Mohanty, N., Vass, I. & Demeter, S. 1989, 'Copper toxicity affects photosystem II electron        |
| transport at the secondary quinone acceptor, QB', Plant physiology, vol. 90, no. 1, pp.           |
| 175-9.                                                                                            |
| Navratil, T. & Minarik, L. 2005, 'Trace elements and contaminants'.                               |
| Olsen, J.L., Rouzé, P., Verhelst, B., Lin, YC., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., |
| Dittami, S. & Maumus, F. 2016, 'The genome of the seagrass Zostera marina reveals                 |
| angiosperm adaptation to the sea', Nature, vol. 530, no. 7590, pp. 331-5.                         |
| Opdenakker, K., Remans, T., Keunen, E., Vangronsveld, J. & Cuypers, A. 2012, 'Exposure of         |
| Arabidopsis thaliana to Cd or Cu excess leads to oxidative stress mediated alterations            |
| in MAPKinase transcript levels', Environmental and Experimental Botany, vol. 83,                  |
| pp. 53-61.                                                                                        |
| Osmond, C. & Grace, S. 1995, 'Perspectives on photoinhibition and photorespiration in the         |
| field: quintessential inefficiencies of the light and dark reactions of photosynthesis?',         |
| Journal of Experimental Botany, pp. 1351-62.                                                      |
| Ouzounidou, G. 1993, 'Changes in variable chlorophyll fluorescence as a result of Cu-             |
| treatment: dose-response relations in Silence and Thlaspi', <i>Photosynthetica</i> , vol. 29,     |

Öztürk, L. & Demir, Y. 2002, 'In vivo and in vitro protective role of proline', Plant Growth

Pena, L.B., Barcia, R.A., Azpilicueta, C.E., Méndez, A.A. & Gallego, S.M. 2012, 'Oxidative post translational modifications of proteins related to cell cycle are involved in cadmium toxicity in wheat seedlings', *Plant Science*, vol. 196, pp. 1-7. 

Pernice, M., Schliep, M., Szabo, M., Rasheed, M., Bryant, C., York, P., Chartrand, K., Petrou, K. & Ralph, P. 2015, 'Development of a molecular biology tool kit to monitor dredging-related light stress in the seagrass Zostera muelleri ssp. capricorni in Port Curtis Final Report'.

Pernice, M., Sinutok, S., Sablok, G., Commault, A.S., Schliep, M., Macreadie, P.I., Rasheed, M.A. & Ralph, P.J. 2016, 'Molecular physiology reveals ammonium uptake and related gene expression in the seagrass Zostera muelleri', Marine environmental research, vol. 122, pp. 126-34.

Prange, J. & Dennison, W. 2000, 'Physiological responses of five seagrass species to trace metals', Marine Pollution Bulletin, vol. 41, no. 7, pp. 327-36.

Procaccini, G., Ruocco, M., Marín-Guirao, L., Dattolo, E., Brunet, C., D'Esposito, D., Lauritano, C., Mazzuca, S., Serra, I.A. & Bernardo, L. 2017, 'Depth-specific fluctuations of gene expression and protein abundance modulate the photophysiology in the seagrass Posidonia oceanica', Scientific reports, vol. 7, p. 42890. 

Rakwal, R., Agrawal, G.K. & Yonekura, M. 1999, 'Separation of proteins from stressed rice (Oryza sativa L.) leaf tissues by two-dimensional polyacrylamide gel electrophoresis: Induction of pathogenesis- related and cellular protectant proteins by jasmonic acid, UV irradiation and copper chloride', Electrophoresis, vol. 20, no. 17, pp. 3472-8.

Ralph, P. & Burchett, M. 1998, 'Photosynthetic response of *Halophila ovalis* to heavy metal stress.', Environmental Pollution, vol. 103, no. 1, pp. 91-101.

- Rhodes, D. & Hanson, A. 1993, 'Quaternary ammonium and tertiary sulfonium compounds in higher plants', *Annual review of plant biology*, vol. 44, no. 1, pp. 357-84.
- Robinson, S. & Jones, G. 1986, 'Accumulation of glycinebetaine in chloroplasts provides osmotic adjustment during salt stress', *Functional Plant Biology*, vol. 13, no. 5, pp.
- 570 659-68.

- 571 Roy, S.K., Kwon, S.J., Cho, S.-W., Kamal, A.H.M., Kim, S.-W., Sarker, K., Oh, M.-W., Lee,
- M.-S., Chung, K.-Y. & Xin, Z. 2016, 'Leaf proteome characterization in the context of
- 573 physiological and morphological changes in response to copper stress in sorghum',
- *Biometals*, vol. 29, no. 3, pp. 495-513.
- 875 Ruocco, M., Musacchia, F., Olivé, I., Costa, M.M., Barrote, I., Santos, R., Sanges, R.,
- Procaccini, G. & Silva, J. 2017, 'Genomewide transcriptional reprogramming in the
- seagrass Cymodocea nodosa under experimental ocean acidification', *Molecular*
- *ecology*, vol. 26, no. 16, pp. 4241-59.
- 579 Sancenón, V., Puig, S., Mira, H., Thiele, D.J. & Peñarrubia, L. 2003, 'Identification of a
- copper transporter family in Arabidopsis thaliana', Plant molecular biology, vol. 51,
- 581 no. 4, pp. 577-87.
- 582 Schliep, M., Pernice, M., Sinutok, S., Bryant, C., York, P., Rasheed, M. & Ralph, P. 2015,
- 583 'Evaluation of reference genes for RT-qPCR studies in the seagrass Zostera muelleri
- exposed to light limitation', *Scientific reports*, vol. 5.
- 585 Shen, G., Yan, J., Pasapula, V., Luo, J., He, C., Clarke, A.K. & Zhang, H.J.T.P.J. 2007, 'The
- chloroplast protease subunit ClpP4 is a substrate of the E3 ligase AtCHIP and plays
- an important role in chloroplast function', vol. 49, no. 2, pp. 228-37.
- 588 Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita,
- N., Chunwongse, J., Obokata, J. & Yamaguchi- Shinozaki, K. 1986, 'The complete

nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression', The EMBO journal, vol. 5, no. 9, pp. 2043-9. Stern, B.R. 2010, 'Essentiality and toxicity in copper health risk assessment: overview, update and regulatory considerations', Journal of Toxicology and Environmental Health, Part A, vol. 73, no. 2-3, pp. 114-27. Stiborova, M., Ditrichova, M. & Brezinova, A. 1988, 'Mechanism of action of Cu<sup>2+</sup>, Co<sup>2+</sup> and Zn<sup>2+</sup> on ribulose-1, 5-bisphosphate carboxylase from barley (*Hordeum vulgare L.*)', Photosynthetica, vol. 22, no. 2, pp. 161-7. Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. 2011, 'Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes', Annual review of plant biology, vol. 62, pp. 157-84. Tapken, W., Ravet, K., Shahbaz, M., Pilon, M.J.P.s. & behavior 2015, 'Regulation of Cu delivery to chloroplast proteins', vol. 10, no. 7, p. e1046666. Teitzel, G.M., Geddie, A., Susan, K., Kirisits, M.J., Whiteley, M. & Parsek, M.R. 2006, 'Survival and growth in the presence of elevated copper: transcriptional profiling of copper-stressed Pseudomonas aeruginosa', Journal of bacteriology, vol. 188, no. 20, pp. 7242-56. Theophanides, T. & Anastassopoulou, J. 2002, 'Copper and carcinogenesis', Critical reviews in oncology/hematology, vol. 42, no. 1, pp. 57-64. Thounaojam, T.C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G., Sahoo, L. & Sanjib, P. 2012, 'Excess copper induced oxidative stress and response of antioxidants in rice', *Plant Physiology and Biochemistry*, vol. 53, pp. 33-9. Tiecher, T.L., Ceretta, C.A., Ferreira, P.A., Nicoloso, F.T., Soriani, H.H., De Conti, L., Kulmann, M.S., Schneider, R.O. & Brunetto, G. 2017, 'Tolerance and translocation of heavy metals in young grapevine (Vitis vinifera) grown in sandy acidic soil with

 interaction of high doses of copper and zinc', *Scientia horticulturae*, vol. 222, pp. 203-

Tiwari, A., Kumar, P., Singh, S. & Ansari, S. 2005, 'Carbonic anhydrase in relation to higher plants', *Photosynthetica*, vol. 43, no. 1, pp. 1-11.

- Tokar, E., Boyd, W., Freedman, J. & Waalkes, M. 2013, 'Toxic effects of metals', *Casarett and Doull's Toxicology: The Basic Science of Poisons*.
- Urban, L. & Alphonsout, L. 2007, 'Girdling decreases photosynthetic electron fluxes and induces sustained photoprotection in mango leaves', *Tree Physiology*, vol. 27, no. 3, pp. 345-52.
- Wang, X., Sato, T., Xing, B. & Tao, S. 2005, 'Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish', *Science of the total* environment, vol. 350, no. 1, pp. 28-37.
- Ward, T. 1987, 'Temporal variation of metals in the seagrass *Posidonia australis* and its potential as a sentinel accumulator near a lead smelter', *Marine Biology*, vol. 95, no. 2, pp. 315-21.
- Waycott, M., Duarte, C.M., Carruthers, T.J., Orth, R.J., Dennison, W.C., Olyarnik, S.,
  Calladine, A., Fourqurean, J.W., Heck, K.L. & Hughes, A.R. 2009, 'Accelerating loss
  of seagrasses across the globe threatens coastal ecosystems', *Proceedings of the*National Academy of Sciences, vol. 106, no. 30, pp. 12377-81.
- Wissler, L., Codoñer, F.M., Gu, J., Reusch, T.B., Olsen, J.L., Procaccini, G. & Bornberg-Bauer, E. 2011, 'Back to the sea twice: identifying candidate plant genes for molecular evolution to marine life', *BMC evolutionary biology*, vol. 11, no. 1, p. 8.
- World Health Organization 1996, 'Trace elements in human nutrition and health'.
- World Health Organization 2011, 'Evaluation of certain food additive and contaminants',

  World Health Organization technical report series, no. 960, p. 1.

Wu, C., Chen, Y., Ouyang, K., Zhang, Z. & Taylor, C. 2012, 'Analysis of Chinese herbal medicines by microwave plasma-atomic emission spectrometry (MP-AES)', Application Note 59909791EN, Agilent Technologies. Yruela, I. 2005, 'Copper in plants', Brazilian journal of plant physiology, vol. 17, no. 1, pp. 145-56. Yruela, I. 2009, 'Copper in plants: acquisition, transport and interactions', Functional Plant Biology, vol. 36, no. 5, pp. 409-30. Yuan, H.M. & Huang, X. 2016, 'Inhibition of root meristem growth by cadmium involves nitric oxide- mediated repression of auxin accumulation and signalling in Arabidopsis', Plant, Cell & Environment, vol. 39, no. 1, pp. 120-35. Zschiesche, W., Barth, O., Daniel, K., Böhme, S., Rausche, J. & Humbeck, K.J.N.P. 2015, 'The zinc- binding nuclear protein HIPP 3 acts as an upstream regulator of the salicylate- dependent plant immunity pathway and of flowering time in Arabidopsis thaliana', vol. 207, no. 4, pp. 1084-96. Zhang, Q., Zeng, G., Chen, G., Yan, M., Chen, A., Du, J., Huang, J., Yi, B., Zhou, Y. & He, X. 2015, 'The effect of heavy metal-induced oxidative stress on the enzymes in white

rot fungus Phanerochaete chrysosporium', Applied biochemistry and biotechnology,

vol. 175, no. 3, pp. 1281-93.

Table 1.Total number of expressed genes and ORFs under 500  $\mu g$  Cu  $L^{-1}$  and 250  $\mu g$  Cu  $L^{-1}$ .

|                           | Up-regulated | Down-regulated |
|---------------------------|--------------|----------------|
| 250 μg Cu L <sup>-1</sup> | 23           | 12             |
| Uncharacterised           | 4            | 0              |
| (in both databases)       |              |                |
| 500 μg Cu L <sup>-1</sup> | 68           | 25             |
| Uncharacterised           | 3            | 0              |
| (in both databases)       |              |                |
| Total                     | 98           | 37             |
| Common                    | 22           | 8              |
| <b>Total (unique)</b>     | 76           | 29             |

Table 2 (edited)

Table 2. List of 14 differentially expressed genes selected for further investigation in this study.

| Gene ID                                        | Description                                  | Z. marina    | Log2 fold change | change   |
|------------------------------------------------|----------------------------------------------|--------------|------------------|----------|
|                                                |                                              | accession ID | 250 µg/L         | 500 µg/L |
| Chloroplast function                           |                                              |              |                  |          |
| 1 0:maker-500_52247_3964_295920.7              | ATP-dependent Clp protease proteolytic       | KMZ63497.1   |                  | -3.850   |
|                                                | subunit 4, chloroplastic                     |              |                  |          |
| 2 1:maker-1730_58158_16459_581580.13           | chaperone protein dnaJ 8, chloroplastic-like | N/A          |                  | -1.808   |
| 3                                              |                                              |              |                  |          |
| 4 1:maker-3083_301710.6                        | Ferredoxinnitrite reductase, chloroplastic   | KMZ61228.1   | 4.264            | 5.959    |
| Enzymatic defence mechanism                    |                                              |              |                  |          |
| <b>5</b> 0:augustus_masked-6109_212780.0- mRNA | Peroxidase P7-like                           | KMZ56929.1   |                  | -2.628   |
| 6 0:maker-625_101397_6977_1013970.33- mRNA     | Peroxidase 12                                | KMZ75156.1   |                  | -3.922   |
| 7 1:maker-1744_70048_1_497650.9-mRNA           | Peroxidase 5                                 | KMZ75156.1   |                  | -3.864   |
| 8 0:maker-1173_166881_1_1489870.46-mRNA        | Glutathione S-transferase T1                 | KMZ72094.1   |                  | -3.422   |
| Chemical Defence mechanism                     |                                              |              |                  |          |
| 9 0:maker-1210_1097750.31- mRNA                | Proline dehydrogenase 2, mitochondrial-like  | KMZ67632.1   | 2.491            |          |
|                                                |                                              |              |                  |          |

| 10 0:maker-14927_112950.5-mRNA-1            | Cytochrome P450 89A2-like                             | N/A                     | -2.215 | -2.362       |
|---------------------------------------------|-------------------------------------------------------|-------------------------|--------|--------------|
| 11 0:maker-8118_1164430.34-mRNA-1           |                                                       |                         | -1.788 | -2.174       |
| 12 1:maker-522_516950.11                    | cytochrome P450 84A1-like                             | N/A                     |        | 1.935        |
| Regulatory stress response                  |                                                       |                         |        |              |
| <b>13</b> 0:maker-1520_80468_39862_772380.6 | heavy metal-associated isoprenylated plant KMZ67897.1 | olant <u>KMZ67897.1</u> |        | -1.448663975 |
|                                             | protein 3-like (HIPP3)                                |                         |        |              |
| 14 0:snap_masked-2153_115725_1_528660.3     |                                                       |                         |        | -1.901078429 |
| 15 0:maker-2866_469540.6                    | GH3 auxin-responsive promoter/                        | KMZ65778.1              |        | -5.079917865 |
|                                             | Jasmonic acid-amido synthetase JAR1                   |                         |        |              |
| 16 1:maker-3661_43599_1_158640.10           | dnaJ homolog subfamily B member 1                     | KMZ75474.1              | -1.707 |              |
|                                             |                                                       |                         |        |              |

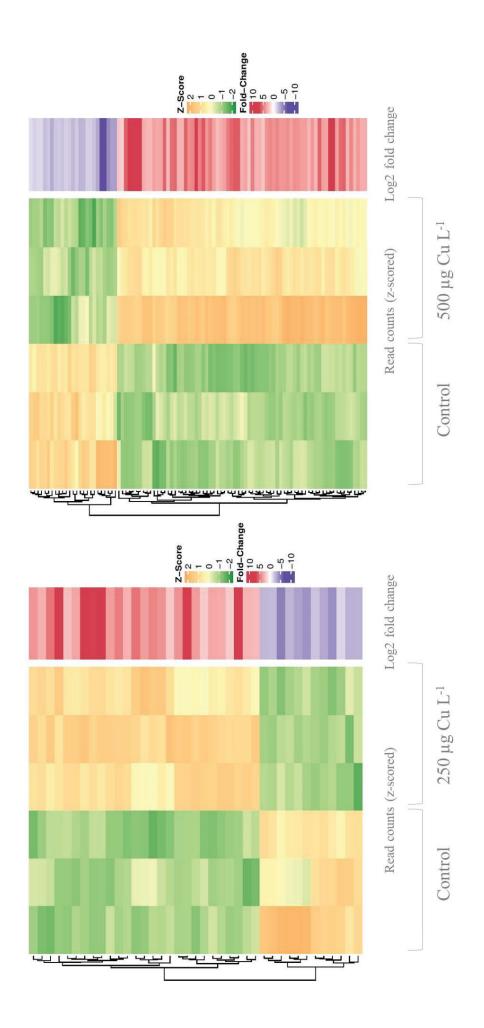
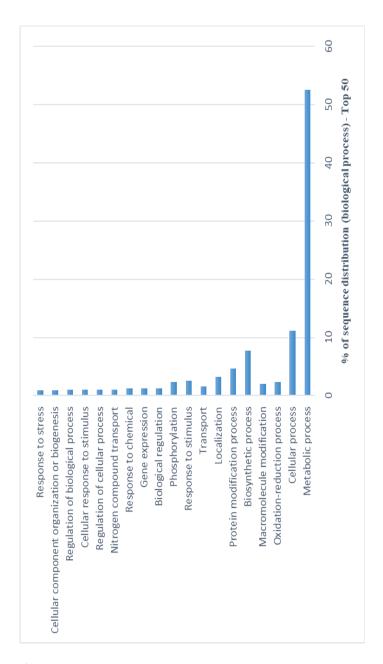
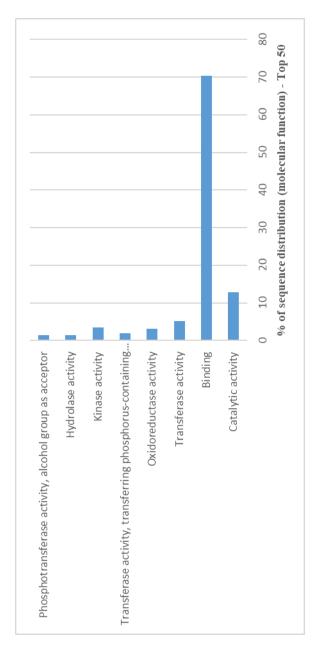
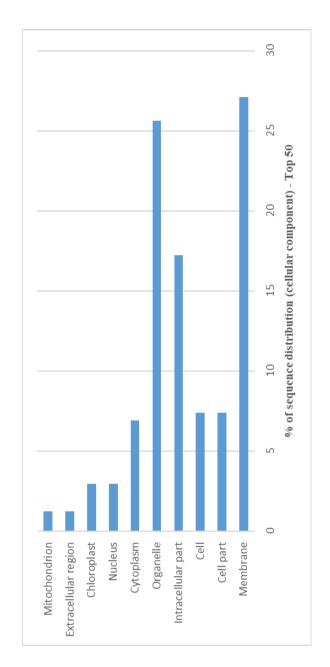






Figure 1. Overall representation of significantly expressed genes under Cu stress. Heatmaps of the log 2 fold change and z-score of normalized read counts for significantly differentially expressed genes in response to 250 µg Cu L<sup>-1</sup> (left) and 500 µg Cu L<sup>-1</sup> (right) after 7 days.







C

Figure 2. Gene ontology analysis. Sequence distribution of biological process (A), molecular function (B) and cellular component (C) of top 50 genes expressed in 250  $\mu g$  Cu  $L^{\text{-1}}$  and 500  $\mu g$  Cu  $L^{\text{-1}}$  after 7 days.

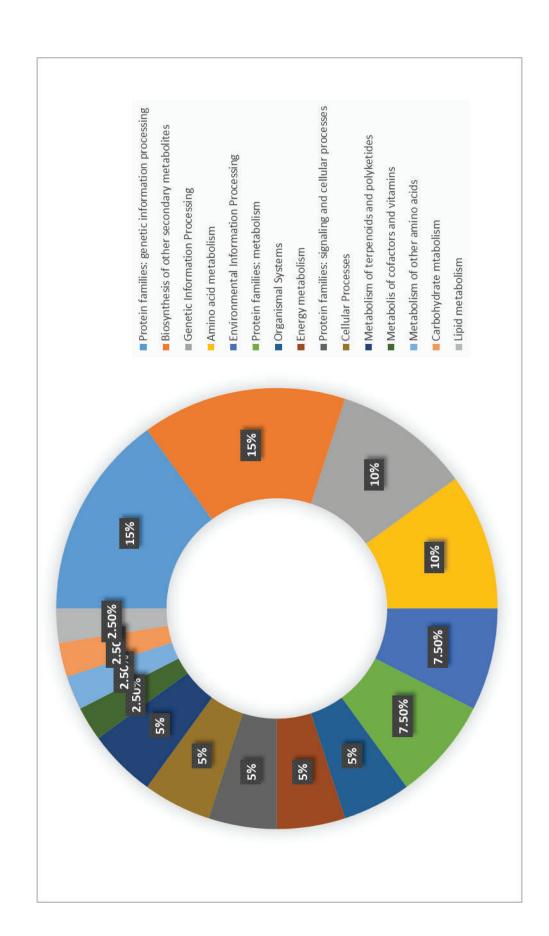
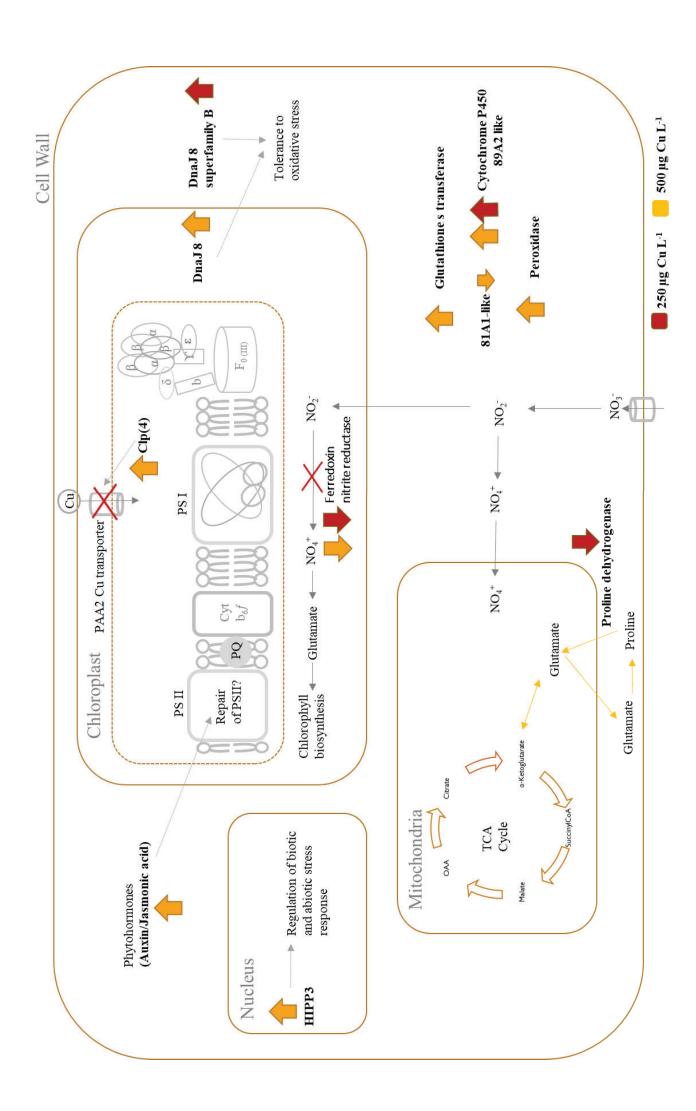




Figure 3. Most induced pathways in response to Cu stress. Functional classification of proteins in 250 µg Cu L-1 and 500 µg Cu L-1 after 7 days.



caseinolytic protease (Clp) subunit 4; DnaJ: Chaperone DnaJ. Mitochondria: TCA cycle: citric acid cycle; OAA: oxaloacetate; OAA: oxaloacetic Figure 4. Possible Cu-induced pathways. Differentially expressed genes related to photosynthesis, carbon fixation, energy metabolism, enzymatic and chemical defense mechanism under 250 μg Cu L<sup>-1</sup> and 500 μg Cu L<sup>-1</sup>. Chloroplast: PAA2/HMA8: Cu transporter; CLP(4): chloroplast acid. Nucleus: HIPP3: heavy metal-associated isoprenylated plant protein 3.