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Abstract—While the existing anti-jamming solutions tend to
“escape” the attacks by finding another communication channel
or adapting, waiting until the attacks cease, this work proposes
an unprecedented method to combat jammers by leveraging the
jamming signals to transmit data based on the recent advances
in ambient backscatter communication technology. When the
jammer attacks the channels, the transmitter modulates the
jamming signals to backscatter information to the receiver. To
deal with the uncertainty of jamming attacks and environment
conditions, we first develop a Markov decision process framework
with the Q-learning algorithm to obtain the optimal policy for the
system. However, the Q-learning algorithm is widely known for
its slow convergence, especially in large system state and action
spaces. Hence, we develop a novel deep reinforcement learning
algorithm based on the dueling neural network architecture
that converges to the optimal policy much faster than the
conventional Q-learning. Extensive simulations show that our
proposed solution can improve the average throughput up to
426% and reduce the packet loss by 24% compared to other
anti-jamming solutions.

Index Terms—Anti-jamming, ambient backscatter, RF energy
harvesting, deep dueling, deep reinforcement learning.

I. INTRODUCTION

Due to the broadcast nature, wireless communications are
particularly vulnerable to jamming attacks. By injecting inter-
fering signals to the communication channel, a jammer can
decrease the signal-to-interference-plus-noise ratio (SINR) at
the receiver, thereby interrupting or preventing the legitimate
communications of wireless systems. The jamming attacks
can be easily launched by using commercial off-the-shelf
products [1] and have a significant detriment to wireless
applications, especially for low-power communications.

Various anti-jamming solutions have been proposed in the
literature. The most common approach is frequency-hopping
spread spectrum (FHSS) [2]-[4]. In particular, the FHSS mech-
anism allows a wireless device to quickly switch its operating
frequency to other frequencies by using a shared algorithm
implemented at both the transmitter and the receiver. In [3], the
authors introduced a stochastic game framework in which the
transmitter is equipped with the FHSS technique to cope with
jamming attacks. However, the FHSS technique requires more
spectrum resources than transmitting in a single frequency.
In addition, for powerful jammers which can attack multiple
channels simultaneously, FHSS may be less effective. Another
popular solution is the rate adaptation (RA) technique [1], [5].
With RA, the transmitter can transmit data at lower rates,
adapting with different interference levels from the jammer.
In [1], the authors combined the RA and FHSS techniques

and formulated a zero-sum game to mitigate attacks from
a reactive-sweep jammer. However, the RA technique is not
effective on a single channel and under jamming attacks [6].

All the above work and others in the literature tend to
“escape” jamming attacks by finding another communication
channel or adapting, waiting until the attacks cease. As such,
these methods require additional resources, e.g., spectrum
bandwidth, transmit power, or hardware capacity. Thus, we
develop a novel anti-jamming framework that is extremely
efficient in dealing with jamming attacks. In this work, inspired
by the state-of-the-art ambient backscatter communication
technology [7], instead of escaping the attacks, we leverage
jamming signals to transmit data. When the jammer attacks
the channels, the transmitter modulates the jamming signals
to backscatter information to the receiver. Additionally, the
transmitter is also equipped with an energy harvesting circuit
to harvest energy from RF signals, and uses the harvested
energy to transmit its data. To deal with the uncertainty of
jamming attacks and ambient RF signals, we develop the
Markov decision process (MDP) framework together with the
Q-learning algorithm to obtain the optimal defense policy
for the system. However, the Q-learning algorithm is widely
known for its slow convergence, especially in large system
state and action spaces. Hence, we develop a novel deep
reinforcement learning algorithm based on the dueling neural
network architecture that converges to the optimal policy much
faster than the conventional Q-learning. Extensive simulations
show that by leveraging the ambient backscatter communica-
tions and the deep dueling neural network architecture, we
can improve the average throughput up to 426% and reduce
the packet loss by 24% compared to other state-of-the-art anti-
jamming solutions. In addition, it is interesting to observe that
the transmission rate increases with the jamming power.

II. SYSTEM MODEL

We consider a wireless system consisting of a gateway, an
RF ambient source (e.g., radio or TV towers), a transmitter,
and a jammer as illustrated in Fig. 1. The transmitter is
equipped with RF energy harvesting and ambient backscatter
capabilities to harvest energy and backscatter data through the
ambient RF signals and the jamming signals, respectively.

A. Smart and Reactive Jammer with Self-Interference Suppres-
sion Capability

We consider a smart and reactive jammer with self-
interference suppression capability [1], allowing it to “listen”
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Fig. 1: System model

to the channel while jamming. Doing so, the jammer can
discern its jamming outcome and reactively optimize its attack
strategy to maximize the disruption of the transmitter. Let
PJ = {P J

0 , . . . , P
J
n , . . . , P

J
N} denote the vector of discrete

jamming power levels, in which P J
N is the peak jamming

power Pmax. In each time slot, the jammer can select a
power level P J

n as long as its average power constraint is
satisfied. In practice, the jammer can adjust its pulse duty
cycle factor to achieve the maximum degradation on the target
channel while maintaining a time-average power constraint
Pavg. Note that Pavg should be less than Pmax [6]. If we
denote x , (x0, . . . , xn, . . . , xN ) as a probability vector, then
the strategy space of the jammer can be defined as follows:

Js ,
{
(x0, . . . , xn, . . . , xN ),

N∑
n=0

xn = 1,

xn ∈ [0, 1],∀n ∈ {0, . . . , N},xP>J ≤ Pavg

}
.

(1)

Given a value of Pavg, the jammer will find an optimal strategy
to attack the channel to maximize its objective. Specifically,
the smart jammer can observe the activities and obtain the
information of the transmitter, e.g., the number of packets
transmitted/backscattered by the transmitter. Then, based on
the observations, the jammer can define its objective function
to maximize the disruption. We assume that the jammer
receives a reward wJ

n if it attacks the channel with power
level P J

n . wJ
n can be referred as the number of packets that

have been completely disrupted (i.e., not being successfully
received/decoded). Let wJ = {wJ

0 , . . . , w
J
n, . . . , w

J
N} denote

the reward vector of the jammer corresponding the jamming
power vector PJ. The optimal attack strategy x is obtained by
using linear programming to solve the following problem.

max
x

xw>J , s.t.


∑N
n=0 xn = 1,

xn ∈ [0, 1],∀n ∈ {0, . . . , N},
xP>J ≤ Pavg.

(2)

B. System Operation

We denote the probability of the ambient RF source being
idle in each time slot by η. Due to the average power con-
straints Pavg, the jammer may attack the channel with different
power levels at different time. When the jammer attacks the
channel and the ambient RF source is idle, the transmitter can
choose one of the following actions: (i) stay idle, (ii) harvest
energy, (iii) backscatter data, or (iv) adapt its transmission rate

by using RA technique [1], [6]. Depending on the transmit
power level P J

n of the jammer, the transmitter can harvest eJn
units of energy or backscatter maximum d̂Jn packets through
the jamming signals. In practice, the more power the jammer
uses to attack the channel, the more energy and the more
packets the transmitter successfully harvests and transmits to
the gateway, respectively [8]. Let e = {eJ0, . . . , eJn, . . . , eJN}
and d̂ = {d̂J0, . . . , d̂Jn, . . . , d̂JN} denote the amount of energy
that the transmitter can successfully harvest and the number
of packets that the transmitter can successfully transmit when
the jammer attacks the channel with power level PJ =
{P J

0 , . . . , P
J
n , . . . , P

J
N}, respectively.

In practice, when the jammer attacks the channel and the
ambient RF source does not transmit data, the transmitter still
can transmit its data by using the RA technique. Specifically,
based on jamming power P J

n , the transmitter can actively
transmit data at maximum rate rm. We then denote r =
{r1, . . . , rm, . . . , rM} as the set of available transmission rates
that the transmitter can choose to transmit data when the
jammer attacks the channel. At each rate rm, the transmitter
can transmit maximum d̂rm packets. In this work, the arrival
data process follows the Poisson distribution with mean rate
λ. The maximum data queue size and energy storage capacity
are denoted by D and E, respectively. If a packet arrives at
the system when the data queue is full, it will be dropped.
To consider a low-latency system, if a packet stays in the
queue longer than a latency threshold, i.e., tth, it will be
discarded. If at least one of the sources (i.e., either the ambient
RF source, or the jammer, or both of them) is active, the
transmitter can choose to backscatter data or harvest energy.
The transmitter then observes the results of the taken action,
i.e., the total number of packet backscattered or the total
amount of harvested energy, and update the learning function.
Based on the states of the ambient RF source and the jammer,
the operations of our system can be expressed as follows:
• When the ambient RF source is idle and the jammer is

idle, the transmitter can (i) transmit maximum d̂t packets
if it has enough energy (each packet requires et units of
energy to be successfully transmitted) or (ii) stay idle.

• When the ambient RF source is idle and the jammer
attacks with power level P J

n , the transmitter can (i) use
the RA technique to transmit maximum d̂rm packets if it
has enough energy, (ii) backscatter maximum d̂Jn packets,
(iii) harvest eJn units of energy, or (iv) stay idle.

• When the ambient RF source is active and the jammer
is idle, the transmitter can (i) backscatter maximum d̂b
packets, (ii) harvest eh units of energy, or (iii) stay idle.

• When the ambient RF source is active and the jammer
attacks with the power level P J

n , the transmitter can (i)
backscatter dsum packets with dmin≤dsum≤dmax where
dmin=min(d̂b, d̂

J
n) and dmax=d̂b + d̂Jn, (ii) harvest esum

units of energy with emin ≤ esum ≤ emax where emin =
max(eh, e

J
n) and emax = eh + eJn [9], or (iii) stay idle.

III. PROBLEM FORMULATION

To deal with the uncertainty of jamming attacks and the
ambient RF signals, we adopt the Markov decision process
(MDP) framework.



A. State Space

We define the state space of the system as follows:

S ,
{
(c, j, d, e) :c ∈ {0, 1}; j ∈ {0, 1};

d ∈ {0, . . . , D}; e ∈ {0, . . . , E}
}
,

(3)

where j represents the state of the jammer, i.e., j = 1 when
the jammer is active and j = 0 otherwise. c represents the
state of the ambient RF channel, i.e., c = 1 when the ambient
RF channel is busy and c = 0 otherwise. d and e represent the
number of packets in the data queue and the number of energy
units in the energy storage of the transmitter, respectively. The
system state is then defined as s = (c, j, d, e) ∈ S.

B. Action Space

The transmitter can perform one of the (M+4) actions, i.e.,
stay idle, actively transmit data, harvest energy, backscatter
data, or actively transmit data when then channel is attacked
with one of M transmission rates by using the RA technique.
Then, the action space of the transmitter can be defined by
A , {a : a ∈ {1, . . . ,M + 4}}, where

a=


1, stay idle,
2, transmit data,
3, harvest energy,
4, backscatter data,
4 +m, adapt to rate rm with m ∈ {1, . . . ,M}.

(4)

C. Immediate Reward

We define the reward for the system as the number of
packets that are successfully transmitted to the gateway. Thus,
the immediate reward of the system after the transmitter makes
an action a at state s can be defined as follows:

r(s, a)=



dt, if c = 0, j = 0, d > 0, e ≥ et, and a = 2,
db, if c = 1, j = 0, d > 0, and a = 4,
dJn, if j = 1, c = 0, d > 0, and a = 4,
dsum, if j = 1, c = 1, d > 0, and a = 4
drm, if c = 0, j = 1, d > 0, e > 0, and a = 4 +m,
0, otherwise.

(5)
In the above, when the ambient RF source is idle, the

jammer does not attack the channel, and the number of data
and energy units are sufficient for active transmission, the
transmitter can actively transmit 0 < dt ≤ d̂t packets to
the gateway (i.e., a = 2). When the ambient RF source
is active, the jammer is idle, and the transmitter has data
to transmit, it can choose to backscatter 0 < db ≤ d̂b
packets (i.e., a = 4). Similarly, when the jammer attacks
the channel, the RF source is idle, and the transmitter has
data to transmit, if it chooses to backscatter, it can transmit
maximum 0 < dJn ≤ d̂Jn packets (i.e., a = 4). If the ambient
RF source is idle, the jammer attacks the channel, and the
transmitter has enough energy and data in the queues, it can
choose to adapt its rate (i.e., a = 4 + m;m ∈ {1, . . . ,M})
and actively transmit 0 < drm ≤ d̂rm packets to the gateway. If
both the jammer and the RF source are active, the transmitter
has data to transmit, and it chooses to backscatter data, it

can transmit dmin ≤ dsum ≤ dmax to the gate way [9].
Finally, the immediate reward is 0 when the transmitter cannot
successfully transmit any packet to the gateway. Note that after
performing an action, the transmitter will observe the reward,
i.e., number of packets that are successfully transmitted, based
on ACK messages sent from the gateway. In other words, dt,
db, dJn, dsum, and drm are the actually received packets at the
gateway. For that, the reward function captures the overall path
between the source and the tag-receiver, e.g., fading, SNR,
BER, or the packet error rate.

D. Optimization Formulation

We formulate an optimization problem to obtain the optimal
policy, denoted by π∗, that maximizes the average long-term
reward for the system. Specifically, the optimal policy is a
mapping from a state to an action taken by the transmitter.
The optimization problem is then expressed as follows:

max
π

R(π) = lim
T→∞

1

T

T∑
k=1

E (rk(sk, π(sk))) , (6)

where R(π) is the average reward under the policy π, and
rk(sk, π(sk)) is the immediate reward under policy π at time
step k. From a given state, the process can go to any other
states after k steps. Thus, the average throughput R(π) is well
defined and does not depend on the initial state [10].

IV. DEFEATING JAMMER WITH DEEP DUELING NEURAL
NETWORK ARCHITECTURE

A. Q-learning based Algorithm

In our system, the transmitter cannot obtain the information
about the jammer in advance to find the optimal policy. Thus,
this section introduces Q-learning algorithm [11] to help the
transmitter find the optimal policy without requiring prior
information about the jammer as well as the channel. In
particular, given a current state st, the algorithm selects an
action at based on the ε-greedy method. After performing
action at, the algorithm observes immediate reward rt and
next state st+1, and updates the Q-values as follows [11]:

Qt+1(st, at) = Qt(st, at) + τt

[
rt(st, at)+

γmax
at+1

Qt(st+1, at+1)−Qt(st, at)
]
,

(7)

where γ is the discount factor which represents the im-
portance of long-term reward [11] and τt is the learning
rate corresponding to the impact of new information to the
existing value. To guarantee the convergence for the algorithm,
τt ∈ [0, 1),

∑∞
t=1 τt = ∞, and

∑∞
t=1(τt)

2 < ∞. Based on
(7), the transmitter can employ the Q-learning algorithm to
obtain the optimal defense policy. However, for complicated
systems, the convergence rate of the Q-learning algorithm is
usually slow. That makes the Q-learning algorithm practically
inapplicable. In the following, we introduce the deep dueling
algorithm to overcome this issue by leveraging the deep Q-
learning and novel dueling architecture.



B. Deep Dueling Neural Network Architecture

We propose a deep dueling based anti-jamming algo-
rithm [12] to improve the system’s convergence speed. Similar
to conventional deep reinforcement learning approaches, the
deep dueling uses a deep neural network to estimate the value
of the Q-function. However, the key idea making the deep
dueling superior to conventional approaches is its novel neural
network architecture. Clearly, in many states, it is unnecessary
to estimate the value of corresponding actions as the choice
of these actions has no repercussion on what happens [12].
Hence, the algorithm divides the Q-function into the value
function and the advantages function. These two function are
then separately estimated by two stream of fully connected
layers. As such, the deep dueling algorithm can achieve more
robust estimates of state value, and significantly improve its
convergence rate as well as stability. In the following, we
present details of the value and advantage functions.

Given a stochastic policy π, the values of state-action pair
(s, a) and state s are expressed as Qπ(s, a) = E

[
rt|st =

s, at = a, π
]

and Vπ(s) = Ea∼π(s)
[
Qπ(s, a)

]
, respec-

tively. The advantage function of actions can be expressed as
Gπ(s, a) = Qπ(s, a)−Vπ(s). Specifically, the value function
V corresponds to how good it is to be in a particular state
s [12] and the advantage function G measures the importance
of each action. To estimate values of V and G functions, we
use a dueling neural network in which one stream of fully-
connected layers outputs a scalar V(s;β) and the other stream
estimates an |A|-dimensional vector G(s, a;α), where α and
β are the parameters of fully-connected layers. These two
sequences are then combined at the output layer by Eq. (8).

Q(s, a;α, β) = V(s;β) + G(s, a;α). (8)

Note that adding a constant to V(s;β) and subtracting the same
constant from G(s, a;α) result in the same Q-value. Therefore,
Eq. (8) is unidentifiable resulting in poor performance. To
address this problem, the combining module of the network is
implemented the following mapping:

Q(s, a;α, β) = V(s;β) +
(
G(s, a;α)−max

a∈A
G(s, a;α)

)
. (9)

In this way, the advantage function estimator has zero
advantage when choosing action. Intuitively, given a∗ =
argmaxa∈AQ(s, a;α, β) = argmaxa∈A G(s, a;α), we have
Q(s, a∗;α, β) = V(s;β). Hence, we convert (9) into a simple
form by replacing the max operator with an average as follows:

Q(s, a;α, β)=V(s;β)+
(
G(s, a;α)− 1

|A|
∑
a

G(s, a;α)
)
. (10)

Based on (10), the advantage and value functions are combined
at the output layer to obtain the optimal policy for the system.

V. PERFORMANCE EVALUATION

A. Parameter Setting

In our system, the jammer has four transmit power levels,
i.e., PJ = {0W, 7W, 15W, 21W}, with Pmax= 21W [15]. As
explained in the Section II, as the jamming power increases,
the transmitter can successfully harvest more energy or trans-
mit more packets by backscattering jamming signal, and thus

we set e = {0, 2, 3, 4} and d̂ = {0, 1, 2, 3}. In addition, when
the jammer attacks the channel and the rate adaption technique
is implemented, the transmitter can transmit drm ={2, 1, 0}
packets when the jammer attacks under power levels P J

n={7W,
15W, 21W}, respectively. If both the jammer and the ambient
RF source are active, the total number of backscattered packets
dsum and the total amount of harvested energy esum follow the
Poisson distribution with the means of (dmin + dmax)/2 and
(emin + emax)/2, respectively as defined in Section II-B. The
data queue of transmitter can store up to 20 packets with the
packet size set at 300 bits [13]. The energy storage capacity is
set to be 20 units. The fundamental energy unit is 60 µJ [14].
Other parameters are provided in Table I. To evaluate the

TABLE I: PARAMETER SETTING

Symbol eh d̂b d̂t et tth η Pavg

Value 2 1 4 1 3 0.5 7

proposed solution, we compare its performance with two other
schemes, i.e., HTT and WTJ. For the HTT, the transmitter only
implements harvest-then-transmit protocol without considering
ambient backscatter communication technology. For the WTJ,
the transmitter can implement both harvest-then-transmit pro-
tocol and ambient backscatter communication technology only
for the ambient RF signals. This scheme evaluates the system
performance without leveraging the jamming signal.

B. Simulation Results
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Fig. 2: Convergence rates

a) Convergence of Deep Reinforcement Learning Ap-
proaches: We first show the learning process and the conver-
gence of the proposed deep reinforcement learning algorithms
in several scenarios. As shown in Fig. 2(a) and Fig. 2(b), when
D = 10 and D = 20, respectively, after 106 iterations, the
average throughput obtained by the Q-learning algorithm is
much lower than those of the deep reinforcement learning al-
gorithms, especially in the first 105 iterations. This implies that
as the system state space increases, the Q-learning algorithm
requires more time to be converged. Note that the performance
obtained by Deep Q-learning algorithm is as close as that
of Deep Dueling algorithm, however the average throughput
obtained by the Deep-Q learning algorithm is very fluctuated
compared with that of the Deep Dueling algorithm. The reason
is that the Deep-Q learning algorithm requires more time to be
converged compared with that of the Deep Dueling algorithm.



b) Performance Evaluation: Next, we perform simula-
tions to evaluate and compare the performance of proposed
solutions with those of the HTT and WTJ schemes. For the
HTT and WTJ schemes, we adopt the Deep Dueling algorithm
(with 4 × 104 iterations) to obtain the optimal policy for
the transmitter. For the proposed solutions, we recruit both
the Deep Dueling (with 4 × 104 iterations) and Q-learning
algorithms (with 106 iterations).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.5

1

1.5

A
ve

ra
ge

 th
ro

ug
hp

ut
 (

pa
ck

et
s/

tim
e 

un
it)

HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

P
ac

ke
t l

os
s 

(p
ac

ke
ts

/ti
m

e 
un

it) HTT w. deep dueling
WTJ w. deep dueling
Proposed w. Q-learning
Proposed w. deep dueling

(b)

Fig. 3: (a) Average throughput and (b) Packet loss vs. η.

In Fig. 3, we vary the idle channel probability of the ambient
RF source η. As shown in Fig. 3(a), when η increases, the
throughput of the WTJ policy decreases. The reason is that the
WTJ has less opportunities to harvest energy and backscatter
data from the ambient signal when the ambient RF source is
likely to be idle. In contrary, the average throughputs obtained
by the HTT policy and the proposed solution increase and their
packet loss will be reduced when the idle channel probability
increases. This is from the fact that the transmitter has more
opportunities to harvest energy from the jamming signal to
support its transmissions. Moreover, the proposed solution can
also backscatter data through both the jamming and ambient
signals, thereby its throughput is considerably higher than that
of the HTT scheme. Note that the Q-learning algorithm cannot
obtain the optimal policy in the first 106 iterations. Thus,
the performance derived by the Q-learning algorithm is much
lower than that of the Deep Dueling algorithm.
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Fig. 4: (a) Average throughput and (b) Packet loss vs. Pavg.

In Fig. 4, we vary Pavg to evaluate the average throughput
and packet loss of the system. Clearly, when Pavg increases
from 1W to 3W, the throughputs of the HTT and WTJ policies
increase. The reason is that the transmitter has more chances
to harvest energy from the strong jamming signal to support
its active transmissions when the jammer and the ambient RF
source are idle. However, when Pavg is large (e.g., higher

than 3W), i.e., the jammer is likely to attack the channel, the
throughput of these policies decreases as the transmitter has
less chance to actively transmit data to the gateway. However,
the throughput achieved by the proposed solution increases
as it allows the transmitter to switch to the backscatter mode
when the jammer is likely to attack the channel. Consequently,
the proposed solutions achieve the best performance in terms
of packet loss as shown in Fig. 4(b). Again, the performance
of the Q-learning algorithm is not as good as the Deep Dueling
algorithm due to the slow-convergence problem.

VI. CONCLUSION

In this paper, we have developed the anti-jamming frame-
work which allows the transmitter to effectively defeat jam-
ming attacks. In particular, with the ambient backscatter
capability, while being attacked, the transmitter can either
backscatter its data to the gateway through the jamming signal
or harvest energy from the jamming signal to support its
operations. To obtain the optimal defense policy under the
uncertainty of the jammer and the channel, we have proposed
the deep dueling algorithm with a novel deep neural network
architecture. Via extensive simulations, it is interesting to
observe that, using the proposed framework, the transmission
rate increases with the jamming power.

REFERENCES

[1] M. K. Hanawal et al., “Joint adaptation of frequency hopping and
transmission rate for anti-jamming wireless systems,” IEEE Trans.
Mobile Comput., vol. 15, no. 9, Sept. 2016, pp. 2247-2259.

[2] A. Sabharwal et al., “In-band full-duplex wireless: Challenges and
opportunities,” IEEE J. Sel. Areas Commun., vol. 32, no. 9, Jun. 2014,
pp. 1637-1652.

[3] B. Wang et al., “An anti-jamming stochastic game for cognitive radio
networks,” IEEE J. Sel. Areas Commun., vol. 29, no. 4, Apr. 2011, pp.
877-889.

[4] X. Liu et al., “Anti-Jamming Communications Using Spectrum Wa-
terfall: A Deep Reinforcement Learning Approach,” IEEE Commun.
Lett., vol. 22, no. 5, pp. 998-1001, May 2018.

[5] K. Pelechrinis, I. Broustis, S. V. Krishnamurthy, and C. Gkantsidis,
“Ares: An anti-jamming reinforcement system for 802.11 networks,”
ACM CoNEXT, Rome, Italy, Dec. 2009.

[6] K. Firouzbakht et al.,“On the capacity of rate-adaptive packetized
wireless communication links under jamming,” ACM WISEC, Tucson,
AZ, USA, 2012, pp. 3-14.

[7] V. Liu, A. Parks, V. Talla, S. Gollakota, D. Wetherall, and J. R. Smith,
“Ambient backscatter: Wireless communication out of thin air,” ACM
SIGCOMM, Hong Kong, China, Aug. 2013.

[8] N. V. Huynh et al., “Ambient Backscatter Communications: A Con-
temporary Survey,” IEEE Commun. Surveys Tuts., vol. 20 , no. 4 ,
Fourthquarter 2018, pp. 2889-2922.

[9] C. Yang et al., “Riding the airways: Ultra-wideband ambient backscat-
ter via commercial broadcast systems,” IEEE INFOCOM, Atlanta, GA,
USA, May 2017.

[10] J. Filar and K. Vrieze, Competitive Markov Decision Processes.
Springer Press, 1997.

[11] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Mach. Learn., vol. 8,
no. 34, pp. 279292, 1992.

[12] Z. Wang et al., “Dueling network architectures for deep reinforcement
learning,” [Online]. Available: arXiv:1511.06581.

[13] P. Blasco et al., “A learning theoretic approach to energy harvesting
communication system optimization,” IEEE Trans. Wireless Commun.,
vol. 12, no. 4, Apr. 2013, pp. 1872-1882.

[14] G. Papotto et al., “A 90-nmCMOS 5-Mbps crystal-Less RF-powered
transceiver for wireless sensornetwork nodes,” IEEE J. Solid-State
Circuits, vol. 49, no. 2, Feb. 2014, pp. 335-346.

[15] 21W jammer [Online]. Available: http://drone-jammers.com/shop/21w-
jammer-with-8-antennas-for-blocking-cdma-2g-3g-4g-lte-wimax-wifi-
2-4ghz-uhf-vhf-rc-gps-lojack/


	Clipboard Data(1)
	Draft2+ICNC.pdf

