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ABSTRACT
We propose subsampling Markov chain Monte Carlo (MCMC), an MCMC framework where the likelihood
function for 7n observations is estimated from a random subset of m observations. We introduce a highly
efficient unbiased estimator of the log-likelihood based on control variates, such that the computing cost is
much smaller than that of the full log-likelihood in standardMCMC. The likelihoodestimate is bias-corrected
and used in two dependent pseudo-marginal algorithms to sample from a perturbed posterior, for which
wederive the asymptotic errorwith respect to n andm, respectively.We propose a practical estimator of the
error and show that the error is negligible even for a very smallm in our applications. We demonstrate that
subsampling MCMC is substantially more efficient than standard MCMC in terms of sampling efficiency for
a given computational budget, and that it outperforms other subsamplingmethods for MCMC proposed in
the literature. Supplementary materials for this article are available online.

1. Introduction

Bayesian methods became much more popular after 1990 due
to advances in computer technology and the introduction of
powerful simulation algorithms such as Markov chain Monte
Carlo (MCMC) (Gelfand and Smith, 1990). However, posterior
sampling with MCMC is still time-consuming and there is an
increasing awareness that new scalable algorithms are neces-
sary for MCMC to remain an attractive choice for inference in
datasets with a large number of observations.

1.1. ScalableMCMC

Current research on scalable MCMC algorithms belongs to
two major groups. The first group employs parallelism through
the typical MapReduce scheme (Dean and Ghemawat, 2008)
by partitioning the data and computing separate subposteriors
for each partition in a parallel and distributed manner, see,
for example, Scott et al. (2013), Neiswanger, Wang, and Xing
(2014), Wang and Dunson (2014), Minsker et al. (2014), and
Nemeth and Sherlock (2018). Our approach belongs to the
second group of methods that use a subsample of the data in
eachMCMC iteration to speed up the algorithm, which we refer
to as subsampling MCMC; see Korattikara, Chen, and Welling
(2014), Bardenet, Doucet, and Holmes (2014), Maclaurin and
Adams (2014), Bardenet, Doucet, and Holmes (2017), and
Liu, Mingas, and Bouganis (2015). Section 4.4 compares these
approaches against our methods. See Bardenet, Doucet, and
Holmes (2017) for an excellent review of these methods and a
broad overview of the problem in general.
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1.2. Pseudo-Marginal MCMC

For models where the likelihood cannot be computed ana-
lytically (intractable likelihood) Beaumont (2003) proposed
estimating the likelihood unbiasedly and running a Metropolis-
Hastings (MH) algorithm on an extended space, which also
includes the auxiliary random variables used to form the
likelihood estimate. Andrieu and Roberts (2009) called this a
pseudo-marginal (PM) approach and prove that PM methods
target the true posterior density if the likelihood estimator is
unbiased and almost surely positive.

1.3. Our Contribution

Our article uses the PM framework where at each iteration the
log-likelihood from n observations is estimated unbiasedly from
a random subset with m � n observations, and the resulting
likelihood estimate is then bias corrected to obtain an approxi-
mately unbiased estimate of the likelihood. The reason for doing
subsampling is because we consider problems where computing
the full likelihood is feasible but inordinately expensive. This
leads to a PM sampling scheme targeting a slightly perturbed
posterior, which mixes well because we use control variates to
significantly reduce the variability in the log-likelihood esti-
mate and a correlated PM scheme to improve the acceptance
probability in the MH as discussed below. The control variates
are crucial for reducing the variance of the likelihood esti-
mate, and we propose a mixed strategy involving two types of
approximations of the log-likelihood contributions of individ-
ual data items: (i) Taylor expansion around a reference value in
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parameter space (parameter expanded control variates) (Bar-
denet, Doucet, and Holmes, 2017) and (ii) Taylor expansion
around the nearest centroid in data space (data expanded
control variates).

We show that by takingm = O(n
1
2 ), the total variation norm

of the error in the perturbed posterior is O(n−2) if we have
access to the maximum likelihood estimate (MLE) based on
all data for constructing the control variates, or O(n− 1

2 ) if the
MLE is based on a subset with ñ = O(n

1
2 ) observations. We

further show heuristically and also empirically that the propor-
tional error in the perturbed posterior is considerably smaller in
regions of high posterior concentration.We also provide feasible
estimators of the proportional error in the perturbed posterior
and show empirically that this error is extremely small in our
examples. Finally, our PM scheme is straightforward to imple-
ment and tune.

1.4. Variance of the Log of the Likelihood Estimator
and Scalability

The variance of the log of the estimated likelihood is crucial for
the performance of PM algorithms: a large variance can easily
produce extreme over-estimates of the likelihood and cause the
Markov chain to get stuck for long periods. Conversely, a too
precise likelihood estimator might be unnecessarily costly. Pitt
et al. (2012), Doucet et al. (2015) and Sherlock et al. (2015) ana-
lyze the variance of the log of the likelihood estimator thatmaxi-
mizes the number of effective draws per unit of computing time.
They conclude that the optimal number of particles m should
be such that this variance is around 1. Moreover, m = O(n) is
required to obtain the optimal value of the variance.

It is now recognized that it is the variance of the difference in
the logs of the likelihood estimators at the current and proposed
values of the parameters thatmust be controlled. In the standard
PM, this is equivalent to controlling the variance of the log of the
estimated likelihood. Recent advances in PM algorithms corre-
late or block the random numbers used to form the estimates of
the likelihood in the MH ratio at the current and proposed val-
ues of the parameters (see Deligiannidis, Doucet, and Pitt, 2016;
Tran et al. 2017, respectively). Deligiannidis, Doucet, and Pitt
(2016) show that this makes it possible to target a variance of
the log estimated likelihood that is much larger than one, and
the optimal variance can be obtained withm = O(n1/2). Dahlin
et al. (2015) also introduces the correlated PM but their article
does not contain any analytic nor optimality results. Tran et al.
(2017) give an alternative derivation of this result and generalize
it to the case where the likelihood is estimated by randomized
quasi-Monte Carlo. Our article introduces both the correlated
and block correlated PM approaches to data subsampling.

1.5. Related Approaches Using Our SubsamplingMethods

The subsampling methods and theory proposed here have
already found applications in several recently proposed
algorithms.

Quiroz et al. (2018b) use the insights and methods of
our article (control variates and correlated and block PM
for subsampling) to obtain unbiased estimates of posterior

expectations of functions of the parameters. The method uses a
version of the unbiased, but possibly negative, Poisson estimator
(Wagner 1988) of the likelihood and runs a PM algorithm based
on the absolute value of this estimator. The resulting iterates are
subsequently used in an importance sampling scheme following
Lyne et al. (2015) to obtain simulation consistent posterior
expectations of functions of the parameters. Although exact,
this approach has some drawbacks compared to the approach
proposed here. First, it does not automatically produce an
estimate of the posterior distribution of a function of the
parameters because it is not an MCMC approach, and hence
it is infeasible in practice to obtain credible regions with it.
Second, it results in a more expensive algorithm (as measured
by the computational time (CT), which balances the number
of subsamples and MCMC efficiency) than our approach since
the possible negativity of the estimator adversely affects the
variance of the importance sampling step.

Quiroz et al. (2018a) apply the framework, methodology
and theory of a previous version of our article to propose a
delayed acceptance subsampling scheme, which they implement
using the data expanded control variates. Unlike Theorem 1 and
Corollary 1 of our article, there are no theoretical or empirical
results of how the parameter expanded control variates affect the
error in the perturbed posterior.

1.6. Article Outline

The article is organized as follows. Section 2 introduces the
general likelihood estimator and derives some important prop-
erties. Section 3 outlines the subsampling MCMC algorithm
and its theoretical framework, including results on the accuracy
of the perturbed posterior. Section 4 studies empirically our
proposed methodology and shows that it outperforms both
standard (non-subsampling) MCMC and other subsampling
approaches. There is online supplementary material to the
article. We refer to pages, sections, etc. in the supplement as
Page S1, Section S1, etc. Section S1 contains implementation
details, Section S2 contains some proofs, and Section S3 shows
how our theory applies to generalized linear models.

2. Sampling-Based Log-Likelihood Estimators

2.1. A Log-Likelihood Estimator Based on Simple Random
SamplingWith Efficient Control Variates

Let {yi, xi}ni=1 denote the data, where y is a response vector and x
is a vector of covariates. Let θ ∈ � be a p-dimensional vector of
parameters. Given conditionally independent observations, we
have the usual decomposition of the log-likelihood

�(n)(θ ) :=
n∑

i=1

�i(θ ), where �i(θ ) := log p(yi|θ, xi) (1)

is the log-likelihood contribution of the ith observation. For any
given θ , (1) is a sum of a finite number of elements and esti-
mating it is equivalent to the classical survey sampling prob-
lem of estimating a population total. See Särndal, Swensson, and
Wretman (2003) for an introduction. We assume in (1) that the
log-likelihood decomposes as a sum of terms where each term
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depends on a unique piece of data information. This applies to
longitudinal problems where �i(θ ) is the log joint density of
all measurements on the ith subject, and we sample subjects
rather than individual observations. It also applies to certain
time-series problems such as AR(l) processes, where the sam-
ple elements become (yt , . . . , yt−l ), for t = l + 1, . . . , n. Our
examples in Section 4 use independent identically distributed
(iid) observations and time series data.

Estimating (1) using simple random sampling (SRS), where
any �i(θ ) is included with the same probability generally results
in a very large variance. Intuitively, since some �i(θ ) contribute
significantly more to the sum in (1) they should be included in
the sample with a larger probability, using so called probabil-
ity proportional-to-size sampling. However, this requires each
of the n sampling probabilities to be proportional to a measure
of their size. Evaluating n size measures is likely to defeat the
purpose of subsampling, except when there is a computation-
ally cheaper proxy than �i(θ ) that can be used instead. Alterna-
tively, one can make the {�i(θ )}ni=1 more homogeneous by using
control variates so that the population elements are roughly of
the same size and SRS is then expected to be efficient. Our
article focuses on this case and proposes efficient control vari-
ates qi,n(θ ) such that the computational cost (CC) of the esti-
mator is substantially less than O(n). The dependence on n is
due to qi,n(θ ) being an approximation of �i(θ ), which typically
improves as more data is available as we will discuss in detail
later.

Define the differences di,n(θ ) := �i(θ ) − qi,n(θ ) and let

μd,n(θ ) := 1
n

n∑
i=1

di,n(θ )

and σ 2
d,n(θ ) :=

∑n
i=1
(
di,n(θ ) − μd,n(θ )

)2
n

be the mean and variance of the finite population {di,n(θ )}ni=1.
Let u1, . . . , um be iid random variables such that Pr(u = k) =
1/n for k = 1, . . . , n. The difference estimator (DE; Särndal,
Swensson, and Wretman 2003) of �(n)(θ ) in (1) is

�̂(m,n)(θ ) := q(n)(θ ) + nμ̂d,n(θ ), μ̂d,n(θ ) := 1
m

m∑
i=1

dui,n(θ ),

(2)
with q(n)(θ ) := ∑n

i=1 qi,n(θ ). It is straightforward to use
unequal sampling probabilities with the DE, but the sampling
probabilities need to be evaluated for every observation, which
can be costly. The following lemma gives some basic properties
of the DE estimator. Its proof is in Section S2.

Lemma 1. Suppose that �̂(m,n)(θ ) is the estimator of �(n)(θ ) =
�(θ ) given by (2). Then, for each θ ,

(i) E[μ̂d,n(θ )] = μd,n(θ ).
(ii) E

[
�̂(m,n)(θ )

] = �(n)(θ )

and σ 2
LL,m,n(θ ) := var

[
�̂(m,n)(θ )

] = n2σ 2
d,n(θ )

m
.

(iii) �̂(m,n)(θ ) is asymptotically normal when m → ∞ for
fixed n and σ 2

d,n(θ ) < ∞, or when bothm, n → ∞with
m = O(nα ) for α > 0 and σ 3

d,n(θ ) < ∞.

The assumptions of finite σ 2
d,n(θ ) and σ 3

d,n(θ ) in Lemma 1
part (iii) are nonrestrictive because the randomvariables are dis-
crete with a finite sample space: they are satisfied for any control
variates that are finite. We use the following estimate of σ 2

d,n(θ )

σ̂ 2
d,n(θ ) :=

∑m
i=1
(
dui,n(θ ) − μ̂d,n(θ )

)2
m

.

We also define the higher order central moments

ϕ
(b)
d,n(θ ) := E[(dui,n(θ ) − μd,n(θ ))b]

=
n∑

i=1

(di,n(θ ) − μd,n(θ ))b/n for b ≥ 1,

and the corresponding standardized quantities �
(b)
d,n(θ ) :=

ϕ
(b)
d,n(θ )/σ b

d,n(θ ).

2.2. Control Variates for Variance Reduction andOptimal
Subsample Size

Wewill now show that the variance reduction from control vari-
ates has a dramatic effect on how the subsample sizem relates to
the sample size n. The theory on how to choose the number of
particles in PM in Pitt et al. (2012) and Doucet et al. (2015) is
based on minimization of the CC of obtaining a single poste-
rior draw that corresponds to an iid draw. This theory assumes
that the likelihood is estimated directly, rather than indirectly
via a bias-corrected log-likelihood estimator as proposed here.
The relevant cost for evaluating the likelihood estimator in Pitt
et al. (2012) and Doucet et al. (2015) can therefore be argued to
be inversely proportional to variance of the log of the likelihood
estimator, and the optimal number of particles or subsampled
units m targets a variance of the log of the likelihood estima-
tor around one. In our approach, the estimation effort is instead
spent on estimating the log-likelihood. The relevant CC is there-
fore inversely proportional to σ 2

LL,m,n and the optimalm targets
a σ 2

LL,m,n of O(1). See Section 3.6 for more details.
Lemma 2 below details the asymptotic behavior of σ 2

LL,m,n
using the definition

an(θ ) := 2 max
i=1,...,n

∣∣di,n(θ )
∣∣ . (3)

The proof of the following lemma is straightforward and
therefore omitted. All terms in the lemma depend on θ .

Lemma 2. For each θ ∈ �,
(i) σ b

d,n = O(abn) for b ≥ 1. In particular, σ 2
d,n = O(a2n).

(ii) σ 2
LL,m,n = n2O(a2n)

m .

(iii) ϕ
(b)
d,n = O(abn) and �

(b)
d,n = O(1).

Part (ii) of Lemma 2 shows that keeping the variance of the
log-likelihood estimate bounded as a function of n requires that
n2O(a2n)

m = O(1). This highlights the importance of the variance
reduction: SRS without control variates scales poorly because
O(a2n) = O(1) and so m = O(n2) is optimal. Conversely, with
control variates that improve as, say di,n = O(n−α ) with α ≥
0, we have O(a2n) = O(n−2α ) and m = O(n2(1−α)) is optimal.
Lemma 2 also shows the asymptotic properties of the central
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moments, which are useful for our derivation of the perturbed
target in Section 3.3.

2.3. Computational Complexity

The difference estimator in (2) requires computing q(n)(θ ) =∑n
i=1 qi,n(θ ) in every MCMC iteration, that is, it requires

computing the control variates qi,n(θ ) for i = 1, . . . , n. We
now explore specific choices of qi,n that allow us to com-
pute

∑n
i=1 qi,n(θ ) using substantially less evaluations than n.

Denote the CC for the standard MH without subsampling
that evaluates �(n) :=

∑n
i=1 �i by CC[�(n)(θ )] := n · c�, where

c� is the cost of evaluating a single log-likelihood contribution
(assuming the cost is the same for all i). For the difference esti-
mator in (2), we have

CC
[
�̂(m,n)(θ )

]
:= n · cq + m · c�,

where cq is the cost of computing a control variate. We now
briefly describe two particular control variates that reduce the
first term n · cq. Section S1 gives implementation details.

First, consider the control variates in Bardenet, Doucet, and
Holmes (2017), who proposed using a second-order Taylor
expansion of each �i(θ ) around some reference value θ	

n , for
example, the MLE. This reduces the complexity from n evalu-
ations to a single one (similar to sufficient statistics for a normal
model because qi,n(θ ) is quadratic in θ). As noted by Bardenet,
Doucet, and Holmes (2017), this control variate can be a poor
approximation of �i(θ ) whenever the algorithm proposes a θ

that is not near to θ	
n , or when there is no access to a reasonable

θ	
n .
Second, we propose a new control variate which is based on

clustering the data {zi = (yi, xi)}ni=1 into K clusters that are kept
fixed, and is independent of θ	

n . At a given MCMC iteration, we
compute the exact log-likelihood contributions at allK centroids
and use a second-order Taylor expansionwith respect to zi at the
centroid zc as a local approximation of �i around each centroid.
This allows us to compute

∑n
i=1 qi,n(θ ) by evaluating quantities

computed at the K centroids (similar to sufficient statistics for a
normal model because qi,n(θ ) is now quadratic in z). The cost
of the resulting estimator is

CC
[
�̂(m,n)(θ )

] = K · cq + m · c�, (4)

where typically K � n.
We refer to the control variate that uses a Taylor expansion

with respect to θ as parameter expanded, and the control variate
type that Taylor expands with respect to z as data expanded.

2.4. Asymptotic Properties of the Control Variates

... Data Expanded Control Variates
To derive the asymptotic behavior of an(θ ) in (3) for data
expanded control variates, we bound the remainder term (Hub-
bard and Hubbard, 1999, Appendix A.9)∣∣di,n(θ )

∣∣ ≤ O
((||z − zc||1

)3) = O
(
ε3
)
,

where || · ||1 denotes the l1-norm and ε is an input to Algo-
rithm S1 in Section S1, which is proportional to the maxi-
mum l1-distance between an observation z and its centroid zc. If

the number of clusters increases with n such that ε = O(n−ζ )

for some ζ > 0, then α = 3ζ in di,n(θ ) = O(n−α ) and hence
an(θ ) = O(n−3ζ ) for this control variate. Our simulations show
that the numbers of clusters needs to increase rapidly with n
to satisfy the error decay (ζ > 0) when the effective dimension
of the data p̃ is large and data are independent across dimen-
sions (not shown here); these empirical results are supported by
Theorem 5.3b in Graf and Luschgy (2002), which states that the
mean distance in k-means clustering between an observation to
its nearest centroid decreases as O(n−1/( p̃+2)) if the number of
centroids grows as o(np̃/( p̃+2)) for any distribution with com-
pact support. However, the performance on real data depends
on the extent to which the observed data lies close to a lower-
dimensionalmanifold, andwe have observed good performance
in our examples in Section 4, where p̃ ≤ 21. Nevertheless, data
expanded control variates will eventually suffer from the curse
of dimensionality, and we now turn to the asymptotic properties
of parameter expanded control variates.

... Parameter Expanded Control Variates

Assumption 1. Suppose that for each i, �i(θ ) is three times dif-
ferentiable with

max
j,k,l∈{1,...,p}

sup
θ∈�

∣∣∣∣ ∂3�i(θ )

∂θ j∂θk∂θl

∣∣∣∣
bounded.

We now have the following result, where || · || is the l2 norm
for the rest of the article unless stated otherwise. The proof of
the lemma is immediate.
Lemma 3. Suppose that Assumption 1 holds. Then, an(θ ) =
||θ − θ	

n ||3O(1).

While the asymptotics for the data expanded covariates are
interpreted in a nonstochastic sense (z is nonstochastic) our
interpretation here also treats data as nonstochastic, but the
parameter as stochastic so that we can use the Bernstein-von
Mises theorem (BvM). The BvM theorem states that the poste-
rior distribution converges to the normal distribution (in some
sense) when the sample size n → ∞. There are probabilistic
(stochastic data) and nonstochastic (nonstochastic data) ver-
sions of the BvM, and we use a version of the latter one due to
Chen (1985). Treating the data as fixed leads to a better inter-
pretation in our context and is also consistent with a Bayesian
interpretation.

3. SubsamplingMCMCMethodology

3.1. MCMCWith Likelihood Estimators FromData
Subsampling

We propose an efficient unbiased estimator �̂(m,n)(θ ) of the
log-likelihood and then approximately bias-correct it following
Ceperley and Dewing (1999) (see also Nicholls, Fox, and Watt
2012) to obtain the approximately bias-corrected likelihood
estimator

L̂(m,n)(θ, u) := exp
(

�̂(m,n)(θ ) − n2

2m
σ̂ 2
d,n(θ )

)
, (5)
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where �̂(m,n)(θ ) and σ̂ 2
d,n(θ ) are the estimators presented in

Section 2.1. The form of (5) is motivated by the case when
�̂(m,n)∼N (�(n)(θ ), σ 2

LL,m,n(θ )), and σ 2
LL,m,n is known, in which

case all bias is removed. Normality holds asymptotically in both
m and n by part (iii) of Lemma 1. However, the assumption of a
known variance is unrealistic because the computation requires
the entire dataset. The estimator in (5) is therefore expected to
only be nearly unbiased.

There are four main differences between our approach and
Ceperley and Dewing (1999) and Nicholls, Fox, and Watt
(2012). First, our approach is PM and takes into account that
the log-likelihood is estimated using a random subsample
at each iteration and is therefore guaranteed to converge to
the posterior distribution. Second, we use control variates to
decrease the variance of the estimator of the log-likelihood
and analyze the effect that these control variates have on the
variance of the log of the estimate of the likelihood. Third, we
use correlated PM schemes to also allow the log of the estimated
likelihood to have a large variance. Finally, our convergence
rate of the error (Theorem 1 below) is O(n−1m−2) as opposed
to O(m−1) in Nicholls, Fox, and Watt (2012).

We now outline how to carry out a PM MH scheme with
the approximately unbiased estimator in (5) and derive the
asymptotic error in the stationary distribution. Denote the like-
lihood byL(n)(θ ) := p(y|θ ), let p�(θ ) be the prior and define the
marginal likelihood L(n) :=

∫
L(n)(θ )p�(θ )dθ . Then, the poste-

rior is π(n)(θ ) = L(n)(θ )p�(θ )/L(n). Let pU (u) be the distribu-
tion of the vector u of auxiliary variables corresponding to the
subset of observations to include when estimating L(n)(θ ). Let
L̂(m,n)(θ, u), for fixedm and n, be a possibly biased estimator of
L(n)(θ ) with expectation

L(m,n)(θ ) =
∫

L̂(m,n)(θ, u)pU (u)du.

Define

π(m,n)(θ, u) := L̂(m,n)(θ, u)pU (u)p�(θ )/L(m,n), with L(m,n)

:=
∫

L(m,n)(θ )p�(θ )dθ, (6)

on the augmented space (θ, u). It is straightforward to show that
π(m,n)(θ, u) is a proper density with marginal

π(m,n)(θ ) =
∫

π(m,n)(θ, u)du = L(m,n)(θ )p�(θ )/L(m,n).

The standard PM that targets (6) uses a joint proposal for θ

and u given by

q�,U (θ, u|θc, uc) = pU (u)q�(θ |θc),
where θc denotes the current state of the Markov chain. The PM
acceptance probability becomes

α = min

(
1,

L̂(m,n)(θp, up)p�(θp)/q�(θp|θc)
L̂(m,n)(θc, uc)p�(θc)/q�(θc|θp)

)
. (7)

This expression is similar to the standard MH acceptance
probability, but with the true likelihood replaced by its esti-
mate. By Andrieu and Roberts (2009), the draws of θ obtained
by this MH algorithm have π(m,n)(θ ) as invariant distribu-
tion. If L̂(m,n)(θ, u) is an unbiased estimator of L(n)(θ ), then

the marginal of the augmented MCMC scheme above has
π(m,n)(θ ) = π(n)(θ ) (the true posterior) as invariant distribu-
tion. However, if L̂(m,n)(θ, u) is biased, the sampler is still valid
but has a perturbed marginal π(m,n)(θ ).

3.2. Perturbation Analysis – Asymptotics

The discussion in Section 2.4 argued that parameter expanded
covariates have better asymptotic properties. We therefore state
and prove our main theorem on the fractional error in the
perturbed quantities under this choice of control variate. Let
π(n)(θ ) ∝ exp(�(n)(θ ))p�(θ ) be the density function of the
posterior distribution of θ , where p� is the prior density for θ .
Let θ	

n be a mode of π(n), and

�n(θ ) := ∂2 logπn(θ )

∂θ∂θT .

Denote byH(a, δ) = {θ ∈ � : ‖θ − a‖ ≤ δ} a neighborhood of
a. We follow Chen (1985) and make the following assumptions.

Assumption 2. Assume that the following hold.
A1. ∂ logπn(θ )/∂θ |θ=θ	

n
= 0.

A2. �n(θ
	
n ) is negative definite.

A3. ‖�n‖2 = O(n−1), where �n = (− �n(θ
	
n )
)−1.

A4. For any ε > 0, there exist a δε > 0 and an integer N1,ε
such that for any n > N1,ε and θ ∈ H(θ	

n , δε ), �n(θ )

exists and satisfies

−A(ε) ≤ �n(θ )
(
�n(θ

	
n )
)−1 − I ≤ A(ε)

where A(ε) is a positive semidefinite matrix whose
largest eigenvalue goes to 0 as ε → 0.

A5. For any δ > 0, there exists a positive integerN2,δ and two
positive numbers c and κ such that for n > N2,δ and θ �∈
H(θ	

n , δ)

π(n)(θ )

π(n)(θ	
n )

< exp
(−c

[
(θ − θ	

n )T�−1
n (θ − θ	

n )
]κ)

.

Chen (1985) showed that the conditions in Assumption 2
hold in regular exponential families with conjugate priors. His
proof carries directly over to generalized linear models in the
canonical parameterization, which includes the logistic regres-
sion used in the applications in Section 4. This result also gen-
eralizes in a straightforward way to the noncanonical case if the
link function has continuous third derivative, see Section S3 for
details.
Theorem 1. Suppose that we use parameter expanded control
variates and assume that the regularity conditions in Assump-
tion 2 are satisfied. Then,

(i) ∫
�

∣∣π(m,n)(θ ) − π(n)(θ )
∣∣dθ = O

(
1

nm2

)
.

(ii) Suppose that h(θ ) is a function such that
lim sup Eπ(n)

[h2(θ )] < ∞. Then∣∣Eπ(m,n)
[h(θ )] − Eπ(n)

[h(θ )]
∣∣ = O

(
1

nm2

)
.

The proof is in Section S2.
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Note first that for a fixed n the errors in Theorem 1 are of
orderO(m−2) in the subsample size. More importantly, the the-
orem shows that the perturbation error can decrease at a very
rapid ratewith respect ton. For example,m = O(n

1
2 ) gives a per-

turbation error of order O(n−2). However, the accuracy of the
control variates expanded around the posterior mode increases
so extremely rapidly with the sample size n that the optimal sub-
sample sizem = O(n−1) actually decreases with n. This in turn
leads to a perturbation error of O(n). Control variates based on
expanding around the posterior mode therefore makes the two
aims efficiency and accuracy incompatible.

However, it is not practical to use control variates based on
the posterior mode as we wish to avoid handling all the obser-
vations. A way around this is to obtain the posterior mode using
stochastic gradient descent based on an unbiased estimate of
the gradient from a subsample. Alternatively, one can use the
posterior mode from a fixed subsample. The following corollary
shows the approximation rates in Theorem 1 and the asymp-
totic behavior of σ 2

LL,m,n in Lemma 2 when the control variates
are based on the posterior mode from a fixed subset of ñ � n
observations. Its proof is in Section S2.

Corollary 1. Suppose that θ	
ñ − θ	

n = O(ñ− 1
2 ) and Assump-

tions 2 or 3 hold. Then,
(i) ∫

�

∣∣π(m,n)(θ ) − π(n)(θ )
∣∣dθ = O

(
n2

m2ñ3

)
.

(ii) Suppose that h(θ ) is a function such that
lim sup Eπ(n)

[h2(θ )] < ∞. Then,

∣∣Eπ(m,n)
[h(θ )] − Eπ(n)

[h(θ )]
∣∣ = O

(
n2

m2ñ3

)
.

(iii) σ 2
LL,m,n(θ ) = O( n2

mñ3 ) for �
− 1

2
n (θ − θ	

n ) = O(1).

To understand the implications of this result, suppose that
ñ = nκ ,m = nα and we target σ 2

LL,m,n(θ ) = O(1). Then, Corol-
lary 1 (iii) implies that the optimal subsample is obtained with
α = 2 − 3κ . The errors in (i) and (ii) then decrease with n if
only if κ < 2/3. If we for example take κ = 1/2, then α = 1/2
and the error in parts (i) and (ii) of Corollary 1 are O(n− 1

2 ). If
instead κ ≥ 2/3 then α ≤ 0, so the optimalm is decreasing in n,
and the errors in parts (i) and (ii) therefore increase with n. So,
for κ ≥ 2/3 there is a tradeoff between efficiency and accuracy.

An interesting intermediate approach uses ñ � n observa-
tions for the control variates initially and then updates θ	

ñ after
the sampler has reached a central region in the posterior. This
would correspond to using a κ closer to one, with the approxi-
mation error rates being closer to those in Theorem 1.

Finally, we note that it is straightforward to show that The-
orem 1 still holds if we construct the control variates using the
MLE rather than a posterior mode. To do so we assume that

Assumption 3. In Assumption 2, we replace π(n)(θ ) by L(n)(θ ),
so that θ	

n is now an MLE, �n(θ ) = ∂�(n)(θ )/∂θ∂θT , etc.

Then Theorem 1 holds under Assumption 3 andmild condi-
tions on the prior, for example, that p�(θ )/p�(θ	

n ) is bounded.

3.3. Approximating the Perturbation Error

Theorem 1 and Corollary 1 are large sample results on the error
in the perturbed posterior. In this section, we give sharper, but
more heuristic, results on this proportional error in the per-
turbed posterior and show that it is a lot smaller that the pro-
portional error in the perturbed likelihood.We then outline how
these sharper bounds can be used to estimate the proportional
error in practice.

Let ξm,n(θ ) = �̂(m,n)(θ ) − 1
2 σ̂

2
LL,m,n(θ ). Then, we can show

that for large m, E(ξm,n(θ )) = �(n)(θ ) − 1
2σ

2
LL,m,n(θ ) and

�(m,n)(θ ) = var(ξm,n(θ )) = σ 2
LL,m,n(θ ) + 2�(m,n)(θ ), where

�(m,n)(θ ) = σ 4
LL,m,n(θ )

8m
(
�

(4)
d,n(θ ) − 1

)− σ 3
LL,m,n(θ )

2
√
m

�
(3)
d,n(θ ),

(8)
where �

(b)
d,n := ϕ

(b)
d,n/σ

b
d,n for b = 1, . . . , 4.

We now take m = m(n), for example, m = O(
√
n) and

suppose that as n → ∞, σ 2
LL,m,n(θ ) → σ 2

LL,m,n(θ ) < ∞ and
�

(b)
d,n(θ ) → �

(b)
d,n(θ ), with �

(b)
d,n(θ ) bounded for all θ . Then, by

a standard central limit argument we can show that ξm,n(θ ) −
(�(n)(θ ) − 1

2σ
2
LL,m,n(θ )) tends to a normal density with mean 0

and variance σ 2
LL,m,n(θ ).

This central limit theorem result is driven by m becoming
large. Hence, if n is fixed andm ↑ m(n) = √

n we will have that
ξm,n(θ ) − �(n)(θ ) − (�(n)(θ ) − 1

2σ
2
LL,m,n(θ )) tends to a normal

with variance �(m,n)(θ ). Now for fixed n, ξm,n(θ ) − �(n)(θ ) −
(�(n)(θ ) − 1

2σ
2
LL,m,n(θ )) is bounded so that

E
[
exp

(
ξm,n(θ ) − �(n)(θ ) −

(
�(n)(θ ) − 1

2
σ 2
LL,m,n(θ )

))]
→ exp

(
1
2
�(m,n)(θ )

)
(9)

Lemma 4 gives analytical expression for the proportional
errors in the perturbed likelihood L(m,n)(θ ) and the perturbed
posterior. Its proof is straightforward and omitted. The normal-
ity assumption in the lemma assumes that n andm = m(n) are
large and is based on (9).

Lemma 4. Suppose that ξm,n(θ ) is normal with mean �(n)(θ ) −
1
2σ

2
LL,m,n(θ ) and variance �(m,n)(θ ) Then,

L(m,n)(θ ) − L(n)(θ )

L(n)(θ )
= exp

(
�(m,n)(θ )

)− 1, (10)

is the proportional error in the perturbed likelihood and

π(m,n)(θ ) − π(n)(θ )

π(n)(θ )
= exp

(
�(m,n)(θ )

)
Eπ(n)

(
exp

(
�(m,n)

)) − 1 (11)

is the proportional error in the perturbed posterior.

From part (iii) of Lemma 2, �(b)
d,n(θ ) = O(1) for any b ≥ 1.

Hence, it follows from Lemma 4 that the perturbation error (10)
in the likelihood depends on σ 2

LL,m,n(θ ), whereas the error in the
perturbed posterior (11) will tend to be much smaller because
the term

exp
(
�(m,n)(θ )

)
Eπ(n)

(
exp

(
�(m,n)

))
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will be close to 1 for all θ in the region ||�− 1
2

n (θ − θ	
n )|| ≤ k

for a fixed k > 0 as the posterior becomes very concen-
trated around θ	

n for n large. In particular, if we write
�(m,n)(θ ) = C + γ(m,n)(θ ), where C is independent of θ and
suppose that γ(m,n)(θ ) � C. Then, the proportional error in
the perturbed likelihood depends onC, whereas the error in the
perturbed posterior

exp
(
�(m,n)(θ )

)
Eπ(n)

(
exp

(
�(m,n)

)) = exp
(
γ(m,n)(θ )

)
Eπ(n)

(
exp

(
γ(m,n)

))
will be very small. If γ(m,n)(θ ) ≡ 0, then there is no approxi-
mation in the perturbed posterior even if C is large so that the
error in the perturbed likelihood is large. Thus, the error in
the perturbed posterior is likely to be much smaller than in the
perturbed likelihood.

We can use Lemma 4 to estimate the perturbation error in
the posterior for any given application. The term �(m,n)(θ ) can
be evaluated or estimated from a subsample because the terms
σLL,m,n(θ ) and �

(b)
d,n(θ ) are easily evaluated for any θ at the cost

of evaluating �i(θ ) for all i = 1, ..., n, or estimated from a sub-
sample. The term Eπ(n)

(exp(�(m,n))) can be estimated from the
MCMC output. Alternatively, we can use a Laplace approxima-
tion by taking π(n)(θ ) as approximately normal with mean θ	

n
and covariance matrix �n and then approximate �(m,n)(θ ) by a
quadratic centered at θ	

n , where θ	
n is obtained from the MCMC

output.

Remark 1. Similar results to the above can be obtained if
σ 2
LL,m,n(θ )/mβ → σ 2

LL,m,n(θ ) as n → ∞, with 0 < β < 1.

3.4. SubsamplingWith Correlated Proposals of u

Deligiannidis, Doucet, and Pitt (2016) proposed a general
method that correlates the current and proposed values of the
ui. The advantage of using this correlation is that it makes the
variance of the difference in the logarithms of the estimated
likelihoods in (7) much smaller than that of each of the terms
themselves. This leads, in our context, to being able to tar-
get much higher values of σ 2

LL,m,n(θ ) than unity thus requiring
much smaller values ofm. In this section, we adapt the method
of Deligiannidis, Doucet, and Pitt (2016) to our problem, and in
the next we discuss a variant of the correlated PM, which we call
the block correlated PM.

For the correlated PM approach to subsampling, we let u
be a vector of length n with binary elements ui that determine
if observation i is included (ui = 1) when estimating the log-
likelihood. Note that this is different from above, where u con-
tained the observation indices and was of length m. Moreover,
here the sample size is random and we let m	 be the expected
sample size. The sampling probabilities become Pr(ui = 1) =
m	/n for i = 1, . . . , n. We use the auxiliary variable (particle)
v in Deligiannidis, Doucet, and Pitt (2016) to induce depen-
dence at the current uci and proposed up

i sampling indicator
through a Gaussian copula as we now explain. The correlated
PM method uses a Gaussian autoregressive kernel K(vc, vp)

defined by vp = φvc +√
1 − φ2ε, where ε ∼ N (0, 1). We also

have vc ∼ p(v ) = N (v|0, 1) and K(vc, vp) is reversible with

respect to p(v ). We sample the ui’s by first generating vc and vp

and set uci = I[�(vc) ≤ m	

n ] and up
i = I[�(vp) ≤ m	

n ], where
� denotes the standard normal cdf.

As noted above, in contrast to Section 2.1, u is a binary vec-
tor. We can instead use the Horvitz-Thompson (Horvitz and
Thompson 1952) which (under SRS) is

d̂(m	,n) =
n∑

i=1

di,n
m	/n

ui,

and is unbiased for d(n). Note that we can write

d̂(m	,n) = 1
m	

n∑
i=1

ndi,nui, with σ 2
LL,m	,n = σ 2

ξ,m	,n

m	
,

where σ 2
ξ,m	,n = n

(
1 − m	

n

) n∑
i=1

(di,n − μd,n)
2

can be unbiasedly estimated by

σ̂ 2
ξ,m	,n = n2

(
1 − m	

n

)
1
m	

n∑
i=1

(di,n − μd,n)
2ui.

3.5. SubsamplingWith Block Proposals for u

Tran et al. (2017) proposed the block correlated PM algorithm
and show that it is a natural way to correlate the logs of the likeli-
hood estimates at the current and proposed value of the parame-
ters in our subsampling problem. Themethod divides the vector
of observation indices u = (u1, . . . , um) into G blocks and then
updates one block at a time jointly with θ . By setting a large G,
a high correlation ρ between the estimates of the likelihoods at
the proposed and current parameter values is induced, reducing
the variability of the difference in the logs of the estimated like-
lihoods at the proposed and current values of θ . More precisely,
they show that under certain assumptions ρ is close to 1 − 1/G.

3.6. Optimal Variance of the Estimator

Pitt et al. (2012), Doucet et al. (2015), and Sherlock et al. (2015)
obtained the value of var(log L̂), where L̂ is an unbiased likeli-
hood estimator (e.g., based on importance sampling or a particle
filter) that optimizes the tradeoff betweenMCMC sampling effi-
ciency and CC in standard PM. The consensus is that var(log L̂)

should lie in the interval [1, 3.3], where the less efficient the pro-
posal in the exact likelihood setting, the higher the optimal value
of var(log L̂). The optimal value is derived assuming that the cost
of computing one MCMC sample is inversely proportional to
var(log L̂).

For our problem, the log of the estimated likelihood
is log(̂L(m,n)(θ )) = �̂(m,n)(θ ) − 1

2 σ̂
2
LL,m,n(θ ), which has vari-

ance �(m,n)(θ ) = σ 2
LL,m,n(θ ) + 2�(m,n)(θ ), where �(m,n)(θ ) is

defined in (8). We take the computing cost as inversely propor-
tional to σ 2

LL,m,n(θ ) because our estimation effort is based on
computing �̂(m,n), with the extra cost of computing σ̂ 2

LL,m,n being
negligible in comparison.
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Thus, for the parameter expanded control variates, we follow
Pitt et al. (2012) and define the CT as

CT(σ 2
LL,m,n,�(m,n)) := IF(�(m,n))

σ 2
LL,m,n

,

with IF(�(m,n)) := 1 + 2
∞∑
l=1

ρl, (12)

which is proportional to the time required to produce one sam-
ple equivalent to an iid draw from the posterior distribution.
In (12),ρl is the l-lag autocorrelation of the chain and IF(�(m,n))

is the inefficiency factor (IF), which we note depends on�(m,n).
However, �(m,n) ≈ σ 2

LL,m,n for m large so that we will write
IF(σ 2

LL,m,n).
If we use the data expanded control variates, then it is nec-

essary to select both m and the number of clusters K. The CC
of each cluster involves computing �i, and its gradient and Hes-
sian at the centroid. An approximate upper bound for the cost of
a new cluster is therefore 3c�, where c� is the cost of a single �i-
evaluation.However, inmanymodels it is possible to reuse some
termswhen computing the gradient andHessian, so the true cost
is probablymuch closer to c�. For example, in the logistic regres-
sion model in Section 4, the gradient and Hessian will be func-
tions of exp(±xTi θ )which is already computed when evaluating
�i(θ ). Assuming that the cost of a cluster isωc�, for someω > 0,
a reasonable measure of CT is

CT(m,K)(σ
2
LL,m,n(K)) := IF(�2

(m,n)(K)) × (ωK + m). (13)

This expression is similar to Tran et al. (2016), who also take
into account an overhead cost in their CT. We find m and K by
standard numerical optimization using an expression for the IF
(e.g., the ones derived in Pitt et al. 2012 for PM and the Tran
et al. 2017 for block PM).

For the correlated PM, we can follow Deligiannidis, Doucet,
and Pitt (2016) and show for our application that the variance
of the log of the estimated likelihood at the proposed values of
u and θ conditional on the estimated likelihood at the current
values of u and θ is τ 2

m,n = �(m,n)(1 − ρ2) ≈ σ 2
LL,m,n(1 − ρ2),

where ρ is the correlation between the logs of the two estimates
of the likelihood, with the optimal value of τ 2

m,n around 4. Simi-
larly, for the block correlated PM,Tran et al. (2017) show that the
variance of the log of the likelihood estimator at the proposed
values conditional on only updating one block of u, keeping
the others fixed, is τ 2

m,n,G = �(m,n)(1 − ρ2
G) ≈ σ 2

LL,m,n(1 − ρ2
G).

Let G = G(m) = O(mβ ). Using Corollary 1 and ρG(m) = 1 −
1/G(m), it follows using the same notation as in the discus-
sion below that corollary that τ 2

m,n,G(θ ) = O(1) is achieved if we
take m = O(nα ), ñ = nκ with 2 = 3κ + α(1 + β). If κ = 1/2
and β = 0, that is G does not depend on m, then the approxi-
mations in parts (i) and (ii) of Corollary 1 are O(n− 1

2 ). We can
then ensure that τ 2

m,n,G(θ ) is around the optimal value of 4 while
σ 2
LL,m,n � 1 by adaptingG. In practice, we usually takeG = 100

which gives us a correlation close to 0.99.
We emphasize that it is the combined effect of using both the

control variates and correlating the logs of the estimated likeli-
hoods at the current and proposed values thatmakes themethod
scale well.

3.7. Strategy for SubsamplingMCMC

We have argued that the parameter expanded control variates
have good asymptotic properties and that the data expanded
control variates have the advantage of not requiring a central
measure θ	

n of θ . Data expanded control variates also have the
advantage of working well over the whole parameter space since
they are always evaluated at the proposed θ . Our proposed sub-
sampling MCMC algorithm will therefore begin with the data
expanded control variates during a training period and then
switch to the parameter expanded control variates once we have
learned a reasonable value of θ	

n . This value is set at the end of
the training period by computing the geometric median (Vardi
andZhang 2000) of the 10%preceding iterations, which requires
evaluating the likelihood over the full dataset once. We include
this in our CC.

Although we have argued that the data expanded control
variates have poor asymptotic properties for large p, we can still
use them with a reasonably small K as the error decreases at the
fast rate O(m−2). Hence, there is no need to make the approxi-
mation very accurate by using a large K in relation to n, as this
increases the computing cost.

4. Applications

4.1. Empirical Studies

This section performs a number of experiments to compare our
proposed algorithms against both standard MCMC, which we
call MH and other competing subsampling methods. To com-
pare against other subsampling approaches, we follow Bardenet,
Doucet, and Holmes (2017). We compare the standard (inde-
pendent) PM, the correlated PM and the block correlated PM
using the data expanded control variates, since, for our exam-
ples, the parameter expanded control variates will give a very
small variance once we find a good θ	

n , and hence there are no
gains from implementing BPM or CPM compared to PM. How-
ever, note that correlating or blocking subsamples is especially
useful in the training phase of our algorithm that combines both
types of control variates as described in Section 3.7, when we are
learning about an appropriate θ	

n , because otherwise the algo-
rithm is likely to get stuck.

4.2. Models and Datasets

We consider three models in our experiments. The first two,
which are used for comparing against other subsampling
approaches, are AR(1) models with Student-t iid errors εt ∼
t(5) with five-degrees of freedom

M1 : yt = β0 + β1yt−1 + εt [θ = (β0 = 0.3, β1 = 0.6)]
M2 : yt = μ + �(yt−1 − μ) + εt [θ = (μ = 0.3, � = 0.99)]

with priors

p(β0, β1)
ind.= U (β0| − 5, 5) · U (β1|0, 1)

and p(μ, �)
ind.= U (μ| − 5, 5) · U (�|0, 1),

where U (·|a, b) is the uniform density on the interval [a, b].
Model M2, the so called steady state AR, is interesting as �

close to 1 gives a weakly identified μ, with a posterior that
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Table . Experimental settings for comparing proposals for u in the applications.

Example n Proposal 100mopt/n 100Kopt/n σ 2
LL,opt

Logistic .× 106 RWM/IMH
Uncorr . . .
Block/Corr . . .

AR():M1 105 RWM
Uncorr . . .
Block/Corr . . .

AR():M2 105 RWM
Uncorr . . .
Block/Corr . . .

n is the number of observation. The proposals are the random walk metropo-
lis (RWM) q(θ |θc) = N (θ |θc, �θ	

n
) and the Independent MH (IMH) q(θ ) =

t10(θ |θ	
n , �

θ	
n
), where the location parameter is θ	

n is the posteriormode and�
θ	
n

is thenegative inverseHessianof the log-posterior evaluated at θ	
n , bothobtained

from an initial numerical optimization. We denote the optimal sample size and
number of clusters by mopt and Kopt , and σ 2

LL,opt is the corresponding optimal
variance of the log-likelihood estimate.We useN = 50,000 iterates after discard-
ing  iterates as burn-in.

concentrates very slowly as n increases (Villani 2009). We
simulate n = 100,000 observations from both models.

The third model is the logistic regression

p(yi|xi, β) =
(

1
1 + exp(xTi β)

)yi ( 1
1 + exp(−xTi β)

)1−yi
,

with p(β) = N (β|0, 10I),
which we fit to three datasets. The first dataset concerns firm
bankruptcy with n = 4,748,089 observations with firm default
as the response variable and eight firm-specific and macroe-
conomic covariates (p = 9 with intercept); see Giordani et al.
(2014) for details. We use this dataset to study the different pro-
posals for u with two proposals for θ , the random walk MH and
the independence MH. The second dataset is the well known
HIGGS data (Baldi, Sadowski, and Whiteson 2014) with the
response “detected particle” explained by 21 covariates consist-
ing of kinematic properties measured by particle detectors (we
exclude high-level features for simplicity). From the 11 million
observations, we use a subset of n =1,100,000 observations. The
third dataset is Cover Type (Covtype), which was originally a
classification problem with seven classes. We follow Collobert

et al. (2002) and Bardenet, Doucet, and Holmes (2017) and
transform it into a binary classification problem. The dataset
consists of n = 550,087 observations and p = 11 variables, after
removing the qualitative variables for simplicity. We use these
three datasets to benchmark our proposed subsamplingMCMC
algorithm in Section 3.7 against standard MCMC using a ran-
dom walk MH proposal.

4.3. Experiment 1: Comparing Different Proposals for u

The first comparison between the different proposals for u uses
the logistic regression with the Bankruptcy dataset described in
Section 4.2. Since there are relatively few observations corre-
sponding to bankruptcy (yi = 1) (41,566 defaults), we only sub-
sample the observations with yk = 0, that is, the first term in

�(θ ) =
∑
i:yi=1

�i(θ ) +
∑
i:yi=0

�i(θ ),

is always evaluated (and included in the CC).
The tuning parametersm and K are determined by optimiz-

ing the CT in (13) with respect tom and K, with

σ 2
LL,m,n(K) = n2σ 2

d,n(K)

m
.

We estimate the relation σ 2
d,n(K) = C0Kν for each example by

running the clustering algorithm on a grid of K and for each
value of the grid we compute σ 2

d,n at the MLE θ	
n . Given C0 and

ν, it is straightforward to use the expression for the IF in Pitt
et al. (2012) (PM) and Tran et al. (2017) (block PM) tominimize
CT(m,K) in (13) and obtain mopt and Kopt and the correspond-
ing σ 2

opt = σ 2
LL,mopt,n(Kopt). The correlated PM uses m	

opt = mopt
and the same value of Kopt as the block correlated PM. Table 1
summarizes the settings for comparing the proposals for u,
including the settings for the AR example in Section 4.4. Finally,
we set G = 100 (ρG = 0.99) for the block PM and φ = 0.9999
(κ = 0.9863) for the correlated PM.

Figure 1 shows the sampling efficiency of the PM algorithms
with the different proposals for u relative to that of the MH
algorithm on the full dataset as measured by the relative com-
putational time (RCT) defined, for any base sampler A, as

Figure . Logistic regression for firm bankruptcy. For algorithmA (uncorrelated (Uncorr), block (Block) and correlated (Corr) PM) the figure shows the relative inefficiency
factors (RIF) and relative computational time for RWM proposal (left panel) and IMH (right panel). For RCT, the filled (dashed) bar correspond to ω = 3 (ω = 1) in ().
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Figure . Logistic regression example. Kernel density estimates of marginal posteriors obtained by the IMH proposal. The figure shows the marginal posteriors obtained
using the uncorrelated (Uncorr), block (Block) and correlated (Corr) PM (dashed blue, red, and green, respectively) and MH (solid black line).

CTMH/CTA. The figure also shows the relative if (RIF) , which is
defined as IFA/IFMH, where each IF is estimated using thecoda
package in R (Plummer et al. (2006). The figure shows that both
the correlated and block PM schemes significantly outperform
standard independent PM and also the MH algorithm applied
to the full dataset with respect to RCT. Figure 2 plots the kernel
density estimates (KDE) of the posterior densities of the param-
eters for the three PM schemes and the exact MH approach.
The figure shows that targeting a large σ 2

LL,m,n (≈ 56) for the
block correlated and correlated PM samplers results in a very
small bias in this application, with the proportional approxima-
tion error in (11) being −0.01 for both the block correlated and
correlated PM and −0.0001 for the standard PM.

4.4. Experiment 2: Comparison Against Other
Subsampling Approaches

We compare our algorithm against the approximate algorithms
austerity MH (Korattikara, Chen, and Welling 2014), the con-
fidence sampler (Bardenet, Doucet, and Holmes 2014), the
confidence sampler with control variates (Bardenet, Doucet,
and Holmes 2017), and the exact algorithm Firefly Monte
Carlo (Maclaurin and Adams 2014). See Bardenet, Doucet,
and Holmes (2017) for an excellent discussion of these
algorithms.

We follow Bardenet, Doucet, and Holmes (2017) in setting
the tuning parameters of the competing algorithms, with the
following exceptions. First, we adapt during the burn-in phase
to reach an acceptance probability of α = 0.35 (instead of α =
0.50), which is optimal for RWMwith two parameters (Gelman,
Roberts, and Gilks 1996). For the PMs we use α = 0.15 as in

the five-parameter example by Sherlock et al. (2015). Second,
the p-value of the t-test in the Austerity MH algorithm is set to
ε = 0.01 (instead of ε = 0.05) to put the approximation error
of the method on par with the other methods. Setting ε = 0.05
gives an unusably poor approximation (and also produces a
much lower RCT than our methods). Additionally, the confi-
dence sampler with proxies (from a Taylor series approximation
with respect to θ) requires that the third derivative can be
bounded uniformly for every observation and any θ . This bound
is achieved by computing on a θ-grid, where the posterior mass
is located (this extra CC is not included in the total cost here).

Table 2 shows themean of the sampling fraction overMCMC
iterations. We note that both confidence samplers and the Aus-
terityMH estimate the numerator and denominator in each iter-
ation, and therefore require twice as many evaluations in a given
iteration as MCMC (in some cases evaluations from the previ-
ous iteration can be reused). It is clear that our algorithmsmakes
very efficient use of a small subsample, especially the block and
correlated PM samplers.

Figures 3 and 4 show the marginal posteriors obtained by,
respectively, alternative sampling approaches and the various
PM approaches. Moreover, the figures show the sampling effi-
ciency of the different subsampling MCMC algorithms relative
to that of the MH algorithm as measured by the RCT. Figure 3
shows the striking result that many of these approaches are not
more efficient than MH on the whole dataset. The PM algo-
rithms (and also the confidence samplers) provide excellent
approximations: indeed, the perturbation error in (11) is less
than 10−6 for all our methods. Firefly Monte Carlo, although
being an exact algorithm, is highly inefficient in this example, as
also documented in Bardenet, Doucet, and Holmes (2017). In
fact, for M2, we were unable to obtain a single effective sample

Table . AR-process example.

MH Uncorr Block Corr Conf ConfProxy AustMH Fireffy

M1 . . . . . . . .
M2 . . . . . . . .

Meanof sampling fraction f = m/noverMCMC iterations formodelsM1 andM2 withMH (using the full dataset), uncorrelated PM (Uncorr), block PM (Block) and correlated
PM (Corr), confidence sampler (Conf), confidence sampler with proxies (ConfProxy), Austerity MH (AustMH), and Firefly Monte Carlo (Firefly).
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Figure . AR-process example: Results for other subsampling algorithms. The left and right panels, respectively, show the results for modelsM1 andM2 . Each column shows
the kernel density estimates of marginal posteriors (top two) and for algorithmA (confidence sampler (Conf), confidence sampler with proxies (ConfProxy), Austerity MH
(AustMH), and Firefly Monte Carlo (Firefly)) the relative computational time (RCT) (bottom).

out of 55,000 iterations, and hence it was impossible to construct
a KDE in this case.

We conclude that the only viable subsampling MCMC
approaches are the confidence sampler with proxies (Bardenet,
Doucet, and Holmes 2017) and the PM approaches we propose.
Moreover, a significant speed up is only obtained with the cor-
related PMs (both correlated and block).

4.5. Experiment 3: SubsamplingMCMC versusMCMC

Our final experiment compares standard MCMC against our
algorithm with a combination of control variates based on
expanding θ and z as described in Section 3.7. We use a ran-
dom walk proposal with a scaled covariance matrix evalu-
ated at a θ	

n obtained from optimizing the posterior based on
0.1% of the data. The same value is used as a starting value
for the algorithms. The scaling factor is 2.38/

√
p for MCMC

(Roberts, Gelman, andGilks 1997) and 2.5/
√
p for subsampling

MCMC (Sherlock et al. 2015). We set the training period (see
Section 3.7) to 5000 iterations and sample 50,000 draws there-
after. Our algorithm uses the block PM for updating u, where
we setm and K following Section 4.3. After the training period,
we reset m as the initial m is now too large (since the control
variates based on θ now give an accurate approximation). We
set the new value to m = 1000, which is sensible for block PM
with G = 100.

Figure 5 shows the RCT for each of the datasets. Significant
speed ups are achieved by switching to the parameter expanded
control variates once a sensible value of θ	

n is found. Finally,
Table 3 shows some statistics of the absolute proportional error
in the perturbed posterior in (11) over 100 MCMC iterations. It
is evident that the perturbed posterior is very accurate, a result
that we also confirm graphically by inspecting KDE estimates
of marginal posteriors (not shown here).

Figure . AR-process example: Results for subsampling PM algorithms. The left and right panels, respectively, show the results for modelsM1 andM2 . Each column shows
the kernel density estimates ofmarginal posteriors (top two) and for algorithmA (uncorrelated (Uncorr), block (Block) and correlated (Corr) PM) the relative computational
time (RCT) (bottom). For RCT, the filled (dashed) bar correspond toω = 3 (ω = 1) in ().
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Table . Subsampling MCMC versus MCMC.

Mean Max % % %

Bankruptcy 1.418 × 10−6 1.243 × 10−5 1.246 × 10−6 1.255 × 10−6 2.284 × 10−6

HIGGS 8.594 × 10−8 7.104 × 10−7 7.730 × 10−8 7.823 × 10−8 9.072 × 10−8

Covtype 5.136 × 10−8 2.358 × 10−6 8.207 × 10−9 8.324 × 10−9 1.853 × 10−7

The table shows the mean, max, and 50, 75, 99% quantiles of the absolute error in () computed using  draws from the perturbed posterior distribution. The results
are shown for the Bankruptcy, HIGGS, and Covtype datasets.

Figure . Subsampling MCMC versus MCMC. The figure shows relative com-
putational time (RCT) for different datasets. The RCT over the parameters are
summarized by the minimum (green), median (blue), and maximum (red). The PM
algorithm combines the control variates based on expanding θ and z as described
in Section . and use block proposals for u. The filled (dashed) bars correspond to
the lower (upper) bound of the computational cost discussed in Section ..

5. Conclusions and Future Research

We propose a framework for speeding up MCMC by data
subsampling for datasets with many independent units. At each
MCMC iteration, we use two types of control variates to estimate
the log of the likelihood unbiasedly and efficiently using only a
small random fraction of the data. This results in a PM sampling
scheme with a slightly perturbed posterior. We also use two cor-
related sampling schemes to improve the mixing of the Markov
chain. We show that by taking m = O(n

1
2 ), the total variation

norm of the error in the perturbed posterior is O(n−2) if we
have access to the MLE based on all data for constructing the
control variates, orO(n− 1

2 ) if the MLE is based on a subset with
ñ = O(n

1
2 ) observations. We also show (more heuristically) as

well as empirically that in regions of high concentration of the
posterior the proportional perturbation error of the posterior
is extremely small and much smaller than the corresponding
error in the likelihood. Finally, we document large speed ups
relative to MCMC using all the data and show that our method
outperforms other recent subsampling approaches in the
literature.

If we change the PM sampling scheme to a Metropolis-
within-Gibbs one where we generate the u conditional on θ

and then θ conditional on u, then we can obtain exact deriva-
tives of the log of the estimated likelihood. That means that
the subsampling approach can use efficient proposals such as
those based on Gibbs sampling, Laplace approximations, and
Langevin diffusions and so can readily scale up in terms of
the number of unknown parameters. A recent example using
HamiltonianMonte Carlo (Dang et al. (2017) demonstrates that
our approach can scale to larger dimensional problems.

One immediate application of our methods will be to prob-
lems where computing the density of each data unit is very

expensive, although the number of data units is not necessar-
ily large. This may be the case when latent variables are present
so the density of each observation is an integral.

Supplementary Material
The online supplementary materials contain implementation details,
proofs, and displaying how our theory applies to generalized linear mod-
els.
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