EFFECTS OF BIOLOGICAL AND PHYSICOCHEMICAL VARIABLES ON THE VALVE MOVEMENT RESPONSES OF FRESHWATER BIVALVES TO MANGANESE, URANIUM, CADMIUM AND COPPER

SCOTT JOHN MARKICH

Thesis submitted for the degree of Doctor of Philosophy

UNIVERSITY OF TECHNOLOGY, SYDNEY

October 1998

"Bivalves: Guardians of water quality." (Courtesy of Delta Consult, Kapelle, The Netherlands) To my family, Judith, Ivan, Sean, Rebecca and Jeremy

"A man would accomplish nothing if he waited til he could do it so well that no one could find fault with it."

Cardinal John Henry Newman (1801–1890)

CERTIFICATE

I certify that this thesis has not already been submitted for any degree and is not being submitted as part of candidature for any other degree.

I also certify that the thesis has been written by me and that any help that I have received in preparing this thesis, and all sources used, have been acknowledged in this thesis.

Scott John Markich

ACKNOWLEDGEMENTS

A number of individuals and organisations have assisted in the completion of this research work.

I gratefully acknowledge the financial support and provision of facilities by the Australian Nuclear Science and Technology Organisation (ANSTO) and the University of Technology, Sydney (UTS) throughout my research project. I am also grateful for the personal financial support provided by an Australian Postgraduate Award and an Australian Institute of Nuclear Science and Engineering Postgraduate Award during my candidature.

I am greatly indebted to my supervisors, Drs Ross Jeffree, Paul Brown (Environment Division, ANSTO) and Richard Lim (Department of Environmental Sciences, UTS), for their constructive advice, encouragement and critical evaluation of ideas and written material throughout the course of my research project. Dr Paul Brown was instrumental in the mathematical development of the extended free ion activity model.

I am particularly grateful to Drs Ross Jeffree and Paul Brown; they are exceptional mentors and friends. The opportunity to be able to work alongside Ross and Paul, and be exposed to their depth of scientific insight, liberal philosophy and rigorous methodological approach to science, has left a long-lasting impression on me; one that will surely benefit the way I perceive and perform science in the future. Furthermore, both Ross and Paul assisted in keeping my overall research objectives in view, even if it was at the local Pub or from the other side of the world.

A special thankyou to Dr Wally Zuk (former Director, Environment Division, ANSTO), who stood by me through hard times and continually provided emotional support and 'a kick in the butt' when I needed it most. Wally, you gave me an opportunity to excel in a field I thoroughly enjoy; and for that I most dearly thank you.

The contributions of the following people are also acknowledged.....

- Dr Chris Humphrey, Mr Ian Brown, Mr John Phitzner and Ms Caroline Camilleri (Environmental Research Institute of the Supervising Scientist, ERISS), who at various times collected (I.B. and J.F.) and aged (C.H.) specimens of *V. angasi* from the crocodile infested waters of Magela Creek, as well as providing surface water samples (I.B., C.C.) on several occasions;
- Mr David Hill, Mrs Elizabeth Brooks, Mrs Deborah Wilkins, Mrs Julie Weir (Environment Division, ANSTO), Dr Simon Apte, Mr Steven McEvoy and Mr John

Buchanan (Division of Energy Technology, CSIRO) who at various stages assisted with chemical analyses of the synthetic and natural waters;

- Mr Paul McGougan (Department of Chemistry, University of Queensland) for performing Mn²⁺ analyses of synthetic and natural water samples using electron paramagnetic resonance spectroscopy (EPRS);
- Dr Cristophe Moulin (Laboratoire de Spectroscopie Laser Analytique, Commissariat A L'energie Atomique, France) for performing UO₂²⁺ and UO₂OH⁺ analyses of synthetic and natural water samples using time-resolved laser-induced fluorescence spectroscopy (TRLFS);
- Ms Anne Tibbett (Division of Energy Technology, CSIRO) for performing elemental (C, H, N and S) analyses of fulvic acid isolated from natural waters;
- Mr Ron Szymczak (Environment Division, ANSTO) for providing useful advice on surface water sampling protocols;
- Dr Simon Apte and Ms Leigh Hales (Division of Energy Technology, CSIRO) for providing practical advice on the use of ion-selective electrodes;
- Mr Michael Hyde (Environment Division, ANSTO) and Dr Lorraine Holley (Department of Environmental Sciences, UTS) for providing advice and assistance in constructing the electronic components involved in measuring valve movement behaviour;
- Dr Peter Petocz (Department of Mathematics and Statistics, UTS) for providing advice on statistical issues;
- Mrs Marilyn Power and Mrs Val Sadler (Environment Division, ANSTO) for technical assistance;
- Ms Sandra Gorringe, Ms Jan Darrington, Mrs Margaret Ryan and the other dedicated library staff at ANSTO, for their liberal assistance and dogged pursuit of literature articles, often from obscure sources;
- Mr John Twining, Dr John Ferris, Dr Peter Holden (all from the Environment Division, ANSTO) and Dr Graeme Batley (Division of Energy Technology, CSIRO) for stimulating ideas and discussions on various aspects of the research, as well as providing constructive comments on the manuscript; and
- Sydney Water Corporation for providing several in-confidence reports.

I would like to thank my wife Judith, for her love, support and patience over the past few years. She has withstood all the trials and tribulations that come with a Ph.D. degree. Finally, I am greatly indebted to my parents, Judith and Ivan, for their steadfast love, encouragement and financial support throughout my formal education. To them I dedicate this work.

PUBLICATIONS ARISING FROM THIS THESIS

The following papers have been published, or submitted for publication, from material contained in this thesis:

- Brown, P.L., Markich, S.J. and Jeffree, R.A. 1994. Migration of uranium: Integrating geochemistry with biomonitoring to evaluate and predict its environmental impact. *Radiochimica Acta* 66/67, 351–357.
- Markich, S.J. 1995. Behavioural responses of the tropical freshwater bivalve *Velesunio angasi* as real-time early-warning measures of uranium exposure. In: *Wetlands Research in the Wet-Dry Tropics of Australia* (C.M. Finlayson, Ed.). Supervising Scientist, Darwin. pp. 247–257.
- Markich, S.J., Brown, P.L. and Jeffree, R.A. 1996. The use of geochemical speciation modelling to predict the impact of uranium to freshwater biota. *Radiochimica Acta* 74, 321–326.
- Markich, S.J., Brown, P.L., Batley, G.E., Apte, S.C. and Stauber, J.L. 1997. Incorporating Metal Speciation and Bioavailability into Guidelines for Fresh and Marine Waters in Australia and New Zealand. ANSTO/C503. Australian Nuclear Science and Technology Organisation, Sydney. 88 pp. (Integrated into the 1998 draft Australian water quality guidelines).
- Markich, S.J. and Brown, P.L. 1998. Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. *The Science of the Total Environment* **217**, 201–230.
- Markich, S.J. and Brown, P.L. 1999. Thermochemical Data for Environmentally-Relevant Elements. 1. Na, K, Ca, Mg, Mn, Fe, Al, U, Cu, Cd, Zn and Pb with Model Fulvic Acid (Aspartate, Citrate, Malonate, Salicylate and Tricarballyate). ANSTO/E735. Australian Nuclear Science and Technology Organisation, Sydney. (In press).
- Markich, S.J., Brown, P.L., Jeffree, R.A. and Lim, R.P. Evaluation of the free ion activity model of metal-organism interaction. 1. Valve movement responses of *Velesunio angasi* (Bivalvia: Hyriidae) to Mn and U. Submitted to *Aquatic Toxicology*.
- **Brown, P.L.** and **Markich, S.J.** Evaluation of the free ion activity model of metalorganism interaction. 2. Extension of the conceptual model. Submitted to *Aquatic Toxicology*.

Reprints (where permitted) of published papers are given in Appendix L.

OTHER RELATED RESEARCH PUBLICATIONS

- Jeffree, R.A., Markich, S.J. and Brown, P.L. 1993. Comparative accumulation of alkaline-earth metals by two freshwater mussel species from the Nepean River, Australia: Consistencies and a resolved paradox. *Australian Journal of Marine and Freshwater Research* 44, 609–634.
- Markich, S.J. and Jeffree, R.A. 1994a. Absorption of divalent trace metals as analogues of calcium by Australian freshwater bivalves: An explanation of how water hardness reduces metal toxicity. *Aquatic Toxicology* **29**, 257–290.
- Markich, S.J. and Jeffree, R.A. 1994b. Investigation on the Use of Freshwater Bivalves to Monitor the Bioavailable Levels of Elements in South Creek, Hawkesbury-Nepean River System. ANSTO/C363. Australian Nuclear Science and Technology Organisation, Sydney. 36 pp.
- Jeffree, R.A., Markich, S.J. and Brown, P.L. 1995. Australian freshwater bivalves: Their application in metal pollution studies. *Australasian Journal of Ecotoxicology* 1, 33–41.
- Jeffree, R.A., Markich, S.J., Lefebvre, F., Thellier, M. and Ripoll, C. 1995. Shell microlaminations of the freshwater bivalve *Hyridella depressa* as an archival monitor of manganese water concentration: Experimental investigation by depth profiling using secondary ion mass spectrometry (SIMS). *Experientia* **51**, 838–848.
- Brown, P.L., Jeffree, R.A. and Markich, S.J. 1996. Kinetics of ⁴⁵Ca, ⁶⁰Co, ²¹⁰Pb, ⁵⁴Mn and ¹⁰⁹Cd in the tissue of the freshwater bivalve *Velesunio angasi*: Further development of a predictive and mechanistic model of metal bioaccumulation. *The Science of the Total Environment* **188**, 139–166.
- Markich, S.J. 1996. Element Concentrations in the Soft Tissues of a Freshwater Bivalve Species from the Mammy-Johnson River, NSW. ANSTO/C485. Australian Nuclear Science and Technology Organisation, Sydney. 29 pp.
- **Twining, J.T., Ferris, J.M.** and **Markich, S.J.** 1996. Bioaccumulation of ¹³⁷Cs and ⁸⁵Sr by an Australian sub-tropical freshwater teleost. *The Science of the Total Environment* **192**, 245–257.
- Markich, S.J. and Camilleri, C. 1997. Investigation of Metal Toxicity to Tropical Biota: Recommendations for Revision of the Australian Water Quality Guidelines. Supervising Scientist Report 127. Supervising Scientist, Canberra. 87 pp.
- Barata, C., Baird, D.J. and Markich, S.J. 1998. Influence of genetic and environmental factors on the tolerance of *Daphnia magna* to essential and non-essential metals. *Aquatic Toxicology* **42**, 115–137.
- Franklin, N., Stauber, J.L., Markich, S.J. and Lim, R.P. 1999. pH-dependent toxicity of copper and uranium to a tropical freshwater alga (*Chlorella* sp.). *Aquatic Toxicology* (In press).

ABSTRACT

The valve movement responses (VMR) of freshwater unionid bivalves to increasing concentrations of total Mn, U, Cd or Cu, under conditions of varying pH and/or dissolved organic carbon (model fulvic acid) concentrations, were experimentally measured using a computer-based data acquisition system. Specifically, Velesunio angasi, from Magela Creek in tropical northern Australia, was exposed to Mn and/or U in synthetic freshwater between pH 5.0 and 6.0, both with and without model FA (3.15 or 7.91 mg L⁻¹). In contrast, *Hyridella depressa*, from the Hawkesbury-Nepean River in temperate eastern Australia, was exposed to Cd and/or Cu in synthetic freshwater between pH 6.5 and 7.5, both with and without model FA (4.20 or 11.2 mg L⁻¹). Despite differences in bivalve species, geographical location (climate) and water chemistry, valve movement patterns and concentration-response curves were similar for all metals. The results showed that VMR is a quantifiable, sensitive and rapid, realtime endpoint for assessing the toxic effects of metal exposures. For Mn or Cd, VMR was independent (P > 0.05) of pH and/or model FA concentration. In contrast, VMR to U or Cu was highly dependent ($P \le 0.05$) on pH and/or model FA concentration; individuals were more sensitive to U or Cu at low pH and model FA concentrations. Additionally, results from the concentration-response experiments were used to evaluate the free ion activity model (FIAM). Drug-receptor theory was used to develop an extended form of the FIAM to obtain a more rigorous conceptual model. The developed model explains the conditions under which the FIAM will be effective in explaining biological response (BR), but more importantly, precisely quantifies the interaction of metal species at cell receptor sites. Valve movement responses to Mn or Cd were directly proportional to the activity of the free metal ion (Mn²⁺ or Cd²⁺), which is consistent with both the original and extended FIAM. In contrast, VMR to U or Cu were regarded as an 'exception' to the original FIAM, since they were a weighted function of the activities of the free metal ion and the 1:1 metal hydroxide species $(UO_2^{2+} + UO_2OH^+ \text{ or } Cu^{2+} + CuOH^+)$. However, this result is consistent with the extended FIAM, with BR primarily dependent on the activity of UO_2^{2+} or Cu^{2+} , and secondarily dependent on the activity of OH⁻. Based on the extended FIAM, this study proposes, for the first time, a quantitative method of uncoupling the biological effects of a metal hydroxide species from that of amelioration of the free metal ion by H⁺. This is a major outcome, since the activities of metal hydroxide and H⁺ cannot be independently varied. Additionally, concentration-response data obtained from the literature, that are considered to be 'exceptions' to the original FIAM, were reexamined and found to be consistent with the extended FIAM. Overall, the extended FIAM provides a potentially more useful tool for evaluating metal-organism interaction than the original FIAM.

TABLE OF CONTENTS

VOLUME ONE

			Pa	ige
ACKN	OWLED	GEMENT	Ś	v
PUBL	ICATION	S ARISI	IG FROM THIS THESIS	vii
OTHE		TED RES	EARCH PUBLICATIONS	viii
ABST	RACT			ix
TABL	E OF CO	NTENTS		х
LIST (OF TABL	ES		vii
LIST (OF FIGU	RES	x	xiv
LIST		REVIATIC	NS xx	xiii
SECTIO	N ONE	: INTRO	DDUCTION	1
1.1	METAL	S IN THE	ENVIRONMENT	2
1.2	EFFEC	TS OF M	ETALS ON AQUATIC BIOTA	. 3
	1.2.1	Level of	Ecological Organisation	3
	1.2.2	Toxicolo	ogical Endpoints for Assessing Metal Effects	6
1.3	USE OI	= BIVALV	'ES FOR ASSESSING POLLUTION	7
1.4	VALVE	MOVEM	ENT BEHAVIOUR	. 9
	1.4.1	Valve N	lovement Patterns	9
	1.4.2	Measur	ement of Valve Movement Behaviour	13
	1.4.3	Valve M Environ	lovement Behaviour as an Indicator of mental Stress.	16
		1.4.3.1	Introduction	16
		1.4.3.2	The Effect of Trace Metals on Valve Movement	
			Behaviour	17
1.5	METAL	SPECIA	TION AND BIOAVAILABILITY IN AQUATIC	
	SYSTE	MS		24
	1.5.1	Free ior	Activity Model (FIAM)	24
		1.5.1.1	Introduction	24
		1.5.1.2	Formulation of the FIAM	24
		1.5.1.3	Application of the FIAM	29
		1.5.1.4	Summary of the FIAM	31
	1.5.2	Speciat Freshwa	ion and Bioavailability of Mn, U, Cd or Cu in ater	32
		1.5.2.1	Introduction	32
		1.5.2.2	Manganese	33

		1.5.2.3	Uranium	38
		1.5.2.4	Cadmium	41
		1.5.2.5	Copper	45
1.6	USE OF	GEOCH	IEMICAL SPECIATION MODELLING TO	
	PREDIC	T META	L SPECIATION AND BIOAVAILABILITY IN	
	AQUAT	IC SYST	EMS	51
	1.6.1	Determi	nation of Metal Speciation	51
	1.6.2	Geoche	mical Speciation Modelling	52
		1.6.2.1	Methods, Assumptions and Limitations	52
		1.6.2.2	Metal-DOM Interactions	55
		1.6.2.3	Conceptual Models of Metal Binding by Humic	
			Substances	57
CEOTIC				~~
SECHO		: INVE	STIGATIONAL STRATEGY	62
2.1	OBJEC ⁻	TIVES		63
2.2	MAGEL	A CREE	κ	66
	2.2.1	Study A	rea	66
	2.2.2	Investig	ational Rationale	68
2.3	HAWKE	SBURY-	NEPEAN RIVER	71
	2.3.1	Study A	rea	71
	2.3.2	Investig	ational Rationale	74
SECTIO		EE: W	ATER CHEMISTRY OF MAGELA CREEK	
		AN	D THE HAWKESBURY-NEPEAN RIVER	76
2 1			1	77
3.1 2.2			N	70
3.2				19
5.5	221			02 92
	3.3.1 2.2.2	Matorio	le and Mathada	02 02
	3.3.2			03
		3.3.2.1	Sampling Strategy	83
		3.3.2.2		83
		3.3.2.3	Clearling of Sampling Equipment	84 80
		3.3.2.4		90
		3.3.2.5		Ø/
		3.3.2.6		88
		3.3.2.7		90
	J.J.J	Results		90

3.4	INCOR	ORATION OF A MODEL FULVIC ACID INTO	
	SYNIH		94
	3.4.1	Introduction	94
	3.4.2	Magela Creek	95
		3.4.2.1 Materials and Methods	95
		3.4.2.2 Results and Discussion 1	00
	3.4.3	Hawkesbury-Nepean River 1	06
		3.4.3.1 Materials and Methods 1	06
		3.4.3.2 Results and Discussion 1	07
3.5	PREPA	ATION OF SYNTHETIC WATER 1	14
3.6	SUMM	זץ 1	15
SECTI		VALVE MOVEMENT BEHAVIOUR OF V. ANGASI EXPOSED TO MANGANESE AND URANIUM (MAGELA CREEK) AND H. DEPRESSA AND V. AMBIGUUS EXPOSED TO CADMIUM AND COPPER (HAWKESBURY-NEPEAN BIVER) 1	17
			. /
4.1	INTRO	JCTION 1	18
4.2	GENEF	L MATERIALS AND METHODS 1	20
	4.2.1	Collection of Specimens 1	20
		4.2.1.1 <i>V. angasi</i> (Magela Creek) 1	20
		4.2.1.2 H. depressa and V. ambiguus	
		(Hawkesbury-Nepean River) 1	20
	4.2.2	Acclimation and Feeding of Specimens 1	21
	4.2.3	Measurement of Valve Movement Behaviour 1	22
	4.2.4	Evaluation of Valve Movement Behaviour 1	25
	4.2.5	Experimental Design 1	25
	4.2.6	Physicochemical Analyses 1	33
	4.2.7	Data Analyses 1	34
	4.2.8	Determination of Metal Speciation 1	35
		4.2.8.1 Geochemical Speciation Modelling 1	35
		4.2.8.2 Analytical Techniques 1	37
4.3	RESUL	S AND DISCUSSION 1	39
	4.3.1	Sensitivity, Variability and Specificity of Valve Movement Characteristics1	39
		4.3.1.1 Introduction 1	39
		4.3.1.2 Valve Movement Patterns 1	39

	4.3.1.3	Concentration-Response Relationships	152
	4.3.1.4	Water Chemistry	167
	4.3.1.5	Comparative Sensitivity of Valve Movement Characteristics	167
	4.3.1.6	Comparative Sensitivity of <i>V. angasi</i> and other Freshwater Organisms to Mn or U	173
	4.3.1.7	Comparative Sensitivity of <i>H. depressa,</i> <i>V. ambiguus</i> and other Freshwater Organisms to Cd or Cu	180
	4.3.1.8	Comparative Variability of Valve Movement Characteristics	184
	4.3.1.9	Specificity of Valve Movement Characteristics	185
	4.3.1.10	General Discussion	188
4.3.2	Mechar	isms of Valve Movement Response to Metals	190
	4.3.2.1	Introduction	190
	4.3.2.2	Chemoreception in Bivalves	191
	4.3.2.3	Trace Metal Interactions with Chemoreceptors in Molluscs	191
	4.3.2.4	Sequence of Valve Movement Response to Metal Additions	194
	4.3.2.5	Biological Basis of the Sigmoidal Concentration-Response Relationship	196
4.3.3	Effects Respon	of Size, Age and/or Sex on Valve Movement se to Mn, U, Cd or Cu	197
	4.3.3.1	Introduction	197
	4.3.3.2	Exposure of V. angasi to Mn or U	200
	4.3.3.3	Exposure of <i>H. depressa</i> to Cd or Cu	210
	4.3.3.4	General Discussion	218
4.3.4	Recove or Cu	ry of Bivalves Following Exposure to Mn, U, Cd	219
	4.3.4.1	Introduction	219
	4.3.4.2	Recovery of V. angasi to Mn or U Exposures	220
	4.3.4.3	Recovery of <i>H. depressa</i> to Cd or Cu Exposures	221
	4.3.4.4	General Discussion	222
4.3.5	A Test Interact	of the Free Ion Activity Model of Metal-Organism ion for Mn, U, Cd or Cu	223
	4.3.5.1	Introduction	223
	4.3.5.2	Conceptual Development of the FIAM and DRT	225
	4.3.5.3	Water Chemistry	232
	4.3.5.4	Metal Speciation	233
	4.3.5.5	Concentration-Response Relationships	247

		4.3.5.6	Relationship Between Valve Movement Response and Metal Speciation	262
		4.3.5.7	Comparative Sensitivity of Bivalves to Mn, U, Cd or Cu in Natural versus Synthetic Water	306
	4.3.6	Sensitiv	vity of Bivalves to Combined Metal Exposures	320
		4.3.6.1	Introduction	320
		4.3.6.2	Experimental Design	322
		4.3.6.3	Results	323
		4.3.6.4	General Discussion	326
SECTIC			CLUSIONS	221
				551
5.1	REFINE		OF THE USE OF VALVE MOVEMENT	551
5.1	REFINE BEHAVI		OF THE USE OF VALVE MOVEMENT DEVALUATE AQUATIC POLLUTANTS	332
5.1 5.2	REFINE BEHAVI EXTENS	MENT COUR TO	OF THE USE OF VALVE MOVEMENT DEVALUATE AQUATIC POLLUTANTS THE FREE-ION ACTIVITY MODEL	332
5.1 5.2	REFINE BEHAVI EXTENS OF MET	MENT COUR TO OUR TO SION OF AL-ORO	OF THE USE OF VALVE MOVEMENT O EVALUATE AQUATIC POLLUTANTS THE FREE-ION ACTIVITY MODEL GANISM INTERACTION	332 335
5.1 5.2 5.3	REFINE BEHAVI EXTENS OF MET FURTHI	MENT C OUR TC SION OF TAL-ORC ER WOF	OF THE USE OF VALVE MOVEMENT DEVALUATE AQUATIC POLLUTANTS THE FREE-ION ACTIVITY MODEL GANISM INTERACTION	332 335 339

VOLUME TWO

APPEN	DIX A:	VALVE MOVEMENT BEHAVIOUR OF BIVALVES EXPOSED TO TRACE METALS IN THE LABORATORY A	-1
A.1	Summa	ry A	\-1
A.2	Referen	Ices A-	10
APPEN	DIX B:	RANGER URANIUM MINE B	-1
B.1	Summa	ry E	3-1
B.2	Referer	ices E	3-5
APPEN	DIX C:	TEST SPECIES C	;-1
C.1	Introduc	ctionC)-1
C.2	Velesui	nio angasi C)-1
	C.2.1	Taxonomy C)-1
	C.2.2	Distribution C)-2
	C.2.3	Ecology C)-2
C.3	H. depr	essa and <i>V. ambiguus</i> C)-3

	C.3.1	Taxonomy	C-3
	C.3.2	Distribution	C-5
	C.3.3	Ecology	C-6
C.4	Referen	ces	C-7
APPEN	DIX D:	WATER CHEMISTRY OF THE MAGELA CREEK	
		AND THE HAWKESBURY-NEPEAN RIVER	D-1
D.1	Summar	у	D-1
D.2	Referen	ces I	D-25
APPEN	DIX E:	EQUILIBRIUM CONSTANTS	E-1
E.1	Introduc	tion	E-1
E.2	Selectio	n of Equilibrium Constants	E-1
E.3	Correctio	on of Equilibrium Constants for Differences in Ionic	Гo
E /	Strength	I	
C.4		Stability Constants	⊑-4 E-4
	E.4.1	Bedoy Constants	E-4
	E.4.2	Solubility Constants	E-6
E 5	Estimati	on of Equilibrium Constants	E-6
E.6	Fauilibri	um Constant Database	F-14
E.7	Referen	ces	E-78
	_	_	270
APPEN	DIX F:	EXPERIMENTAL SYSTEM	F-1
APPEN	DIX G:	FEEDING OF BIVALVES IN THE LABORATORY	G-1
G.1	Introduc	tion	G-1
G.2	Unicellu	lar Green Algae – Food Source A (<i>FS-A</i>)	G-3
	G.2.1	Introduction	G-3
	G.2.2	Preparation of <i>FS-A</i>	G-3
G.3	Cattle M	lanure Leachate – Food Source B (<i>FS-B</i>)	G-5
	G.3.1	Introduction	G-5
	G.3.2	Preparation of <i>FS-B</i>	G-5
G.4	Unicellu Food Sc	lar Green Algae and Cattle Manure Leachate – ource C (<i>FS-C</i>)	. G-5
	G.4.1	Introduction	G-5
	G.4.2	Preparation of FS-C	G-6
G.5	Results.		. G-6
	G.5.1	FS-A	G-6

(G.5.2	<i>FS-B</i> G-6
	G.5.3	<i>FS-C</i> G-6
G.6	Referen	ces G-11
APPEND	DIX H:	CONCENTRATION-RESPONSE RELATIONSHIPS
		FOR V. ANGASI
H.1	Summa	ry H-1
H.2	Referen	ces H-35
APPENDIX I:		CONCENTRATION-RESPONSE RELATIONSHIPS
		FOR <i>H. DEPRESSA</i> AND <i>V. AMBIGUUS</i> I-1
APPEND	DIX J:	PREDICTED SPECIATION OF MN AND U IN
		SYNTHETIC MAGELA CREEK WATER J-1
APPEND	DIX K:	PREDICTED SPECIATION OF CD AND CU IN
		SYNTHETIC HAWKESBURY-NEPEAN RIVER
		WATER K-1
APPEND	DIX L:	REPRINTS OF PUBLICATIONS ARISING FROM
		THIS THESIS L-1

LIST OF TABLES

Table 1.1	Valve movement behaviour of bivalves exposed to trace metals in the laboratory
Table 1.2	Approximate size of the physicochemical forms of metals in aquatic systems
Table 3.1	Fresh surface water chemistry of Magela Creek during the main Wet season
Table 3.2	Nominal inorganic composition of synthetic Magela Creek water (SMCW) during the main Wet season
Table 3.3	Fresh surface water chemistry of the Hawkesbury-Nepean River
Table 3.4	Nominal inorganic composition of synthetic Hawkesbury- Nepean River (SHNRW) water
Table 3.5	Dissolved organic carbon (DOC) concentrations in filtered water samples from Mudginberri Billabong during low and high flow conditions
Table 3.6	Elemental composition, molecular weight and COOH content of FA isolated from surface water in Mudginberri Billabong during low and high flow conditions
Table 3.7	Composition of FA models used to simulate natural FA in Magela Creek water during low and high flow conditions
Table 3.8	Dissolved organic carbon (DOC) concentrations in filtered water samples from the Hawkesbury-Nepean River (Menangle) during low and high flow conditions
Table 3.9	Elemental composition, molecular weight and COOH content of FA isolated from fresh surface water of the Hawkesbury-Nepean River (Menangle) during low and high flow conditions
Table 3.10	Composition of FA models used to simulate natural FA in the Hawkesbury-Nepean River during low and high flow conditions
Table 4.1	Experimental design for the exposure of bivalves to metals in synthetic water, under conditions of varying pH and/or model FA concentration
Table 4.2	Range of response of <i>V. angasi</i> exposed to Mn or U, and <i>H. depressa</i> and <i>V. ambiguus</i> exposed to Cd or Cu, for selected valve movement characteristics
Table 4.3	Nominal versus measured physicochemistry of SMCW and SHNRW
Table 4.4	Sensitivity of the valve movement characteristics of <i>V. angasi</i> exposed to Mn or U in SMCW
Table 4.5	Comparative sensitivity of the valve movement characteristics of <i>H. depressa</i> and <i>V. ambiguus</i> exposed to Cd or Cu in SHNRW

Table 4.6	Comparative sensitivity of freshwater fish from Magela Creek to Mn or U	174
Table 4.7	Comparative sensitivity of Australian tropical freshwater organisms to Mn in Magela Creek water	176
Table 4.8	Comparative sensitivity of Australian tropical freshwater organisms to U in SMCW	179
Table 4.9	Comparative sensitivity of freshwater bivalves to Cd and Cu	181
Table 4.10	Comparative sensitivity of selected freshwater organisms (except bivalves) to Cd and Cu	183
Table 4.11	El ratios of U/Mn for the FVA of <i>V. angasi</i> using known biological effect concentrations (MDEC and EC_{50}) from the DVO and AVO	186
Table 4.12	El ratios of Cu/Cd for the FVA of <i>H. depressa</i> and <i>V. ambiguus</i> using known biological effect concentrations (MDEC and EC_{50}) from the DVO and AVO	187
Table 4.13	Comparison of 48 h BEC ₁₀ , MDEC and EC ₅₀ values of the DVO and FVA for small, intermediate and large size classes of <i>V. angasi</i> exposed to Mn or U in SMCW	202
Table 4.14	Comparison of 48 h BEC ₁₀ , MDEC and EC ₅₀ values of the DVO and FVA for male and female specimens of <i>V. angasi</i> exposed to Mn or U in SMCW, and <i>H. depressa</i> exposed to Cd or Cu in SHNRW	204
Table 4.15	Typical data used in stepwise multiple linear regression analyses to quantify the variability of valve movement response that may be explained by selected parameters of size and sex for a given metal concentration	207
Table 4.16	Original 95% CL of the mean El for the DVO of <i>V. angasi</i> corrected for the effects of size (SL, SB, and/or DTW), age and/or sex	208
Table 4.17	Original EI values (DVO) of individuals of <i>V. angasi</i> corrected for differences in DTW	209
Table 4.18	Percentage variability in the DVO and FVA of <i>V. angasi</i> exposed to Mn or U, and <i>H. depressa</i> exposed to Cd or Cu, explained by size (SL, SB or DTW), age and/or sex	209
Table 4.19	Comparison of original 48 h BEC_{10} and EC_{50} (and 95% CL) values of the DVO and FVA for <i>V. angasi</i> exposed to Mn or U, with those corrected for size (SL, SB or DTW), age and/or sex	210
Table 4.20	Comparison of 48 h BEC ₁₀ , MDEC and EC ₅₀ values of the DVO and FVA for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cd and Cu in SHNRW	214
Table 4.21	Comparison of original 48 h BEC ₁₀ and EC ₅₀ (and 95% CL) values of the DVO and FVA for <i>H. depressa</i> exposed to Cd or Cu, with those corrected for size (SL, SB or DTW), age and/or sex.	218
Table 4.22	The predicted (HARPHRQ) and measured (EPRS) percentage of Mn ²⁺ at a range of total Mn concentrations	

	in SMCW under conditions of varying pH and model FA concentration	235
Table 4.23	The predicted (HARPHRQ) and measured (TRLFS) percentage of UO_2^{2+} and UO_2OH^+ at a range of total U concentrations in SMCW under conditions of varying pH and model FA concentration	238
Table 4.24	Comparison of the measured and predicted speciation of U in two freshwater case studies	239
Table 4.25	Predicted speciation of Cd (0.05–600 μ g L ⁻¹) in SHNRW at pH 6.5, 7.0 and 7.5 without model FA and with model FA (11.2 mg L ⁻¹)	239
Table 4.26	The predicted (HARPHRQ) and measured (Cd-ISE) activity of Cd ²⁺ at a range of total Cd concentrations in SHNRW under conditions of varying pH and model FA concentrations	241
Table 4.27	Comparison of the measured and predicted speciation of Cd in two freshwater case studies	242
Table 4.28	The predicted (HARPHRQ) and measured (Cu-ISE) activity of Cu ²⁺ at a range of total Cu concentrations in SHNRW under conditions of varying pH and model FA concentrations.	245
Table 4.29	Comparison of the measured and predicted speciation of Cu in two freshwater case studies	246
Table 4.30	Sensitivity of <i>V. angasi</i> exposed to Mn or U in SMCW under conditions of varying pH and/or model FA concentration	248
Table 4.31	Sensitivity of <i>H. depressa</i> exposed to Cd or Cu in SHNRW under conditions of varying pH and/or model FA concentration	249
Table 4.32	Predicted EC ₅₀ values for <i>V. angasi</i> exposed to U in SMCW under conditions of varying pH (5.0-6.0) and/or model FA concentration $(0-7.91 \text{ mg L}^{-1})$	255
Table 4.33	Predicted EC ₅₀ values for <i>H. depressa</i> exposed to Cu in SHNRW under conditions of varying pH (6.5-7.5) and/or model FA concentration (0-11.2 mg L ⁻¹)	261
Table 4.34	Concentrations of total Mn, expressed in terms of the activity of Mn^{2+} and $MnSO_{4(aq)}$, causing a fixed response (DVO) in <i>V. angasi</i>	263
Table 4.35	Values of selected biological response (DVO) endpoints for <i>V. angasi</i> exposed to U in SMCW under conditions of varying pH and/or model FA concentration	267
Table 4.36	Results of stepwise multiple linear regression analysis showing significant ($P \le 0.05$) predictors of the valve movement response (DVO) of <i>V. angasi</i> exposed to U in SMCW, under conditions of varying pH (5.0–6.0) and/or model FA concentration (0–7.91 mg L ⁻¹)	272
Table 4.37	Additional experimental evidence that both $\rm UO_2^{2+}$ and $\rm UO_2OH^+$ effect BR	.277
Table 4.38	Concentrations of total Cd, expressed in terms of the	

	activity of Cd ²⁺ , CdCl ⁺ and CdSO ₄ (aq), causing a fixed response (DVO) in <i>H. depressa</i>	279
Table 4.39	Values of selected biological response (DVO) endpoints for <i>H. depressa</i> exposed to Cu in SHNRW under conditions of varying pH and/or model FA concentration	284
Table 4.40	Results of stepwise multiple linear regression analysis showing significant ($P \le 0.05$) predictors of the valve movement response (DVO) of <i>H. depressa</i> exposed to Cu in SHNRW under conditions of varying pH (6.5–7.5) and/or model FA concentration (0–11.2 mg L ⁻¹)	286
Table 4.41	Results of stepwise multiple linear regression analysis showing significant ($P \le 0.05$) predictors of the survival (96 h LC ₅₀) of <i>S. gairdneri</i> exposed to Cu (expressed as [Cu ²⁺] in μ g L ⁻¹) under conditions of varying [H ⁺] and hardness (expressed as [Ca ²⁺] in mol L ⁻¹)	299
Table 4.42	Elemental composition, molecular weight and COOH content of FA isolated from surface water of Magela Creek (Georgetown Billabong) (December 1993) during high flow (24 m ³ s ⁻¹) conditions	307
Table 4.43	Chemistry of filtered (0.2µm) surface water from Magela Creek (Georgetown Billabong) during high flow (24 m ³ s ⁻¹) conditions (December 1993)	308
Table 4.44	Comparative sensitivity of the DVO of <i>V. angasi</i> exposed to Mn or U in synthetic and natural Magela Creek (Georgetown Billabong) water at pH 5.5 and <i>ca.</i> 5.7 mg L ⁻¹ FA (6.4 mg L ⁻¹ DOC)	309
Table 4.45	Elemental composition, molecular weight and COOH content of FA isolated from surface water of the Hawkesbury-Nepean River (Wallacia) (May 1994) during low flow (3.4 m ³ s ⁻¹) conditions	310
Table 4.46	Chemistry of filtered (0.2 μ m) surface water from the Hawkesbury-Nepean River (Wallacia) during low flow (3.4 m ³ s ⁻¹) conditions (May, 1994)	311
Table 4.47	Comparative sensitivity of the DVO of <i>H. depressa</i> exposed to Cd or Cu in synthetic and natural Hawkesbury-Nepean River water at pH 7.0 and <i>ca.</i> 5.5 mg L ⁻¹ FA (5.9 mg L ⁻¹ DOC)	312
Table 4.48	Composition of model FA used to simulate the metal binding capacity of surface water in Magela Creek (Georgetown Billabong) during high flow conditions	314
Table 4.49	Selected concentrations of total Mn and Mn ²⁺ measured in synthetic and natural Magela Creek (Georgetown Billabong) water at pH 5.5 and 5.7 mg L ⁻¹ FA (6.4 mg L ⁻¹ DOC)	315
Table 4.50	Composition of model FA used to simulate the metal binding capacity of surface water in the Hawkesbury-Nepean River (Wallacia) during low flow conditions	318
Table 4.51	Measured activities of Cd ²⁺ and Cu ²⁺ in synthetic and natural Hawkesbury-Nepean River (Wallacia) water at	

	pH 7.0 and 5.5 mg L ⁻¹ FA (5.9 mg L ⁻¹ DOC)	319
Table 4.52	Laboratory data on the combined effects of Cd and Cu on bivalves	323
Table 4.53	Comparison of EC ₁₀ , EC ₅₀ and EC ₇₅ values of Mn and U for <i>V. angasi</i> in individual (Mn or U) and combined (equitoxic; Mn + U) metal exposures at pH 5.0 without model FA and pH 6.0 + 7.91 mg L ⁻¹ model FA	325
Table 4.54	Comparison of EC ₁₀ , EC ₅₀ and EC ₇₅ values of Cd and Cu for <i>H. depressa</i> in individual (Cd or Cu) and combined (equitoxic; Cd + Cu) metal exposures at pH 6.5 without model FA and pH 7.5 + 11.2 mg L ⁻¹ model FA	328
Table A.1	Valve movement behaviour of bivalves exposed to trace metals in the laboratory	A-2
Table B.1	Chemical composition of mine waste waters in relation to the fresh surface waters of Magela Creek	B-4
Table D.1	Comparison of major ion, nutrient and DOC concentrations in the fresh surface waters of Magela Creek and the Hawkesbury-Nepean River with those of world rivers	D-3
Table D.2	Inorganic components of synthetic Magela Creek water	D-4
Table D.3	Comparison of dissolved trace metal concentrations in the fresh surface waters of Magela Creek and the Hawkesbury-Nepean River with those of world rivers	D-5
Table D.4	Location of sampling sites in the freshwater reaches of the Hawkesbury-Nepean River	D-6
Table D.5	Analytical methods and detection limits for selected water quality parameters	D-7
Table D.6	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – January 1991	D-8
Table D.7	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – February 1991	D-9
Table D.8	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – March 1991	D-10
Table D.9	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – April 1991	D-11
Table D.10	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – May 1991	D-12
Table D.11	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – June 1991	D-13
Table D.12	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – July 1991	D-14
Table D.13	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – August 1991	D-15
Table D.14	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – September 1991	D-16
Table D.15	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – October 1991	D-17

Table D.16	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – November 1991	D-18
Table D.17	Measured physicochemical parameters in fresh surface waters of the Hawkesbury-Nepean River – December 1991	D-19
Table D.18	Fresh surface water chemistry of a minimally-polluted reference site in the headwaters of the Hawkesbury-Nepean River	D-20
Table D.19	Inorganic components of synthetic Hawkesbury-Nepean River water	D-21
Table D.20	Organic (FA model) components of synthetic Magela Creek water	D-22
Table D.21	Organic (FA model) components of synthetic Hawkesbury- Nepean River water	D-23
Table D.22	Chemical composition of deionised water and Sydney tap water	D-24
Table E.1	Selected equilibrium constants for inorganic species	E-14
Table E.2	Selected equilibrium constants for Fe(II)/Fe(III) and U(IV)/U(VI)	E-25
Table E.3	Selected equilibrium constants for minerals	E-26
Table E.4	Selected equilibrium constants for organic species	E-28
Table E.5	Chemical and physical parameters used to estimate equilibrium constants using the unified theory of metal ion complexation	E-76
Table E.6	Equilibrium constants estimated using the unified theory of metal ion complexation and/or linear free energy relationships	E-77
Table G.1	Levels of key physicochemical parameters measured in background SMCW with and without <i>FS-C</i>	G-10
Table G.2	Levels of key physicochemical parameters measured in background SHNRW with and without <i>FS</i> – <i>C</i>	G-10
Table H.1	Exposure index (EI) values for valve movement characteristics of <i>V. angasi</i> exposed to Mn in SMCW (pH 6.0)	H-22
Table H.2	Exposure index (EI) values for valve movement characteristics of <i>V. angasi</i> exposed to U in SMCW (pH 6.0)	H-24
Table H.3	Nominal versus measured concentrations of Mn and U used in the concentration-response relationships	H-26
Table H.4	Concentrations of total U, expressed in terms of the activities of predicted uranyl species, causing a fixed behavioural response (DVO) in <i>V. angasi</i> under conditions of varying pH and/or model FA concentration	H-27
Table I.1	Nominal versus measured concentrations of Cd and Cu used in the concentration-response relationships	I-20
Table I.2	Concentrations of total Cu, expressed in terms of the activities of predicted cupric species, causing a fixed behavioural response (DVO) in <i>H. depressa</i> under	

conditions of varying pH and/or model FA concentration I-21
Predicted speciation of Mn in SMCW from pH 5.0 to 6.0 without model FA J-2
Predicted speciation of Mn in SMCW at pH 5.0, 5.5 and 6.0 with 3.15 mg L^{-1} model FA J-3
Predicted speciation of Mn in SMCW at pH 5.0, 5.5 and 6.0 with 7.91 mg L ⁻¹ model FA J-4
Predicted speciation of U in SMCW at pH 5.0 without model FA J-5
Predicted speciation of U in SMCW at pH 5.5 without model FA J-6
Predicted speciation of U in SMCW at pH 6.0 without model FA J-7
Predicted speciation of U in SMCW at pH 5.0 with 3.15 mg L ⁻¹ model FA J-8
Predicted speciation of U in SMCW at pH 5.5 with 3.15 mg L ⁻¹ model FA J-9
Predicted speciation of U in SMCW at pH 6.0 with 3.15 mg L ⁻¹ model FA J-10
Predicted speciation of U in SMCW at pH 5.0 with 7.91 mg L ⁻¹ model FA J-11
Predicted speciation of U in SMCW at pH 5.5 with 7.91 mg L ⁻¹ model FA J-12
Predicted speciation of U in SMCW at pH 6.0 with 7.91 mg L ⁻¹ model FA J-13
Predicted speciation of Cd in SHNRW at pH 6.5, 7.0 and 7.5 without model FA K-2
Predicted speciation of Cd in SHNRW at pH 6.5, 7.0 and 7.5 with 4.20 mg L^{-1} model FA
Predicted speciation of Cd in SHNRW at pH 6.5, 7.0 and 7.5 with 11.2 mg L ⁻¹ model FA K-4
Predicted speciation of Cu in SHNRW at pH 6.5, 7.0 and 7.5 without model FA K-5
Predicted speciation of Cu in SHNRW at pH 6.5 with 4.20 mg L ⁻¹ model FA K-6
Predicted speciation of Cu in SHNRW at pH 7.0 with 4.20 mg L ⁻¹ model FA K-7
Predicted speciation of Cu in SHNRW at pH 7.5 with 4.20 mg L ⁻¹ model FA K-8
Predicted speciation of Cu in SHNRW at pH 6.5 with 11.2 mg L ⁻¹ model FA K-9
Predicted speciation of Cu in SHNRW at pH 7.0 with 11.2 mg L ⁻¹ model FA K-10
Predicted speciation of Cu in SHNRW at pH 7.5 with 11.2 mg L ⁻¹ model FA K-11

LIST OF FIGURES

Figure 1.1	Features of ecotoxicological effects based on the level of organisation
Figure 1.2	Real-time valve movement patterns of three freshwater unionid bivalves (<i>Velesunio angasi</i>) exposed to a synthetic Magela Creek water
Figure 1.3	Valve movement pattern (<i>i.e.</i> valve opening period) of a freshwater unionid bivalve (<i>Velesunio angasi</i>)
Figure 2.1	Objectives and investigational strategy
Figure 2.2	Location map showing the Ranger uranium mine, adjacent to Magela Creek, in the Alligator Rivers Region, Northern Australia
Figure 2.3	Location map showing the catchment of the Hawkesbury- Nepean River, Eastern Australia
Figure 3.1	Water sampling sites in the freshwater reaches of the Hawkesbury-Nepean River
Figure 3.2	Scheme showing the isolation and purification of fulvic and humic acids from filtered natural water
Figure 3.3	Copper(II) binding curves for model FA, natural FA and filtered water typical of (a) low and (b) high flow conditions in Magela Creek during the main Wet season
Figure 3.4	Copper(II) binding curves for model FA, natural FA and filtered water typical of (a) low and (b) high flow conditions in the Hawkesbury-Nepean River
Figure 4.1	Schematic diagram of the computer-based data acquisition system used to measure and record valve movement behaviour
Figure 4.2.	Schematic diagram of the experimental design, consisting of a control, exposure and recovery phase
Figure 4.3.	Typical valve movement patterns of six specimens of <i>V. angasi</i> exposed to background concentrations of Mn and U in SMCW
Figure 4.4.	Typical valve movement response of <i>V. angasi</i> exposed to increasing Mn concentrations (exposure phase), relative to a typical control response (control phase)
Figure 4.5.	Typical valve movement response of <i>V. angasi</i> exposed to increasing U concentrations (exposure phase), relative to a typical control response (control phase)
Figure 4.6.	Initial valve movement response of <i>V. angasi</i> exposed to a sudden (spiked) increase in Mn concentration (exposure phase), relative to a typical control response (control phase)
Figure 4.7.	Initial valve movement response of <i>V. angasi</i> exposed to a sudden (spiked) increase in U concentration (exposure phase), relative to a typical control response

Figure 4.8.	(control phase) Typical valve movement response of <i>H. depressa</i> exposed to increasing Cd concentrations (exposure phase), relative to a typical control response (control phase).	143
Figure 4.9.	Typical valve movement response of <i>H. depressa</i> exposed to increasing Cu concentrations (exposure phase), relative to a typical control response (control phase)	145
Figure 4.10.	Initial valve movement response of <i>H. depressa</i> exposed to a sudden (spiked) increase in Cd concentration (exposure phase), relative to a typical control response (control phase)	146
Figure 4.11.	Initial valve movement response of <i>H. depressa</i> exposed to a sudden (spiked) increase in Cu concentration (exposure phase), relative to a typical control response (control phase)	147
Figure 4.12.	Typical valve movement response of <i>V. ambiguus</i> exposed to increasing Cd concentrations (exposure phase), relative to a typical control response (control phase)	148
Figure 4.13.	Typical valve movement response of <i>V. ambiguus</i> exposed to increasing Cd concentrations (exposure phase), relative to a typical control response (control phase)	149
Figure 4.14.	Initial valve movement response of <i>V. ambiguus</i> exposed to a sudden (spiked) increase in Cd concentration (exposure phase), relative to a typical control response (control phase)	150
Figure 4.15.	Initial valve movement response of <i>V. ambiguus</i> exposed to a sudden (spiked) increase in Cu concentration (exposure phase), relative to a typical control response (control phase)	151
Figure 4.16.	Concentration-response relationships for the selected valve movement characteristics of <i>V. angasi</i> exposed to Mn in SMCW	153
Figure 4.17.	Concentration-response relationships for the selected valve movement characteristics of <i>V. angasi</i> exposed to U in SMCW	155
Figure 4.18.	Concentration-response relationships for the selected valve movement characteristics of <i>H. depressa</i> exposed to Cd in SHNRW	158
Figure 4.19.	Concentration-response relationships for the selected valve movement characteristics of <i>H. depressa</i> exposed to Cu in SHNRW	160
Figure 4.20.	Concentration-response relationships for the selected valve movement characteristics of <i>V. ambiguus</i> exposed to Cd in SHNRW.	162
Figure 4.21.	Concentration-response relationships for the selected valve movement characteristics of <i>V. ambiguus</i> exposed to Cu in SHNRW	164

Figure 4.22.	Quadratic relationships between the mean response (EI) values of related rapid (< 2 h) (TVC, TIVA) and conventional (48 h) (DVO, FVA) valve movement characteristics [(a) TVC v DVO and (b) TIVA v FVA] for <i>V. angasi</i> exposed to Mn	172
Figure 4.23.	Quadratic relationships between the mean response values of related rapid (< 2 h) (TVC, TIVA) and conventional (48 h) (DVO, FVA) valve movement characteristics [(a) TVC v DVO and (b) TIVA v FVA] for <i>V. angasi</i> exposed to U	172
Figure 4.24.	Schematic diagram of a freshwater bivalve with left valve and left lobe of mantle removed to show the location of the osphradium (O), within the roof of the exhalant siphon (ES), in close association with the visceral ganglion (VG) and the posterior adductor muscle (PAM)	192
Figure 4.25.	Concentration-response relationships of the (a) DVO and (b) FVA for small, intermediate and large size classes of <i>V. angasi</i> exposed to Mn in SMCW	201
Figure 4.26.	Concentration-response relationships of the (a) DVO and (b) FVA for small, intermediate and large size classes of <i>V. angasi</i> exposed to U in SMCW	201
Figure 4.27.	Concentration-response relationships of the (a) DVO and (b) FVA for males and females of <i>V. angasi</i> exposed to Mn in SMCW	203
Figure 4.28.	Concentration-response relationships of the (a) DVO and (b) FVA for males and females of <i>V. angasi</i> exposed to U in SMCW	203
Figure 4.29.	Relationships between shell length and (a) shell breadth, (b) dry tissue weight and (c) age in <i>V. angasi</i> from Magela Creek (Mudginberri Billabong)	205
Figure 4.30.	Concentration-response relationships of the (a) DVO and (b) FVA of <i>V. angasi</i> exposed to Mn in SMCW, corrected for differences in size, age and/or sex	211
Figure 4.31.	Concentration-response relationships of the (a) DVO and (b) FVA of <i>V. angasi</i> exposed to U in SMCW, corrected for differences in size, age and/or sex	211
Figure 4.32.	Concentration-response relationships of the (a) DVO and (b) FVA for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cd in SHNRW	212
Figure 4.33.	Concentration-response relationships of the (a) DVO and (b) FVA for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cu in SHNRW	212
Figure 4.34.	Concentration-response relationships of the (a) DVO and (b) FVA for males and females of <i>H. depressa</i> exposed to Cd in SHNRW	215
Figure 4.35.	Concentration-response relationships of the (a) DVO and (b) FVA for males and females of <i>H. depressa</i> exposed to Cu in SHNRW	215
Figure 4.36.	Relationships between shell length and (a) shell breadth,	

	(b) dry tissue weight and (c) age in <i>H. depressa</i> from the Hawkesbury-Nepean River	216
Figure 4.37.	Concentration-response relationships of the (a) DVO and (b) FVA of <i>H. depressa</i> exposed to Cd in SHNRW, corrected for differences in size, age and/or sex (black)	217
Figure 4.38.	Concentration-response relationships of the (a) DVO and (b) FVA of <i>H. depressa</i> exposed to Cu in SHNRW, corrected for differences in size, age and/or sex (black)	217
Figure 4.39.	Recovery times (min) for <i>V. angasi</i> following 48 h exposure to (a) Mn and (b) U in SMCW	221
Figure 4.40.	Recovery times (min) for <i>H. depressa</i> following 48 h exposure to (a) Cd and (b) Cu in SHNRW	222
Figure 4.41.	Theoretical hyperbolic or sigmoidal concentration- response curves for different slope values $[n = 1 (a), n = 2 (b), n = 5 (c) and n = 10 (d)]$ showing various linear regions	230
Figure 4.42.	Predicted speciation (% distribution) of Mn in SMCW at (a) pH 5.0–6.0 without model FA and (b) pH 6.0 + 7.91 mg L^{-1} model FA	234
Figure 4.43.	Predicted speciation (% distribution) of U in SMCW at (a) pH 5.0 and (b) pH 6.0 without model FA	236
Figure 4.44.	Predicted speciation (% distribution) of U in SMCW at (a) pH 5.0 and (b) pH 6.0 with model FA (7.91 mg L^{-1})	236
Figure 4.45.	Predicted speciation (% distribution) of Cu in SHNRW at (a) pH 6.5 and (b) pH 7.5 without model FA	243
Figure 4.46.	Predicted speciation (% distribution) of Cu in SHNRW at (a) pH 6.5 and (b) pH 7.5 with model FA (7.91 mg L^{-1})	243
Figure 4.47.	Concentration-response relationships of (a) DVO and (b) FVA for <i>V. angasi</i> exposed to Mn in SMCW at pH 5.0, pH 5.0 + 7.91 mg L ⁻¹ FA, pH 6.0 and pH 6.0 + 7.91 mg L ⁻¹ FA.	250
Figure 4.48.	Concentration-response relationships of (a) DVO and (b) FVA for <i>V. angasi</i> exposed to U in SMCW at pH 5.0, pH 5.0 + 7.91 mg L ⁻¹ FA, pH 6.0 and pH 6.0 +7.91 mg L ⁻¹ FA.	250
Figure 4.49.	Concentration-response relationships of (a) DVO and (b) FVA for <i>H. depressa</i> exposed to Cd in SHNRW at pH 6.5, pH 6.5 + 11.2 mg L ⁻¹ FA, pH 7.5 and pH 7.5 + 11.2 mg L ⁻¹ FA.	251
Figure 4.50.	Concentration-response relationships of (a) DVO and (b) FVA for <i>H. depressa</i> exposed to total Cu in SHNRW at pH 6.5, pH 6.5 + 11.2 mg L ⁻¹ FA, pH 7.5 and pH 7.5 + 11.2 mg L ⁻¹ FA.	251
Figure 4.51.	Exponential relationships between U EC ₅₀ values (DVO) for <i>V. angasi</i> and (a) pH (without model FA) and (b) model FA (at pH 5.0)	253
Figure 4.52.	Three dimensional surface plot of U EC ₅₀ values for the DVO of <i>V. angasi</i> expressed as a function of pH and model FA concentration.	254

Figure 4.53.	Exponential relationships between Cu EC ₅₀ values (DVO) for <i>H. depressa</i> and (a) pH (without model FA) and (b) model FA (at pH 5.0)	258
Figure 4.54.	Three dimensional surface plot of Cu EC_{50} values for the DVO of <i>H. depressa</i> expressed as a function of pH and model FA concentration	260
Figure 4.55.	Relationships between Mn^{2+} and selected behavioural response endpoints (EC _x) (measured using the DVO) for <i>V. angasi</i> in SMCW	264
Figure 4.56.	Concentration-response relationships highlighting the close association of Mn^{2+} and total $Mn (Mn_T)$ for the (a) DVO and (b) FVA in <i>V. angasi</i> exposed to Mn in SMCW at pH 6.0	266
Figure 4.57.	Non-linear relationships between UO_2^{2+} and H ⁺ for <i>V. angasi</i> at different biological response endpoints	270
Figure 4.58.	Concentration-response relationships of (a) DVO and (b) FVA for <i>V. angasi</i> expressed in terms of the activities of UO_2^{2+} and UO_2OH^+ at pH 5.0, pH 5.0 + 7.91 mg L ⁻¹ FA, pH 6.0 and pH 6.0 + 7.91 mg L ⁻¹ FA.	274
Figure 4.59.	Linear regressions between 1/UO ₂ ²⁺ and OH ⁻ for <i>V. angasi</i> at different biological response endpoints	274
Figure 4.60.	Biological response (EC ₂₀ , EC ₅₀ and EC ₈₀) of <i>V. angasi</i> , expressed in terms of (a) $1.86 \times UO_2^{2+} + UO_2OH^+$ and (b) Mn ²⁺ , plotted against H ⁺ (pH 5.0–6.0)	275
Figure 4.61.	Relationships between Cd^{2+} and selected behavioural response endpoints (EC_x) (measured using the DVO) for <i>H. depressa</i> in SHNRW	280
Figure 4.62.	Concentration-response relationships highlighting the close association of Cd^{2+} and total Cd (Cd_T) for the (a) DVO and (b) FVA in <i>H. depressa</i> exposed to Cd in SHNRW at pH 7.0.	283
Figure 4.63.	Non-linear relationships between Cu ²⁺ and H ⁺ for <i>H. depressa</i> at different biological response endpoints	286
Figure 4.64.	Concentration-response relationships of (a) DVO and (b) FVA for <i>H. depressa</i> expressed in terms of the activities of Cu^{2+} and $CuOH^+$ at pH 6.5, pH 6.5 + 11.2 mg L ⁻¹ FA, pH 7.5 and pH 7.5 + 11.2 mg L ⁻¹ FA	288
Figure 4.65.	Linear regressions between $1/Cu^{2+}$ and OH ⁻ for <i>H. depressa</i> at different biological response endpoints	288
Figure 4.66.	Biological response (EC ₂₀ , EC ₅₀ and EC ₈₀) of, <i>H. depressa</i> expressed in terms of (a) 2.02 x Cu ²⁺ + CuOH ⁺ and (b) Cd ²⁺ , plotted against H ⁺ (pH 6.5–7.5)	289
Figure 4.67.	Linear relationships between [Cu ²⁺] and [H+] for <i>A. franciscana</i> at two different Cu uptake rates	295
Figure 4.68.	Linear regressions of 168 h (7 d) LC_{50} values for steel- head trout (<i>S. gairdneri</i>) expressed as (a) Zn^{2+} , (b) Cd^{2+} and (c) Cu^{2+} , versus H ⁺	296
Figure 4.69.	Linear regression of LT ₅₀ values for juvenile rainbow trout (<i>O. mykiss</i>) versus [Ca ²⁺]	300

Figure 4.70.	Concentration-response relationships for the DVO of V. angasi exposed to (a) Mn and (b) U (as UO_2) in natural and synthetic Magela Creek water at pH 5.5 and 5.7 mg L ⁻¹ FA (6.4 mg L ⁻¹ DOC)	313
Figure 4.71.	Concentration-response relationships for the DVO of <i>H. depressa</i> exposed to (a) Cd and (b) Cu in natural and synthetic Hawkesbury-Nepean River water at pH 7.0 and 5.5 mg L ⁻¹ FA (5.9 mg L ⁻¹ DOC)	317
Figure 4.72.	Concentration-response relationships for <i>V. angasi</i> exposed to equitoxic mixtures of $Mn + U$ (in toxic units) at (a) pH 5.0 without model FA and (b) pH 6.0 + 7.91 mg L ⁻¹ model FA	324
Figure 4.73.	Concentration-response relationships for <i>H. depressa</i> exposed to equitoxic mixtures of Cd + Cu (in toxic units) at (a) pH 6.5 without model FA and (b) pH 7.5 + 11.2 mg L^{-1} model FA.	327
Figure B.1	Aerial view of the Ranger uranium mine	B-1
Figure B.2	View of Retention Pond 1	B-2
Figure B.3	View of Retention Pond 2	B-2
Figure B.4	View of Retention Pond 4	B-3
Figure B.5	View of the tailings dam	B-3
Figure C.1	Typical size range of Velesunio angasi used in this study	C-2
Figure C.2	Distribution of Velesunio angasi	C-3
Figure C.3	Typical size range of <i>Hyridella depressa</i> used in this study	C-4
Figure C.4	Typical size range of <i>Velesunio ambiguus</i> used in this study	C-4
Figure C.5	Distribution of Hyridella depressa	C-5
Figure C.6	Distribution of Velesunio ambiguus	C-6
Figure D.1	View of the south end of Mudginberri Billabong where surface waters and bivalves (<i>V. angasi</i>) were sampled	D-2
Figure D.2	View of the Hawkesbury-Nepean River where surface water and bivalves (<i>H. depressa</i> and <i>V. ambiguus</i>) were sampled	D-2
Figure E.1	Linear free energy relationship showing the log K of 1:1 metal di- and tri-carboxylate complexes [ML] regressed against the corresponding log K of 1:1:1 metal hydroxy di- and tri-carboxylate complexes [M(OH)L]	E-10
Figure E.2	Simple linear regression showing the log K of 1:1:1 metal hydroxy-citrate complexes [M(OH)Cit] versus the corresponding function $[g_1(z/r^2+g_2)]$ for each metal derived using the unified theory of metal ion complexation	E-10
Figure E.3	Linear free energy relationship showing the log K of 1:1:1 metal hydroxy di- and tri-carboxylate complexes [M(OH)L] regressed against the corresponding log K of 2:2:2 metal hydroxy di- and tri-carboxylate complexes	

	[M ₂ (OH) ₂ L ₂]E	5-11
Figure E.4	Linear free energy relationship showing the log K of 1:1 metal tricarballylate complexes (MTri) regressed against the corresponding log K of 1:1:1 metal hydrogen tricarballylate complexes (MHTri)	-11
Figure E.5	Simple linear regression showing the log K of 1:1:1 metal hydrogen tricarballylate complexes (MHTri) versus the corresponding function $[g_1(z/r^2+g_2)]$ for each metal derived using the unified theory of metal ion complexation	E-12
Figure E.6	Simple linear regression showing the log K of 1:1 copper di- and tri-carboxylate complexes (CuL) versus the corresponding log K of 1:1 uranyl di- and tri-carboxylate complexes (UO_2L).	-12
Figure E.7	Simple linear regression showing the log K of 1:1 metal tricarballylate complexes (MTri) versus the corresponding function $[g_1(z/r^2+g_2)]$ for each metal, derived using the unified theory of metal ion complexation	E-13
Figure E.8	Linear free energy relationship showing the log K of 1:1 zinc di- and tri-carboxylate complexes (ZnL) regressed against the corresponding log K of 1:1 cadmium di- and tri-carboxylate complexes (CdL)	E-13
Figure F.1	Polyethylene drums used to store synthetic water	F-2
Figure F.2	View of the experimental system, showing the bivalve holding tank and the pH meter/controller	F-2
Figure F.3	Morphometric definitions for a model freshwater unionid bivalve	F-3
Figure F.4	Circuit designed to filter the AC signal from the LVDT	F-4
Figure F.5	Components of the data acquisition system used for measuring valve movement	F-5
Figure F.6	Simple linear regression showing total linear displacement versus DC voltage for a LVDT in an upward direction	F-6
Figure G.1	The DVO (as a % of control) for (a) <i>V. angasi</i> (b) <i>H. depressa</i> and (c) <i>V. ambiguus</i> fed $FS-A$, FS-B or $FS-C$ in synthetic water, plotted against period of exposure (70 d)	G-7
Figure G.2	The DVO (as a % of fed control) for (a) <i>V. angasi,</i> (b) <i>H. depressa</i> and (c) <i>V. ambiguus</i> in synthetic water without food, plotted against period of exposure (14 d)	G-8
Figure H.1	Concentration-response relationship of the DAVO for <i>V. angasi</i> exposed to Cu in SMCW (pH 6.0) for 48 h	H-2
Figure H.2	Sigmoidal concentration-response curves	H-2
Figure H.3	Relationship between the frequency distribution curve and the sigmoidal cumulative frequency distribution curve	Н-З
Figure H.4	Concentration-response relationships of the DVO for small, intermediate and large size classes of <i>V. angasi</i>	

	exposed to Mn in SMCW (pH 6.0)
Figure H.5	Concentration-response relationships of the FVA for small, intermediate and large size classes of <i>V. angasi</i> exposed to Mn in SMCW (pH 6.0)
Figure H.6	Concentration-response relationships of the DVO for small, intermediate and large size classes of <i>V. angasi</i> exposed to U in SMCW (pH 6.0)
Figure H.7	Concentration-response relationships of the FVA for small, intermediate and large size classes of <i>V. angasi</i> exposed to U in SMCW (pH 6.0)
Figure H.8	Concentration-response relationships of the DVO (a and b) and FVA (c and d) for male and female specimens of <i>V. angasi</i> exposed to Mn in SMCW (pH 6.0)
Figure H.9	Concentration-response relationships of the DVO (a and b) and FVA (c and d) for male and female specimens of <i>V. angasi</i> exposed to U in SMCW (pH 6.0) H-9
Figure H.10	Concentration-response relationships of the DVO for <i>V. angasi</i> exposed to Mn in SMCW at varying pH and/or model FA concentrations
Figure H.11	Concentration-response relationships of the FVA for <i>V. angasi</i> exposed to Mn in SMCW at varying pH and/or model FA concentrations
Figure H.12	Concentration-response relationships of the DVO for <i>V. angasi</i> exposed to U in SMCW at varying pH and/or model FA concentrations
Figure H.13	Concentration-response relationships of the FVA for <i>V. angasi</i> exposed to U in SMCW at varying pH and/or model FA concentrations
Figure I.1	Concentration-response relationships of the DVO for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cd in SHNRW (pH 7.0) I-2
Figure I.2	Concentration-response relationships of the FVA for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cd in SHNRW (pH 7.0) I-3
Figure I.3	Concentration-response relationships of the DVO for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cu in SHNRW (pH 7.0) I-4
Figure I.4	Concentration-response relationships of the FVA for small, intermediate and large size classes of <i>H. depressa</i> exposed to Cu in SHNRW (pH 7.0) I-5
Figure I.5	Concentration-response relationships of the DVO (a and b) and FVA (c and d) for male and female specimens of <i>H. depressa</i> exposed to Cd in SHNRW (pH 7.0) I-6
Figure I.6	Concentration-response relationships of the DVO (a and b) and FVA (c and d) for male and female specimens of <i>H. depressa</i> exposed to Cu in SHNRW (pH 7.0)
Figure I.7	Concentration-response relationships of the DVO for

	<i>H. depressa</i> exposed to Cd in SHNRW at varying pH and/or model FA concentrations	I-8
Figure I.8	Concentration-response relationships of the FVA for <i>H. depressa</i> exposed to Cd in SHNRW at varying pH and/or model FA concentrations	I-11
Figure I.9	Concentration-response relationships of the DVO for <i>H. depressa</i> exposed to Cu in SHNRW at varying pH and/or model FA concentrations	I-14
Figure I.10	Concentration-response relationships of the FVA for <i>H. depressa</i> exposed to Cu in SHNRW at varying pH and/or model FA concentrations	I-17

LIST OF ABBREVIATIONS

AAS	Atomic Absorption Spectrophotometry
AC	Alternating Current
AD	Analog to Digital
ANOVA	Analysis of Variance
ANSTO	Australian Nuclear Science and Technology Organisation
ANZECC	Australian and New Zealand Environment and Conservation Council
APHA	American Public Health Association
ARMCANZ	Agriculture and Resource Management Council of Australia and New
	Zealand
ARR	Alligator Rivers Region
Asp	Aspartic Acid
ASTM	American Society for Testing and Materials
ASV	Anodic Stripping Voltammetry
AVO	Amplitude of Valve Opening
BEC ₁₀	10% Bounded Effect Concentration
BEWS	Biological Early Warning System(s)
Bq	Becquerel
BR	Biological Response
°C	Degrees Celsius/Centigrade
CCREM	Canadian Council of Resource and Environment Ministers
Cl	Confidence Interval(s)
Cit	Citric Acid
CL	Confidence Limit(s)
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CV	Coefficient of Variation
CVC	Complete Valve Closure
DAVO	Duration and Amplitude of Valve Opening
DC	Direct Current
DEAE	Diethylaminoethyl-
DO	Dissolved Oxygen
DOC	Dissolved Organic Carbon
DOM	Dissolved Organic Matter
DRT	Drug Receptor Theory
DTW	Dry Tissue Weight
DUAP	Department of Urban Affairs and Planning
DVO	Duration of Valve Opening
EC ₅₀	Median Effect Concentration
EDTA	Ethylenediaminetetraacetic Acid
E _H	Redox Potential (in mV)

El	Exposure Index
EPRS	Electron Paramagnetic Resonance Spectroscopy
ERA	Energy Resources of Australia
ERISS	Environmental Research Institute of the Supervising Scientist
FA	Fulvic Acid
FIAM	Free Ion Activity Model
FVA	Frequency of Valve Adductions
FVOP	Frequency of Valve Opening Periods
Gly	Glycine
HA	Humic Acid
His	Histidine
HS	Humic Substances
I	Ionic Strength
IC	Ion Chromatography
ICPAES	Inductively Coupled Plasma Atomic Emission Spectrometry
ICPMS	Inductively Coupled Plasma Mass Spectrometry
ISE	Ion Selective Electrode
IVA	Initial Valve Adduction
IVC	Immediate Valve Closure
К	Equilibrium Constant
KNP	Kakadu National Park
LC ₅₀	Median Lethal Concentration
LFER	Linear Free Energy Relationship(s)
LOEC	Lowest Observable Effect Concentration
LVDT	Linear Variable Displacement Transducer
[M]	Free Metal Ion Activity
Mal	Malonic Acid
MCNC	Most Common Natural Concentration
MDEC	Minimum Detectable Effect Concentration
ML	Metal Complex
n	Total Number of Individuals or Variates
NBS	National Bureau of Standards
NEA	Nuclear Energy Agency
NMRS	Nuclear Magnetic Resonance Spectroscopy
NOEC	No Observable Effect Concentration
NSW	New South Wales
NTA	Nitriloacetic Acid
NT DME	Northern Territory Department of Mines and Energy
NTU	Nephelometric Turbidity Units
OECD	Organisation for Economic Co-operation and Development
Р	Level of Significance (probability of incorrectly rejecting the null hypothesis)
PAR	Photosynthetically Active Radiation

ре	Measure of Redox Potential (at 25°C, $pe = E_{H}/59$)
рК _а	Acid Dissociation Constant
r ²	Coefficient of Determination
RP	Retention Pond
RRZ	Restricted Release Zone
RS	Reference Site
RUM	Ranger Uranium Mine
Sal	Salicylic Acid
SB	Shell Breadth
sd	Standard Deviation of the Mean
se	Standard Error of the Mean
SHNRW	Synthetic Hawkesbury-Nepean River Water
SL	Shell Length
SMCW	Synthetic Magela Creek Water
SPCC	State Pollution Control Commission
STP	Sewage Treatment Plant(s)
TDE	Truncated Davies Equation
TIVA	Time to Initial Valve Adduction
тос	Total Organic Carbon
Tri	Tricarballylic Acid
TRLFS	Time-Resolved Laser-Induced Fluorescence Spectroscopy
TVC	Time to Valve Closure
UNESCO	United Nations Education, Scientific and Cultural Organisation
US EPA	United States Environmental Protection Authority
UTMIC	Unified Theory of Metal Ion Complexation
UTS	University of Technology, Sydney
VOP	Valve Opening Period(s)
YSI	Yellow Springs Instruments